LTC2323-12 [Linear]

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range;
LTC2323-12
型号: LTC2323-12
厂家: Linear    Linear
描述:

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range

文件: 总26页 (文件大小:885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2311-16  
16-Bit, 5Msps  
Differential Input ADC with Wide  
Input Common Mode Range  
DESCRIPTION  
FEATURES  
The LTC®2311-16 is a low noise, high speed 16-bit  
successive approximation register (SAR) ADC with  
differential inputs and wide input common mode range.  
n
5Msps Throughput Rate  
n
3LSB INL (Typ), 8LSB INL Guaranteed  
n
Guaranteed 16-Bit, No Missing Codes  
n
8V Differential Inputs with Wide Input Common  
Operating from a single 3.3V or 5V supply, the LTC2311-  
P-P  
Mode Range  
16 has an 8V differential input range, making it ideal  
P-P  
n
n
n
n
n
81dB SNR (Typ) at f = 2.2MHz  
for applications which require a wide dynamic range with  
high common mode rejection. The LTC2311-16 achieves  
3LSB INL typical, no missing codes at 16 bits and 81dB  
SNR typical.  
IN  
IN  
–90dB THD (Typ) at f = 2.2MHz  
Guaranteed Operation –40°C to 125°C  
Single 3.3V or 5V Supply  
Low Drift (20ppm/°C Max) 2.048V or 4.096V Internal  
Reference with 1.25V External Reference Input  
1.8V to 2.5V I/O Voltages  
TheLTC2311-16hasanonboardlowdrift(20ppm/°Cmax)  
2.048Vor4.096Vtemperature-compensatedreferenceand  
provides an external 1.25V buffered reference input. The  
LTC2311-16 also has a high speed SPI-compatible serial  
interface that supports CMOS or LVDS. The fast 5Msps  
throughputwithone-cyclelatencymakestheLTC2311-16  
ideally suited for a wide variety of high speed applications.  
The LTC2311-16 dissipates only 50mW with a 5V supply  
and offers nap and sleep modes to reduce the power  
consumption to 5μW for further power savings during  
inactive periods.  
n
n
n
n
CMOS or LVDS SPI-Compatible Serial I/O  
Power Dissipation 50mW at V = 5V (Typ)  
DD  
Small 16-Lead (4mm × 5mm) MSOP Package  
APPLICATIONS  
n
High Speed Data Acquisition Systems  
n
Communications  
n
Remote Data Acquisition  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Imaging  
n
Optical Networking  
n
Automotive  
n
Multiphase Motor Control  
TYPICAL APPLICATION  
3.3V OR 5V  
1µF  
DIFFERENTIAL INPUTS  
32k Point FFT fSMPL = 5Msps, fIN = 2.2MHz  
NO CONFIGURATION REQUIRED  
+
0
IN , IN  
SNR = 81.6dB  
THD = –90dB  
–20  
ARBITRARY  
DIFFERENTIAL  
SINAD = 81.1dB  
SFDR = 96dB  
V
REFOUT  
DD  
25Ω  
10µF  
–40  
A
A
+
IN  
LTC2311-16  
–60  
0V  
0V  
0V  
0V  
REFIN  
47pF  
–80  
–100  
–120  
–140  
10µF  
BIPOLAR  
UNIPOLAR  
LVDS OR CMOS  
CONFIGURABLE  
I/O  
25Ω  
SDO  
SCK  
IN  
CMOS/LVDS  
GND  
CNV  
0
0.5  
1
1.5  
2
2.5  
OV  
1.8V TO 2.5V  
1µF  
DD  
FREQUENCY (MHz)  
231116 TA01b  
231116 TA01a  
231116fa  
1
For more information www.linear.com/LTC2311-16  
LTC2311-16  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (OV )................................................3V  
DD  
Analog Input Voltage  
TOP VIEW  
A
, A (Note 3) ................... –0.3V to (V + 0.3V)  
IN DD  
+
IN  
+
1
2
3
4
5
6
7
8
GND  
REFIN  
16 SCK  
15 SCK  
REFIN, REFOUT ....................... –0.3V to (V + 0.3V)  
DD  
DD  
+
REFOUT  
14 SDO  
13 SDO  
17  
GND  
CNV (Note 15).......................... –0.3V to (V + 0.3V)  
V
DD  
GND  
12 OV  
DD  
Digital Input Voltage  
+
A
A
11 GND  
IN  
IN  
10 CMOS/LVDS  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
GND  
9
CNV  
Digital Output Voltage  
MSE PACKAGE  
16-LEAD (4mm × 5mm) PLASTIC MSOP  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
T
JMAX  
= 150°C, θ = 40°C/W  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
Power Dissipation...............................................200mW  
Operating Temperature Range  
LTC2311C................................................. 0°C to 70°C  
LTC2311I..............................................–40°C to 85°C  
LTC2311H .......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
http://www.linear.com/product/LTC2311-16#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
231116  
PACKAGE DESCRIPTION  
16-Lead (4mm × 5mm) Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2311CMSE-16#PBF  
LTC2311IMSE-16#PBF  
LTC2311HMSE-16#PBF  
LTC2311CMSE-16#TRPBF  
LTC2311IMSE-16#TRPBF  
LTC2311HMSE-16#TRPBF  
231116  
16-Lead (4mm × 5mm) Plastic MSOP  
16-Lead (4mm × 5mm) Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
231116  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
231116fa  
2
For more information www.linear.com/LTC2311-16  
LTC2311-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
l
l
+
+
+
V
V
V
V
Absolute Input Range (A  
Absolute Input Range (A  
)
0
V
DD  
V
DD  
IN  
IN  
IN  
IN  
)
(Note 5)  
0
V
IN  
+
= V – V  
IN  
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Analog Input DC Leakage Current  
Analog Input Capacitance  
V
V
–REFOUT  
REFOUT  
V
IN  
IN  
IN  
+
= (V + V )/2  
0
V
DD  
V
CM  
CM  
IN  
IN  
I
IN  
–1  
1
µA  
pF  
dB  
V
C
IN  
10  
85  
CMRR  
Input Common Mode Rejection Ratio  
CNV High Level Input Voltage  
CNV Low Level Input Voltage  
CNV Input Current  
f
= 2.2MHz  
= 0V to V  
IN  
l
l
l
V
IHCNV  
V
ILCNV  
V
INCNV  
1.3  
0.5  
10  
V
V
–10  
µA  
IN  
DD  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
16  
Bits  
Transition Noise  
1.7  
3
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero-Scale Error  
Bipolar Zero-Scale Error Drift  
Bipolar Full-Scale Error  
Bipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
–8  
8
LSB  
DNL  
BZE  
–0.99  
–12  
0.4  
0
0.99  
12  
LSB  
LSB  
0.01  
10  
15  
LSB/°C  
LSB  
l
FSE  
V
V
= 4.096V (REFIN Grounded) (Note 7)  
= 4.096V (REFIN Grounded)  
–30  
30  
REFOUT  
ppm/°C  
REFOUT  
231116fa  
3
For more information www.linear.com/LTC2311-16  
LTC2311-16  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS (Notes 4, 8).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio f = 2.2MHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
76  
81  
dB  
dB  
IN  
REFOUT  
REFOUT  
f
= 2.2MHz, V  
81.5  
IN  
SNR  
Signal-to-Noise Ratio  
f
f
= 2.2MHz, V  
= 2.2MHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
76.5  
78  
81.6  
82.3  
dB  
dB  
IN  
IN  
REFOUT  
REFOUT  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
f
f
= 2.2MHz, V  
= 2.2MHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
–90  
–88  
–79  
dB  
dB  
IN  
IN  
REFOUT  
REFOUT  
SFDR  
f
f
= 2.2MHz, V  
= 2.2MHz, V  
= 4.096V, Internal Reference  
= 5V, External Reference  
95  
90  
dB  
dB  
IN  
IN  
REFOUT  
REFOUT  
–3dB Input Bandwidth  
Aperture Delay  
100  
500  
1
MHz  
ps  
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
3
ns  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
REFOUT Output Voltage  
4.75V < V < 5.25V  
4.082  
2.042  
4.096  
2.048  
4.110  
2.054  
V
V
REFOUT  
DD  
3.13V < V < 3.47V  
DD  
l
l
REFOUT Input Voltage  
4.75V < V < 5.25V, REFIN = 0V (Note 5)  
0.5  
0.5  
V
V
V
V
DD  
DD  
DD  
3.13V < V < 3.47V, REFIN = 0V (Note 5)  
DD  
l
l
REFOUT Temperature Coefficient  
REFOUT Short-Circuit Current  
REFOUT Line Regulation  
(Note 14)  
3
20  
ppm/°C  
mA  
V
V
= 5.25V, Forcing Output to GND  
= 4.75V to 5.25V  
30  
DD  
0.3  
0.5  
60  
mV/V  
mV/mA  
kΩ  
DD  
REFOUT Load Regulation  
I
< 2mA  
REFOUT  
REFOUT Input Resistance (External Reference REFIN = 0V  
Mode)  
I
REFOUT Input Current (External Reference  
Mode)  
REFIN = 0V, REFOUT = 4.096V  
(Notes 9, 10)  
700  
µA  
V
REFOUT  
l
V
REFIN Output Voltage  
3.13V < V < 3.47V  
1.245  
1.25  
1.255  
REFIN  
DD  
4.75V < V < 5.25V  
DD  
l
l
REFIN Input Voltage  
3.13V < V < 3.47V (Note 5)  
1
1
1.85  
1.45  
V
V
DD  
4.75V < V < 5.25V (Note 5)  
DD  
l
REFIN Short-Circuit Current  
V
DD  
= 5.25V, Forcing Output to GND  
250  
µA  
l
l
V
(V  
)
REFIN Low Level Input Voltage (External  
Reference Mode)  
3.13V < V < 3.47V  
0.5  
0.5  
V
V
IL REFIN  
DD  
4.75V < V < 5.25V  
DD  
231116fa  
4
For more information www.linear.com/LTC2311-16  
LTC2311-16  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.8 • OV  
–10  
TYP  
MAX  
UNITS  
CMOS Digital Inputs and Outputs  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
IH  
DD  
0.2 • OV  
10  
IL  
DD  
I
V
IN  
= 0V to OV  
DD  
μA  
pF  
V
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV – 0.2  
DD  
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
LVDS Digital Inputs and Outputs  
l
l
l
V
V
V
LVDS Differential Input Voltage  
LVDS Common Mode Input Voltage  
LVDS Differential Output Voltage  
100Ω Differential Termination, OV = 2.5V  
240  
1
600  
1.45  
300  
mV  
V
ID  
DD  
100Ω Differential Termination, OV = 2.5V  
IS  
DD  
100Ω Differential Load, LVDS Mode,  
OV = 2.5V  
DD  
100  
250  
1.2  
mV  
OD  
l
l
l
V
V
V
LVDS Common Mode Output Voltage 100Ω Differential Load, LVDS Mode,  
0.85  
50  
1.4  
200  
1.4  
V
mV  
V
OS  
OV = 2.5V  
DD  
Low Power LVDS Differential Output  
Voltage  
100Ω Differential Load, Low Power,  
125  
1.2  
OD_LP  
OS_LP  
LVDS Mode, OV = 2.5V  
DD  
Low Power LVDS Common Mode  
Output Voltage  
100Ω Differential Load, Low Power,  
0.9  
LVDS Mode, OV = 2.5V  
DD  
231116fa  
5
For more information www.linear.com/LTC2311-16  
LTC2311-16  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
DD  
Supply Voltage  
5V Operation  
3.3V Operation  
4.75  
3.13  
5.25  
3.47  
V
V
l
l
l
l
OV  
Supply Voltage  
1.71  
2.63  
12  
V
mA  
mA  
μA  
DD  
+
I
I
I
Supply Current  
5Msps Sample Rate (A = A = 0V)  
9.5  
2.8  
0.1  
VDD  
IN  
IN  
Nap Mode Current  
Sleep Mode Current  
Conversion Done (I  
)
3.5  
10  
NAP  
VDD  
V
DD  
= 3.3V, Sleep Mode (I  
+ I  
)
SLEEP  
VDD  
OVDD  
CMOS I/O Mode  
l
I
Supply Current  
Power Dissipation  
Nap Mode  
5Msps Sample Rate (C = 5pF)  
1.1  
30  
1.75  
mA  
mW  
mW  
μW  
OVDD  
L
+
P
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.3V 5Msps Sample Rate (A = A = 0V)  
D_3.3V  
D_5V  
IN  
IN  
= 3.3V Conversion Done (I  
+ I  
)
OVDD  
7.5  
0.3  
45  
VDD  
Sleep Mode  
= 3.3V Sleep Mode (I  
+ I  
)
VDD  
OVDD  
+
l
l
l
P
Power Dissipation  
Nap Mode  
= 5V 5Msps Sample Rate (A = A = 0V)  
65  
18  
60  
mW  
mW  
μW  
IN  
IN  
= 5V Conversion Done (I  
+ I  
)
OVDD  
14  
VDD  
Sleep Mode  
= 5V Sleep Mode (I  
+ I  
)
OVDD  
0.5  
VDD  
LVDS I/O Mode  
l
I
Supply Current  
Power Dissipation  
Nap Mode  
5Msps Sample Rate (R = 100Ω)  
2.7  
36  
4.5  
mA  
mW  
mW  
µW  
OVDD  
L
+
P
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.3V 5Msps Sample Rate (A = A = 0V)  
IN IN  
D_3.3V  
= 3.3V Conversion Done (I  
+ I  
)
OVDD  
14  
VDD  
Sleep Mode  
= 3.3V Sleep Mode (I  
+ I  
)
0.3  
55  
VDD  
OVDD  
+
l
l
l
P
Power Dissipation  
Nap Mode  
= 5V 5Msps Sample Rate (A = A = 0V)  
72  
30  
60  
mW  
mW  
µW  
D_5V  
IN  
IN  
= 5V Conversion Done (I  
+ I  
)
OVDD  
20  
VDD  
Sleep Mode  
= 5V Sleep Mode (I  
+ I  
OVDD  
)
0.5  
VDD  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMOS, LVDS I/O Modes  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Time Between Conversions  
Acquisition Time  
5
Msps  
ns  
SMPL  
(Note 11)  
(Note 11)  
200  
28.5  
171.5  
25  
1000000  
CYC  
ns  
ACQ  
Conversion Time  
ns  
CONV  
CNV High Time  
ns  
CNVH  
SCK Quiet Time from CNV↓  
SCK Delay Time to CNV↑  
SCK Period  
(Note 11)  
9.5  
19.1  
9.4  
4
ns  
DCNVSCKL  
DSCKLCNVH  
SCK  
(Note 11)  
ns  
(Notes 12, 13)  
ns  
SCK High Time  
ns  
SCKH  
SCK Low Time  
4
ns  
SCKL  
231116fa  
6
For more information www.linear.com/LTC2311-16  
LTC2311-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
C = 5pF (Note 11)  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
t
t
SDO Data Valid Delay from SCK↓  
4
7.4  
DSCKSDOV  
HSDO  
L
SDO Data Remains Valid Delay from  
SCK↓  
C = 5pF (Note 11)  
L
2
ns  
l
l
t
t
t
SDO Data Valid Delay from CNV↓  
Bus Relinquish Time After CNV↑  
REFOUT Wake-Up Time  
C = 5pF (Note 11)  
2.5  
10  
5
5
ns  
ns  
DCNVSDOV  
DCNVSDOZ  
WAKE  
L
(Note 11)  
C
= 10μF  
ms  
REFOUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note 8: All specifications in dB are referred to a full-scale 4.096V input  
with REFOUT = 4.096V.  
Note 2: All voltage values are with respect to ground.  
Note 9: When REFOUT is overdriven, the internal reference buffer must be  
Note 3: When these pin voltages are taken below ground, or above V  
turned off by setting REFIN = 0V.  
DD  
or OV , they will be clamped by internal diodes. This product can handle  
DD  
Note 10: f  
= 5MHz, I  
varies proportionally with sample rate.  
SMPL  
REFOUT  
input currents up to 100mA below ground, or above V or OV , without  
DD  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V and  
latch-up.  
DD  
Note 4: V = 5V, OV = 2.5V, REFOUT = 4.096V, f  
= 5MHz.  
DD  
DD  
SMPL  
OV = 2.5V.  
DD  
Note 5: Recommended operating conditions.  
Note 13: t  
of 9.4ns minimum allows a shift clock frequency up to  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 7: Bipolar zero error is the offset voltage measured from –0.5LSB  
when the output code flickers between 0000 0000 0000 0000 and 1111  
1111 1111 1111. Full-scale bipolar error is the worst-case of –FS or +FS  
105MHz for falling edge capture.  
Note 14: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 15: CNV is driven from a low jitter digital source, typically at OV  
logic levels. This input pin has a TTL style input that will draw a small  
amount of current.  
DD  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
231116 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 1. Voltage Levels for Timing Specifications  
231116fa  
7
For more information www.linear.com/LTC2311-16  
LTC2311-16  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT =  
DC Histogram  
4.096V, fSMPL = 5Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
1
0.5  
0
20000  
4
3
σ = 1.7  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
2
1
0
–1  
–2  
–3  
–4  
–0.5  
–1  
–32768  
–16384  
0
16384  
32768  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–32768  
–16384  
0
16384  
32768  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
231116 G02  
231116 G03  
231116 G01  
THD, Harmonics vs Input  
32k Point FFT, fSMPL = 5Msps,  
fIN = 2.2MHz  
SNR, SINAD vs Input Frequency  
(100kHz to 2.2MHz)  
Frequency (100kHz to 2.2MHz)  
–85  
–90  
83.0  
82.5  
82.0  
81.5  
81.0  
80.5  
80.0  
0
–20  
SNR = 81.6dB  
THD = –90dB  
SINAD = 81.1dB  
SFDR = 96dB  
–40  
THD  
–95  
SNR  
–60  
–80  
–100  
–105  
–110  
SINAD  
–100  
–120  
–140  
HD2  
HD3  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
231116 G06  
231116 G05  
231116 G04  
THD, Harmonics vs Input Common  
Mode (100kHz to 2.2MHz)  
SNR, SINAD vs Reference Voltage,  
fIN = 500kHz  
8k Point FFT, IMD, fSMPL = 5Msps,  
AIN+ = 100kHz, AIN= 2.2MHz  
–80  
–85  
84  
82  
80  
78  
76  
74  
72  
70  
68  
0
–20  
SINAD  
SNR  
THD  
–40  
–90  
HD3  
–60  
–95  
–80  
–100  
–105  
–110  
–100  
–120  
–140  
HD2  
1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
1
0
1.5  
2
2.5  
INPUT COMMON MODE (V)  
V
REF  
(V)  
FREQUENCY (MHz)  
231116 G09  
231116 G07  
231116 G08  
231116fa  
8
For more information www.linear.com/LTC2311-16  
LTC2311-16  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT =  
4.096V, fSMPL = 5Msps, unless otherwise noted.  
Offset Error vs Temperature  
Gain Error vs Temperature  
CMRR vs Input Frequency  
2.0  
1.5  
2.0  
1.5  
–80  
–83  
–86  
1.0  
1.0  
0.5  
0.5  
–89  
0
0
–92  
–0.5  
–1.0  
–1.5  
–2.0  
–95  
–0.5  
–1.0  
–1.5  
–2.0  
–98  
–101  
–104  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
0.5  
1
1.5  
2
2.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
231116 G12  
231116 G10  
231116 G11  
IREFOUT vs Temperature,  
VREF = 4.096V  
REFOUT Output vs Temperature  
REFOUT Output Load Regulation  
708  
706  
704  
702  
700  
698  
696  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
4.0945  
4.0940  
400  
300  
2.048V  
4.096V  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
–600  
–50 –25  
0
25  
50  
75 100 125  
0
0.5  
1
1.5  
2
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
REFOUT LOAD CURRENT (mA)  
TEMPERATURE (°C)  
231116 G14  
231116 G15  
231116 G13  
Supply Current  
vs Sample Frequency  
OVDD Current vs SCK Frequency,  
CLOAD = 10pF  
10  
9
1.5  
1.0  
0.5  
0
8
8
7
6
5
0
1
2
3
4
5
0
10 20 30 40 50 60 70 80 90 100 110  
SAMPLE FREQUENCY (Msps)  
SCK FREQUENCY (MHz)  
231116 G16  
231116 G17  
231116fa  
9
For more information www.linear.com/LTC2311-16  
LTC2311-16  
PIN FUNCTIONS  
GND(Pins1,5,8,11):Ground.Thesepinsandtheexposed  
OV (Pin 12): I/O Interface Digital Power. The range of  
DD  
pad (Pin 17) must be tied directly to a solid ground plane.  
OV is 1.71V to 2.5V. This supply is nominally set to the  
DD  
same supply as the host interface (CMOS: 1.8V or 2.5V,  
REFIN (Pin 2): Reference Buffer 1.25V Input/Output. An  
onboard buffer nominally outputs 1.25V to this pin. This  
pin should be decoupled closely to the pin (no vias) with  
a 10μF (X5R, 0805 size) ceramic capacitor. The internal  
buffer driving this pin may be overdriven with an external  
reference. The REFIN pin, when pulled to GND disables  
the REFOUT pin buffer allowing an external reference to  
drive REFOUT directly.  
LVDS: 2.5V). Bypass OV to GND with a 1μF ceramic  
DD  
capacitor close to the OV pin.  
DD  
Exposed Pad (Pin 17): Ground. Solder this pad to ground.  
CMOS I/O Mode  
+
SDO (Pin 14): Serial Data Output. The conversion result  
is shifted MSB first on each falling edge of SCK. The result  
+
is output on SDO . The logic level is determined by OV .  
REFOUT (Pin 3): Reference Buffer Output. An onboard  
buffernominallyoutputs4.096Vtothispin.Thispinshould  
be decoupled closely to the pin (no vias) with a 10μF (X5R,  
0805 size) ceramic capacitor. The internal buffer driving  
this pin may be disabled by grounding the REFIN pin. If  
the buffer is disabled, an external reference may drive this  
DD  
Do not connect SDO .  
+
SCK (Pin 16): Serial Data Clock Input. The falling edge  
of this clock shifts the conversion result MSB first onto  
+
the SDO pins. Drive SCK with a single-ended clock. The  
logic level is determined by OV . Do not connect SCK .  
DD  
pin in the range of 1.25V to V .  
DD  
LVDS I/O Mode  
V
(Pin 4): Power Supply. Bypass V to GND with a  
DD  
DD  
+
1µF ceramic capacitor close to the V pin.  
DD  
SDO , SDO (Pins 14, 13): Serial Data Output. The con-  
version result is shifted MSB first on each falling edge of  
+
A
IN  
, A (Pins 6, 7): Analog Differential Input Pins. Full-  
IN  
+
SCK. The result is output differentially on SDO and SDO .  
Thesepinsmustbedifferentiallyterminatedbyanexternal  
100Ω resistor at the receiver (FPGA).  
+
scale range (A to A ) is REFOUT voltage. These pins  
IN  
IN  
can be driven from V to GND.  
DD  
CNV (Pin 9): Convert Input. This pin, when high, defines  
the sampling phase. When this pin is driven low, the con-  
version phase is initiated and output data is clocked out.  
+
SCK , SCK (Pins 16, 15): Serial Data Clock Input. The  
falling edge of this clock shifts the conversion result MSB  
+
first onto the SDO pins. Drive SCK and SCK with a dif-  
ferentialclock.Thesepinsmustbedifferentiallyterminated  
by an external 100Ω resistor at the receiver (ADC).  
This input pin is a TTL style input typically driven at OV  
DD  
levels with a low jitter pulse, but it is bound to V levels.  
DD  
This pin is unaffected by the CMOS/LVDS pin.  
CMOS/LVDS (Pin 10): I/O mode select. Ground this pin  
to enable CMOS mode, tie to OV to enable LVDS mode.  
DD  
Float this pin to enable low power LVDS mode.  
231116fa  
10  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
FUNCTIONAL BLOCK DIAGRAM  
CMOS I/O Mode  
V
A
DD  
4
6
LDO  
+
IN  
IN  
+
LVDS/CMOS  
TRI-STATE  
SERIAL OUTPUT  
+
SDO  
16-BIT  
SAR ADC  
14  
S/H  
A
7
3
GND  
1, 5, 8, 11, 17  
OV  
12  
10  
DD  
REFOUT  
1.25V REF  
G
CMOS/LVDS  
REFIN  
2
9
+
CNV  
SCK  
TIMING CONTROL  
LOGIC  
LVDS/CMOS  
RECEIVERS  
16  
231116 BDa  
LVDS I/O Mode  
V
A
DD  
4
6
LDO  
+
IN  
IN  
+
SDO  
+
LVDS/CMOS  
TRI-STATE  
SERIAL OUTPUT  
14  
13  
16-BIT  
SAR ADC  
SDO  
S/H  
A
7
3
GND  
1, 5, 8, 11, 17  
OV  
12  
10  
DD  
REFOUT  
1.25V REF  
G
CMOS/LVDS  
REFIN  
2
9
+
SCK  
16  
15  
CNV  
TIMING CONTROL  
LOGIC  
LVDS/CMOS  
RECEIVERS  
SCK  
231116 BDb  
231116fa  
11  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
TIMING DIAGRAM  
CMOS, LVDS I/O Modes  
ACQUISITION  
CONVERSION AND READOUT  
ACQUISITION  
CNV  
SCK  
HI-Z  
HI-Z  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SDO  
231116 TD  
SERIAL DATA BITS B[15:0] CORRESPOND TO PREVIOUS CONVERSION  
231116fa  
12  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
OVERVIEW  
with binary-weighted fractions of the reference voltage  
(e.g., V  
/2, V  
/4 … V  
/65536) using a  
REFOUT  
REFOUT  
REFOUT  
The LTC2311-16 is a low noise, high speed 16-bit succes-  
sive approximation register (SAR) ADC with differential  
inputs and a wide input common mode range. Operating  
from a single 3.3V or 5V supply, the LTC2311-16 has an  
differentialcomparator.Attheendofconversion,theCDAC  
output approximates the sampled analog input. The ADC  
control logic then prepares the 16-bit digital output code  
for serial transfer.  
8V differential input range, making it ideal for applica-  
P-P  
tionswhichrequireawidedynamicrange.TheLTC2311-16  
achieves 3LSB INL typical, no missing codes at 16 bits  
and 81dB SNR typical.  
TRANSFER FUNCTION  
The LTC2311-16 digitizes the full-scale voltage of 2 ×  
16  
REFOUT into 2 levels, resulting in an LSB size of  
The LTC2311-16 has an onboard reference buffer and low  
drift (20ppm/°C max) 4.096V temperature-compensated  
reference. The LTC2311-16 also has a high speed SPI-  
compatible serial interface that supports CMOS or LVDS.  
The fast 5Msps throughput with one-cycle latency makes  
the LTC2311-16 ideally suited for a wide variety of high  
speedapplications.TheLTC2311-16dissipatesonly50mW  
operating at a 5V supply. Nap and sleep modes are also  
providedtoreducethepowerconsumptionoftheLTC2311-  
16 during inactive periods for further power savings.  
125µV with REFOUT = 4.096V. The ideal transfer function  
is shown in Figure 2. The output data is in 2’s comple-  
ment format.  
Analog Input  
The differential inputs of the LTC2311-16 provide great  
flexibility to convert a wide variety of analog signals with  
no configuration required. The LTC2311-16 digitizes the  
difference voltage between the A and A pins while  
+
IN  
IN  
supporting a wide common mode input range. The analog  
input signals can have an arbitrary relationship to each  
CONVERTER OPERATION  
other, provided that they remain between V and GND.  
DD  
The LTC2311-16 operates in two phases. During the  
acquisition phase, the sample capacitor is connected to  
The LTC2311-16 can also digitize more limited classes of  
analog input signals such as pseudo-differential unipolar/  
bipolarandfullydifferentialwithnoconfigurationrequired.  
the analog input pins A and A  
to sample the dif-  
+
IN  
IN  
ferential analog input voltage, as shown in Figure 3. A  
falling edge on the CNV pin initiates a conversion. Dur-  
ing the conversion phase, the 16-bit CDAC is sequenced  
through a successive approximation algorithm for each  
input SCK pulse, effectively comparing the sampled input  
The analog inputs of the LTC2311-16 can be modeled  
by the equivalent circuit shown in Figure 3. The back-to-  
back diodes at the inputs form clamps that provide ESD  
protection. In the acquisition phase, 10pF (C ) from the  
IN  
V
DD  
011...111  
011...110  
C
IN  
R
15Ω  
ON  
10pF  
A
A
+
IN  
000...001  
000...000  
111...111  
BIAS  
VOLTAGE  
V
DD  
C
IN  
R
15Ω  
ON  
10pF  
FSR = +FS – –FS  
1LSB = FSR/65535  
100...001  
231116 F03  
IN  
100...000  
–FSR/2  
–1  
LSB  
0
1
LSB  
+FSR/2 – 1LSB  
INPUT VOLTAGE (V)  
231116 F02  
Figure 3. The Equivalent Circuit for the Differential  
Analog Input of the LTC2311-16  
Figure 2. LTC2311-16 Transfer Function  
231116fa  
13  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
sampling capacitor in series with approximately 15Ω  
mode input range relaxes the accuracy requirements of  
any signal conditioning circuits prior to the analog inputs.  
(R ) from the on-resistance of the sampling switch is  
ON  
connected to the input. Any unwanted signal that is com-  
mon to both inputs will be reduced by the common mode  
rejection of the ADC sampler. The inputs of the ADC core  
Pseudo-Differential Bipolar Input Range  
The pseudo-differential bipolar configuration represents  
driving one of the analog inputs at a fixed voltage, typically  
draw a small current spike while charging the C capaci-  
IN  
tors during acquisition.  
V
/2, and applying a signal to the other A pin. In this  
REF  
IN  
case the analog input swings symmetrically around the  
fixedinputyieldingbipolartwo’scomplementoutputcodes  
with an ADC span of half of full-scale. This configuration  
is illustrated in Figure 4, and the corresponding transfer  
function in Figure 5. The fixed analog input pin need not  
Single-Ended Signals  
Single-ended signals can be directly digitized by the  
LTC2311-16. These signals should be sensed pseudo-  
differentially for improved common mode rejection. By  
connecting the reference signal (e.g., ground sense) of  
be set at V /2, but at some point within the V rails  
REF  
DD  
the main analog signal to the other A pin, any noise or  
allowingthealternateinputtoswingsymmetricallyaround  
IN  
disturbance common to the two signals will be rejected  
by the high CMRR of the ADC. The LTC2311-16 flexibility  
handles both pseudo-differential unipolar and bipolar sig-  
nals, with no configuration required. The wide common  
thisvoltage.Iftheinputsignal(A A )swingsbeyond  
+
IN  
IN  
REFOUT/2, valid codes will be generated by the ADC and  
must be clamped by the user, if necessary.  
V
REF  
V
REF  
LT1819  
LTC2311-16  
25Ω  
+
0V  
0V  
A
A
+
REFOUT  
REFIN  
IN  
10µF  
10µF  
V
REF  
47pF  
10k  
V
/2  
REF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
25Ω  
+
V
/2  
REF  
SDO  
SCK  
IN  
10k  
1µF  
CNV  
231116 F04  
Figure 4. Pseudo-Differential Bipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
32767  
16384  
A
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
BUT UNUSED  
–16385  
–32768  
231116 F05  
Figure 5. Pseudo-Differential Bipolar Transfer Function  
231116fa  
14  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
Pseudo-Differential Unipolar Input Range  
complement output codes with an ADC span of half of  
full-scale. This configuration is illustrated in Figure 6, and  
thecorrespondingtransferfunctioninFigure7.Iftheinput  
The pseudo-differential unipolar configuration represents  
driving one of the analog inputs at ground and applying a  
signal (A – A ) swings negative, valid codes will be  
+
IN  
IN  
signal to the other A pin. In this case, the analog input  
IN  
generated by the ADC and must be clamped by the user,  
if necessary.  
swings between ground and V yielding unipolar two’s  
REF  
V
REF  
LT1818  
LTC2311-16  
V
REF  
25Ω  
25Ω  
+
0V  
A
+
REFOUT  
IN  
0V  
10µF  
10µF  
REFIN  
47pF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
IN  
SDO  
SCK  
CNV  
231116 F06  
Figure 6. Pseudo-Differential Unipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
32767  
16384  
A
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
BUT UNUSED  
–16385  
–32768  
231116 F07  
Figure 7. Pseudo-Differential Unipolar Transfer Function  
231116fa  
15  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
Single-Ended-to-Differential Conversion  
signal source to eliminate the op amp as the dominant  
source of distortion.  
Whilesingle-endedsignalscanbedirectlydigitizedaspre-  
viously discussed, single-ended to differential conversion  
circuits may also be used when higher dynamic range is  
desired. By producing a differential signal at the inputs of  
the LTC2311-16, the signal swing presented to the ADC is  
maximized, thus increasing the achievable SNR.  
The LT®1819 high speed dual operational amplifier is  
recommendedforperformingsingle-ended-to-differential  
conversions, as shown in Figure 8. In this case, the first  
amplifier is configured as a unity-gain buffer and the  
single-ended input signal directly drives the high imped-  
ance input of this amplifier.  
The fully-differential configuration yields an analog input  
span (A – A ) of REFOUT. In this configuration, the  
+
IN  
IN  
input signal is driven on each A pin, typically at equal  
IN  
spans but opposite polarity. This yields a high common  
mode rejection on the input signals. The common mode  
voltageoftheanaloginputcanbeanywherewithintheV  
DD  
input range, but will be limited by the peak swing of the  
full-range input signal. For example, if the internal refer-  
ence is used with V = 5V , the full-range input span  
DD  
DC  
will be 4.096V. Half of the input span is typically driven  
on each A pin, yielding a signal span for each A pin of  
IN  
IN  
4.096V . This leaves ~0.9V of common mode variation  
P-P  
tolerance. When using external references, it is possible  
to increase common mode tolerance by compressing the  
ADC full-range codes into a tighter range. For example,  
Fully-Differential Inputs  
ToachievethefulldistortionperformanceoftheLTC2311-16,  
a low distortion fully-differential signal source driven  
through the LT1819 configured as two unity-gain buffers,  
as shown in Figure 9, can be used. This circuit achieves a  
THDspecificationof85dBatinputfrequenciesof500kHz  
and less. Data sheet typical performance curves are taken  
using a harmonic rejection filter between the ADC and the  
using an external 2.048V reference with V = 5V the total  
DD  
span would be 2.048V and each A span would be lim-  
IN  
ited to 2.048V allowing a common mode range of ~3V.  
P-P  
Compressing the input span would incur a SNR penalty  
of approximately 2dB. Input span compression may be  
usefulifsingle-supplyanaloginputdriversareusedwhich  
V
REF  
LT1819  
V
REF  
0V  
LT1819  
V
REF  
+
0V  
V
REF  
+
0V  
0V  
V
V
REF  
REF  
0V  
V
REF  
/2  
+
V
REF  
+
200Ω  
0V  
0V  
200Ω  
231116 F08  
231116 F09  
Figure 8. Single-Ended to Differential Driver  
Figure 9. LT1819 Buffering a Fully-Differential Signal Source  
231116fa  
16  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
cannotswingrail-to-rail.Thefully-differentialconfiguration  
is illustrated in Figure 10, with the corresponding transfer  
function illustrated in Figure 11.  
is important even for DC inputs, because the ADC inputs  
draw a current spike at the start of the acquisition phase.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2311-16. The amplifier  
provides low output impedance to minimize gain error  
and allow for fast settling of the analog signal during the  
acquisition phase. It also provides isolation between the  
signal source and the ADC inputs, which draw a small  
current spike during acquisition.  
INPUT DRIVE CIRCUITS  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2311-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
V
V
REF  
REF  
0V  
LTC2311-16  
25Ω  
25Ω  
+
0V  
A
A
+
REFOUT  
REFIN  
IN  
10µF  
10µF  
47pF  
V
V
REF  
0V  
REF  
TO CONTROL  
LOGIC  
+
0V  
SDO  
SCK  
IN  
(FPGA, CPLD,  
DSP, ETC.)  
CNV  
231116 F10  
Figure 10. Fully-Differential Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
32767  
16384  
A
IN  
(A + – A )  
IN  
IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
–16385  
–32768  
231116 F11  
Figure 11. Fully-Differential Transfer Function  
231116fa  
17  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
Input Filtering  
10µF capacitor should be soldered as close as possible  
to the REFOUT pin to minimize wiring inductance. The  
REFIN pin produces a 1.25V precision reference which  
should also be bypassed with a 10μF (X5R, 0805 size)  
ceramic capacitor. The REFIN pin may be overdriven with  
an external precision reference as shown in Figure 13a.  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter  
to minimize noise. The simple 1-pole RC lowpass filter  
shown in Figure 12 is sufficient for many applications.  
5V TO 13.2V  
LTC6655-1.25V  
V
V
REFIN  
LTC2311-16  
IN  
OUT_F  
V
OUT_S  
SINGLE-ENDED  
INPUT SIGNAL  
SHDN  
10µF  
10µF  
0.1µF  
+
50Ω  
IN  
LTC2311  
IN  
3.3nF  
REFOUT  
SINGLE-ENDED  
TO DIFFERENTIAL  
DRIVER  
231116 F12  
BW = 1MHz  
GND  
231116 F13a  
Figure 12. Input Signal Chain  
Figure 13a. LTC2311-16 with an External REFIN Voltage  
Table 1. Internal Reference with Internal Buffer  
The input resistor divider network, sampling switch on-  
resistance (R ) and the sample capacitor (C ) form a  
secondlowpassfilterthatlimitstheinputbandwidthtothe  
ADC core to 110MHz. A buffer amplifier with a low noise  
density must be selected to minimize the degradation of  
the SNR over this bandwidth.  
ON  
IN  
FULLY  
BIPOLAR  
DIFFERENTIAL  
UNIPOLAR  
INPUT  
V
DD  
REFIN REFOUT INPUT RANGE INPUT RANGE  
RANGE  
5V 1.25V 4.096V  
3.3V 1.25V 2.048V  
4.096V  
2.048V  
0V to 4.096V  
0V to 2.048V  
2.048V  
1.024V  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
Table 2. External Reference with Internal Buffer  
REFIN  
FULLY  
BIPOLAR  
INPUT  
(OVER-  
DIFFERENTIAL  
UNIPOLAR  
V
DRIVEN) REFOUT INPUT RANGE INPUT RANGE  
RANGE  
DD  
5V  
1V  
3.3V  
4.096V  
4.7V  
3.3V  
4.096V  
4.7V  
0V to 3.3V  
0V to 4.096V  
0V to 4.7V  
0V to 1.65V  
0V to 2.048V  
0V to 3V  
1.65V  
2.048V  
2.35V  
0.825V  
1.024V  
1.5V  
1.25V  
1.45V  
1V  
3.3V  
1.65V  
2.048V  
3V  
1.65V  
2.048V  
3V  
1.25V  
1.85  
ADC REFERENCE  
Internal Reference  
Table 3. External Reference Unbuffered  
The LTC2311-16 has an on-chip, low noise, low drift  
(20ppm/°Cmax),temperaturecompensatedbandgapref-  
erence that is internally buffered and is available at REFIN  
(Pin 2). The internal reference buffer gains the REFIN pin  
voltage (1.25V) to REFOUT (pin 3) and is 4.096V for a 5V  
supply and 2.048V for 3.3V supply. Bypass REFOUT to  
GND with a 10μF (X5R, 0805 size) ceramic capacitor. The  
FULLY  
BIPOLAR  
INPUT  
DIFFERENTIAL  
UNIPOLAR  
V
REFIN REFOUT INPUT RANGE INPUT RANGE RANGE  
DD  
5V  
0V  
0V  
0V  
0V  
0.5V  
5V  
0.5V  
5V  
0V to 0.5V  
0V to 5V  
0.25V  
2.5V  
3.3V  
0.5V  
3.3V  
0.5V  
3.3V  
0V to 0.5V  
0V to 3.3V  
0.25V  
1.65V  
231116fa  
18  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
External Reference  
will affect the accuracy of the output code. Due to the  
one-cycle conversion latency, the first conversion result  
at the beginning of a burst sampling period will be invalid.  
If an external reference is used to buffer/drive the REFOUT  
pin, the fast settling LTC6655 reference is recommended.  
The internal reference buffer can also be overdriven from  
1.25V to 5V with an external reference at REFOUT as  
shown in Figure 13b. In this configuration, REFIN must  
be grounded to disable the internal reference buffer. A  
55kΩ internal resistance loads the REFOUT pin when  
the reference buffer is disabled. To maximize the input  
signal swing and corresponding SNR, the LTC6655-5 is  
recommendedwhenoverdrivingREFOUT.TheLTC6655-5  
offers the same small size, accuracy, drift and extended  
temperature range as the LTC6655-4.096. By using a 5V  
reference, a higher SNR can be achieved. We recommend  
bypassing the LTC6655-5 with a 10μF ceramic capacitor  
(X5R, 0805 size) as close as possible to the REFOUT pin.  
CNV  
IDLE  
PERIOD  
231116 F14  
Figure 14. CNV Waveform Showing Burst Sampling  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
REFIN  
LTC2311-16  
5V TO 13.2V  
LTC6655-4.096  
0
V
V
REFOUT  
IN  
OUT_F  
V
OUT_S  
–5000  
SHDN  
0.1µF  
100  
0
200  
10µF  
TIME (ns)  
231116 F15  
GND  
Figure 15. Transient Response of the LTC2311-16  
231116 F13b  
DYNAMIC PERFORMANCE  
Figure 13b. LTC2311-16 with an External REFOUT Voltage  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2311-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
Internal Reference Buffer Transient Response  
TheREFOUTpinoftheLTC2311-16drawscharge(Q  
)
CONV  
from the external bypass capacitors during each conver-  
sion cycle. If the internal reference buffer is overdriven,  
the external reference must provide all of this charge  
with a DC current equivalent to I  
= Q  
/t  
.
REFOUT  
CONV CYC  
Thus, the DC current draw of REFOUT depends  
on the sampling rate and output code. In applications  
where a burst of samples is taken after idling for long  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is bandlimited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
periods, as shown in Figure 14 , I  
quickly goes from  
REFOUT  
approximately~75µAtoamaximumof700µAforREFOUT  
= 5V at 5Msps. This step in DC current draw triggers a  
transient response in the external reference that must be  
considered since any deviation in the voltage at REFOUT  
231116fa  
19  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
frequency. Figure16showsthattheLTC2311-16achieves  
a typical SINAD of 81dB at a 5MHz sampling rate with a  
2.2MHz input.  
POWER CONSIDERATIONS  
The LTC2311-16 requires two power supplies: the 5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows  
DD  
DD  
0
SNR = 81.6dB  
the LTC2311-16 to communicate with any digital logic  
THD = –90dB  
–20  
operating between 1.8V and 2.5V. When using LVDS I/O,  
SINAD = 81.1dB  
SFDR = 96dB  
the OV supply must be set to 2.5V.  
DD  
–40  
–60  
–80  
Power Supply Sequencing  
The LTC2311-16 does not have any specific power sup-  
ply sequencing requirements. Care should be taken to  
adhere to the maximum voltage relationships described  
in the Absolute Maximum Ratings section. The LTC2311-  
16 has a power-on-reset (POR) circuit that will reset the  
LTC2311-16 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 10ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
–100  
–120  
–140  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY (MHz)  
231116 F16  
Figure 16. 32k Point FFT of the LTC2311-16  
Signal-to-Noise Ratio (SNR)  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 16 shows  
that the LTC2311-16 achieves a typical SNR of greater  
than 81dB at a 5MHz sampling rate with a 2.2MHz input.  
10  
9
8
Total Harmonic Distortion (THD)  
8
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
7
6
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
5
0
1
2
3
4
5
SAMPLE FREQUENCY (Msps)  
231116 G16  
V22 + V32 + V42 +…+ VN2  
THD=20log  
Figure 17. Power Supply Current of the LTC2311-16  
Versus Sampling Rate  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through VN are the amplitudes of the  
second through Nth harmonics. The THD specifications  
for the LTC2311-16 consider the first seven harmonics  
(i.e. N=7). Figure 16 shows that the LTC2311-16 achieves  
a typical THD of –90dB at a 5MHz sampling rate with a  
2.2MHz input.  
231116fa  
20  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
TIMING AND CONTROL  
incurred to allow the reference and power systems to  
become valid. To enter nap mode on the LTC2311-16,  
the SCK signal must be held high or low and a series of  
two CNV pulses must be applied. This is the case for both  
CMOS and LVDS modes. The second rising edge of CNV  
initiates the nap state. The nap state will persist until either  
asinglerisingedgeofSCKisapplied,orfurtherCNVpulses  
are applied. The SCK rising edge will put the LTC2311-16  
back into the operational (full-power) state. When in nap  
mode, two additional pulses will put the LTC2311-16 in  
sleep mode. When configured for CMOS I/O operation, a  
single rising edge of SCK can return the LTC2311-16 into  
operational mode. A 10ms delay is necessary after exiting  
sleep mode to allow the reference buffer to recharge the  
external filter capacitor. In LVDS mode, exit sleep mode  
by supplying a fifth CNV pulse. The fifth pulse will return  
the LTC2311-16 to operational mode, and further SCK  
pulses will keep the part from re-entering nap and sleep  
modes. The fifth SCK pulse also works in CMOS mode  
as a method to exit sleep. In the absence of SCK pulses,  
repetitive CNV pulses will cycle the LTC2311-16 between  
operational, nap and sleep modes indefinitely.  
CNV Timing  
The LTC2311-16 sampling and conversion is controlled  
by CNV. A rising edge on CNV will start sampling and the  
fallingedgestartstheconversionandreadoutprocess.The  
conversion process is timed by the SCK input clock. For  
optimum performance, CNV should be driven by a clean  
low jitter signal. The Typical Application at the back of the  
data sheet illustrates a recommended implementation to  
reduce the relatively large jitter from an FPGA CNV pulse  
source.Notethelowjitterinputclocktimesthefallingedge  
of the CNV signal. The rising edge jitter of CNV is much  
less critical to performance. The typical pulse width of the  
CNV signal is 30ns at a 5Msps conversion rate.  
SCK Serial Data Clock Input  
The falling edge of this clock shifts the conversion result  
MSBfirstontotheSDOpins.A105MHzexternalclockmust  
be applied at the SCK pin to achieve 5Msps throughput.  
Nap/Sleep Modes  
RefertothetimingdiagramsinFigure18,Figure19,Figure20  
and Figure 21 for more detailed timing information about  
sleep and nap modes.  
Nap mode is a method to save power without sacrificing  
power-updelaysforsubsequentconversions. Sleepmode  
has substantial power savings, but a power-up delay is  
CNV  
1
2
NAP MODE  
FULL POWER MODE  
SCK  
SDO  
HOLD STATIC HIGH OR LOW  
Z
WAKE ON 1ST SCK EDGE  
Z
231116 F18  
Figure 18. CMOS and LVDS Mode NAP and WAKE Using SCK  
231116fa  
21  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
REFOUT  
RECOVERY  
REFOUT  
4.096V  
4.096V  
t
WAKE  
CNV  
1
2
3
4
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
SDO  
HOLD STATIC HIGH OR LOW  
WAKE ON 1ST SCK EDGE  
Z
Z
Z
Z
231116 F19  
Figure 19. CMOS Mode SLEEP and WAKE Using SCK  
REFOUT  
RECOVERY  
REFOUT  
4.096V  
4.096V  
t
WAKE  
WAKE ON 5TH  
CSB EDGE  
CNV  
1
2
3
4
5
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
SDO  
HOLD STATIC HIGH OR LOW  
Z
Z
Z
Z
Z
231116 F20  
Figure 20. LVDS and CMOS Mode SLEEP and WAKE Using CNV  
t
t
DSCKLCNVH  
CNVH  
CNV  
t
t
t
t
t
SCK  
DCNVSDOZ  
DCNVSCKL  
2
SCKL  
6
SCKH  
1
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCK  
t
DCNVSDOV  
HI-Z  
SDO  
HI-Z  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
t
t
DSCKSDOV  
HSDO  
t
ACQ  
t
CONV  
t
CYC  
SERIAL DATA BITS B[15:0] CORRESPOND TO PREVIOUS CONVERSION  
231116 F21  
Figure 21. LTC2311-16 Timing Diagram, CMOS, LVDS I/O Modes  
231116fa  
22  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
APPLICATIONS INFORMATION  
DIGITAL INTERFACE  
BOARD LAYOUT  
The LTC2311-16 features a serial digital interface that  
To obtain the best performance from the LTC2311-16, a  
four layer printed circuit board is recommended. Layout  
for the printed circuit board (PCB) should ensure the  
digital and analog signal lines are separated as much as  
possible. In particular, care should be taken not to run  
any digital clocks or signals adjacent to analog signals or  
underneath the ADC.  
is simple and straightforward to use. The flexible OV  
DD  
supply allows the LTC2311-16 to communicate with any  
digital logic operating between 1.8V and 2.5V. A 105MHz  
external clock must be applied at the SCK pin to achieve  
5Msps throughput.  
In addition to a standard CMOS SPI interface, the  
LTC2311-16 provides an optional LVDS SPI interface to  
support low noise digital design. The CMOS/LVDS pin is  
used to select the digital interface mode.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
ThefallingedgeofSCKoutputstheconversionresultMSB  
+
first on the SDO pins. In CMOS mode, use the SDO pin  
+
as the serial data output and the SCK pin as the serial  
Reference Design  
clock input. Do not connect the SDO and SCK pins as  
they have internal pull-downs to GND.  
Foradetailedlookatthereferencedesignforthisconverter,  
including schematics and PCB layout, please refer to the  
DC2425, the evaluation kit for the LTC2311-16.  
+
In LVDS mode, use the SDO /SDO pins as a differential  
output. These pins must be differentially terminated by an  
+
external 100Ω resistor at the receiver (FPGA). The SCK /  
SCK pins are a differential input and must be terminated  
differentially by an external 100Ω resistor at the receiver  
(ADC), see Figure 22.  
LTC2311-16  
FPGA OR DSP  
2.5V  
OV  
DD  
+
SDO  
+
100Ω  
+
SDO  
SCK  
2.5V  
+
100Ω  
CMOS/LVDS  
SCK  
CNV  
231116 F22  
Figure 22. LTC2311-16 Using the LVDS Interface  
231116fa  
23  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2311-16#packaging for the most recent package drawings.  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev F)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
8
0.35  
REF  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 ±0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE16) 0213 REV F  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
231116fa  
24  
For more information www.linear.com/LTC2311-16  
LTC2311-16  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
07/16 Updated the max value for REFOUT Short-Circuit Current  
Removed power consumption max values  
4
6
7
Changed the note for t  
DSCKSDOV  
231116fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
25  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2311-16  
TYPICAL APPLICATION  
Low Jitter Clock Timing with RF Sine Generator Using Clock Squaring/Level-Shifting Circuit and Retiming Flip-Flop  
V
CC  
NC7SVUO4P5X  
0.1µF  
1k  
MASTER_CLOCK  
V
CC  
50Ω  
1k  
D
PRE  
NC7SV74KBX  
CONV  
Q
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CLR  
CONV ENABLE  
CNV  
SCK  
LTC2311-16  
CMOS/LVDS  
NC7SVUO4P5X  
GND  
10Ω  
SDO  
231116 TA02  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2323-16/LTC2323-14/ 16-/14-/12-Bit, 5Msps, Simultaneous Sampling  
3.3V/5V Supply, 40mW/Ch, 20ppm/°C Max Internal Reference, Flexible  
Inputs, 4mm × 5mm QFN-28 Package  
LTC2323-12  
Dual ADCs  
LTC1407/LTC1407-1  
12-/14-Bit, 3Msps Simultaneous Sampling ADC  
3V Supply, 2-Channel Differential, 1.5Msps per Channel Throughput,  
Unipolar/Bipolar Inputs, 14mW, MSOP Package  
LTC2314-14  
14-Bit, 4.5Msps Serial ADC  
3V/5V Supply, 18mW/31mW, 20ppm/°C Max Internal Reference,  
Unipolar Inputs, 8-Lead TSOT-23 Package  
LTC2321-16/LTC2321-14/ 16-/14-/12-Bit, 2Msps, Simultaneous Sampling  
LTC2321-12 Dual ADCs  
3.3V/5V Supply, 33mW/Ch, 10ppm°C Max Internal Reference,  
Flexible Inputs, 4mm × 5mm QFN-28 Package  
LTC2370-16/LTC2368-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2367-16/LTC2364-16 Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, 5V Input Range,  
DGC, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-16/LTC2376-16 Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
DACs  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Reference  
DACs with Internal  
DACs with External  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 8-Pin ThinSOT™ Package  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit SPI V  
Reference  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead  
MSOP Package  
OUT  
References  
LTC6655  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm  
Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift, Low Power Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm  
Peak-to-Peak Noise, MSOP-8 Package  
Amplifiers  
LT1818/LT1819  
400MHz, 2500V/µs, 9mA Single/Dual Operational  
Amplifiers  
–85dBc Distortion at 5MHz, 6nV/√Hz Input Noise Voltage, 9mA Supply  
Current, Unity-Gain Stable  
LT1806  
LT6200  
325MHz, Single, Rail-to-Rail Input and Output, Low –80dBc Distortion at 5MHz, 3.5nV/√Hz Input Noise Voltage,  
Distortion, Low Noise Precision Op Amps 9mA Supply Current, Unity-Gain Stable  
165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Low Distortion, Unity-Gain Stable  
Low Noise, Op Amp Family  
231116fa  
LT 0716 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2311-16  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LTC2323-14

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range
Linear

LTC2323-16

16-Bit, 5Msps Differential Input ADC with Wide Input Common Mode Range
Linear

LTC2324

Quad/Octal 16-Bit/14-Bit/12-Bit, 5Msps/2Msps/1.5Msps, Serial, High Speed SAR ADCs
Linear

LTC2324-12

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324-14

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324-16

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2324CUKG-14#PBF

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2324HUKG-12#PBF

LTC2324-12 - Quad, 12-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2324HUKG-14#PBF

LTC2324-14 - Quad, 14-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2324HUKG-16#PBF

LTC2324-16 - Quad, 16-Bit, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2324IUKG-14#PBF

LTC2324-14 - Quad, 14-Bit + Sign, 2Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2325

Quad/Octal 16-Bit/14-Bit/12-Bit, 5Msps/2Msps/1.5Msps, Serial, High Speed SAR ADCs
Linear