LTC2974CUPPBF [Linear]

4-Channel PMBus Power System Manager; 4通道的PMBus电源系统管理器
LTC2974CUPPBF
型号: LTC2974CUPPBF
厂家: Linear    Linear
描述:

4-Channel PMBus Power System Manager
4通道的PMBus电源系统管理器

文件: 总98页 (文件大小:1552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2974  
4-Channel PMBus Power System Manager  
Featuring Accurate Output Current Measurement  
FEATURES  
DESCRIPTION  
TheLTC®2974isa4-channelPowerSystemManagerused  
to sequence, trim (servo), margin, supervise, manage  
faults, provide telemetry and create fault logs. PMBus  
commands support power supply sequencing, precision  
point-of-loadvoltageadjustmentandmargining.DACsuse  
a proprietary soft-connect algorithm to minimize supply  
disturbances.Supervisoryfunctionsincludeoverandunder  
current, voltage and temperature threshold limits for four  
power supply output channels as well as over and under  
voltage threshold limits for a single power supply input  
channel. Programmable fault responses can disable the  
power supplies with optional retry after a fault is detected.  
Faultsthatdisableapowersupplycanautomaticallytrigger  
black box EEPROM storage of fault status and associated  
telemetry. An internal 16-bit ADC monitors four output  
voltages,fouroutputcurrents,fourexternaltemperatures,  
one input voltage and die temperature. Output power is  
also calculated. A programmable watchdog timer moni-  
tors microprocessor activity for a stalled condition and  
resets the microprocessor if necessary. A single wire bus  
synchronizes power supplies across multiple LTC power  
systemmanagementdevices.ConfigurationEEPROMsup-  
ports autonomous operation without additional software.  
n
Sequence, Trim, Margin and Supervise Four Power  
Supplies  
n
n
n
n
n
n
n
Manage Faults, Monitor Telemetry and Create Fault Logs  
PMBus Compliant Command Set  
TM  
Supported by LTpowerPlay GUI  
Margin or Trim Supplies to 0.25% Accuracy  
Fast OV/UV Supervisors Per Channel  
Fast Output Current Supervisors Per Channel  
Coordinate Sequencing and Fault Management  
Across Multiple Chips  
n
n
n
n
Automatic Fault Logging to Internal EEPROM  
Operate Autonomously without Additional Software  
External Temperature and Input Voltage Supervisors  
Accurate Monitoring of Four Output Voltages, Four  
Output Currents, Four External Temperatures, Input  
Voltage and Internal Die Temperature  
2
n
n
n
I C/SMBus Serial Interface  
Can Be Powered from 3.3V, or 4.5V to 15V  
Available in 64-Lead 9mm × 9mm QFN Package  
APPLICATIONS  
n
Computers and Network Servers  
n
Industrial Test and Measurement  
L, LT, LTC, LTM, Linear Technology, the Linear logo, and PolyPhase are registered trademarks  
and LTpowerPlay is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 7382303, 7420359 and  
7940091.  
n
High Reliability Systems  
Medical Imaging  
Video  
n
n
TYPICAL APPLICATION  
ADC Total Unadjusted Error  
4-Channel PMBus Power System Manager  
vs Temperature  
V
4.5V < V  
IBUS  
< 15V**  
0.07  
IN  
I
I
**  
V
PWR  
V
IN_SNS  
SENSEP0  
0.06  
+
DC/DC  
I
CONVERTER  
0.05  
0.04  
0.03  
0.02  
0.01  
0
TG  
I
SENSEM0  
OV  
AUXFAULTB  
SW  
BG  
V
DAC0  
**  
V
DD33  
V
R30  
SENSEP0  
R20  
R10  
SDA  
PMBus  
INTERFACE  
LTC2974*  
V
LOAD  
FB  
SCL  
ALERTB  
CONTROL0  
V
V
SGND  
RUN/SS  
–0.01  
–0.02  
–0.03  
SENSEM0  
OUT_EN0  
TO/FROM  
OTHER  
DEVICES  
FAULTB0  
MMBT3906  
GND  
FAULTB1  
T
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
SENSE0  
PWRGD  
SHARE_CLK  
TO µP  
RESETB  
INPUT  
0
100  
50  
75  
ASEL0  
ASEL1  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF FOUR CHANNELS SHOWN  
0.1µF  
2974 TA01b  
WATCHDOG  
WP  
WDI/RESETB  
GND  
TIMER INTERRUPT  
**LTC2974 MAY BE POWERED FROM  
3.3V OR 4.5V TO 14V  
2974 TA01  
2974fa  
1
For more information www.linear.com/LTC2974  
LTC2974  
TABLE OF CONTENTS  
Features........................................................... 1  
Applications ...................................................... 1  
Typical Application .............................................. 1  
Description........................................................ 1  
Absolute Maximum Ratings.................................... 4  
Order Information................................................ 4  
Pin Configuration ................................................ 4  
Electrical Characteristics....................................... 5  
PMBus Timing Diagram......................................... 9  
Typical Performance Characteristics ........................ 10  
Pin Functions.................................................... 13  
Block Diagram................................................... 15  
Operation......................................................... 16  
LTC2974 Operation Overview......................................... 16  
EEPROM .................................................................... 17  
AUXFAULTB ................................................................... 17  
RESETB.......................................................................... 18  
PMBus Serial Digital Interface ....................................... 18  
PMBus....................................................................... 18  
Device Address.......................................................... 18  
Processing Commands.............................................. 19  
PMBUS Command Summary.................................. 22  
Summary Table..........................................................22  
Data Formats.............................................................27  
PMBus Command Description ................................ 28  
Addressing and Write Protect ........................................28  
PAGE..........................................................................28  
WRITE_PROTECT......................................................28  
WRITE-PROTECT Pin ................................................29  
MFR_PAGE_FF_MASK ..............................................29  
MFR_I2C_BASE_ADDRESS......................................29  
On/Off Control, Margining and Configuration ................30  
OPERATION...............................................................30  
ON_OFF_CONFIG.......................................................31  
MFR_CONFIG_LTC2974 ............................................32  
Cascade Sequence ON with Time-Based  
Input Voltage Commands and Limits.............................43  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_  
WARN_LIMIT, VIN_UV_WARN_LIMIT and  
VIN_UV_FAULT_LIMIT ..............................................43  
Output Voltage Commands and Limits ..........................44  
VOUT_MODE .............................................................44  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_  
HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_LIMIT,  
VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT,  
VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON and  
POWER_GOOD_OFF..................................................45  
MFR_VOUT_DISCHARGE_THRESHOLD....................45  
MFR_DAC..................................................................45  
Output Current Commands and Limits ..........................46  
IOUT_CAL_GAIN .......................................................46  
IOUT_OC_FAULT_LIMIT, IOUT_OC_WARN_LIMIT and  
IOUT_UC_FAULT_LIMIT ............................................47  
MFR_IOUT_CAL_GAIN_TC........................................47  
External Temperature Commands And Limits................48  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_  
LIMIT and UT_FAULT_LIMIT .....................................48  
MFR_TEMP_1_GAIN and MFR_TEMP_1_OFFSET......48  
MFR_T_SELF_HEAT, MFR_IOUT_CAL_GAIN_TAU_INV  
and MFR_IOUT_CAL_GAIN_THETA ..........................49  
Sequencing Timing Limits and Clock Sharing................ 51  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT  
and TOFF_DELAY....................................................... 51  
MFR_RESTART_DELAY............................................. 51  
Watchdog Timer and Power Good .................................52  
MFR_PWRGD_EN .....................................................52  
Clock Sharing ............................................................52  
MFR_POWERGOOD_ASSERTION_DELAY................53  
Watchdog Operation..................................................53  
MFR_WATCHDOG_T_FIRST and  
MFR_WATCHDOG_T..................................................53  
Fault Responses.............................................................54  
Clearing Latched Faults .............................................54  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_  
RESPONSE ................................................................55  
IOUT_OC_FAULT_RESPONSE and IOUT_UC_FAULT_  
RESPONSE ................................................................56  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE,  
Sequence OFF............................................................33  
MFR_CONFIG2_LTC2974 ..........................................35  
MFR_CONFIG3_LTC2974 ..........................................35  
Tracking Supplies On and Off....................................37  
Tracking Implementation...........................................38  
MFR_CONFIG_ALL_LTC2974....................................39  
Programming User EEPROM Space...............................40  
STORE_USER_ALL and RESTORE_USER_ALL........ 41  
Bulk Programming the User EEPROM Space ............ 41  
MFR_EE_UNLOCK..................................................... 41  
MFR_EE_ERASE .......................................................42  
MFR_EE_DATA ..........................................................42  
Response When Part Is Busy ....................................43  
MFR_EE Erase and Write Programming Time...........43  
VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_  
RESPONSE ................................................................57  
TON_MAX_FAULT_RESPONSE.................................58  
MFR_RETRY_DELAY.................................................58  
MFR_RETRY_COUNT................................................58  
Shared External Faults ...................................................59  
MFR_FAULTB0_PROPAGATE and MFR_FAULTB1_  
PROPAGATE ..............................................................59  
2974fa  
2
For more information www.linear.com/LTC2974  
LTC2974  
TABLE OF CONTENTS  
MFR_FAULTB0_RESPONSE and MFR_FAULTB1_  
RESPONSE ................................................................60  
Fault Warning and Status...............................................61  
CLEAR_FAULTS.........................................................61  
STATUS_BYTE...........................................................61  
STATUS_WORD.........................................................62  
STATUS_VOUT ..........................................................62  
STATUS_IOUT ...........................................................63  
STATUS_INPUT.........................................................63  
STATUS_TEMPERATURE...........................................63  
STATUS_CML ............................................................64  
STATUS_MFR_SPECIFIC...........................................64  
MFR_PADS................................................................65  
MFR_COMMON.........................................................65  
Telemetry .......................................................................66  
READ_VIN .................................................................67  
READ_VOUT ..............................................................67  
READ_IOUT...............................................................67  
READ_TEMPERATURE_1 ..........................................67  
READ_TEMPERATURE_2..........................................67  
READ_POUT..............................................................67  
MFR_READ_IOUT .....................................................67  
MFR_IOUT_SENSE_VOLTAGE...................................68  
MFR_VIN_PEAK ........................................................69  
MFR_VOUT_PEAK .....................................................69  
MFR_IOUT_PEAK......................................................69  
MFR_TEMPERATURE_1_PEAK .................................69  
MFR_VIN_MIN ..........................................................69  
MFR_VOUT_MIN .......................................................69  
MFR_IOUT_MIN ........................................................69  
MFR_TEMPERATURE_1_MIN ...................................69  
Fault Logging .................................................................70  
Fault Log Operation...................................................70  
MFR_FAULT_LOG_STORE ........................................70  
MFR_FAULT_LOG_RESTORE....................................70  
MFR_FAULT_LOG_CLEAR ........................................71  
MFR_FAULT_LOG_STATUS.......................................71  
MFR_FAULT_LOG......................................................71  
MFR_FAULT_LOG Read Example .............................. 74  
Identification/Information ..............................................78  
CAPABILITY...............................................................79  
PMBus_REVISION.....................................................79  
MFR_SPECIAL_ID.....................................................79  
MFR_SPECIAL_LOT..................................................79  
User Scratchpad.............................................................79  
USER_DATA_00, USER_DATA_01, USER_DATA_02,  
USER_DATA_03, USER_DATA_04, MFR_LTC_  
Powering the LTC2974 ...................................................80  
Setting Command Register Values.................................80  
Sequence, Servo, Margin and Restart Operations .........80  
Command Units On or Off.........................................80  
On Sequencing ..........................................................80  
On State Operation ....................................................81  
Servo Modes .............................................................81  
DAC Modes................................................................82  
Margining ..................................................................82  
Off Sequencing..........................................................82  
VOUT Off Threshold Voltage.......................................82  
Automatic Restart via MFR_RESTART_DELAY  
Command and CONTROL pin ....................................82  
Fault Management..........................................................82  
Output Overvoltage, Undervoltage, Overcurrent, and  
Undercurrent Faults...................................................82  
Output Overvoltage, Undervoltage, and Overcurrent  
Warnings ...................................................................83  
Configuring the AUXFAULTB Output..........................83  
Multi-Channel Fault Management..............................84  
Interconnect Between Multiple LTC2974’s .....................84  
Application Circuits........................................................85  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors .....................................85  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors ...........85  
Trimming and Margining DC/DC Converters with a  
TRIM Pin....................................................................86  
Two-Step Resistor and DAC Full-Scale Voltage  
Selection Procedure for DC/DC Converters with a  
TRIM Pin....................................................................87  
Measuring Current with a Sense Resistor .................87  
Measuring Current with Inductor DCR ......................87  
Single Phase Design Example ...................................88  
Measuring Multiphase Currents ................................88  
Multiphase Design Example ......................................89  
Anti-aliasing Filter Considerations.............................89  
Sensing Negative Voltages........................................89  
Connecting the DC1613 USB to I2C/SMBus/PMBus  
Controller to the LTC2974 in System.........................90  
Accurate DCR Temperature Compensation....................91  
LTpowerPlay: An Interactive GUI for Power Managers...93  
PCB Assembly and Layout Suggestions ........................94  
Bypass Capacitor Placement.....................................94  
Exposed Pad Stencil Design......................................94  
Unused ADC Sense Inputs.........................................94  
PCB Board Layout .....................................................94  
Package Description ........................................... 95  
Typical Application ............................................. 96  
RESERVED_1 and MFR_LTC_RESERVED_2 .............79  
Applications Information ...................................... 80  
Overview ........................................................................80  
Related Parts.................................................... 96  
2974fa  
3
For more information www.linear.com/LTC2974  
LTC2974  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltages:  
V
V
V
to GND ......................................... –0.3V to 15V  
to GND ....................................... –0.3V to 3.6V  
to GND ..................................... –0.3V to 2.75V  
PWR  
DD33  
DD25  
V
1
2
3
4
5
6
48 I  
47 I  
46 I  
45 I  
44 I  
43 I  
42 I  
41 I  
40 REFM  
39 GND  
38 REFP  
37 GND  
SENSEP0  
SENSEM3  
SENSEP3  
SENSEM2  
SENSEP2  
SENSEM1  
SENSEP1  
SENSEM0  
SENSEP0  
Digital Input/Output Voltages:  
V
SENSEM0  
V
V
V
V
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
ALERTB, SDA, SCL, CONTROL0, CONTROL1,  
CONTROL2, CONTROL3 to GND........... –0.3V to 3.6V  
PWRGD, SHARE_CLK, WDI/RESETB, WP,  
FAULTB0, FAULTB1 to GND ................. –0.3V to 3.6 V  
ASEL0, ASEL1 to GND .......................... –0.3V to 3.6V  
Analog Voltages:  
AUXFAULTB 7  
DNC 8  
65  
GND  
V
9
IN_SNS  
V
PWR  
10  
11  
12  
13  
14  
15  
16  
V
DD33  
DD33  
DD25  
DD25  
V
V
V
REFP................................................... –0.3V to 1.35V  
REFM to GND........................................ –0.3V to 0.3V  
V
V
V
36 ASEL1  
35 ASEL0  
34 T  
T
T
SENSE0  
SENSE1  
SENSE3  
to GND...................................... –0.3V to 15V  
33 CONTROL1  
IN_SNS  
to GND................................. –0.3V to 6V  
to GND ................................ –0.3V to 6V  
SENSEP[3:0]  
SENSEM[3:0]  
I
I
V
V
T
to GND .................................. –0.3V to 6V  
to GND ................................. –0.3V to 6V  
, AUXFAULTB to GND.......... –0.3V to 15V  
SENSEP[3:0]  
SENSEM[3:0]  
OUT_EN[3:0]  
UP PACKAGE  
64-LEAD (9mm × 9mm) PLASTIC QFN  
to GND...................................... –0.3V to 6V  
DAC[3:0]  
T
= 125°C, θ  
= 7°C/W, θ  
= 1°C/W  
JMAX  
JCtop  
JCbottom  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
to GND................................ –0.3V to 3.6V  
SENSE[3:0]  
Operating Junction Temperature Range:  
LTC2974C ................................................ 0°C to 70°C  
LTC2974I..............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
Maximum Junction Temperature ........................ 125°C*  
*See OPERATION section for detailed EEPROM de-  
rating information for junction temperatures in excess  
of 85°C.  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2974CUP#PBF  
LTC2974IUP#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2974UP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2974CUP#TRPBF  
LTC2974IUP#TRPBF  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
LTC2974UP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2974fa  
4
For more information www.linear.com/LTC2974  
LTC2974  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Characteristics  
l
l
l
l
V
V
V
V
V
V
Supply Input Operating Range  
Supply Current  
V Floating (Note 2)  
DD33  
4.5  
15  
13  
13  
2.8  
V
mA  
mA  
V
PWR  
PWR  
PWR  
DD33  
DD33  
DD33  
I
I
4.5V ≤ V  
≤ 15V, V  
Floating (Note 2)  
10  
10  
PWR  
PWR  
DD33  
Supply Current  
3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR  
VDD33  
DD33  
DD33  
V
Undervoltage Lockout  
Undervoltage Lockout  
Hysteresis  
V
Ramping Up, V = V  
PWR  
2.25  
2.55  
120  
UVLO_VDD33  
DD33  
DD33  
mV  
l
l
l
l
l
V
Supply Input Operating Range  
Regulator Output Voltage  
Regulator Output Short-Circuit Current  
Regulator Output Voltage  
Regulator Output Short-Circuit Current  
Initialization Time  
V
= V  
3.13  
3.13  
75  
3.47  
3.47  
140  
2.6  
V
V
DD33  
PWR  
DD33  
4.5V ≤ V  
≤ 15V  
3.26  
90  
PWR  
V
PWR  
= 4.5V, V  
= 0V  
DD33  
mA  
V
V
3.13V ≤ V  
≤ 3.47V  
2.35  
30  
2.5  
55  
DD25  
DD33  
DD33  
V
PWR  
= V  
= 3.47V, V  
= 0V  
DD25  
80  
mA  
ms  
t
Time from V applied until the TON_DELAY  
timer starts  
30  
INIT  
IN  
Voltage Reference Characteristics  
l
V
Output Voltage  
V
= V  
– V  
, 0 < I  
REFM  
< 100µA  
1.220  
1.232  
3
1.244  
V
ppm/°C  
ppm  
REF  
REF  
REFP  
REFP  
Temperature Coefficient  
Hysteresis  
(Note 3)  
100  
ADC Characteristics  
l
V
Voltage Sense Input Range  
Differential Voltage:  
= (V  
0
6
V
IN_ADC  
V
– V  
)
IN_ADC  
SENSEPn  
SENSEMn  
l
l
l
Single-Ended Voltage: V  
Single-Ended Voltage: I  
–0.1  
–0.1  
–170  
0.1  
6
V
V
SENSEMn  
Current Sense Input Range  
, I  
SENSEPn SENSEMn  
Differential Current Sense Voltage:  
170  
mV  
V
= (I  
– I  
)
SENSEMn  
IN_ADC  
SENSEPn  
N_ADC  
Voltage Sense Resolution  
Current Sense Resolution  
0V ≤ V  
≤ 6V, READ_VOUT  
122  
µV/LSB  
IN_ADC  
0mV ≤ |V  
| < 16mV (Note 4)  
15.625  
31.25  
62.5  
125  
250  
µA/LSB  
µA/LSB  
µA/LSB  
µA/LSB  
µA/LSB  
IN_ADC  
16mV ≤ |V  
32mV ≤ |V  
| < 32mV  
IN_ADC  
IN_ADC  
| < 63.9mV  
| < 127.9mV  
63.9mV ≤ |V  
IN_ADC  
127.9mV ≤ |V  
|
IN_ADC  
IOUT_CAL_GAIN = 1000mΩ  
l
l
l
TUE_ADC_  
VOLT_SNS  
Total Unadjusted Error  
Total Unadjusted Error  
Voltage Sense Inputs V  
≥ 1V  
0.25  
2.5  
%
mV  
%
IN_ADC  
Voltage Sense Inputs 0 ≤ V  
≤ 1V  
IN_ADC  
TUE_ADC_  
CURR_SNS  
Current Sense Inputs 20mV ≤ V  
170mV  
0.3  
IN_ADC  
l
l
Current Sense Inputs V  
≤ 20mV  
60  
35  
µV  
µV  
IN_ADC  
V
Offset Error  
I
and I Inputs, V • IOUT_  
SENSEMn OS  
OS_ADC  
SENSEPn  
CAL_GAIN, IOUT_CAL_GAIN = 1Ω  
t
Conversion Time  
V
, V , V Inputs (Note 5)  
6.15  
24.6  
24.6  
ms  
ms  
ms  
CONV_ADC  
SENSEPn SENSEMn IN_SNS  
I
and I  
Inputs (Note 5)  
SENSEPn  
SENSEMn  
Internal Temperature  
(READ_TEMPERATURE_2) (Note 5)  
2974fa  
5
For more information www.linear.com/LTC2974  
LTC2974  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
160  
1
MAX  
UNITS  
ms  
t
Maximum Update Time  
Input Sampling Capacitance  
Input Sampling Frequency  
Input Leakage Current  
(Note 5)  
UPDATE_ADC  
C
pF  
IN_ADC  
IN_ADC  
IN_ADC  
f
I
62.5  
kHz  
µA  
l
I
, I  
IN_ADC  
,V  
, and V  
COMMONMODE  
0.5  
SENSEPn SENSEMn SENSEPn  
SENSEMn  
Inputs, V  
= 0V, 0V ≤ V  
≤ 6V  
l
l
Differential Input Current  
V
, and V  
Inputs, V  
= 6V  
10  
15  
µA  
µA  
SENSEPn  
SENSEMn  
IN_ADC  
I
, and I  
Inputs,  
0.3  
0.5  
SENSEPn  
SENSEMn  
V
= 0.17V  
IN_ADC  
DAC Output Characteristics  
N_V  
Resolution  
10  
Bits  
DAC  
l
l
V
Full-Scale Output Voltage  
(Programmable)  
DAC Code = 0x3FF Buffer Gain Setting_0  
1.3  
2.5  
1.38  
2.65  
1.44  
2.77  
V
V
FS_VDAC  
DAC Polarity = 1  
Buffer Gain Setting_1  
l
l
l
INL_V  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Voltage  
(Note 6)  
2
LSB  
LSB  
DAC  
DNL_V  
(Note 6)  
2.4  
12  
DAC  
OS_VDAC  
V
V
(Note 6)  
mV  
Load Regulation  
V
DACn  
V
DACn  
= 2.65V, I Sourcing = 2mA  
VDACn  
100  
100  
60  
ppm/mA  
ppm/mA  
dB  
DAC  
= 0.1V, I  
Sinking = 2mA  
VDACn  
PSRR  
DC: 3.13V ≤ V  
≤ 3.47V, V = V  
PWR DD33  
DD33  
l
l
l
Leakage Current  
V
V
V
V
Hi-Z, 0V ≤ V  
≤ 6V  
100  
–4  
nA  
DACn  
DACn  
DACn  
DACn  
DACn  
Short-Circuit Current Low  
Short-Circuit Current High  
Output Capacitance  
DAC Output Update Rate  
Shorted to GND  
–12  
4
mA  
Shorted to V  
Hi-Z  
12  
mA  
DD33  
C
OUT  
10  
pF  
t
Fast Servo Mode  
250  
µs  
S_VDAC  
Voltage Supervisor Characteristics  
l
l
V
IN_VS  
Input Voltage Range (Programmable)  
V
= (V  
SENSEMn  
Low Resolution Mode  
High Resolution Mode  
0
0
6
3.8  
V
V
IN_VS  
SENSEPn  
)
– V  
l
Single-Ended Voltage: V  
–0.1  
0.1  
V
mV/LSB  
mV/LSB  
%
SENSEMn  
N_VS  
Voltage Sensing Resolution  
Total Unadjusted Error  
0V to 3.8V Range: High Resolution Mode  
0V to 6V Range: Low Resolution Mode  
4
8
l
l
l
TUE_VS  
2V ≤ V  
≤ 6V, Low Resolution Mode  
1.25  
1.0  
IN_VS  
1.5V < V  
0.8V ≤ V  
≤ 3.8V, High Resolution Mode  
≤ 1.5V, High Resolution Mode  
%
IN_VS  
IN_VS  
1.5  
%
t
Update Rate  
12.21  
400  
µs  
S_VS  
Current Supervisor Characteristics  
l
l
V
Current Sense Input Range  
Single-Ended Voltage: I  
, I  
SENSEPn SENSEMn  
–0.1  
6
V
IN_CS  
Differential Voltage:  
–170  
170  
mV  
V
= (I  
– I  
)
SENSEMn  
IN_CS  
SENSEPn  
N_CS  
Current Sense Resolution  
Total Unadjusted Error  
IOUT_OC_FAULT_LIMIT • IOUT_CAL_GAIN  
IOUT_UC_FAULT_LIMIT • IOUT_CAL_GAIN  
µV/LSB  
l
l
TUE_CS  
50mV ≤ V  
≤ 170mV  
3
%
IN_CS  
V
IN_CS  
< 50mV  
1.5  
mV  
2974fa  
6
For more information www.linear.com/LTC2974  
LTC2974  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
|V | = 0.8mV  
MIN  
TYP  
MAX  
UNITS  
µV  
l
V
Offset Error  
600  
OS_CS  
OS_CS  
IN_CS  
I
Differential Input Offset Current  
OC = Positive Full-Scale, UC = 0A, VIN_CS  
= 0V  
117  
nA  
OC = UC = Positive Full-Scale, VIN_CS = 0V  
OC = 0A, UC < 0A, VIN_CS = 0V  
244  
0
nA  
nA  
µs  
t
Update Rate  
12.21  
S_CS  
V
Input Characteristics  
IN_SNS  
l
l
l
l
l
l
V
V
Input Voltage Range  
0
15  
110  
2.0  
1.0  
1.5  
1.0  
V
kΩ  
%
IN_SNS  
IN_SNS  
IN_SNS  
R
V
Input Resistance  
70  
90  
VIN_SNS  
TUE  
VIN_ON, VIN_OFF Threshold Total  
Unadjusted Error  
3V ≤ V  
≤ 8V  
≤ 8V  
VIN_SNS  
VIN_SNS  
V
> 8V  
%
VIN_SNS  
READ_VIN Total Unadjusted Error  
3V ≤ V  
%
VIN_SNS  
V
> 8V  
%
VIN_SNS  
DAC Soft-Connect Comparator Characteristics  
Offset Voltage  
External Temperature Sensor Characteristics (READ_TEMPERATURE_1)  
l
V
3
18  
mV  
ms  
OS_CMP  
t
Conversion Time  
For One Channel, (Total Latency For All  
Channels Is 4 • 66ms)  
66  
CONV_TSENSE  
l
l
l
I
I
T
T
High Level Current  
Low Level Current  
–90  
–64  
–4  
–40  
–2.5  
3
µA  
µA  
°C  
TSENSE_HI  
SENSE  
SENSE  
–5.5  
TSENSE_LOW  
TUE_TS  
N_TS  
Total Unadjusted Error  
Ideal Diode Assumed  
Maximum Ideality Factor  
READ_TEMPERATURE_1 = 175°C  
MFR_TEMP1_GAIN = 1/N_TS  
1.10  
NA  
Internal Temperature Sensor Characteristics (READ_TEMPERATURE_2)  
TUE_TS2 Total Unadjusted Error  
1
°C  
V
Enable Output (V ) Characteristics  
OUT_EN[3:0]  
OUT  
l
l
l
V
Output High Voltage  
I
= –5µA, V = 3.13V  
DD33  
12  
–5  
3
13  
–7  
5
14.7  
–9  
8
V
µA  
VOUT_ENn  
VOUT_ENn  
VOUT_ENn  
I
Output Sourcing Current  
Output Sinking Current  
V
Pull-Up Enabled, V  
= 1V  
VOUT_ENn  
VOUT_ENn  
Strong Pull-Down Enabled,  
= 0.4V  
mA  
V
VOUT_ENn  
l
l
Weak Pull-Down Enabled, V  
= 0.4V  
33  
50  
65  
1
µA  
µA  
VOUT_ENn  
Output Leakage Current  
Internal Pull-Up Disabled,  
0V ≤ V  
≤ 15V  
VOUT_ENn  
General Purpose Output (AUXFAULTB) Characteristics  
l
l
V
Output High Voltage  
I
= –5µA, V = 3.13V  
DD33  
12  
–5  
13  
–7  
14.7  
–9  
V
AUXFAULTB  
AUXFAULTB  
AUXFAULTB  
I
Output Sourcing Current  
AUXFAULTB Pull-Up Enabled, V  
1V  
=
µA  
AUXFAULTB  
l
l
Output Sinking Current  
Output Leakage Current  
Strong Pull-Down Enabled, V  
= 0.4V  
3
5
8
1
mA  
µA  
AUXFAULTB  
Internal Pull-Up Disabled, 0V ≤ V  
≤ 15V  
AUXFAULTB  
EEPROM Characteristics  
Endurance (Note 7)  
l
0°C < T < 85°C During EEPROM Write  
10,000  
Cycles  
J
Operations  
2974fa  
7
For more information www.linear.com/LTC2974  
LTC2974  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
T < 85°C  
MIN  
TYP  
MAX  
UNITS  
Years  
ms  
l
l
Retention  
(Note 7)  
10  
J
t
Mass Write Operation Time (Note 8)  
STORE_USER_ALL, 0°C < T < 85°C During  
EEPROM Write Operations  
440  
4100  
MASS_WRITE  
J
Digital Inputs SCL, SDA, CONTROL0, CONTROL1, CONTROL2, CONTROL3, WDI/RESETB, FAULTB0, FAULTB1, WP  
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
FAULTB0, FAULTB1, SDA, SCL, WDI/RESETB,  
WP  
2.1  
V
IH  
l
l
CONTROLn  
1.85  
V
V
FAULTB0, FAULTB1, SDA, SCL, WDI/RESETB,  
WP  
1.5  
1.6  
IL  
l
l
CONTROLn  
V
mV  
µA  
µs  
Input Hysteresis  
20  
HYST  
LEAK  
SP  
I
t
Input Leakage Current  
Pulse Width of Spike Suppressed  
0V ≤ V ≤ 3.6V  
2
PIN  
FAULTB0, FAULTB1, CONTROLn  
10  
98  
SDA, SCL  
ns  
t
Minimum Low Pulse Width for  
Externally Generated Faults  
180  
ms  
FAULT_MIN  
l
l
l
t
t
f
Pulse Width to Assert Reset  
V
V
≤ 1.5V  
≤ 1.5V  
300  
0.3  
µs  
µs  
RESETB  
WDI/RESETB  
Pulse Width to Reset Watchdog Timer  
200  
1
WDI  
WDI/RESETB  
Watchdog Timer Interrupt Input  
Frequency  
MHz  
WDI  
C
Input Capacitance  
10  
pF  
IN  
Digital Input SHARE_CLK  
l
l
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Frequency Operating Range  
Assertion Low Time  
Rise Time  
1.6  
V
V
IH  
0.8  
110  
1.11  
450  
1
IL  
f
t
t
I
90  
kHz  
µs  
SHARE_CLK_IN  
LOW  
V
V
< 0.8V  
0.825  
SHARE_CLK  
< 0.8V to V  
> 1.6V  
ns  
RISE  
SHARE_CLK  
SHARE_CLK  
Input Leakage Current  
Input Capacitance  
0V ≤ V  
≤ V  
+ 0.3V  
µA  
pF  
LEAK  
SHARE_CLK  
DD33  
C
10  
IN  
Digital Outputs SDA, ALERTB, SHARE_CLK, FAULTB0, FAULTB1, PWRGD  
l
l
V
Digital Output Low Voltage  
I
= 3mA  
0.4  
V
OL  
SINK  
f
Output Frequency Operating Range  
5.49kΩ Pull-Up to V  
90  
100  
110  
kHz  
SHARE_CLK_OUT  
DD33  
Digital Inputs ASEL0,ASEL1  
l
l
l
l
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
High, Low Input Current  
Hi-Z Input Current  
V
DD33  
– 0.5  
V
V
IH  
0.5  
95  
24  
IL  
I
I
ASEL[1:0] = 0, V  
µA  
µA  
pF  
IH,IL  
IH,Z  
DD33  
C
Input Capacitance  
10  
IN  
Serial Bus Timing Characteristics  
l
l
l
f
t
t
Serial Clock Frequency (Note 9)  
Serial Clock Low Period (Note 9)  
Serial Clock High Period (Note 9)  
10  
1.3  
0.6  
400  
kHz  
µs  
SCL  
LOW  
HIGH  
µs  
2974fa  
8
For more information www.linear.com/LTC2974  
LTC2974  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
t
Bus Free Time Between Stop and Start  
(Note 10)  
1.3  
µs  
BUF  
l
l
l
l
t
t
t
t
Start Condition Hold Time (Note 9)  
Start Condition Setup Time (Note 9)  
Stop Condition Setup Time (Note 9)  
600  
600  
600  
0
ns  
ns  
ns  
ns  
HD,STA  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time (LTC2974 Receiving  
Data) (Note 9)  
l
l
Data Hold Time (LTC2974 Transmitting  
Data) (Note 9)  
300  
100  
900  
ns  
t
t
Data Setup Time (Note 9)  
ns  
ns  
SU,DAT  
Pulse Width of Spike Suppressed  
(Note 9)  
98  
SP  
l
l
t
Time Allowed to Complete any PMBus Longer Timeout = 0  
Command After Which Time SDA Will Longer Timeout = 1  
Be Released and Command Terminated  
25  
200  
35  
280  
ms  
ms  
TIMEOUT_BUS  
Additional Digital Timing Characteristics  
Minimum Off Time for Any Channel  
t
100  
ms  
OFF_MIN  
–2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
the resolution for 1LSB in this range is 2 mA = 250µA. Each successively  
lower range improves resolution by cutting the LSB size in half.  
Note 5: The nominal time between successive ADC conversions (latency of  
the ADC) for any given channel is t  
.
UPDATE_ADC  
Note 2: All currents into device pins are positive. All currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
Note 6: Nonlinearity is defined from the first code that is greater than or  
equal to the maximum offset specification to full-scale code, 1023.  
specified. If power is supplied to the chip via the V  
pin only, connect  
DD33  
Note 7: EEPROM endurance and retention are guaranteed by design,  
characterization and correlation with statistical process controls. The  
minimum retention specification applies for devices whose EEPROM has  
been cycled less than the minimum endurance specification.  
Note 8: The LTC2974 will not acknowledge any PMBus commands,  
except for MFR_COMMON, when a STORE_USER_ALL command is being  
executed. See also OPERATION section.  
V
PWR  
and V  
pins together.  
DD33  
Note 3: Hysteresis in the output voltage is created by package stress  
that differs depending on whether IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or –40°C before successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change.  
Note 4: The current sense resolution is determined by the L11 format and  
Note 9: Maximum capacitive load, C , for SCL and SDA is 400pF. Data and  
B
the mV units of the returned value. For example, a full-scale value of 170mV  
clock risetime (t ) and falltime (t ) are: (20 + 0.1• C ) (ns) < t < 300ns and  
r
f
B
r
–2  
returns a L11 value of 0xF2A8 = 680 • 2 = 170. This is the lowest range  
(20 + 0.1 • C ) (ns) < t < 300ns. C = capacitance of one bus line in pF.  
B
f
B
that can represent this value without overflowing the L11 mantissa and  
SCL and SDA external pull-up voltage, V , is 3.13V < V < 3.6V.  
IO  
IO  
PMBUS TIMING DIAGRAM  
SDA  
t
r
t
SU(DAT)  
t
t
SP  
t
HD(STA)  
r
t
f
t
t
f
t
BUF  
LOW  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
2974 TD  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
2974fa  
9
For more information www.linear.com/LTC2974  
LTC2974  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reference Voltage vs  
Temperature  
ADC READ_VOUT Total Unadjusted  
Error vs Temperature  
ADC READ_IOUT Input Referred  
Offset Voltage vs Temperature  
1.2322  
1.2320  
1.2318  
1.2316  
1.2314  
1.2312  
1.2310  
1.2308  
1.2306  
1.2304  
0.07  
0.06  
5
4
THREE TYPICAL PARTS  
0.05  
3
0.04  
2
0.03  
1
0.02  
0
0.01  
–1  
–2  
–3  
–4  
–5  
0.00  
–0.01  
–0.02  
–0.03  
THREE TYPICAL PARTS  
THREE TYPICAL PARTS  
–50  
–25  
0
25  
100  
–50  
–25  
0
25  
100  
–50  
–25  
0
25  
100  
50  
75  
50  
75  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2974 G01  
2974 G02  
2974 G03  
ADC READ_IOUT Error  
vs READ_IOUT  
ADC READ_VOUT-INL  
ADC READ_VOUT-DNL  
5
4
5
4
75  
IOUT_CAL_GAIN = 2.1875mΩ  
122µV/LSB  
122µV/LSB  
50  
25  
3
3
2
2
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–25  
–50  
–75  
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
0
1
2
3
4
5
6
6
READ_VOUT (V)  
READ_VOUT (V)  
READ_IOUT (A)  
2974 G04  
2974 G05  
2974 G06  
Input Sampling Current vs  
Differential Input Voltage:  
Voltage Sense Inputs  
Input Sampling Current vs  
ADC READ_IOUT Input Referred  
Noise vs Temperature  
Differential Input Voltage: Current  
Sense Inputs  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
7
6
5
4
3
2
1
0
400  
350  
300  
250  
200  
150  
100  
50  
V
CM  
= 2.5V  
0
–50  
–25  
0
25  
100  
0
1
2
3
6
0
25  
DIFFERENTIAL INPUT VOLTAGE (mV)  
2974 G09  
50  
75  
175  
50  
75  
4
5
100 125 150  
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (V)  
2974 G07  
2974 G08  
2974fa  
10  
For more information www.linear.com/LTC2974  
LTC2974  
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Supervisor Total  
Unadjusted Error vs Temperature  
Current Supervisor Total  
Unadjusted Error vs Temperature  
DAC Full-Scale Voltage  
vs Temperature, Gain = 0  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.405  
1.400  
1.395  
1.390  
1.385  
1.380  
1.375  
1.370  
1.365  
1.360  
HIGH RES MODE  
IN  
GAIN SETTING = 0  
V
= 1.5V  
50mV  
–0.05  
–0.10  
–0.15  
–0.20  
20mV  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
0
100  
–50  
–25  
0
25  
100  
0
100  
50  
75  
50  
75  
50  
75  
TEMPERATURE (°C)  
2974 G10  
2974 G11  
2974 G12  
DAC Full-Scale Voltage  
vs Temperature, Gain = 1  
DAC Offset Voltage  
DAC Offset Voltage  
vs Temperature, Gain = 0  
vs Temperature, Gain = 1  
2.70  
2.69  
2.68  
2.67  
2.66  
2.65  
2.64  
2.63  
2.62  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
0.0040  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
GAIN SETTING = 1  
GAIN SETTING = 0  
GAIN SETTING = 1  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
0
100  
0
100  
0
100  
50  
75  
50  
75  
50  
75  
2974 G13  
2974 G14  
2974 G15  
VDD33 Regulator Output Voltage  
vs Temperature  
DAC-INL  
DAC-DNL  
3.285  
3.280  
3.275  
3.270  
3.265  
3.260  
3.255  
3.250  
3.245  
3.240  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
THREE TYPICAL PARTS  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
–50  
–25  
0
25  
100  
50  
75  
TEMPERATURE (°C)  
DAC CODE  
DAC CODE  
2974 G16  
2974 G17  
2974 G18  
2974fa  
11  
For more information www.linear.com/LTC2974  
LTC2974  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
VOUT_ENn and VAUXFAULTB Output  
VVOUT_ENn and VAUXFAULTB Output  
VOL vs Current Sinking  
VDD33 Regulator Load Regulation  
VOH vs Current Sourcing  
0
–1000  
–2000  
–3000  
–4000  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
9.0  
8
12  
0
2
4
6
10  
0
10  
20  
50  
0
1
2
3
6
7
8
30  
40  
4
5
LOAD CURRENT SOURCING (mA)  
CURRENT SOURCING (µA)  
CURRENT SINKING (mA)  
2974 G21  
2974 G19  
2974 G20  
PWRGD and FAULTBn VOL vs  
Current Sinking  
ALERTB VOL vs Current Sinking  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
20  
15  
0
5
10  
15  
0
5
10  
CURRENT SINKING (mA)  
CURRENT SINKING (mA)  
2974 G22  
2974 G23  
External Temperature READ_  
TEMPERATURE_1 Error vs  
Temperature  
READ_TEMPERATURE_2 Error vs  
Temperature  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
MMBT3906 DIODE CONNECTED BJTS  
MFR_TEMP_1_GAIN_ADJ = 0.987  
MFR_EXT_TEMP_1_ADC_OFF = –2°C  
V
DD33  
= V  
= 3.3V  
PWR  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
THREE TYPICAL PARTS  
THREE TYPICAL PARTS  
–50 –25 25  
TEMPERATURE (°C)  
–50  
–25  
0
25  
100  
0
100  
50  
75  
50  
75  
TEMPERATURE (°C)  
2974 G24  
2974 G25  
2974fa  
12  
For more information www.linear.com/LTC2974  
LTC2974  
PIN FUNCTIONS  
PIN NAME  
PIN NUMBER  
PIN TYPE  
In  
DESCRIPTION  
V
V
V
V
V
V
1*  
2*  
3
DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-0 Sensing Pin  
SENSEP0  
SENSEM0  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
In  
Out  
DC/DC Converter Enable-0 Pin. Output High Voltage Optionally Pulled-Up to 12V by 5µA  
DC/DC Converter Enable-1 Pin. Output High Voltage Optionally Pulled-Up to 12V by 5µA  
DC/DC Converter Enable-2 Pin. Output High Voltage Optionally Pulled-Up to 12V by 5µA  
DC/DC Converter Enable-3 Pin. Output High Voltage Optionally Pulled-Up to 12V by 5µA  
4
Out  
5
Out  
6
Out  
AUXFAULTB  
7
Out  
Auxillary Fault Output Pin. Output High Voltage Optionally Pulled-Up to 12V by 5µA. Can Be  
Configured to Pull Low When OV/UV/OC/UC Detected  
DNC  
8
9
Do Not Connect Do Not Connect to this Pin  
V
V
In  
V SENSE Input. This Voltage is Compared Against the V On and Off Voltage Thresholds In Order to  
IN IN  
Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters  
IN_SNS  
10  
11  
In  
V
Serves as the Unregulated Power Supply Input to the Chip (4.5 to 15V). If a 4.5V to 15V Supply  
PWR  
PWR  
Voltage Is Unavailable, Short V  
to GND with 0.1µF Capacitor.  
to V  
and Power the Chip Directly from a 3.3V Supply. Bypass  
DD33  
PWR  
V
DD33  
In/Out  
If Shorted to V  
, It Serves as 3.13 to 3.47V Supply Input Pin. Otherwise It Is a 3.3V Internally  
PWR  
Regulated Voltage Output (Use 0.1µF Decoupling Capacitor to GND)  
Input for Internal 2.5V Sub-Regulator. Short this Pin to Pin 11  
2.5V Internally Regulated Voltage Output. Bypass to GND with a 0.1µF Capacitor  
2.5V Supply Voltage Input. Short this Pin to Pin 13  
V
V
V
12  
13  
In  
DD33  
In/Out  
In  
DD25  
14  
DD25  
T
15*  
In/Out  
External Temperature Current Output and Voltage Input for Channel 0. Maximum allowed capacitance  
is 1µF  
SENSE0  
T
16*  
17  
In/Out  
Out  
External Temperature Current Output and Voltage Input for Channel 1. Maximum allowed capacitance  
is 1µF  
SENSE1  
PWRGD  
Power-Good Open Drain Output. Indicates When Selected Outputs Are Power Good. Can be Used as  
System Power-on Reset  
SHARE_CLK  
GND  
18  
19  
20  
21  
22  
23  
24  
In/Out  
Ground  
Ground  
Ground  
In  
Bidirectional Clock Sharing Pin. Connect a 5.49kΩ Pull-Up Resistor to V  
Chip Ground. Must Be Soldered to PCB  
Chip Ground. Must Be Soldered to PCB  
Chip Ground. Must Be Soldered to PCB  
Control Pin 2 Input  
DD33  
GND  
GND  
CONTROL2  
CONTROL3  
WDI/RESETB  
In  
Control Pin 3 Input  
In  
Watchdog Timer Interrupt and Chip Reset Input. Connect a 10kΩ Pull-Up Resistor to V  
. Rising  
DD33  
Edge Resets Watchdog Counter. Holding this Pin Low for More than t  
Resets the Chip  
RESETB  
FAULTB0  
FAULTB1  
25  
26  
In/Out  
In/Out  
In/Out  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-0. Connect a 10kΩ  
Pull-Up Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-1. Connect a 10kΩ  
Pull-Up Resistor to V  
DD33  
T
27*  
External Temperature Current Output and Voltage Input for Channel 2. Maximum allowed capacitance  
is 1µF  
SENSE2  
WP  
28  
29  
30  
31  
32  
33  
In  
In/Out  
In  
Digital Input. Write-Protect Input Pin, Active High  
PMBus Bidirectional Serial Data Pin  
SDA  
SCL  
PMBus Serial Clock Input Pin (400kHz Maximum)  
Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation  
Control Pin 0 Input  
ALERTB  
CONTROL0  
CONTROL1  
Out  
In  
In  
Control Pin 1 Input  
2974fa  
13  
For more information www.linear.com/LTC2974  
LTC2974  
PIN FUNCTIONS  
PIN NAME  
PIN NUMBER  
PIN TYPE  
DESCRIPTION  
T
34*  
In/Out  
External Temperature Current Output and Voltage Input for Channel 3. Maximum allowed capacitance  
is 1µF  
SENSE3  
ASEL0  
ASEL1  
GND  
35  
36  
In  
Ternary Address Select Pin 0 Input. Connect to V  
Ternary Address Select Pin 1 Input. Connect to V  
Chip Ground. Must Be Soldered to PCB  
, GND or Float to Encode 1 of 3 Logic States  
, GND or Float to Encode 1 of 3 Logic States  
DD33  
In  
DD33  
37  
Ground  
REFP  
GND  
38  
Out  
Reference Voltage Output. Needs 0.1µF Decoupling Capacitor to REFM  
Chip Ground. Must Be Soldered to PCB  
39  
Ground  
REFM  
40  
Out  
Reference Return Pin. Needs 0.1µF Decoupling Capacitor to REFP  
DC/DC Converter Differential (+) Output Current-0 Sensing Pin  
DC/DC Converter Differential (–) Output Current-0 Sensing Pin  
DC/DC Converter Differential (+) Output Current-1 Sensing Pin  
DC/DC Converter Differential (–) Output Current-1 Sensing Pin  
DC/DC Converter Differential (+) Output Current-2 Sensing Pin  
DC/DC Converter Differential (–) Output Current-2 Sensing Pin  
DC/DC Converter Differential (+) Output Current-3 Sensing Pin  
DC/DC Converter Differential (–) Output Current-3 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage-3 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-3 Sensing Pin  
No Connect  
I
I
I
I
I
I
I
I
41*  
42*  
43*  
44*  
45*  
46*  
47*  
48*  
49*  
50*  
51  
In  
SENSEP0  
SENSEM0  
SENSEP1  
SENSEM1  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
In  
In  
In  
In  
In  
In  
In  
V
V
In  
SENSEP3  
In  
No Connect  
No Connect  
Out  
SENSEM3  
NC  
NC  
52  
No Connect  
V
DAC0  
V
DAC1  
53  
DAC0 Output  
54  
Out  
DAC1 Output  
NC  
NC  
55  
No Connect  
No Connect  
Out  
No Connect  
56  
No Connect  
V
V
57  
DAC2 Output  
DAC2  
DAC3  
58  
Out  
DAC3 Output  
NC  
NC  
59  
No Connect  
No Connect  
In  
No Connect  
60  
No Connect  
V
V
V
V
61*  
62*  
63*  
64*  
65  
DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage-1 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-1 Sensing Pin  
Exposed Pad. Must Be Soldered to PCB  
SENSEP2  
SENSEM2  
SENSEP1  
SENSEM1  
In  
In  
In  
GND  
Ground  
*Any unused V  
/I  
, V  
/I  
or T  
pins should be tied to GND.  
SENSEn  
SENSEPn SENSEPn SENSEMn SENSEMn  
2974fa  
14  
For more information www.linear.com/LTC2974  
LTC2974  
BLOCK DIAGRAM  
3.3V REGULATOR  
IN  
V
10  
11  
V
V
OUT  
PWR  
V
V
V
DD33  
DD33(OUT)  
2.5V REGULATOR  
IN  
V
12  
13  
V
DD33(IN)  
V
OUT  
DD25(OUT)  
V
14  
9
V
DD25  
DD25(IN)  
3R  
V
V
SENSEP0  
SENSEM0  
V
IN_SNS  
DNC  
R
20Ω  
I
I
SENSEP0  
1
V
V
I
SENSEP0  
SENSEM0  
8
SENSEM0  
2
V
V
SENSEP1  
SENSEM1  
41  
42  
63  
64  
43  
44  
61  
62  
45  
46  
49  
50  
47  
48  
SENSEP0  
SENSEM0  
I
I
I
SENSEP1  
V
V
I
+
+
SENSEM1  
SENSEP1  
SENSEM1  
V
V
SENSEP2  
SENSEM2  
ICMP  
INTERNAL  
TEMP  
SENSOR  
+
10-BIT  
VDAC  
SENSEP1  
SENSEM1  
MUX  
I
I
SENSEP2  
I
SENSEM2  
+
+
V
V
I
SENSEP2  
SENSEM2  
V
V
SENSEP3  
SENSEM3  
VCMP  
+
GND 19  
GND 20  
GND 21  
GND 37  
GND 39  
GND 65  
10-BIT  
VDAC  
SENSEP2  
SENSEM2  
I
I
SENSEP3  
I
SENSEM3  
V
V
I
SENSEP3  
SENSEM3  
+
16-BIT  
∑ ADC  
SENSEP3  
SENSEM3  
I
ADC  
CLOCKS  
10-BIT  
DAC  
53  
54  
57  
58  
V
V
V
V
VBUF  
DAC0  
DAC1  
DAC2  
DAC3  
V
DD33  
REFERENCE  
1.232V  
(TYP)  
REFP 38  
REFM 40  
51 NC  
52 NC  
55 NC  
56 NC  
59 NC  
60 NC  
ALERTB 31  
SCL 30  
PAGE 0  
PAGE 1  
PAGE 2  
PAGE 3  
PMBus  
EEPROM  
INTERFACE  
SDA 29  
2
(400kHz I C  
RAM  
COMPATIBLE)  
ASEL0 35  
ASEL1 36  
ADC_RESULTS  
MONITOR LIMITS  
SERVO TARGETS  
3
4
5
6
7
V
V
V
V
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
WP 28  
MASKING  
CLOCK  
GENERATION  
OSCILLATOR  
PWRGD 17  
SHARE_CLK  
18  
V
AUXFAULTB  
DD  
WDI/RESETB 24  
FAULTB0 25  
CONTROLLER  
PMBus ALGORITHM  
FAULT PROCESSOR  
WATCHDOG  
PORB  
UVLO  
FAULTB1 26  
15  
16  
27  
34  
T
T
T
T
SENSE0  
SENSE1  
SENSE2  
SENSE3  
SEQUENCER  
CONTROL0 32  
EXTERNAL  
TEMPERATURE  
SENSOR  
CONTROL1  
33  
CONTROL2 22  
CONTROL3 23  
2974 BD  
2974fa  
15  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
LTC2974 OPERATION OVERVIEW  
• Optionally stop trimming the DC/DC converter output  
voltage after it reaches the initial margin or nominal  
target. Optionally allow servo to resume if target drifts  
The LTC2974 is a PMBus programmable power supply  
controller, monitor, sequencer and voltage and current  
supervisor that can perform the following operations:  
outside of V  
warning limits.  
OUT  
• StorecommandregistercontentswithCRCtoEEPROM  
• Accept PMBus compatible programming commands.  
through PMBus programming.  
• Provide DC/DC converter input voltage, output voltage,  
outputcurrent,output temperature,andinternaljunction  
temperature readback through the PMBus interface.  
• Restore EEPROM contents through PMBus program-  
ming or when VDD33 is applied on power-up.  
• Report the DC/DC converter output voltage status  
• Control the output of DC/DC converters that set the  
output voltage with a trim pin or DC/DC converters  
that set the output voltage using an external resistor  
feedback network.  
through the power good output.  
• GenerateinterruptrequestsbyassertingtheALERTBpin  
in response to supported PMBus faults and warnings.  
• Sequence the startup of DC/DC converters via PMBus  
programming and the CONTROL input pins. The LTC  
2974 supports time-based sequencing and tracking  
sequencing. Cascade sequence on with time based  
sequence off is also supported.  
• Coordinate system wide fault responses for all DC/DC  
converters connected to the LTC2974 FAULTB0 and  
FAULTB1 pins.  
• Synchronizesequencingdelaysorshutdownformultiple  
devices using the SHARE_CLK pin.  
Trim the DC/DC converter output voltage (typically in  
0.02% steps), in closed-loop servo operating mode,  
autonomously or through PMBus programming.  
• Software and hardware write protect the command  
registers.  
• Disable the input voltage to the supervised DC/DC  
converters in response to output OV, UV, OC and UC  
faults.  
• Margin the DC/DC converter output voltage to PMBus  
programmed limits.  
TrimormargintheDC/DCconverteroutputvoltagewith  
• Log telemetry and status data to EEPROM in response  
direct access to the margin DAC.  
to a faulted-off condition.  
• Supervise the DC/DC converter input voltage, output  
voltage, load current and the inductor temperatures  
for overvalue/undervalue conditions with respect to  
PMBus programmed limits and generate appropriate  
faults and warnings.  
• Supervise an external microcontroller’s activity for a  
stalled condition with a programmable watchdog timer  
and reset it if necessary.  
• Prevent a DC/DC converter from re-entering the on  
state after a power cycle until a programmable interval  
(MFR_RESTART_DELAY) has elapsed and its output  
has decayed below a programmable threshold voltage  
(MFR_VOUT_DISCHARGE_THRESHOLD).  
• Accuratelyhandleinductorself-heatingtransientsusing  
a proprietary algorithm. These self-heating effects are  
combined with external temperature sensor readings  
to improve accuracy of current supervisors and ADC  
current measurement.  
• Record minimum and maximum observed values of  
input voltage, output voltages, output currents and  
output temperatures.  
• Respond to a fault condition by continuing operation  
indefinitely, latching-off after a programmable deglitch  
period, latching-off immediately or sequencing off  
after TOFF_DELAY. Use retry mode to automatically  
recoverfromalatched-offcondition.Withretryenabled,  
MFR_RETRY_COUNT programs the number of retries  
(0 to 6 or infinite) for all pages.  
• Access user EEPROM data directly, without alter-  
ing RAM space (Mfr_ee_unlock, Mfr_ee_erase, and  
Mfr_ee_data). Facilitates in-house bulk programming.  
2974fa  
16  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
EEPROM  
So the overall rentention of the EEPROM was degraded by  
34 hours as a result of operation at a junction temperature  
of 95°C for 10 hours. Note that the effect of this overstress  
is negligible when compared to the overall EEPROM  
rentention rating of 87,600 hours at a maximum junction  
temperature of 85°C.  
The LTC2974 contains internal EEPROM (Non-Volatile  
Memory) to store configuration settings and fault log  
information. EEPROM endurance, retention and mass  
write operation time are specified over the operating tem-  
peraturerange.SeeElectricalCharacteristicsandAbsolute  
Maximum Ratings sections.  
AUXFAULTB  
Non destructive operation above T = 85°C is possible  
J
The AUXFAULTB pin can be commanded to one of two  
output levels at any time via the PMBUS. If desired, the  
AUXFAULTB pin can also be configured to indicate when  
some fault conditions have been detected, using a third  
output level. See Figure 1 for a conceptual view of this  
multiplexing.  
although the Electrical Characteristics are not guaranteed  
and the EEPROM will be degraded.  
Operating the EEPROM above 85°C may result in a deg-  
radation of retention characteristics. The fault logging  
function, which is useful in debugging system problems  
that may occur at high temperatures, only writes to fault  
log EEPROM locations. If occasional writes to these reg-  
isters occur above 85°C, a slight degradation in the data  
retention characteristics of the fault log may occur.  
PMBUS  
COMMAND  
HI-Z  
WEAK 12V PULL-UP  
AUXFAULTB  
FAST  
PULL-DOWN  
It is recommended that the EEPROM not be written using  
STORE_USER_ALLorbulkprogrammingwhenT >85°C.  
OV/UV/OC/UC  
(MASKABLE)  
J
SET  
fault_seen  
Q
The degradation in EEPROM retention for temperatures  
>85°C can be approximated by calculating the dimension-  
less acceleration factor using the following equation.  
RESET  
2974 F01  
OFF_THEN_ON  
OR  
FAULT_RETRY  
FOR ANY CHANNEL  
Ea  
k
1
1
AF = e  
Figure 1: AUXFAULTB MUX  
T
USE +273 TSTRESS +273  
The MFR_CONFIG2_LTC2974 and MFR_CONFIG3_  
LTC2974 commands can be used on a per channel basis  
to select which, if any, fault conditions will cause the  
AUXFAULTB pin to be driven to its third output level (fast  
pull-down to GND). The only fault types which can be  
propagated to the AUXFAULTB pin are over/under voltage  
faults and over/under current faults.  
Where:  
AF = acceleration factor  
Ea = activation energy = 1.4eV  
–5  
k = 8.625 • 10 eV/°K  
T
T
= 85°C specified junction temperature  
USE  
Mfr_config_all_auxfaultb_wpu selects whether the  
AUXFAULTB pin is in the hi-Z state, or weakly pulled-up  
to approximately 12V, using a 5µA current. As shown in  
Figure 1, the pulldown to GND overrides if any enabled  
faults are detected.  
= actual junction temperature °C  
STRESS  
Example: Calculate the effect on retention when operating  
at a junction temperature of 95°C for 10 hours.  
T
T
= 95°C  
STRESS  
= 85°C  
USE  
AF = 3.4  
Equivalent operating time at 85°C = 34 hours.  
2974fa  
17  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
RESETB  
The PMBus two wire interface is an incremental extension  
2
of the SMBus. SMBus is built upon I C with some minor  
Holding the WDI/RESETB pin low for more than t  
RESETB  
differences in timing, DC parameters and protocol. The  
will cause the LTC2974 to enter the power-on reset state.  
2
SMBus protocols are more robust than simple I C byte  
While in the power-on reset state, the device will not  
commands because they provide timeouts to prevent  
bus hangs and optional Packet Error Checking (PEC) to  
ensure data integrity. In general, a master device that  
2
communicate on the I C bus. Following the subsequent  
rising-edge of the WDI/RESETB pin, the LTC2974 will  
execute its power-on sequence per the user configuration  
stored in EEPROM. Connect WDI/RESETB to VDD33 with  
a 10k resistor. WDI/RESETB includes an internal 256μs  
deglitch filter so additional filter capacitance on this pin  
is not recommended.  
2
can be configured for I C communication can be used  
for PMBus communication with little or no change to  
hardware or firmware.  
For a description of the minor extensions and exceptions  
PMBusmakestoSMBus,refertoPMBusSpecificationPart  
1 Revision 1.1: Section 5: Transport. This can be found at:  
PMBus SERIAL DIGITAL INTERFACE  
www.pmbus.org  
TheLTC2974communicateswithahost(master)usingthe  
standard PMBus serial bus interface. The PMBus Timing  
Diagram shows the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines.  
2
ForadescriptionofthedifferencesbetweenSMBusandI C,  
refer to System Management Bus (SMBus) Specification  
Version 2.0: Appendix B – Differences between SMBus  
2
and I C. This can be found at:  
www.smbus.org  
TheLTC2974isaslavedevice.Themastercancommunicate  
with the LTC2974 using the following formats:  
2
WhenusinganI CcontrollertocommunicatewithaPMBus  
part it is important that the controller be able to write a  
byte of data without generating a stop. This will allow the  
controller to properly form the repeated start of a PMBus  
read command by concatenating a start command byte  
• Master transmitter, slave receiver  
• Master receiver, slave transmitter  
The following SMBus commands are supported:  
• Write Byte, Write Word, Send Byte  
• Read Byte, Read Word, Block Read  
• Alert Response Address  
2
write with an I C read.  
Device Address  
2
The I C/SMBus address of the LTC2974 equals the base  
address + N where N is a number from 0 to 8. N can be  
configured by setting the ASEL0 and ASEL1 pins to V  
,
Figures1to12illustratetheaforementionedSMBusproto-  
cols. AlltransactionssupportPEC (parityerrorcheck)and  
GCP(groupcommandprotocol).TheBlockReadsupports  
255 bytes of returned data. For this reason, the SMBus  
timeout may be extended using the Mfr_config_all_lon-  
ger_pmbus_timeout setting.  
DD33  
GND or FLOAT. See Table 1. Using one base address and  
the nine values of N, nine LTC2974s can be connected  
together to control thirty six outputs. The base address is  
storedintheMFR_I2C_BASE_ADDRESSregister.Thebase  
address can be written to any value, but generally should  
not be changed unless the desired range of addresses  
overlap existing addresses. Watch that the address range  
PMBus  
2
does not overlap with other I C/SMBus device or global  
PMBus is an industry standard that defines a means  
of communication with power conversion devices. It is  
comprised of an industry standard SMBus serial interface  
and the PMBus command language.  
2
addresses, including I C/SMBus multiplexers and bus  
buffers. This will bring you great happiness.  
2974fa  
18  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
TheLTC2974alwaysrespondstoitsglobaladdressandthe  
SMBus Alert Response address regardless of the state of  
itsASELpinsandtheMFR_I2C_BASE_ADDRESSregister.  
exceptions where the part will NACK a subsequent com-  
mandbecauseitisstillprocessingthepreviouscommand.  
Thesearesummarizedinthefollowingtables. MFR_COM-  
MON is a special command that may always be read even  
when the part is busy. This provides an alternate method  
for a host to determine if the LTC2974 is busy.  
Processing Commands  
The LTC2974 uses a dedicated processing block to ensure  
quick response to all of its commands. There are a few  
EEPROM Related Commands  
COMMAND  
TYPICAL DELAY* COMMENT  
STORE_USER_ALL  
t
See Electrical Characterization table. The LTC2974 will not accept any commands while it is transferring  
register contents to the EEPROM. The command byte will be NACKed. MFR_COMMON may always be  
read.  
MASS_WRITE  
RESTORE_USER_ALL  
MFR_FAULT_LOG_CLEAR  
MFR_FAULT_LOG_STORE  
Internal Fault log  
30ms  
175ms  
20ms  
20ms  
The LTC2974 will not accept any commands while it is transferring EEPROM data to command registers.  
The command byte will be NACKed. MFR_COMMON may always be read.  
The LTC2974 will not accept any commands while it is initializing the fault log EEPROM space. The  
command byte will be NACKed. MFR_COMMON may always be read.  
The LTC2974 will not accept any commands while it is transferring fault log RAM buffer to EEPROM  
space. The command byte will be NACKed. MFR_COMMON may always be read.  
An internal fault log event is a one time event that uploads the contents of the fault log to EEPROM in  
response to a fault. Internal fault logging may be disabled. Commands received during this EEPROM  
write are NACKed. MFR_COMMON may always be read.  
MFR_FAULT_LOG_RESTORE  
2ms  
The LTC2974 will not accept any commands while it is transferring EEPROM data to the fault log RAM  
buffer. The command byte will be NACKed. MFR_COMMON may always be read.  
*The typical delay is measured from the command’s stop to the next command’s start.  
Other Commands  
COMMAND  
DELAY*  
COMMENT  
MFR_CONFIG  
<50µs  
The LTC2974 will not accept any commands while it is completing this command. The command byte  
will be NACKed. MFR_COMMON may always be read.  
IOUT_CAL_GAIN  
<500µs  
The LTC2974 will not accept any commands while it is completing this command. The command byte  
will be NACKed. MFR_COMMON may always be read.  
*The typical delay is measured from the command’s stop to the next command’s start.  
Other PMBus Timing Notes  
COMMAND  
COMMENT  
CLEAR_FAULTS  
The LTC2974 will accept commands while it is completing this command but the affected status flags will not be cleared for  
up to 500µs.  
2974fa  
19  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
Table 1. LTC2974 Address Look-Up Table with MFR_I2C_BASE_ADDRESS Set to 7bit 0x5C  
HEX DEVICE  
ADDRESS  
DESCRIPTION  
BINARY DEVICE ADDRESS  
ADDRESS PINS  
7-Bit  
8-Bit  
19  
6
0
1
1
1
1
1
1
1
1
1
1
5
0
0
0
0
0
0
1
1
1
1
1
4
0
1
1
1
1
1
0
0
0
0
0
3
1
1
1
1
1
1
0
0
0
0
0
2
1
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
R/W  
1
ASEL1  
ASEL0  
Alert Response  
Global  
N = 0  
0C  
5B  
5C*  
5D  
5E  
5F  
X
X
X
X
B6  
B8  
BA  
BC  
BE  
C0  
C2  
C4  
C6  
C8  
0
0
L
L
N = 1  
0
L
NC  
H
N = 2  
0
L
N = 3  
0
NC  
NC  
NC  
H
L
N = 4  
60  
61  
62  
63  
64  
0
NC  
H
N = 5  
0
N = 6  
0
L
N = 7  
0
H
NC  
H
N = 8  
0
H
H = Tie to V  
, NC = No Connect = Open or Float, L = Tie to GND, X = Don’t Care  
DD33  
*MFR_I2C_BASE_ADDRESS = 7bit 0x5C (Factory Default)  
1
7
1
1
A
x
8
1
A
x
1
S
SLAVE ADDRESS Wr  
DATA BYTE  
P
S
START CONDITION  
Sr  
REPEATED START CONDITION  
Rd READ (BIT VALUE OF 1)  
Wr WRITE (BIT VALUE OF 0)  
x
SHOWN UNDER A FIELD INDICATES THAT THAT  
FIELD IS REQUIRED TO HAVE THE VALUE OF x  
A
P
ACKNOWLEDGE (THIS BIT POSITION MAY BE 0  
FOR AN ACK OR 1 FOR A NACK)  
STOP CONDITION  
PEC PACKET ERROR CODE  
MASTER TO SLAVE  
SLAVE TO MASTER  
...  
CONTINUATION OF PROTOCOL  
2974 F02  
Figure 2. PMBus Packet Protocol Diagram Element Key  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
P
2974 F03  
Figure 3. Write Byte Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
2974 F04  
Figure 4. Write Word Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
PEC  
A
P
2974 F05  
Figure 5. Write Byte Protocol with PEC  
2974fa  
20  
For more information www.linear.com/LTC2974  
LTC2974  
OPERATION  
1
7
1
1
8
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
2974 F06  
Figure 6. Write Word Protocol with PEC  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
P
2974 F07  
Figure 7. Send Byte Protocol  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
PEC  
A
P
2974 F08  
Figure 8. Send Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
1 2974 F09  
Figure 9. Read Word Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
1 2974 F10  
Figure 10. Read Word Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE  
A
P
1 2974 F11  
Figure 11. Read Byte Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE  
A
PEC  
A
P
1 2974 F12  
Figure 12. Read Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
BYTE COUNT = N  
A
• • •  
8
1
8
1
8
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
• • •  
DATA BYTE N  
A
P
1 2974 F13  
Figure 13. Block Read  
1
7
1
1
8
1
1
7
1
1
8
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
BYTE COUNT = N  
A
• • •  
8
1
8
1
8
1
8
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
• • •  
DATA BYTE N  
A
PEC  
A
P
1 2974 F14  
Figure 14. Block Read with PEC  
2974fa  
21  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
PAGE  
0x00 Channel or page currently selected for any R/W Byte  
command that supports paging.  
N
Y
Y
Reg  
Reg  
Reg  
0x00  
0x00  
0x12  
28  
30  
30  
OPERATION  
0x01 Operating mode control. On/Off, Margin  
High and Margin Low.  
R/W Byte  
R/W Byte  
Send Byte  
Y
Y
ON_OFF_CONFIG  
0x02 CONTROL pin and PMBus on/off  
command setting.  
CLEAR_FAULTS  
0x03 Clear any fault bits that have been set.  
Y
N
NA  
61  
28  
WRITE_PROTECT  
0x10 Level of protection provided by the device R/W Byte  
against accidental changes.  
Reg  
Y
0x00  
STORE_USER_ALL  
RESTORE_USER_ALL  
CAPABILITY  
0x15 Store entire operating memory to  
EEPROM.  
Send Byte  
Send Byte  
R Byte  
N
N
N
NA  
NA  
40  
40  
78  
0x16 Restore entire operating memory from  
EEPROM.  
0x19 Summary of PMBus optional  
communication protocols supported by  
this device.  
Reg  
0xB0  
VOUT_MODE  
VOUT_COMMAND  
VOUT_MAX  
0x20 Output voltage data format and mantissa  
R Byte  
Y
Y
Y
Reg  
L16  
L16  
0x13  
44  
44  
44  
–13  
exponent (2 ).  
0x21 Servo target. Nominal DC/DC converter  
output voltage setpoint.  
R/W Word  
V
V
Y
Y
1.0  
0x2000  
0x24 Upper limit on the output voltage the unit R/W Word  
can command regardless of any other  
commands.  
4.0  
0x8000  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VIN_ON  
0x25 Margin high DC/DC converter output  
voltage setting.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
Y
Y
N
N
L16  
L16  
L11  
L11  
V
V
V
V
Y
Y
Y
Y
1.05  
44  
44  
43  
43  
0x219A  
0x26 Margin low DC/DC converter output  
voltage setting.  
0.95  
0x1E66  
0x35 Input voltage (V  
) above which  
10.0  
0xD280  
IN_SNS  
power conversion can be enabled.  
VIN_OFF  
0x36 Input voltage (V ) below which  
9.0  
0xD240  
IN_SNS  
power conversion is disabled. All V  
OUT_EN  
pins go off immediately or sequence off  
after TOFF_DELAY (See Mfr_config_track_  
enn).  
IOUT_CAL_GAIN  
0x38 The nominal resistance of the current  
sense element in mΩ.  
R/W Word  
R/W Word  
R/W Byte  
R/W Word  
R/W Word  
R/W Word  
Y
Y
Y
Y
Y
Y
L11  
L16  
Reg  
L16  
L16  
L16  
mΩ  
V
Y
Y
Y
Y
Y
Y
1.0  
46  
44  
54  
44  
44  
44  
0xBA00  
VOUT_OV_FAULT_LIMIT  
0x40 Output overvoltage fault limit.  
1.1  
0x2333  
VOUT_OV_FAULT_RESPONSE 0x41 Action to be taken by the device when an  
output overvoltage fault is detected.  
0x80  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
0x42 Output overvoltage warning limit.  
V
V
V
1.075  
0x2266  
0x43 Output undervoltage warning limit.  
0.925  
0x1D9A  
0x44 Output undervoltage fault limit. Used for  
Ton_max_fault and power good de-  
assertion.  
0.9  
0x1CCD  
Note: The data format abbreviations are detailed at the end of this table  
2974fa  
22  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VOUT_UV_FAULT_RESPONSE 0x45 Action to be taken by the device when an  
output undervoltage fault is detected.  
R/W Byte  
Y
Y
Y
Y
Y
Reg  
L11  
Reg  
L11  
L11  
Y
Y
Y
Y
Y
0x7F  
54  
46  
54  
46  
46  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
IOUT_UC_FAULT_LIMIT  
0x46 Output overcurrent fault limit.  
R/W Word  
R/W Byte  
R/W Word  
R/W Word  
A
10.0  
0xD280  
0x47 Action to be taken by the device when an  
output overcurrent fault is detected.  
0x00  
0x4A Output overcurrent warning limit.  
A
A
5.0  
0xCA80  
0x4B Output undercurrent fault limit. Used to  
detect a reverse current and must be a  
negative value.  
-1.0  
0xBE00  
IOUT_UC_FAULT_RESPONSE  
OT_FAULT_LIMIT  
0x4C Action to be taken by the device when an  
output undercurrent fault is detected.  
R/W Byte  
Y
Y
Y
Reg  
L11  
Reg  
Y
Y
Y
0x00  
54  
48  
54  
0x4F Overtemperature fault limit for the external R/W Word  
temperature sensor.  
°C  
65.0  
0xEA08  
OT_FAULT_RESPONSE  
0x50 Action to be taken by the device when an  
overtemperature fault is detected on the  
external temperature sensor.  
R/W Byte  
0xB8  
OT_WARN_LIMIT  
UT_WARN_LIMIT  
UT_FAULT_LIMIT  
UT_FAULT_RESPONSE  
0x51 Overtemperature warning limit for the  
external temperature sensor  
R/W Word  
R/W Word  
R/W Word  
R/W Byte  
Y
Y
Y
Y
L11  
L11  
L11  
Reg  
°C  
°C  
°C  
Y
Y
Y
Y
60.0  
48  
48  
48  
54  
0xE3C0  
0x52 Undertemperature warning limit for the  
external temperature sensor.  
0
0x8000  
0x53 Undertemperature fault limit for the  
external temperature sensor.  
–5.0  
0xCD80  
0x54 Action to be taken by the device when an  
undertemperature fault is detected on the  
external temperature sensor.  
0xB8  
VIN_OV_FAULT_LIMIT  
VIN_OV_FAULT_RESPONSE  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_RESPONSE  
POWER_GOOD_ON  
0x55 Input overvoltage fault limit measured at  
VIN_SNS pin.  
R/W Word  
R/W Byte  
N
N
N
N
N
N
Y
Y
L11  
Reg  
L11  
L11  
L11  
Reg  
L16  
L16  
V
Y
Y
Y
Y
Y
Y
Y
Y
15.0  
43  
54  
43  
43  
43  
54  
44  
44  
0xD3C0  
0x56 Action to be taken by the device when an  
input overvoltage fault is detected.  
0x80  
0x57 Input overvoltage warning limit measured R/W Word  
at VIN_SNS pin.  
V
V
V
14.0  
0xD380  
0x58 Input undervoltage warning limit  
measured at VIN_SNS pin.  
R/W Word  
0
0x8000  
0x59 Input undervoltage fault limit measured at R/W Word  
VIN_SNS pin.  
0
0x8000  
0x5A Action to be taken by the device when an  
input undervoltage fault is detected.  
R/W Byte  
0x00  
0x5E Output voltage at or above which a power R/W Word  
good should be asserted.  
V
V
0.96  
0x1EB8  
POWER_GOOD_OFF  
0x5F Output voltage at or below which a power R/W Word  
good should be de-asserted when Mfr_  
0.94  
0x1E14  
config_all_pwrgd_off_uses_uv is clear.  
2974fa  
23  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
TON_DELAY  
0x60 Time from CONTROL pin and/or  
OPERATION command = ON to V  
pin = ON.  
R/W Word  
Y
L11  
mS  
Y
1.0  
0xBA00  
51  
OUT_EN  
TON_RISE  
0x61 Time from when the V  
pin goes  
R/W Word  
R/W Word  
Y
L11  
mS  
Y
10.0  
51  
OUT_ENn  
high until the LTC2974 optionally soft-  
connects its DAC and begins to servo the  
output voltage to the desired value.  
0xD280  
TON_MAX_FAULT_LIMIT  
0x62 Maximum time from V  
pin on  
Y
L11  
mS  
mS  
Y
15.0  
0xD3C0  
51  
OUT_EN  
assertion that an UV condition will be  
tolerated before a TON_MAX_FAULT  
condition results.  
TON_MAX_FAULT_RESPONSE 0x63 Action to be taken by the device when a  
TON_MAX_FAULT event is detected.  
R/W Byte  
Y
Y
Reg  
L11  
Y
Y
0xB8  
54  
51  
TOFF_DELAY  
0x64 Time from CONTROL pin and/or  
OPERATION command = OFF to V  
pin = OFF.  
R/W Word  
1.0  
0xBA00  
OUT_EN  
STATUS_BYTE  
0x78 One byte summary of the unit’s fault  
condition.  
R Byte  
Y
Y
Reg  
Reg  
NA  
NA  
61  
61  
STATUS_WORD  
0x79 Two byte summary of the unit’s fault  
condition.  
R Word  
STATUS_VOUT  
0x7A Output voltage fault and warning status.  
0x7B Output current fault and warning status.  
0x7C Input supply fault and warning status.  
R Byte  
R Byte  
R Byte  
R Byte  
Y
Y
N
Y
Reg  
Reg  
Reg  
Reg  
NA  
NA  
NA  
NA  
61  
61  
61  
61  
STATUS_IOUT  
STATUS_INPUT  
STATUS_TEMPERATURE  
0x7D External temperature fault and warning  
status for READ_TEMPERATURE_1.  
STATUS_CML  
0x7E Communication and memory fault and  
warning status.  
R Byte  
R Byte  
N
Y
Reg  
Reg  
NA  
NA  
61  
61  
STATUS_MFR_SPECIFIC  
0x80 Manufacturer specific fault and state  
information.  
READ_VIN  
0x88 Input supply voltage.  
R Word  
R Word  
R Word  
R Word  
N
Y
Y
Y
L11  
L16  
L11  
L11  
V
V
NA  
NA  
NA  
NA  
66  
66  
66  
66  
READ_VOUT  
0x8B DC/DC converter output voltage.  
0x8C DC/DC converter output current.  
READ_IOUT  
A
READ_TEMPERATURE_1  
0x8D External diode junction temperature.  
This is the value used for all temperature  
related processing, including IOUT_CAL_  
GAIN.  
°C  
READ_TEMPERATURE_2  
READ_POUT  
0x8E Internal junction temperature.  
0x96 DC/DC converter output power.  
R Word  
R Word  
R Byte  
N
Y
N
L11  
L11  
Reg  
°C  
W
NA  
NA  
66  
66  
78  
PMBUS_REVISION  
0x98 PMBus revision supported by this device.  
Current revision is 1.1.  
0x11  
USER_DATA_00  
USER_DATA_01  
USER_DATA_02  
0xB0 Manufacturer reserved for LTpowerPlay.  
0xB1 Manufacturer reserved for LTpowerPlay.  
0xB2 OEM Reserved.  
R/W Word  
R/W Word  
R/W Word  
N
Y
N
Reg  
Reg  
Reg  
Y
Y
Y
N/A  
N/A  
N/A  
79  
79  
79  
2974fa  
24  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
USER_DATA_03  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
0xB3 Scratchpad location.  
0xB4 Scratchpad location.  
0xB5 Manufacturer reserved.  
R/W Word  
R/W Word  
R/W Word  
R Word  
Y
N
Y
Y
Reg  
Reg  
Reg  
L11  
Y
Y
Y
0x00  
0x00  
NA  
79  
79  
79  
48  
USER_DATA_04  
MFR_LTC_RESERVED_1  
MFR_T_SELF_HEAT  
0xB8 Calculated temperature rise due to  
self-heating of output current sense  
device above value measured by external  
temperature sensor.  
°C  
NA  
MFR_IOUT_CAL_GAIN_TAU_  
INV  
0xB9 Inverse of time constant for Mfr_t_self_  
R/W Word  
Y
Y
L11  
L11  
Y
Y
0.0  
48  
48  
heat changes scaled by 4 • t  
.
0x8000  
CONV_SENSE  
MFR_IOUT_CAL_GAIN_THETA 0xBA Thermal resistance from inductor core to R/W Word  
°C/W  
0.0  
0x8000  
point measured by external temperature  
sensor.  
MFR_READ_IOUT  
0xBB Alternate data format for READ_IOUT. One R Word  
LSB = 2.5mA.  
Y
CF  
2.5mA  
NA  
66  
MFR_LTC_RESERVED_2  
MFR_EE_UNLOCK  
0xBC Manufacturer reserved.  
R/W Word  
R/W Byte  
Y
N
Reg  
Reg  
NA  
NA  
79  
40  
0xBD Unlock user EEPROM for access by  
MFR_EE_ERASE and MFR_EE_DATA  
commands.  
MFR_EE_ERASE  
MFR_EE_DATA  
0xBE Initialize user EEPROM for bulk  
programming by MFR_EE_DATA.  
R/W Byte  
N
N
Reg  
Reg  
NA  
NA  
40  
40  
0xBF Data transferred to and from EEPROM  
using sequential PMBus word reads or  
writes. Supports bulk programming.  
R/W Word  
MFR_CONFIG_LTC2974  
0xD0 Configuration bits that are channel  
specific.  
R/W Word  
Y
N
Y
Reg  
Reg  
Reg  
Y
Y
Y
0x0080  
0x0F7B  
0x00  
30  
30  
59  
MFR_CONFIG_ALL_LTC2974  
MFR_FAULTB0_PROPAGATE  
0xD1 Configuration bits that are common to all R/W Word  
pages.  
0xD2 Configuration that determines if a  
channels faulted off state is propagated to  
the FAULTB0 pin.  
R/W Byte  
R/W Byte  
R/W Word  
MFR_FAULTB1_PROPAGATE  
MFR_PWRGD_EN  
0xD3 Configuration that determines if a  
channels faulted off state is propagated to  
the FAULTB1 pin.  
Y
N
Reg  
Reg  
Y
Y
0x00  
59  
52  
0xD4 Configuration that maps WDI/RESETB  
status and individual channel power good  
to the PWRGD pin.  
0x0000  
MFR_FAULTB0_RESPONSE  
MFR_FAULTB1_RESPONSE  
0xD5 Action to be taken by the device when the R/W Byte  
FAULTB0 pin is asserted low.  
N
N
Reg  
Reg  
Y
Y
0x00  
0x00  
59  
59  
0xD6 Action to be taken by the device when the R/W Byte  
FAULTB1 pin is asserted low.  
MFR_IOUT_PEAK  
0xD7 Maximum measured value of READ_IOUT.  
0xD8 Minimum measured value of READ_IOUT.  
R Word  
R Word  
Y
Y
N
L11  
L11  
Reg  
A
A
NA  
NA  
66  
66  
30  
MFR_IOUT_MIN  
MFR_CONFIG2_LTC2974  
0xD9 Configuration bits that are channel  
specific  
R/W Byte  
Y
0x00  
2974fa  
25  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
MFR_CONFIG3_LTC2974  
0xDA Configuration bits that are channel  
specific  
R/W Byte  
N
N
N
Reg  
L11  
L11  
Y
Y
Y
0x00  
30  
54  
51  
MFR_RETRY_DELAY  
0xDB Retry interval during FAULT retry mode.  
R/W Word  
R/W Word  
mS  
mS  
200  
0xF320  
MFR_RESTART_DELAY  
0xDC Delay from actual CONTROL active edge  
to virtual CONTROL active edge.  
400  
0xFB20  
MFR_VOUT_PEAK  
MFR_VIN_PEAK  
0xDD Maximum measured value of READ_VOUT. R Word  
Y
N
Y
L16  
L11  
L11  
V
V
NA  
NA  
NA  
66  
66  
66  
0xDE Maximum measured value of READ_VIN.  
R Word  
R Word  
MFR_TEMPERATURE_1_PEAK 0xDF Maximum measured value of READ_  
TEMPERATURE_1.  
°C  
MFR_DAC  
0xE0 Manufacturer register that contains the  
code of the 10-bit DAC.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Byte  
Y
N
N
N
N
Reg  
L11  
L11  
L11  
Reg  
N
Y
Y
Y
Y
0x0000  
44  
52  
52  
52  
28  
MFR_POWERGOOD_  
ASSERTION_DELAY  
0xE1 Power-good output assertion delay.  
0xE2 First watchdog timer interval.  
0xE3 Watchdog timer interval.  
mS  
mS  
mS  
100  
0xEB20  
MFR_WATCHDOG_T_FIRST  
0
0x8000  
MFR_WATCHDOG_T  
0
0x8000  
MFR_PAGE_FF_MASK  
0xE4 Configuration defining which channels  
respond to global page commands  
(PAGE=0xFF).  
0xF  
MFR_PADS  
0xE5 Current state of selected digital I/O pads. R/W Word  
N
N
Reg  
Reg  
NA  
61  
28  
2
MFR_I2C_BASE_ADDRESS  
0xE6 Base value of the I C/SMBus address  
byte.  
R/W Byte  
R Word  
R Byte  
Y
Y
Y
0x5C  
MFR_SPECIAL_ID  
MFR_SPECIAL_LOT  
0xE7 Manufacturer code for identifying the  
LTC2974.  
N
Y
Reg  
Reg  
0x0213  
78  
78  
0xE8 Customer dependent codes that  
identify the factory programmed user  
configuration stored in EEPROM. Contact  
factory for default value.  
MFR_VOUT_DISCHARGE_  
THRESHOLD  
0xE9 Coefficient used to multiply VOUT_  
R/W Word  
Y
L11  
Y
2.0  
0xC200  
44  
COMMAND in order to determine V  
threshold voltage.  
off  
OUT  
MFR_FAULT_LOG_STORE  
0xEA Command a transfer of the fault log from Send Byte  
RAM to EEPROM.  
N
N
NA  
NA  
70  
70  
MFR_FAULT_LOG_RESTORE  
0xEB Command a transfer of the fault log  
previously stored in EEPROM back to  
RAM.  
Send Byte  
MFR_FAULT_LOG_CLEAR  
0xEC Initialize the EEPROM block reserved for  
fault logging and clear any previous fault  
logging locks.  
Send Byte  
N
NA  
70  
MFR_FAULT_LOG_STATUS  
MFR_FAULT_LOG  
0xED Fault logging status.  
R Byte  
N
N
Reg  
Reg  
Y
Y
NA  
NA  
70  
70  
0xEE Fault log data bytes. This sequentially  
retrieved data is used to assemble a  
complete fault log.  
R Block  
2974fa  
26  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE:  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
MFR_COMMON  
0xEF Manufacturer status bits that are common  
across multiple LTC chips.  
R Byte  
N
Y
N
Y
Y
Y
Reg  
CF  
NA  
61  
46  
54  
48  
48  
66  
MFR_IOUT_CAL_GAIN_TC  
MFR_RETRY_COUNT  
MFR_TEMP_1_GAIN  
0xF6 Temperature coefficient applied to IOUT_ R/W Word  
CAL_GAIN.  
ppm  
Y
Y
Y
Y
0x0  
0xF7 Retry count for all faulted off conditions  
that enable retry.  
R/W Byte  
Reg  
CF  
0x00  
0xF8 Inverse of external diode temperature non R/W Word  
1
–14  
ideality factor. One LSB = 2  
.
0x4000  
MFR_TEMP_1_OFFSET  
0xF9 Offset value for the external temperature. R/W Word  
L11  
CF  
°C  
0
0x8000  
MFR_IOUT_SENSE_VOLTAGE 0xFA Absolute value of V  
One LSB = 3.05µV.  
– V  
.
R Word  
3.05µV  
NA  
ISENSEP  
ISENSEM  
MFR_VOUT_MIN  
MFR_VIN_MIN  
0xFB Minimum measured value of READ_VOUT. R Word  
Y
N
Y
L16  
L11  
L11  
V
V
NA  
NA  
NA  
66  
66  
66  
0xFC Minimum measured value of READ_VIN.  
R Word  
R Word  
MFR_TEMPERATURE_1_MIN 0xFD Minimum measured value of READ_  
TEMPERATURE_1.  
°C  
Data Formats  
L11  
Linear_5s_11s PMBus data field b[15:0]  
N
Value = Y • 2  
where N = b[15:11] is a 5-bit two’s complement integer and Y = b[10:0] is an 11-bit two’s complement integer  
Example:  
READ_VIN = 10V  
For b[15:0] = 0xD280 = 1101_0010_1000_0000b  
–6  
Value = 640 • 2 = 10  
See PMBus Spec Part II: Paragraph 7.1  
L16  
Linear_16u  
Register  
PMBus data field b[15:0]  
N
Value = Y • 2 where Y = b[15:0] is an unsigned integer and N = Vout_mode_parameter is a 5-bit two’s complement exponent  
that is hardwired to –13 decimal.  
Example:  
VOUT_COMMAND = 4.75V  
For b[15:0] = 0x9800 = 1001_1000_0000_0000b  
–13  
Value = 38912 • 2 = 4.75  
See PMBus Spec Part II: Paragraph 8.3.1  
Reg  
CF  
PMBus data field b[15:0] or b[7:0].  
Bit field meaning is defined in detailed PMBus Command Register Description.  
Custom Format PMBus data field b[15:0]  
Value is defined in detailed PMBus Command Register Description. This is often an unsigned or two’s complement integer  
scaled by an MFR specific constant.  
2974fa  
27  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
ADDRESSING AND WRITE PROTECT  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGE  
0x00 Channel or page currently selected for any R/W Byte  
command that supports paging.  
N
Reg  
0x00  
0x00  
28  
28  
WRITE_PROTECT  
0x10 Level of protection provided by the device  
against accidental changes.  
R/W Byte  
N
Reg  
Y
2
MFR_I2C_BASE_ADDRESS  
MFR_PAGE_FF_MASK  
0xE6 Base value of the I C/SMBus address byte. R/W Byte  
N
N
Reg  
Reg  
Y
Y
0x5C  
0xF  
29  
29  
0xE4 Configuration defining which channels  
respond to global page commands  
(PAGE=0xFF).  
R/W Byte  
PAGE  
The LTC2974 has four pages that correspond to the four DC/DC converter channels that can be managed. Each DC/DC  
converter channel can be uniquely programmed by first setting the appropriate page.  
Setting PAGE = 0xFF allows a simultaneous write to all pages for PMBus commands that support global page pro-  
gramming. The only commands that support PAGE = 0xFF are CLEAR_FAULTS, OPERATION and ON_OFF_CONFIG.  
See MFR_PAGE_FF_MASK for additional options. Reading any paged PMBus register with PAGE = 0xFF returns un-  
predictable data and will trigger a CML fault. Writes to pages that do not support PAGE = 0xFF with PAGE = 0xFF will  
be ignored and generate a CML fault.  
PAGE Data Contents  
BIT(S) SYMBOL OPERATION  
b[7:0] Page  
Page operation.  
0x00: All PMBus commands address channel/page 0.  
0x01: All PMBus commands address channel/page 1.  
0x02: All PMBus commands address channel/page 2.  
0x03: All PMBus commands address channel/page 3.  
0xXX: All non specified values reserved.  
0xFF: A single PMBus write/send to commands that support this mode will simultaneously address all channel/pages with  
MFR_PAGE_FF_MASK enabled.  
WRITE_PROTECT  
The WRITE_PROTECT command provides protection against accidental programming of the LTC2974 command reg-  
isters. All supported commands may have their parameters read, regardless of the WRITE_PROTECT setting, and the  
EEPROM contents can also be read regardless of the WRITE_PROTECT settings.  
There are two levels of protection:  
• Level 1: Nothing can be changed except the level of write protection itself. Values can be read from all pages. This  
setting can be stored to EEPROM.  
• Level 2: Nothing can be changed except for the level of protection, channel on/off state, and clearing of faults. Values  
can be read from all pages. This setting can be stored to EEPROM.  
2974fa  
28  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
WRITE_PROTECT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] Write_protect[7:0] 1000_0000b: Level 1 Protection - Disable all writes except to the WRITE_PROTECT, PAGE, MFR_EE_UNLOCK, and STORE_  
USER_ALL commands.  
0100_0000b: Level 2 Protection – Disable all writes except to the WRITE_PROTECT, PAGE, MFR_EE_UNLOCK, STORE_  
USER_ALL, OPERATION, MFR_PAGE_FF_MASK and CLEAR_FAULTS commands.  
0000_0000b: Enable writes to all commands.  
xxxx_xxxxb: All other values reserved.  
WRITE-PROTECT Pin  
The WP pin allows the user to write-protect the LTC2974’s configuration registers. The WP pin is active high, and when  
asserted it provides Level 2 protection: all writes are disabled except to the WRITE_PROTECT, PAGE, MFR_EE_UNLOCK,  
STORE_USER_ALL, OPERATION, MFR_PAGE_FF_MASK and CLEAR_FAULTS commands. The most restrictive setting  
between the WP pin and WRITE_PROTECT command will override. For example if WP = 1 and WRITE_PROTECT =  
0x80, then the WRITE_PROTECT command overrides, since it is the most restrictive.  
MFR_PAGE_FF_MASK  
The MFR_PAGE_FF_MASK command is used to select which channels respond when the global page command  
(PAGE=0xFF) is in use.  
MFR_PAGE_FF_MASK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Always returns 0000b  
b[3] Mfr_page_ff_mask_chan3  
Channel 3 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 2 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
b[2] Mfr_page_ff_mask_chan2  
b[1] Mfr_page_ff_mask_chan1  
b[0] Mfr_page_ff_mask_chan0  
1 = fully respond to global page command accesses  
Channel 1 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 0 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
MFR_I2C_BASE_ADDRESS  
2
The MFR_I2C_BASE_ADDRESS command determines the base value for the I C/SMBus address byte. Offsets of 0 to  
2
9 are added to this base address to generate the device I C/SMBus address. The part responds to the device address.  
MFR_I2C_BASE_ADDRESS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Reserved  
Read only, always returns 0.  
2
b[6:0] i2c_base_address This 7-bit value determines the base value of the 7-bit I C/SMBus address. See Operation Section: Device Address.  
2974fa  
29  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
ON/OFF CONTROL, MARGINING AND CONFIGURATION  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
OPERATION  
0x01 Operating mode control. On/Off, Margin  
High and Margin Low.  
R/W Byte  
Y
Y
Y
N
N
N
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Y
Y
Y
Y
Y
Y
0x00  
0x12  
30  
31  
32  
35  
35  
39  
ON_OFF_CONFIG  
0x02 CONTROL pin and PMBus on/off  
command setting.  
R/W Byte  
R/W Word  
R/W Byte  
R/W Byte  
MFR_CONFIG_LTC2974  
MFR_CONFIG2_LTC2974  
MFR_CONFIG3_LTC2974  
MFR_CONFIG_ALL_LTC2974  
0xD0 Configuration bits that are channel  
specific.  
0x0080  
0x00  
0xD9 Configuration bits that are channel  
specific  
0xDA Configuration bits that are channel  
specific  
0x00  
0xD1 Configuration bits that are common to all R/W Word  
pages.  
0x0F7B  
OPERATION  
The OPERATION command is used to turn the unit on and off in conjunction with the CONTROL pin and ON_OFF_CON-  
FIG. This command register responds to the global page command (PAGE=0xFF). The contents and functions of the  
data byte are shown in the following tables. A minimum t  
wait time must be observed between any OPERATION  
OFF_MIN  
commands used to turn the unit off and then back on to give the ADC telemetry loop time to complete a full cycle.  
OPERATION Data Contents (On_off_config_use_pmbus=1)  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
00  
b[5:4]  
XX  
b[3:2]  
XX  
b[1:0]  
00  
Turn off immediately  
Sequence on  
10  
00  
XX  
00  
Margin low (ignore faults and  
warnings)  
10  
01  
01  
00  
Margin low  
10  
10  
01  
10  
10  
01  
00  
00  
Margin high (ignore faults and  
warnings  
Margin high  
10  
01  
10  
00  
10  
00  
00  
FUNCTION  
Sequence off with margin to  
nominal  
XX  
Sequence off with margin low  
(ignore faults and warnings)  
01  
01  
01  
00  
Sequence off with margin low  
01  
01  
01  
10  
10  
01  
00  
00  
Sequence off with margin high  
(ignore faults and warnings)  
Sequence off with margin high  
Reserved  
01  
10  
10  
00  
All remaining combinations  
2974fa  
30  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
OPERATION Data Contents (On_off_config_use_pmbus=0)  
On or Off  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
b[5:4]  
00  
b[3:2]  
XX  
b[1:0]  
00  
Output at nominal  
00, 01 or 10  
00, 01 or 10  
Margin low (ignore faults and  
warnings)  
01  
01  
00  
Margin low  
00, 01 or 10  
00, 01 or 10  
01  
10  
10  
01  
00  
00  
FUNCTION  
Margin high (ignore faults and  
warnings  
Margin high  
Reserved  
00, 01 or 10  
10  
10  
00  
All remaining combinations  
ON_OFF_CONFIG  
The ON_OFF_CONFIG command configures the combination of CONTROL pin input and PMBus commands needed  
to turn the LTC2974 on/off, including the power-on behavior, as shown in the following table. This command register  
responds to the global page command (PAGE=0xFF). After the part has initialized, an additional comparator monitors  
VIN_SNS. The VIN_ON threshold must be exceeded before the output power sequencing can begin. After V is initially  
IN  
applied, the part will typically require t  
and currents may require an additional wait for tUPDATE_ADC. A minimum t  
any CONTROL pin toggle used to turn the unit off and then back on.  
time to initialize and begin the TON_DELAY timer. The readback of voltages  
INIT  
wait time must be observed for  
OFF_MIN  
ON_OFF_CONFIG Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:5] Reserved  
Don’t care. Always returns 0.  
Control default autonomous power up operation.  
b[4] On_off_config_controlled_on  
0: Unit powers up regardless of the CONTROL pin or OPERATION value. Unit always powers up with  
sequencing. To turn unit on without sequencing, set TON_DELAY = 0.  
1: Unit does not power up unless commanded by the CONTROL pin and/or the OPERATION command on the  
serial bus. If On_off_config[3:2] = 00, the unit never powers up.  
b[3] On_off_config_use_pmbus  
b[2] On_off_config_use_control  
b[1] Reserved  
Controls how the unit responds to commands received via the serial bus.  
0: Unit ignores the Operation_control[1:0].  
1: Unit responds to Operation_control[1:0]. Depending on On_off_config_use_control, the unit may also  
require the CONTROL pin to be asserted for the unit to start.  
Controls how unit responds to the CONTROL pin.  
0: Unit ignores the CONTROL pin.  
1: Unit requires the CONTROL pin to be asserted to start the unit. Depending on On_off_config_use_pmbus  
the OPERATION command may also be required to instruct the device to start.  
Not supported. Always returns 1.  
b[0] On_off_config_control_fast_off CONTROL pin turn off action when commanding the unit to turn off  
0: Use the programmed TOFF_DELAY.  
1: Turn off the output and stop transferring energy as quickly as possible. The device does not sink current in  
order to decrease the output voltage fall time.  
2974fa  
31  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_CONFIG_LTC2974  
This command is used to configure various manufacturer specific operating parameters for each channel.  
MFR_CONFIG_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15] Reserved  
Don’t care. Always returns 0.  
b[14] Mfr_config_cascade_on  
Configures channel’s control pin for cascade sequence ON. There is no provision for cascade sequence  
OFF. See description for time based sequence OFF options.  
b[13:12] Mfr_config_controln_sel[1:0]  
Selects the active control pin input (CONTROL0 , CONTROL1, CONTROL2 or CONTROL3) for this channel.  
0: Select CONTROL0 pin.  
1: Select CONTROL1 pin.  
2: Select CONTROL2 pin.  
3: Select CONTROL3 pin.  
b[11] Mfr_config_fast_servo_off  
Disables fast servo when margining or trimming output voltages:  
0: fast-servo enabled.  
1: fast-servo disabled.  
b[10] Mfr_config_supervisor_resolution Selects voltage supervisor resolution:  
0: high resolution = 4mV / LSB, range for V  
– V  
is 0 to 3.8V  
is 0 to 6.0V  
VSENSEPn  
VSENSEMn  
1: low resolution = 8mV / LSB, range for V  
Always returns 0.  
– V  
VSENSEMn  
VSENSEPn  
b[9:8] Reserved  
b[7]  
Mfr_config_servo_continuous  
Select whether the UNIT should continuously servo VOUT after it has reached a new margin or nominal  
target. Only applies when Mfr_ config _dac_mode = 00b.  
0: Do not continuously servo VOUT after reaching initial target.  
1: Continuously servo VOUT to target.  
b[6]  
Mfr_config_servo_on_warn  
Control re-servo on warning feature. Only applies when Mfr_config_dac_mode = 00b and Mfr_config_  
servo_continuous = 0.  
0: Do not allow the unit to re-servo when a VOUT warning threshold is met or exceeded.  
1: Allow the unit to re-servo VOUT to nominal target if  
VOUT ≥ V(Vout_ov_warn_limit) or  
VOUT ≤ V(Vout_uv_warn_limit).  
b[5:4] Mfr_config_dac_mode  
Determines how DAC is used when channel is in the ON state and TON_RISE has elapsed.  
00: Soft-connect (if needed) and servo to target.  
01: DAC not connected.  
10: DAC connected immediately using value from MFR_DAC command. If this is the configuration after a  
reset or RESTORE_USER_ALL, MFR_DAC will be undefined and must be written to desired value.  
11: DAC is soft-connected. After soft-connect is complete MFR_DAC may be written.  
b[3]  
b[2]  
Mfr_config_vo_en_wpu_en  
Mfr_config_vo_en_wpd_en  
V
pin charge-pumped, current-limited pull-up enable.  
OUT_EN  
0: Disable weak pull-up. V  
pin driver is three-stated when channel is on.  
OUT_EN  
1: Use weak current-limited pull-up on V  
pin when the channel is on.  
OUT_EN  
V
pin current-limited pull-down enable.  
OUT_EN  
0: Use a fast N-channel device to pull down V  
pin when the channel is off for any reason.  
OUT_EN  
1: Use weak current-limited pull-down to discharge V  
pin when channel is off due to soft stop by  
OUT_EN  
the CONTROL pin and/or OPERATION command. If the channel is off due to a fault, use the fast pull-down  
on the V pin.  
OUT_EN  
2974fa  
32  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_CONFIG_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1]  
Mfr_config_dac_gain  
DAC buffer gain.  
0: Select DAC buffer gain dac_gain_0 (1.38V full-scale)  
1: Select DAC buffer gain dac_gain_1 (2.65V full-scale)  
DAC output polarity.  
b[0]  
Mfr_config_ dac_pol  
0: Encodes negative (inverting) DC/DC converter trim input.  
1: Encodes positive (non-inverting) DC/DC converter trim input.  
Cascade Sequence ON with Time-Based Sequence OFF  
Cascade sequence ON allows a master power supply to sequence on a series of slave supplies by connecting each  
power supply’s power good output to the control pin of the next power supply in the chain. Please note that the power  
good signal is that of the power supply and not derived from the LTC2974’s internal power good processing. Power  
good based cascade sequence OFF is not supported, OFF sequencing must be managed using immediate or time based  
sequence OFF. See also “Tracking Based Sequencing”.  
Cascade sequence ON is illustrated in Figure 15. For each slave channel Mfr_config_cascade_on is asserted high and  
the associated control input is connected to the power good output of the previous power supply. In this configuration  
each slave channel’s startup is delayed until the previous supply has powered up.  
Cascade sequence OFF is not directly supported. Options for reversing the sequence when turning the supplies off  
include:  
• Using the OPERATION command to turn off all the channels with an appropriate off delay.  
• Using the FAULT pin to bring all the channels down immediately or in sequence with an appropriate off delay.  
When asserted, Mfr_config_cascade_on enables a slave channel to honor fault retries even when its control pin is  
low. Additionally, if the system has faulted off after zero or a finite number of retries, an OPERATION command may  
CONTROL0  
LTC2974  
FAULTB0  
CONTROL0  
FAULTB0  
RUN  
V
V
SENSEP0  
V
OUTP  
OUT_EN0  
RECOMMENDED CONNECTION  
WHEN HARDWARE ON/OFF  
CONTROL IS REQUIRED  
DC/DC  
LOAD  
V
MASTER  
POWERGOOD0  
V
V
V
V
CONTROL1  
OUTM  
SENSEM0  
RUN  
V
V
SENSEP1  
V
OUTP  
OUT_EN1  
DC/DC  
LOAD  
V
POWERGOOD1  
CONTROL2  
OUTM  
SENSEM1  
RUN  
V
V
SENSEP2  
V
OUTP  
OUT_EN2  
DC/DC  
LOAD  
V
SLAVES  
POWERGOOD2  
CONTROL3  
OUTM  
SENSEM2  
RUN  
V
V
V
OUTP  
SENSEP3  
LOAD  
OUT_EN3  
DC/DC  
POWERGOOD3  
V
SENSEM3  
OUTM  
TO NEXT CONTROL PIN  
2974 F15  
Figure 15. LTC2974 Configured to Cascade Sequence ON and Time-Base Sequence OFF  
2974fa  
33  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
be used to turn all cascade channels off then on to clear the faulted off state when the slave’s control pin is low. For  
this reason we refer to the control pin as being redefined as a sequence pin.  
The waveform of Figure 16 illustrates cascade sequence ON and time based sequence OFF using the configuration  
illustrated in Figure 15. In this example the FAULTB0 pin is used as a broadcast off signal. Turning the system off with  
the FAULTB0 requires all slave channels to be configured with Mfr_faultb0_response_chann asserted high. After the  
system is turned off, the LTC2974 will assert ALERTB with all slave channels indicating a Status_mfr_fault0_in event.  
TOFF_DELAY3  
TOFF_DELAY2  
TOFF_DELAY1  
TOFF_DELAY0  
V
V
V
OUT0  
OUT1  
OUT2  
V
OUT3  
CONTROL-FAULTB0  
POWERGOOD0  
POWERGOOD1  
POWERGOOD2  
POWERGOOD3  
2974 F16  
Figure 16. Cascade Sequence ON with Time Based Sequence Down on FAULT0  
2974fa  
34  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_CONFIG2_LTC2974  
This command register determines whether V  
AUXFAULTB pin to be pulled low.  
overvoltage or overcurrent faults from a given channel cause the  
OUT  
MFR_CONFIG2_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_auxfaultb_oc_fault_response_ Response to channel 3 IOUT_OC_FAULT.  
chan3  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[6] Mfr_auxfaultb_oc_fault_response_ Response to channel 2 IOUT_OC_FAULT.  
chan2  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[5] Mfr_auxfaultb_oc_fault_response_ Response to channel 1 IOUT_OC_FAULT.  
chan1  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[4] Mfr_auxfaultb_oc_fault_response_ Response to channel 0 IOUT_OC_FAULT.  
chan0  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[3] Mfr_auxfaultb_ov_fault_response_ Response to channel 3 VOUT_OV_FAULT.  
chan3  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[2] Mfr_auxfaultb_ov_fault_response_ Response to channel 2 VOUT_OV_FAULT.  
chan2  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[1] Mfr_auxfaultb_ov_fault_response_ Response to channel 1 VOUT_OV_FAULT.  
chan1  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[0] Mfr_auxfaultb_ov_fault_response_ Response to channel 0 VOUT_OV_FAULT.  
chan0  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
MFR_CONFIG3_LTC2974  
This command register determines whether V  
undercurrent faults from a given channel cause the AUXFAULTB pin  
OUT  
to be pulled low. This command also allows tracking to be enabled on any channel.  
MFR_CONFIG3_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_auxfaultb_uc_fault_response_ Response to channel 3 IOUT_UC_FAULT.  
chan3  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[6] Mfr_auxfaultb_uc_fault_response_ Response to channel 2 IOUT_UC_FAULT.  
chan2  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
2974fa  
35  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
b[5] Mfr_auxfaultb_uc_fault_response_ Response to channel 1 IOUT_UC_FAULT.  
chan1  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[4] Mfr_auxfaultb_uc_fault_response_ Response to channel 0 IOUT_UC_FAULT.  
chan0  
1 = Pull AUXFAULTB low via fast pull-down.  
0 = Do not pull AUXFAULTB low.  
b[3] Mfr_track_en_chan3  
b[2] Mfr_track_en_chan2  
b[1] Mfr_track_en_chan1  
b[0] Mfr_track_en_chan0  
Select if channel 3 is a slave in a tracked power supply system.  
0: Channel is not a slave in a tracked power supply system.  
1: Channel is a slave in a tracked power supply system.  
Select if channel 2 is a slave in a tracked power supply system.  
0: Channel is not a slave in a tracked power supply system.  
1: Channel is a slave in a tracked power supply system.  
Select if channel 1 is a slave in a tracked power supply system.  
0: Channel is not a slave in a tracked power supply system.  
1: Channel is a slave in a tracked power supply system.  
Select if channel 0 is a slave in a tracked power supply system.  
0: Channel is not a slave in a tracked power supply system.  
1: Channel is a slave in a tracked power supply system.  
LTC2974  
CONTROL0  
FAULTB0  
CONTROL0  
FAULTB0  
RUN  
V
V
SENSEP0  
V
V
V
V
OUTP  
OUT_EN0  
V
V
DC/DC  
DC/DC  
DC/DC  
DC/DC  
LOAD  
FB  
DAC0  
TRACK  
V
V
V
V
V
OUTM  
SENSEM0  
RUN  
V
V
OUTP  
SENSEP1  
OUT_EN1  
V
V
LOAD  
FB  
DAC1  
TRACK  
V
OUTM  
SENSEM1  
R1_1  
R1_2  
R1_3  
R2_1  
R2_2  
R2_3  
RUN  
V
V
OUTP  
SENSEP2  
OUT_EN2  
V
V
LOAD  
FB  
DAC2  
TRACK  
V
OUTM  
SENSEM2  
RUN  
V
V
OUTP  
SENSEP3  
OUT_EN3  
V
V
LOAD  
FB  
DAC3  
TRACK  
V
SENSEM3  
OUTM  
2974 F17  
Figure 17. LTC2974 Configured to Control, Supervise and Monitor Power Supplies Equipped with Tracking Pin  
2974fa  
36  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
Tracking Supplies On and Off  
The LTC2974 supports tracking power supplies that are equipped with a tracking pin and configured for tracking.  
A tracking power supply uses a secondary feedback terminal (TRACK) to allow its output voltage to be scaled to an  
external master voltage. Typically the external voltage is generated by the supply with the highest voltage in the sys-  
tem, which is fed to the slave track pins (see Figure 17). Supplies that track a master supply must be enabled before  
the master supply comes up and disabled after the master supply comes down. Enabling the slave supplies when the  
master is down requires supervisors monitoring the slaves to disable UV detection. Slave UC detection must also be  
TON_RISE EXPIRES  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV AND UC DETECT DISABLED  
ON ALL CHANNELS  
FOR ALL CHANNELS.  
UV AND UC DETECT ENABLED  
ON ALL CHANNELS  
V
V
V
V
OUT0  
OUT1  
OUT2  
MASTER BRINGS DOWN  
NEXT HIGHEST SLAVE  
OUT3  
CONTROL  
VOUT_EN0  
VOUT_EN(3:1)  
2974 F18  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 18. Control Pin Tracking All Supplies Up And Down  
TON_RISE EXPIRES  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV AND UC DETECT DISABLED  
ON ALL CHANNELS  
FOR ALL CHANNELS.  
UV AND UC DETECT ENABLED  
ON ALL CHANNELS  
V
V
V
V
OUT0  
OUT1  
OUT2  
OUT3  
UV FAULT ON CHANNEL 1 BRINGS DOWN MASTER  
VIA FAULTB0. ALL SLAVE CHANNELS INCLUDING  
THE ONE WITH THE UV FAULT ENTER TOFF_DELAY  
MASTER BRINGS DOWN  
NEXT HIGHEST SLAVE  
CONTROL  
FAULTB0  
VOUT_EN0  
VOUT_EN(3:1)  
2974 F19  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 19. Fault on Channel 1 Tracking All Supplies Down  
2974fa  
37  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
TON_RISE EXPIRES  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV AND UC DETECT DISABLED  
ON ALL CHANNELS  
FOR ALL CHANNELS.  
UV AND UC DETECT ENABLED  
ON ALL CHANNELS  
UV FAULT ON CHANNEL 1 BRINGS DOWN MASTER  
VIA FAULTB0. ALL SLAVES WITH ENABLED RUN  
PINS TRACK DOWN CORRECTLY  
V
V
V
V
OUT0  
OUT1  
OUT2  
OUT3  
DISABLING VOUT_EN1  
IMMEDIATELY IN RESPONSE  
TO THE UV FAULT CAUSES  
VOUT1 TO SHUT DOWN  
OUT OF SEQUENCE  
CONTROL  
FAULTB0  
VOUT_EN0  
VOUT_EN1  
VOUT_EN(3:2)  
2974 F20  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 20. Improperly Configured Fault Response on Faulting Channel Disrupts Tracking  
disabled when the slaves are tracking the master down to prevent false UC events. All channels configured for track-  
ing must track off together in response to a fault on any channel or any other condition that can bring one or more of  
the channels down. Prematurely disabling a slave channel via its RUN pin may cause that channel to shut down out  
of sequence (see Figure 20)  
An important feature of the LTC2974 is the ability to control, monitor and supervise DC/DC converters that are config-  
ured to track a master supply on and off.  
The LTC2974 supports the following tracking features:  
Track channels on and off without issuing false UV/UC events when the slave channels are tracking up or down.  
Track all channels down in response to a fault from a slave or master.  
Track all channels down when VIN_SNS drops below VIN_OFF, share clock is held low or Restore_user_all is issued.  
• Ability to to reconfigure selected channels that are part of a tracking group to sequence up after the group has  
tracked up or sequence down before the group has tracked down.  
Tracking Implementation  
The LTC2974 supports tracking through the coordinated programing of Ton_delay, Ton_rise,Toff_delay and Mfr_track_  
en_chann. The master channel must be configured to turn on after all the slave channels have turned on and to turn  
off before all the slave channels turn off. Slaves that are enabled before the master will remain off until the tracking pin  
allows them to turn on. Slaves will be turned off via the tracking pin even though their run pin is still asserted. Ton_rise  
must be extended on the slaves so that it ends relative to the rise of the TRACK pin and not the rise of the V  
pin.  
OUT_EN  
When Mfr_track_en_chann is enabled the channel is reconfigured to:  
• Sequence down on fault, VIN_OFF, SHARE_CLK low or RESTORE_USER_ALL.  
• Ignore UV and UC during TOFF_DELAY. Note that ignoring UV and UC during TON_RISE and TON_MAX_FAULT  
always happens regardless of how this bit is set.  
2974fa  
38  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
The following example illustrates configuring an LTC2974 with one master channel and three slaves.  
Master channel 0  
TON_DELAY = Ton_delay_master  
TON_RISE = Ton_rise_master  
TOFF_DELAY = Toff_delay_master  
Mfr_track_en_chan0 = 0  
Slave channel n  
TON_DELAY = Ton_delay_slave  
TON_RISE = Ton_delay_master + Ton_rise_slave  
TOFF_DELAY = Toff_delay_master + T_off_delay_slave  
Mfr_track_en_chan0 = 1  
Where:  
Ton_delay_master – Ton_delay_slave > RUN to TRACK setup time  
Toff_delay_slave > time for master supply to fall.  
The system response to a control pin toggle is illustrated in Figure 18.  
The system response to a UV fault on a slave channel is illustrated in Figure 19.  
MFR_CONFIG_ALL_LTC2974  
This command is used to configure parameters that are common to all channels on the IC. They may be set or reviewed  
from any PAGE setting.  
MFR_CONFIG_ALL_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:12] Reserved  
Don’t care. Always returns 0.  
Selects PWRGD de-assertion source for all channels.  
b[11] Mfr_config_all_pwrgd_off_uses_uv  
0: PWRGD is de-asserted based on V  
being below or equal to POWER_GOOD_OFF. This option  
OUT  
uses the ADC. Response time is approximately 100ms to 200ms.  
1: PWRGD is de-asserted based on V  
being below or equal to VOUT_UV_LIMIT. This option uses  
OUT  
the high speed supervisor. Response time is approximately 12µs.  
b[10] Mfr_config_all_fast_fault_log  
Controls number of ADC readings completed before transferring fault log memory to EEPROM.  
0: All ADC telemetry values will be updated before transferring fault log to EEPROM. Slower.  
1: Telemetry values will be transferred from fault log to EEPROM within 24ms after detecting fault.  
Faster.  
b[9]  
b[8]  
Mfr_config_all_control3_pol  
Mfr_config_all_control2_pol  
Selects active polarity of CONTROL3 pin  
0: Active low (pull pin low to start unit).  
1: Active high (pull pin high to start unit).  
Selects active polarity of CONTROL2 pin  
0: Active low (pull pin low to start unit).  
1: Active high (pull pin high to start unit).  
2974fa  
39  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_CONFIG_ALL_LTC2974 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
Mfr_config_all_fault_log_enable  
Enable fault logging to EEPROM in response to Fault.  
0: Fault logging to EEPROM is disabled.  
1: Fault logging to EEPROM is enabled.  
Mfr_config_all_vin_on_clr_faults_en  
Mfr_config_all_control1_pol  
Allow V rising above VIN_ON to clear all latched faults.  
IN  
0: VIN_ON clear faults feature is disabled.  
1: VIN_ON clear faults feature is enabled.  
Selects active polarity of CONTROL1 pin  
0: Active low (pull pin low to start unit).  
1: Active high (pull pin high to start unit).  
Selects active polarity of CONTROL0 pin  
0: Active low (pull pin low to start unit).  
1: Active high (pull pin high to start unit).  
Mfr_config_all_control0_pol  
Mfr_config_all_vin_share_enable  
Allow this unit to hold SHARE_CLK pin low when V has not risen above VIN_ON or has fallen  
IN  
below VIN_OFF. When enabled this unit will also turn all channels off in response to Share-clock  
being held low.  
0: SHARE_CLK inhibit is disabled.  
1: SHARE_CLK inhibit is enabled.  
PMBus packet error checking enable.  
0: PEC is accepted but not required.  
1: PEC is enabled.  
b[2]  
b[1]  
b[0]  
Mfr_config_all_pec_en  
Mfr_config_all_longer_pmbus_timeout Increase PMBus timeout interval by a factor of 8. Recommended for fault logging.  
0: PMBus timeout is multiplied by a factor of 8.  
1: PMBus timeout is not multiplied by a factor of 8.  
Mfr_config_all_auxfaultb_wpu_dis  
AUXFAULTB charge-pumped, current-limited pull-up disable.  
0: Use weak current-limited pull-up on AUXFAULTB after power-up, as long as no faults have forced  
AUXFAULTB off.  
1: Disable weak pull-up. AUXFAULTB driver is tri-stated after power-up as long as no faults have  
forced AUXFAULTB off.  
PROGRAMMING USER EEPROM SPACE  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
STORE_USER_ALL  
0x15 Store entire operating memory to  
EEPROM.  
Send Byte  
N
N
N
NA  
NA  
NA  
41  
41  
41  
RESTORE_USER_ALL  
MFR_EE_UNLOCK  
0x16 Restore entire operating memory from  
EEPROM.  
Send Byte  
R/W Byte  
0xBD Unlock user EEPROM for access by  
MFR_EE_ERASE and MFR_EE_DATA  
commands.  
Reg  
MFR_EE_ERASE  
MFR_EE_DATA  
0xBE Initialize user EEPROM for bulk  
programming by MFR_EE_DATA.  
R/W Byte  
N
N
Reg  
Reg  
NA  
NA  
42  
42  
0xBF Data transferred to and from EEPROM  
using sequential PMBus word reads or  
writes. Supports bulk programming.  
R/W Word  
2974fa  
40  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
STORE_USER_ALL and RESTORE_USER_ALL  
STORE_USER_ALL, RESTORE_USER_ALL commands provide access to User EEPROM space. Once a command is  
stored in User EEPROM, it will be restored with explicit restore command or when the part emerges from power-on  
reset after power is applied. While either of these commands is being processed, the part will indicate it is busy, see  
Response When Part Is Busy on page 43.  
STORE_USER_ALL. Issuing this command will store all operating memory commands with a corresponding EEPROM  
memory location.  
RESTORE_USER_ALL. Issuing this command will restore all commands from EEPROM Memory. It is recommended  
that this command not be executed while a unit is enabled since all monitoring is suspended while the EEPROM is  
transferred to operating memory, and intermediate values from EEPROM may not be compatible with the values initially  
stored in operating memory.  
Bulk Programming the User EEPROM Space  
The MFR_EE_UNLOCK, MFR_EE_ERASE and MFR_EE_DATA commands provide a method for 3rd party EEPROM  
programming houses and end users to easily program the LTC2974 independent of any order dependencies or delays  
between PMBus commands. All data transfers are directly to and from the EEPROM and do not affect the volatile RAM  
space currently configuring the device.  
Thefirststepistoprogramamasterreferencepartwiththedesiredconfiguration.MFR_EE_UNLOCKandMFR_EE_DATA  
are then used to read back all the data in User EEPROM space as sequential words. This information is stored to the  
master programming HEX file. Subsequent parts may be cloned to match the master part using MFR_EE_UNLOCK,  
MFR_EE_ERASE and MFR_EE_DATA to transfer data from the master HEX file. These commands operate directly on  
the EEPROM independent of the part configurations stored in RAM space. During EEPROM access the part will indicate  
that it is busy as described below.  
In order to support simple programming fixtures the bulk programming features only uses PMBus word and byte com-  
mands. The MFR_UNLOCK configures the appropriate access mode and resets an internal address pointer allowing  
a series of word commands to behave as a block read or write with the address pointer being incremented after each  
operation. PEC use is optional and is configured by the MFR_EE_UNLOCK operation.  
MFR_EE_UNLOCK  
The MFR_EE_UNLOCK command prevents accidental EEPROM access in normal operation and configures the required  
EEPROM bulk programming mode for bulk initialization, sequential writes, or reads. MFR_EE_UNLOCK augments the  
protection provided by write protect. Upon unlocking the part for the required operation, an internal address pointer is  
reset allowing a series of MFR_EE_DATA reads or writes to sequentially transfer data, similar to a block read or block  
write. The MFR_EE_UNLOCK command can clear or set PEC mode based on the desired level of error protection. An  
MFR_EE_UNLOCK sequence consists of writing two unlock codes using two byte-write commands. The following  
table documents the allowed sequences. Writing a non-supported sequence locks the part. Reading MFR_EE_UNLOCK  
returns the last byte written or zero if the part is locked.  
2974fa  
41  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_EE_UNLOCK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] Mfr_ee_unlock[7:0] To unlock user EEPROM space for Mfr_ee_erase and Mfr_ee_data read or write operations with PEC allowed:  
Write 0x2b followed by 0xd4.  
To unlock user EEPROM space for Mfr_ee_erase and Mfr_ee_data read or write operations with PEC required:  
Write 0x2b followed by 0xd5.  
To unlock user and manufacturer EEPROM space for Mfr_ee_data read only operations with PEC allowed:  
Write 0x2b, followed by 0x91 followed by 0xe4.  
To unlock user and manufacturer EEPROM space for Mfr_ee_data read only operations with PEC required:  
Write 0x2b, followed by 0x91 followed by 0xe5.  
MFR_EE_ERASE  
The MFR_EE_ERASE command is used to erase the entire contents of the user EEPROM space and configures this  
space to accept new program data. Writing values other than 0x2B will lock the part. Reads return the last value written.  
MFR_EE_ERASE Data contents  
BIT(S) SYMBOL  
b[7:0] Mfr_ee_erase[7:0] To erase the user EEPROM space and configure to accept new data:  
1) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_erase commands with or without PEC.  
OPERATION  
2) Write 0x2B to Mfr_ee_erase.  
The part will indicate it is busy erasing the EEPROM by the mechanism detailed below.  
MFR_EE_DATA  
The MFR_EE_DATA command allows the user to transfer data directly to or from the EEPROM without affecting RAM  
space.  
To read the user EEPROM space issue the appropriate Mfr_ee_unlock command and perform Mfr_ee_data reads until  
the EEPROM has been completely read. Extra reads will lock the part and return zero. The first read returns the 16-bit  
EEPROM packing revision ID that is stored in ROM. The second read returns the number of 16-bit words available;  
this is the number of reads or writes to access all memory locations. Subsequent reads return EEPROM data starting  
with lowest address.  
To write to the user EEPROM space issue the appropriate Mfr_ee_unlock and Mfr_ee_erase commands followed by  
successive Mfr_ee_data word writes until the EEPROM is full. Extra writes will lock the part. The first write is to the  
lowest address.  
Mfr_ee_data reads and writes must not be mixed.  
2974fa  
42  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_EE_DATA Data Contents  
BIT(S) SYMBOL  
b[7:0] Mfr_ee_data[7:0] To read user space  
1) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_data commands with or without PEC.  
OPERATION  
2) Read Mfr_ee_data[0] = PackingId (MFR Specific ID).  
3) Read Mfr_ee_data[1] = NumberOfUserWords (total number of 16-bit word available).  
4) Read Mfr_ee_data[2] through Mfr_ee_data[NumberOfWord+1] (User EEPROM data contents)  
To write user space  
1) Initialize the user memory using the sequence described for the MFR_EE_ERASE command.  
2) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_data commands with or without PEC.  
3) Write Mfr_ee_data[0] through Mfr_ee_data[NumberOfWord-1] (User EEPROM data content to be wriiten)  
The part will indicate it is busy erasing the EEPROM by the mechanism detailed below.  
Response When Part Is Busy  
The part will indicate it is busy accessing the EEPROM by the following mechanism:  
1) Clearing Mfr_common_busyb of the MFR_COMMON register. This byte can always be read and will never NACK a  
byte read request even if the part is busy.  
2) NACKing commands other than MFR_COMMON.  
MFR_EE Erase and Write Programming Time  
2
The program time per word is typically 0.17ms and will require spacing the I C/SMBus writes at greater than 0.17ms  
to guarantee the write has completed. The Mfr_ee_erase command takes approximately 400ms. We recommend using  
MFR_COMMON for handshaking.  
INPUT VOLTAGE COMMANDS AND LIMITS  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
VIN_ON  
0x35 Input voltage (VIN_SNS) above which power  
conversion can be enabled.  
R/W Word  
N
L11  
V
Y
10.0  
0xD280  
43  
VIN_OFF  
0x36 Input voltage (VIN_SNS) below which power  
R/W Word  
N
L11  
V
Y
9.0  
0xD240  
43  
conversion is disab  
ll VOUT_EN pins go  
led. A  
off immediately or sequence off after TOFF_  
DELAY (See Mfr_config_track_enn).  
VIN_OV_FAULT_LIMIT  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
0x55 Input overvoltage fault limit measured at  
VIN_SNS pin.  
R/W Word  
R/W Word  
N
N
N
N
L11  
L11  
L11  
L11  
V
V
V
V
Y
Y
Y
Y
15.0  
43  
43  
43  
43  
0xD3C0  
0x57 Input overvoltage warning limit measured at  
VIN_SNS pin.  
14.0  
0xD380  
0x58 Input undervoltage warning limit measured at R/W Word  
VIN_SNS pin.  
0
0x8000  
0x59 Input undervoltage fault limit measured at  
VIN_SNS pin.  
R/W Word  
0
0x8000  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_WARN_LIMIT, VIN_UV_WARN_LIMIT and  
VIN_UV_FAULT_LIMIT  
These commands provide voltage supervising limits for the input voltage V  
.
IN_SNS  
2974fa  
43  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
OUTPUT VOLTAGE COMMANDS AND LIMITS  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
VOUT_MODE  
0x20 Output voltage data format and mantissa  
R Byte  
Y
Y
Y
Reg  
L16  
L16  
0x13  
44  
45  
45  
13)  
exponent (2–  
.
VOUT_COMMAND  
VOUT_MAX  
0x21 Servo target. Nominal DC/DC converter  
output voltage setpoint.  
R/W Word  
R/W Word  
V
V
Y
Y
1.0  
0x2000  
0x24 Upper limit on the output voltage the unit  
can command regardless of any other  
commands.  
4.0  
0x8000  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
0x25 Margin high DC/DC converter output voltage R/W Word  
setting.  
Y
Y
Y
Y
Y
Y
L16  
L16  
L16  
L16  
L16  
L16  
V
V
V
V
V
V
Y
Y
Y
Y
Y
Y
1.05  
45  
45  
45  
45  
45  
45  
0x219A  
0x26 Margin low DC/DC converter output voltage R/W Word  
setting.  
0.95  
0x1E66  
0x40 Output overvoltage fault limit.  
0x42 Output overvoltage warning limit.  
0x43 Output undervoltage warning limit.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
1.1  
0x2333  
1.075  
0x2266  
0.925  
0x1D9A  
0x44 Output undervoltage fault limit. Used for  
Ton_max_fault and power good de-  
assertion.  
0.9  
0x1CCD  
POWER_GOOD_ON  
POWER_GOOD_OFF  
0x5E Output voltage at or above which a power  
good should be asserted.  
R/W Word  
R/W Word  
Y
Y
L16  
L16  
V
V
Y
Y
0.96  
45  
45  
0x1EB8  
0x5F Output voltage at or below which a power  
good should be de-asserted when Mfr_  
config_all_pwrgd_off_uses_uv is clear.  
0.94  
0x1E14  
MFR_VOUT_DISCHARGE_ 0xE9 Coefficient used to multiply VOUT_  
R/W Word  
Y
Y
L11  
Reg  
Y
N
2.0  
45  
45  
THRESHOLD  
COMMAND in order to determine V  
threshold voltage.  
off  
0xC200  
OUT  
MFR_DAC  
0xE0 Manufacturer register that contains the code R/W Word  
of the 10-bit DAC.  
0x0000  
VOUT_MODE  
This command is read only and specifies the mode and exponent for all commands with a L16 data format. See  
Data Formats on page 27.  
VOUT_MODE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:5] Vout_mode_type  
Reports linear mode. Hard-wired to 000b.  
b[4:0] Vout_mode_parameter Linear mode exponent. 5-bit two’s complement integer. Hardwired to 0x13 (–13 decimal).  
2974fa  
44  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_LIMIT,  
VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT, VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON and  
POWER_GOOD_OFF  
These commands provide various servo, margining and supervising limits for a channel’s output voltage.  
MFR_VOUT_DISCHARGE_THRESHOLD  
This register contains the coefficient that multiplies VOUT_COMMAND in order to determine the OFF threshold volt-  
age for the associated output. If the output voltage has not decayed below MFR_VOUT_DISCHARGE_THRESHOLD •  
VOUT_COMMAND prior to the channel being commanded to enter/re-enter the ON state, the Status_mfr_discharge bit  
in the STATUS_MFR_SPECIFIC register will be set and the ALERTB pin will be asserted low. In addition, the channel  
will not enter the ON state until the output has decayed below its off-threshold voltage. Setting this to a value greater  
than 1.0 effectively disables DISCHARGE_THRESHOLD checking, allowing the channel to turn back on even if it has  
not decayed at all.  
Other channels can be held-off if a particular output has failed to discharge by using the bidirectional FAULTBn pins  
(refer to the MFR_FAULTBn_RESPONSE and MFR_FAULTBn_PROPOGATE registers).  
MFR_DAC  
This command register allows the user to directly program the 10-bit DAC. Manual DAC writes require the channel  
to be in the ON state,TON_RISE to have expired and MFR_CONFIG_LTC2974 b[5:4] = 10b or 11b. Writing MFR_  
CONFIG_LTC2974 b[5:4] = 10b commands the DAC to hard connect with the value in Mfr_dac_direct_val. Writing  
b[5:4] = 11b commands the DAC to soft-connect. Once the DAC has soft-connected, Mfr_dac_direct_val returns the  
value that allowed the DAC to be connected without perturbing the power supply. MFR_DAC writes are ignored when  
MFR_CONFIG_LTC2974 b[5:4] = 00b or 01b.  
MFR_DAC Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:10] Reserved  
Read only, always returns 0.  
b[9:0] Mfr_dac_direct_val DAC code value.  
2974fa  
45  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
OUTPUT CURRENT COMMANDS AND LIMITS  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
IOUT_CAL_GAIN  
0x38 The nominal resistance of the current sense R/W Word  
element in mΩ.  
Y
Y
Y
Y
L11  
L11  
L11  
L11  
mΩ  
Y
Y
Y
Y
1.0  
46  
47  
47  
47  
0xBA00  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_WARN_LIMIT  
IOUT_UC_FAULT_LIMIT  
0x46 Output overcurrent fault limit.  
R/W Word  
R/W Word  
R/W Word  
A
10.0  
0xD280  
0x4A Output overcurrent warning limit.  
A
5.0  
0xCA80  
0x4B Output undercurrent fault limit. Used to  
detect a reverse current and must be a  
negative value.  
A
-1.0  
0xBE00  
MFR_IOUT_CAL_GAIN_TC 0xF6 Temperature coefficient applied to IOUT_  
CAL_GAIN.  
R/W Word  
Y
CF  
ppm  
Y
0x0  
47  
IOUT_CAL_GAIN  
The IOUT_CAL_GAIN command is used to set the ratio of the voltage at the current sense pins to the sensed current.  
For devices using a fixed current sense resistor, it is the same value as the resistance of the resistor (units are expressed  
in mΩ). IOUT_CAL_GAIN is internally limited to values between 0.01mΩ to 1,000mΩ. The register readback value  
always returns what was last written and does not reflect internal limiting.  
Calculations using IOUT_CAL_GAIN are:  
V
V
= IOUT_OC_FAULT_LIMIT • IOUT_CAL_GAIN • T  
= IOUT_UC_FAULT_LIMIT • IOUT_CAL_GAIN • T  
IOUT_OC_FAULT_LIMIT  
IOUT_UC_FAULT_LIMIT  
CORRECTION  
CORRECTION  
Where:  
T
= (1 + MFR_IOUT_CAL_GAIN_TC • 1E-6 • (READ_TEMPERATURE_1 + MFR_T_SELF_HEAT – 25.0))  
CORRECTION  
V
IOUT _ SNSPn – V  
IOUT _ SNSMn  
READ_IOUT =  
(IOUT_CAL_GAIN)TCORRECTION  
Note:  
T
is limited by hardware to a value between 0.25 and 4.0.  
CORRECTION  
READ_TEMPERATURE_2 is substituted for READ_TEMPERATURE_1 if the associated T  
a valid temperature. See READ_TEMPERATURE_1 for more information.  
network fails to detect  
SENSE  
2974fa  
46  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
IOUT_OC_FAULT_LIMIT, IOUT_OC_WARN_LIMIT and IOUT_UC_FAULT_LIMIT  
I
supervisor fault and warning limits.  
OUT  
IOUT_OC_FAULT_LIMITED is internally limited to values greater or equal to zero. The register readback value always  
returns what was last written and does not reflect internal limiting.  
IOUT_UC_FAULT_LIMITED is internally limited to values less than zero. The register readback value always returns  
what was last written and does not reflect internal limiting.  
MFR_IOUT_CAL_GAIN_TC  
The MFR_IOUT_CAL_GAIN_TC is a paged command that sets the temperature coefficient of the IOUT_CAL_GAIN  
register value in ppm/°C. This command uses the temperature measured by the external temperature diode for the  
associated page.  
Refer to IOUT_CAL_GAIN for details on proper usage.  
MFR_IOUT_CAL_GAIN_TC Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_iout_cal_gain_tc 16-bit twos complement integer representing the temperature coefficient.  
Value = Y where Y = b[15:0] is a twos complement.  
Example:  
Mfr_iout_cal_gain_tc = 3900ppm  
For b[15:0] = 0x0F3C  
Value = 3900  
2974fa  
47  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
EXTERNAL TEMPERATURE COMMANDS AND LIMITS  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
OT_FAULT_LIMIT  
0x4F Overtemperature fault limit setting for R/W Word  
the external temperature sensor.  
Y
Y
Y
Y
Y
Y
Y
L11  
L11  
L11  
L11  
CF  
°C  
°C  
°C  
°C  
Y
Y
Y
Y
Y
Y
65.0  
48  
48  
48  
48  
48  
48  
49  
0xEA08  
OT_WARN_LIMIT  
UT_WARN_LIMIT  
UT_FAULT_LIMIT  
0x51 Overtemperature warning limit for the R/W Word  
external temperature sensor  
60.0  
0xE3C0  
0x52 Undertemperature warning limit for  
the external temperature sensor.  
R/W Word  
0
0x8000  
0x53 Undertemperature fault limit for the  
external temperature sensor.  
R/W Word  
–5.0  
0xCD80  
MFR_TEMP_1_GAIN  
MFR_TEMP_1_OFFSET  
MFR_T_SELF_HEAT  
0xF8 Inverse of external diode temperature R/W Word  
1
–14  
non ideality factor. One LSB = 2  
.
0x4000  
0xF9 Offset value for the external  
temperature.  
R/W Word  
R Word  
L11  
L11  
°C  
°C  
0
0x8000  
0xB8 Calculated temperature rise due to  
NA  
self-heating of output current sense  
device above value measured by  
external temperature sensor.  
MFR_IOUT_CAL_GAIN_TAU_INV  
MFR_IOUT_CAL_GAIN_THETA  
0xB9 Inverse of time constant for Mfr_t_  
self_heat changes scaled by 4 •  
tCONV_SENSE.  
R/W Word  
R/W Word  
Y
Y
L11  
L11  
Y
Y
0.0  
49  
49  
0x8000  
0xBA Thermal resistance from inductor  
core to point measured by external  
temperature sensor.  
°C/W  
0.0  
0x8000  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_LIMIT and UT_FAULT_LIMIT  
These commands provide supervising limits for temperature as measured by the external diode.  
MFR_TEMP_1_GAIN and MFR_TEMP_1_OFFSET  
The MFR_TEMP_1_GAIN command specifies the inverse of the temperature sensor ideality factor. The MFR_TEMP_1_  
OFFSET allows an offset to be applied to the measured temperature.  
Calculations using these paged commands are:  
READ_TEMPERATURE_1 = T • MFR_TEMP_1_GAIN – 273.15 + MFR_TEMP_1_OFFSET  
EXT  
Where:  
T
EXT  
= Measured external temperature in degrees Kelvin.  
READ_TEMPERATURE_2 is substituted for READ_TEMPERATURE_1 if the associated T  
network fails to detect  
SENSE  
a valid temperature. Under these conditions MFR_TEMP1_GAIN and MFR_TEMP1_OFFSET will have no effect. See  
READ_TEMPERATURE_1 for more information.  
MFR_TEMP_1_GAIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
14  
b[15:0] Mfr_temp_1_gain[15:0]  
16-bit integer representing inverse of temperature non-ideality factor. Value = Y • 2 where Y = b[15:0] is an  
unsigned integer. Example:  
MFR_TEMP_1_GAIN = 1.0  
For b[15:0] = 0x4000  
–14  
Value = 16384 • 2 = 1.0  
2974fa  
48  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_T_SELF_HEAT, MFR_IOUT_CAL_GAIN_TAU_INV and MFR_IOUT_CAL_GAIN_THETA  
The LTC2974 uses an innovative (patent pending) algorithm to dynamically model the temperature rise from the external  
temperature sensor to the inductor core. This temperature rise is called MFR_T_SELF_HEAT and is used to calculate the  
final temperature correction required by IOUT_CAL_GAIN. The temperature rise is a function of the power dissipated  
in the inductor DCR, the thermal resistance from the inductor core to the remote temperature sensor and the thermal  
time constant of the inductor to board system. The algorithm simplifies the placement requirements for the external  
temperature sensor and compensates for the significant steady state and transient temperature error from the inductor  
core to the primary inductor heat sink.  
P = CURRENT REPRESENTING THE POWER DISSIPATED BY THE INDUCTOR  
I
(V  
DCR  
• READ_IOUT WHERE V  
= (V  
– V  
ISENSM  
))  
DCR  
ISENSEP  
I = P  
I
C = CAPACITANCE REPRESENTING THERMAL HEAT CAPACITY OF THE INDUCTOR  
τ
V = T  
I
I
(INCLUDED IN MFR_IOUT_CAL_GAIN_TAU_INV)  
T = VOLTAGE REPRESENTING THE TEMPERATURE OF THE INDUCTOR  
I
R = θ  
C = C  
IS  
τ
θ
IS  
= RESISTANCE REPRESENTING THE THERMAL RESISTANCE FROM THE DCR  
TO THE REMOTE TEMPERATURE SENSOR (MFR_IOUT_CAL_GAIN_THETA)  
T
=
VOLTAGE REPRESENTING THE TEMPERATURE AT THE REMOTE  
TEMPERATURE SENSOR  
V
= T  
S
S
S
2974 F21  
Figure 21. Electronic Analogy for Inductor Temperature Model  
The best way to understand the self-heating effect inside the inductor is to model the system using the circuit analogy  
of Figure 21. The 1st order differential equation for the above model may be approximated by the following difference  
equation:  
P – T /θ = C ∆T /∆t (Eq1) (when T = 0)  
I
I
IS  
τ
I
S
from which:  
∆T = ∆t (P θ – T )/(θ C ) (Eq2) or  
I
I
IS  
I
IS  
τ
∆T = (P θ – T ) • τ (Eq3)  
I
I
IS  
I
INV  
where  
τ
= ∆t/(θ C ) (Eq4)  
IS τ  
INV  
and ∆t is the sample period of the external temperature ADC.  
The LTC2974 implements the self-heating algorithm using Eq3 and Eq4 where:  
∆T =∆MFR_T_SELF_HEAT  
I
P = READ_IOUT • (V  
– V  
)
I
ISENSEP  
ISENSEM  
T = READ_TEMPERATURE_1  
S
T = MFR_T_SELF_HEAT + T  
I
S
∆t = 4 • t . (One complete external temperature loop period)  
CONV_SENSE  
τ
= MFR_IOUT_CAL_GAIN_TAU_INV  
INV  
ꢀ θ = MFR_IOUT_CAL_GAIN_THETA  
IS  
2974fa  
49  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
Initially self heat is set to zero. After each temperature measurement self heat is updated to be the previous value of  
self heat incremented or decremented by ∆MFR_T_SELF_HEAT.  
The actual value of C is not required. The important quantity is the thermal time constant τ = (θ C ). For example,  
τ
INV  
IS τ  
if an inductor has a thermal time constant τ = 5 seconds then:  
INV  
MFR_IOUT_CAL_GAIN_TAU_INV = (4 • t )/5 = 4 • 66ms/5s = 0.0528  
CONV_SENSE  
Refer to the application section for more information on calibrating θ and τ  
.
IS  
INV  
READ_TEMPERATURE_2 is substituted for READ_TEMPERATURE_1 if the associated T  
network fails to detect  
SENSE  
a valid temperature. Under these conditions T = READ_TEMPERATURE_2 and the self-heating correction is applied  
S
using the internal die temperature. See READ_TEMPERATURE_1 for more information.  
MFR_T_SELF_HEAT Data Content  
Bit(s) Symbol  
Operation  
b[15:0] Mfr_t_self_heat  
Values are limited to the range 0°C to 50°C.  
MFR_IOUT_CAL_GAIN_THETA Data Content  
Bit(s) Symbol  
Operation  
Values ≤ 0 set MFR_T_SELF_HEAT to zero.  
b[15:0] Mfr_iout_cal_gain_theta  
MFR_IOUT_CAL_GAIN_TAU_INV Data Content  
Bit(s) Symbol  
Operation  
b[15:0] Mfr_iout_cal_gain_tau_inv  
Values ≤ 0 set MFR_T_SELF_HEAT to zero.  
Values ≥ 1 set MFR_T_SELF_HEAT to MFR_IOUT_CAL_GAIN_THETA • READ_IOUT • (V  
– V  
).  
ISENSEP  
ISENSEM  
2974fa  
50  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
SEQUENCING TIMING LIMITS AND CLOCK SHARING  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
TON_DELAY  
0x60 Time from CONTROL pin and/or OPERATION  
R/W Word  
Y
L11  
mS  
Y
1.0  
51  
51  
command = ON to V  
pin = ON.  
0xBA00  
OUT_EN  
TON_RISE  
0x61 Time from when the V  
pin goes high  
R/W Word  
Y
L11  
mS  
Y
10.0  
0xD280  
OUT_ENn  
until the LTC2974 optionally soft-connects its  
DAC and begins to servo the output voltage to  
the desired value.  
TON_MAX_FAULT_LIMIT 0x62 Maximum time from V  
pin on assertion R/W Word  
Y
L11  
mS  
Y
15.0  
0xD3C0  
51  
OUT_EN  
that an UV condition will be tolerated before a  
TON_MAX_FAULT condition results.  
TOFF_DELAY  
0x64 Time from CONTROL pin and/or OPERATION  
R/W Word  
R/W Word  
Y
N
L11  
L11  
mS  
mS  
Y
Y
1.0  
51  
51  
command = OFF to V  
pin = OFF.  
0xBA00  
OUT_EN  
MFR_RESTART_DELAY  
0xDC Delay from actual CONTROL active edge to  
virtual CONTROL active edge.  
400  
0xFB20  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT and TOFF_DELAY  
These commands share the same format and provide sequencing and timer fault and warning delays in ms.  
TON_DELAY sets the amount of time in milliseconds that a channel waits following the start of an ON sequence before  
its V pin enables a DC/DC converter. This delay is counted using SHARE_CLK only.  
OUT_EN  
TON_RISE sets the amount of time in ms that elapses after the power supply has been enabled until the LTC2974’s  
DAC soft-connects and servos the output voltage to the desired level if Mfr_dac_mode = 00b. This delay is counted  
using SHARE_CLK only.  
TON_MAX_FAULT_LIMIT is the maximum amount of time that the power supply being controlled by the LTC2974 can  
attempt to power up the output without reaching the VOUT_UV_FAULT_LIMIT. If it does not, then a TON_MAX_FAULT  
is declared. If the output reaches VOUT_UV_FAULT_LIMIT prior to TON_MAX_FAULT_LIMIT, the LTC2974 unmasks the  
VOUT_UV_FAULT_LIMIT threshold. (Note that a value of zero means there is no limit to how long the power supply  
can attempt to bring up its output voltage.) This delay is counted using SHARE_CLK only.  
TOFF_DELAY is the amount of time that elapses after the CONTROL pin and/or OPERATION command is de-asserted  
until the channel is disabled (soft-off). This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used.  
All of the above TON and TOFF delays are internally limited to 655ms, and rounded to the nearest 10µs. The read value  
of these commands always returns what was last written and does not reflect internal limiting.  
MFR_RESTART_DELAY  
This command essentially sets the off time of a CONTROL pin initiated restart. If the CONTROL pin is toggled off for at  
least 10µs then on, all dependent channels are disabled, held off for a time = Mfr_restart_delay, then sequenced back  
on. CONTROL pin transitions whose OFF time exceeds Mfr_restart_delay are not affected by this command. A value  
of all zeros disables this feature. This delay is counted using SHARE_CLK only.  
This delay is internally limited to 13.1 seconds, and rounded to the nearest 200µs. The read value of this command  
always returns what was last written and does not reflect internal limiting.  
2974fa  
51  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
Clock Sharing  
Multiple LTC PMBus devices can synchronize their clocks in an application by connecting together the open-drain  
SHARE_CLK input/outputs to a pull-up resistor as a wired OR. In this case the fastest clock will take over and syn-  
chronize all other chips to its falling edge.  
SHARE_CLK can optionally be used to synchronize ON/OFF dependency on V across multiple chips by setting the  
IN  
Mfr_config_all_vin_share_enable bit of the MFR_CONFIG_ALL register. When configured this way the chip will hold  
SHARE_CLK low when the unit is off for insufficient input voltage, and upon detecting that SHARE_CLK is held low  
the chip will disable all channels after a brief deglitch period. When the SHARE_CLK pin is allowed to rise, the chip  
will respond by beginning a start sequence. In this case the slowest VIN_ON detection will take over and synchronize  
other chips to its start sequence.  
WATCHDOG TIMER AND POWER GOOD  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
MFR_PWRGD_EN  
0xD4 Configuration that maps WDI/  
RESETB status and individual  
channel power good to the  
PWRGD pin.  
R/W Word  
N
Reg  
Y
0x0000  
52  
MFR_POWERGOOD_ASSERTION_DELAY 0xE1 Power-good output assertion  
delay.  
R/W Word  
R/W Word  
R/W Word  
N
N
N
L11  
L11  
L11  
mS  
mS  
mS  
Y
Y
Y
100  
53  
53  
53  
0xEB20  
MFR_WATCHDOG_T_FIRST  
0xE2 First watchdog timer interval.  
0
0x8000  
MFR_WATCHDOG_T  
0xE3 Watchdog timer interval.  
0
0x8000  
MFR_PWRGD_EN  
This command register controls the mapping of the watchdog and channel power good status to the PWRGD pin.  
MFR_PWRGD_EN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:9] Reserved  
Read only, always returns 0s.  
b[8] Mfr_pwrgd_en_wdog Watchdog.  
1 = Watchdog timer not-expired status is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = Watchdog timer does not affect the PWRGD pin.  
Always returns 0000b.  
b[7:4] Reserved  
b[3] Mfr_pwrgd_en_chan3 Channel 3.  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine when  
the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
b[2] Mfr_pwrgd_en_chan2 Channel 2.  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine when  
the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
2974fa  
52  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
b[1] Mfr_pwrgd_en_chan1 Channel 1.  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine when  
the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
b[0] Mfr_pwrgd_en_chan0 Channel 0.  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine when  
the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
MFR_POWERGOOD_ASSERTION_DELAY  
This command register allows the user to program the delay from when the internal power-good signal becomes valid  
until the power-good output is asserted. This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used. This delay is internally limited to 13.1 seconds, and rounded to the nearest 200µs. The read value  
of this command always returns what was last written and does not reflect internal limiting.  
The power good de-assertion delay and threshold source is controlled by Mfr_config_all_pwrgd_off_uses_uv. Sys-  
tems that require a fast power good de-assertion should set Mfr_config_all_pwrgd_off_uses_uv=1. This uses the  
VOUT_UV_FAULT_LIMIT and the high speed comparator to de-assert the PWRGD pin. Systems that require a separate  
power good off threshold should set Mfr_config_all_pwrgd_off_uses_uv=0. This uses the slower ADC polling loop  
and POWER_GOOD_OFF to de-assert the PWRGD pin.  
Watchdog Operation  
A non-zero write to the MFR_WATCHDOG_T register will reset the watchdog timer. Low-to-high transitions on the  
WDI/RESETB pin also reset the watchdog timer. If the timer expires, ALERTB is asserted and the PWRGD output  
is optionally de-asserted and then reasserted after MFR_PWRGD_ASSERTION_DELAY ms. Writing 0 to either the  
MFR_WATCH_DOG_T or MFR_WATCHDOG_T_FIRST registers will disable the timer.  
MFR_WATCHDOG_T_FIRST and MFR_WATCHDOG_T  
The MFR_WATCHDOG_T_FIRST register allows the user to program the duration of the first watchdog timer interval  
following assertion of the PWRGD pin, assuming the PWRGD pin reflects the status of the watchdog timer. If asser-  
tion of PWRGD is not conditioned by the watchdog timer’s status, then MFR_WATCHDOG_T_FIRST applies to the first  
timing interval after the timer is enabled. Writing a value of 0ms to the MFR_WATCHDOG_T_FIRST register disables  
the watchdog timer. This delay is internally limited to 65 seconds and rounded to the nearest 1ms.  
The MFR_WATCHDOG_T register allows the user to program watchdog timer intervals subsequent to the MFR_WATCH-  
DOG_T_FIRST timing interval. Writing a value of 0ms to the MFR_WATCHDOG_T register disables the watchdog timer.  
This delay is internally limited to 655ms and rounded to the nearest 10µs.  
Both timers operate on an internal clock independent of SHARE_CLK. The read value of both commands always returns  
what was last written and does not reflect internal limiting.  
2974fa  
53  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
FAULT RESPONSES  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
VOUT_OV_FAULT_RESPONSE  
0x41 Action to be taken by the device when an R/W Byte  
output overvoltage fault is detected.  
Y
Y
Y
Y
Y
Reg  
Reg  
Reg  
Reg  
Reg  
Y
Y
Y
Y
Y
0x80  
0x7F  
0x00  
0x00  
0xB8  
55  
55  
56  
56  
57  
VOUT_UV_FAULT_RESPONSE  
IOUT_OC_FAULT_RESPONSE  
IOUT_UC_FAULT_RESPONSE  
OT_FAULT_RESPONSE  
0x45 Action to be taken by the device when an R/W Byte  
output undervoltage fault is detected.  
0x47 Action to be taken by the device when an R/W Byte  
output overcurrent fault is detected.  
0x4C Action to be taken by the device when an R/W Byte  
output undercurrent fault is detected.  
0x50 Action to be taken by the device when an R/W Byte  
overtemperature fault is detected on the  
external temperature sensor.  
UT_FAULT_RESPONSE  
0x54 Action to be taken by the device when an R/W Byte  
undertemperature fault is detected on the  
external temperature sensor.  
Y
Reg  
Y
0xB8  
57  
VIN_OV_FAULT_RESPONSE  
VIN_UV_FAULT_RESPONSE  
TON_MAX_FAULT_RESPONSE  
MFR_RETRY_DELAY  
0x56 Action to be taken by the device when an R/W Byte  
input overvoltage fault is detected.  
N
N
Y
N
N
Reg  
Reg  
Reg  
L11  
Reg  
Y
Y
Y
Y
Y
0x80  
0x00  
0xB8  
57  
57  
58  
58  
58  
0x5A Action to be taken by the device when an R/W Byte  
input undervoltage fault is detected.  
0x63 Action to be taken by the device when a  
TON_MAX_FAULT event is detected.  
R/W Byte  
0xDB Retry interval during FAULT retry mode. R/W Word  
mS  
200  
0xF320  
MFR_RETRY_COUNT  
0xF7 Retry count for all faulted off conditions  
that enable retry.  
R/W Byte  
0x00  
Clearing Latched Faults  
Latched faults are reset by toggling the CONTROL pin, using the OPERATION command, or removing and reapplying  
the bias voltage to the V pin. All fault and warning conditions result in the ALERTB pin being asserted low and  
IN_SNS  
the corresponding bits being set in the status registers. The CLEAR_FAULTS command resets the contents of the  
status registers and de-asserts the ALERTB output. The CLEAR_FAULTS does not clear a faulted off state nor allow a  
channel to turn back on.  
2974fa  
54  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_RESPONSE  
The fault response documented here is for voltages that are measured by the high speed supervisor. These voltages  
are measured over a short period of time and may require a deglitch period. Note that in addition to the response  
described by these commands, the LTC2974 will also:  
• Set the appropriate bit(s) in the STATUS_BYTE.  
• Set the appropriate bit(s) in the STATUS_WORD.  
• Set the appropriate bit in the corresponding STATUS_VOUT register, and  
• Notify the host by pulling the ALERTB pin low.  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Vout_ov_fault_response_action, Response action:  
Vout_uv_fault_response_action  
00b: The unit continues operation without interruption.  
01b: The unit continues operating for the delay time specified by bits[2:0] in increments of t  
. See  
S_VS  
Electrical Characteristics Table. If the fault is still present at the end of the delay time, the unit shuts down  
immediately or sequences off after TOFF_DELAY (See Mfr_config_track_enn). After shutting down, the device  
responds according to the retry settings in bits [5:3].  
10b-11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_track_enn).  
After shutting down, the device responds according to the retry settings in bits [5:3].  
b[5:3] Vout_ov_fault_response_retry, Response retry behavior:  
Vout_uv_fault_response_retry  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
Changing the value might not take effect until the next off-then-on sequence on that channel.  
b[2:0] Vout_ov_fault_response_delay, This sample count determines the amount of time a unit is to ignore a fault after it is first detected. Use this  
Vout_uv_fault_response_delay delay to deglitch fast faults.  
000b: There is no additional deglitch delay applied to fault detection.  
001b-111b: The fault is deglitched for deglitch period of b[2:0] samples at a sampling period of tS_VS  
(12.2µs typical).  
2974fa  
55  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
IOUT_OC_FAULT_RESPONSE and IOUT_UC_FAULT_RESPONSE  
The fault response documented here is for currents that are measured by the high speed supervisor. These currents  
are measured over a short period of time and may require a deglitch period. Note that in addition to the response  
described by these commands, the LTC2974 will also:  
• Set the appropriate bit in the STATUS_BYTE.  
• Set the appropriate bit in the STATUS_WORD.  
• Set the appropriate bit in the corresponding STATUS_IOUT register, and  
• Notify the host by pulling the ALERTB pin low.  
IOUT_OC_FAULT_RESONSE and IOUT_UC_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Iout_oc_fault_response_action, Response action:  
Iout_uc_fault_response_action  
00b and 01b: The unit continues operation without interruption. Note that the current will not be limited to the  
value of Iout_oc_fault_limit or Iout_uc_fault_limit.  
10b: The unit continues operating for the delay time specified by bits [2:0]. If the fault is still present at the  
end of the delay time, the unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_  
track_enn). After shutting down, the device responds according to the retry settings in bits [5:3]. Note that  
the current will not be limited to the value of Iout_oc_fault_limit or Iout_uc_fault_limit.  
11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_track_enn). After  
shutting down, the device responds according to the retry settings in bits [5:3].  
b[5:3] Iout_oc_fault_response_retry,  
Iout_uc_fault_response_retry  
Response retry behavior:  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
001-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded off (by the control pin or operation command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
Changing the value might not take effect until the next off-then-on sequence on that channel.  
b[2:0] Iout_oc_fault_response_delay, This sample count determines the amount of time a unit is to ignore a fault after it is first detected. Use this  
Iout_uc_fault_response_delay  
delay to deglitch fast faults.  
000b: There is no additional deglitch delay applied to fault detection.  
001b-111b: The fault is deglitched for the interval selected by b[2:0] as follows.  
b[2:0]  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
Deglitch interval  
100µs  
1ms  
5ms  
10ms  
20ms  
50ms  
100ms  
2974fa  
56  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE, VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_RESPONSE  
The fault response documented here is for values that are measured by the ADC. Note that in addition to the response  
described by these commands, the LTC2974 will also:  
• Set the appropriate bit(s) in the STATUS_BYTE.  
• Set the appropriate bit(s) in the STATUS_WORD.  
• Set the appropriate bit in the corresponding STATUS_VIN or STATUS_TEMPERATURE register, and  
• Notify the host by pulling the ALERTB pin low.  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE, VIN_OV_FAULT_RESPONSE, VIN_UV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Ot_fault_response_action,  
Ut_fault_response_action,  
Response action:  
00b: The unit continues operation without interruption.  
Vin_ov_fault_response_action,  
Vin_uv_fault_response_action  
01b-11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_track_enn).  
After shutting down, the device responds according to the retry settings in bits [5:3].  
b[5:3] Ot_fault_response_retry,  
Ut_fault_response_retry,  
Response retry behavior:  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
Vin_ov_fault_response_retry,  
Vin_uv_fault_response_retry  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
Changing the value might not take effect until the next off-then-on sequence on that channel.  
Hard coded to 000b: There is no additional deglitch delay applied to fault detection.  
b[2:0] Ot_fault_response_delay,  
Ut_fault_response_delay,  
Vin_ov_fault_response_delay,  
Vin_uv_fault_response_delay  
2974fa  
57  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
TON_MAX_FAULT_RESPONSE  
This command defines the LTC2974 response to a TON_MAX_FAULT. It may be used to protect against a short-circuited  
output at startup. After startup use VOUT_UV_FAULT_RESPONSE to protect against a short-circuited output.  
The device also:  
• Sets the HIGH_BYTE bit in the STATUS_BYTE,  
• Sets the VOUT bit in the STATUS_WORD,  
• Sets the TON_MAX_FAULT bit in the STATUS_VOUT register, and  
• Notifies the host by asserting ALERTB.  
TON_MAX_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
b[7:6] Ton_max_fault_response_action Response action:  
00b: The unit continues operation without interruption.  
OPERATION  
01b-11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_track_enn).  
After shutting down, the device responds according to the retry settings in bits [5:3].  
b[5:3] Ton_max_fault_response_retry Response retry behavior:  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
Changing the value might not take effect until the next off-then-on sequence on that channel.  
b[2:0] Ton_max_fault_response_delay Hard coded to 000b: There is no additional deglitch delay applied to fault detection.  
MFR_RETRY_DELAY  
This command determines the retry interval when the LTC2974 is in retry mode in response to a fault condition. This  
delay is counted using SHARE_CLK only. This delay is internally limited to 13.1 seconds, and rounded to the nearest  
200µs. The read value of this command always returns what was last written and does not reflect internal limiting.  
MFR_RETRY_COUNT  
The MFR_RETRY_COUNT is a global command that sets the number of retries attempted when any channel faults off  
with its fault response retry field set to a non zero value.  
In the event of multiple or recurring retry faults on the same channel the total number of retries equals MFR_RETRY_  
COUNT. If a channel has not been faulted off for 6 seconds, its retry counter is cleared. Toggling a channel’s CONTROL  
pin off then on or issuing OPERATION off then on commands will synchronously clear the retry count.  
MFR_RETRY_COUNT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:3] Reserved  
Always returns zero.  
b[2:0] Mfr_retry_count [2:0]  
0: No retries:  
1-6: Number of retries.  
7: Infinite retries.  
Changing the value might not take effect until the next off-then-on sequence on that channel.  
2974fa  
58  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
SHARED EXTERNAL FAULTS  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
MFR_FAULTB0_PROPAGATE 0xD2 Configuration that determines if a channels R/W Byte  
Y
Reg  
Y
0x00  
59  
faulted off state is propagated to the  
FAULTB0 pin.  
MFR_FAULTB1_PROPAGATE 0xD3 Configuration that determines if a channels R/W Byte  
Y
Reg  
Y
0x00  
59  
faulted off state is propagated to the  
FAULTB1 pin.  
MFR_FAULTB0_RESPONSE  
MFR_FAULTB1_RESPONSE  
0xD5 Action to be taken by the device when the  
FAULTB0 pin is asserted low.  
R/W Byte  
R/W Byte  
N
N
Reg  
Reg  
Y
Y
0x00  
0x00  
60  
60  
0xD6 Action to be taken by the device when the  
FAULTB1 pin is asserted low.  
MFR_FAULTB0_PROPAGATE and MFR_FAULTB1_PROPAGATE  
These manufacturer specific commands enable channels that have faulted off to propagate that state to the appro-  
priate fault pin. MFR_FAULTB0_PROPAGATE allows any channel’s faulted off state to propagate to the FAULTB0 pin.  
MFR_FAULTB1_PROPAGATE allows any channel’s faulted off state to propagate to the FAULTB1 pin.  
Note that pulling a fault pin low will have no effect for channels that have MFR_FAULTBn_RESPONSE set to 0. The  
channel continues operation without interruption. This fault response is called Ignore (0x0) in LTpowerPlay.  
MFR_FAULT0_PROPAGATE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
b[0] Mfr_faultb0_propagate Enable fault propagation.  
0: Channel’s faulted off state does not assert FAULTB0 low.  
1 :Channel’s faulted off state asserts FAULTB0 low.  
MFR_FAULT1_PROPAGATE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
b[0] Mfr_faultb1_propagate Enable fault propagation.  
0: Channel’s faulted off state does not assert FAULTB1 low.  
1: Channel’s faulted off state asserts FAULTB1 low.  
2974fa  
59  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_FAULTB0_RESPONSE and MFR_FAULTB1_RESPONSE  
These manufacturer specific commands share the same format and specify the response to assertions of the FAULTB  
pins. MFR_FAULTB0_RESPONSE determines which channels shut off when the FAULTB0 pin is asserted low and  
MFR_FAULTB1_RESPONSE determines which channels shut off when the FAULTB1 pin is asserted low.When a chan-  
nel shuts off in response to a FAULTBn pin, the ALERTB pin is asserted low and the appropriate bit is set in the STA-  
TUS_MFR_SPECIFIC register. For a graphical explanation, see the switches on the left hand side of Figure 28: Channel  
Fault Management Block Diagram.  
Faults will not propagate for channels that have MFR_FAULTBn_RESPONSE set to 0: The channel continues operation  
without interruption. Note that this fault response is called No Action in LTpowerPlay.  
MFR_FAULTB0_RESPONSE and MFR_FAULTB1_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns 0000b.  
b[3] Mfr_faultb0_response_chan3, Channel 3 response.  
Mfr_faultb1_response_chan3  
0: The channel continues operation without interruption  
1: The channel shuts down if the corresponding FAULTB pin is still asserted after 10µs. When the FAULTB pin  
subsequently de-asserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb0_response_chan2, Channel 2 response.  
Mfr_faultb1_response_chan2  
0: The channel continues operation without interruption  
1: The channel shuts down if the corresponding FAULTB pin is still asserted after 10µs. When the FAULTB pin  
subsequently de-asserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb0_response_chan1, Channel 1 response.  
Mfr_faultb1_response_chan1  
0: The channel continues operation without interruption  
1: The channel shuts down if the corresponding FAULTB pin is still asserted after 10µs. When the FAULTB pin  
subsequently de-asserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[0] Mfr_faultb0_response_chan0, Channel 0 response.  
Mfr_faultb1_response_chan0  
0: The channel continues operation without interruption  
1: The channel shuts down if the corresponding FAULTB pin is still asserted after 10µs. When the FAULTB pin  
subsequently de-asserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
2974fa  
60  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
FAULT WARNING AND STATUS  
CMD  
DEFAULT REF  
COMMAND NAME  
CLEAR_FAULTS  
STATUS_BYTE  
STATUS_WORD  
STATUS_VOUT  
STATUS_IOUT  
STATUS_INPUT  
CODE DESCRIPTION  
TYPE  
Send Byte  
R Byte  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
0x03 Clear any fault bits that have been set.  
0x78 One byte summary of the unit’s fault condition.  
0x79 Two byte summary of the unit’s fault condition.  
0x7A Output voltage fault and warning status.  
0x7B Output current fault and warning status.  
0x7C Input supply fault and warning status.  
Y
Y
Y
Y
Y
N
Y
NA  
NA  
NA  
NA  
NA  
NA  
NA  
61  
61  
62  
62  
63  
63  
63  
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
R Word  
R Byte  
R Byte  
R Byte  
STATUS_TEMPERATURE 0x7D External temperature fault and warning status  
for READ_TEMPERATURE_1.  
R Byte  
STATUS_CML  
0x7E Communication and memory fault and warning  
status.  
R Byte  
R Byte  
N
Y
Reg  
Reg  
NA  
NA  
64  
64  
STATUS_MFR_SPECIFIC 0x80 Manufacturer specific fault and state  
information.  
MFR_PADS  
0xE5 Current state of selected digital I/O pads.  
R/W Word  
R Byte  
N
N
Reg  
Reg  
NA  
NA  
65  
65  
MFR_COMMON  
0xEF Manufacturer status bits that are common  
across multiple LTC chips.  
CLEAR_FAULTS  
The CLEAR_FAULTS command is used to clear status bits that have been set. This command clears all fault and warn-  
ing bits in all unpaged status registers, and paged status registers selected by the current PAGE setting. At the same  
time, the device negates (clears, releases) its contribution to ALERTB.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. See Clearing  
Latched Faults for more information.  
If the fault is present after the fault is cleared, the fault status bit shall be set again and the host notified by the usual  
means.  
Note: this command responds to the global page command. (PAGE=0xFF)  
STATUS_BYTE  
The STATUS_BYTE command returns the summary of the most critical faults or warnings which have occurred, as  
shown in the following table. STATUS_BYTE is a subset of STATUS_WORD and duplicates the same information.  
STATUS_BYTE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_byte_busy  
b[6] Status_byte_off  
Same as Status_word_busy.  
Same as Status_word_off.  
b[5] Status_byte_vout_ov Same as Status_word_vout_ov.  
b[4] Status_byte_iout_oc  
b[3] Status_byte_vin_uv  
b[2] Status_byte_temp  
b[1] Status_byte_cml  
Same as Status_word_iout_oc.  
Same as Status_word_vin_uv.  
Same as Status_word_temp.  
Same as Status_word_cml.  
b[0] Status_byte_high_byte Same as Status_word_high_byte.  
2974fa  
61  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
STATUS_WORD  
The STATUS_WORD command returns two bytes of information with a summary of the unit’s fault condition. Based on  
the information in these bytes, the host can get more information by reading the appropriate detailed status register.  
The low byte of the STATUS_WORD is the same register as the STATUS_BYTE command.  
STATUS_WORD Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15] Status_word_vout  
b[14] Status_word_iout  
b[13] Status_word_input  
b[12] Status_word_mfr  
An output voltage fault or warning has occurred. See STATUS_VOUT.  
An output current fault or warning has occurred. See STATUS_IOUT.  
An input voltage fault or warning has occurred. See STATUS_INPUT.  
A manufacturer specific fault has occurred. See STATUS_MFR._SPECIFIC.  
b[11] Status_word_power_not_good The PWRGD pin, if enabled, is negated. Power is not good.  
b[10] Status_word_fans  
b[9] Status_word_other  
b[8] Status_word_unknown  
Not supported. Always  
returns 0.  
Not supported. Always  
returns 0.  
Not supported. Always  
returns 0.  
b[7] Status_word_busy  
b[6] Status_word_off  
Device busy when PMBus command received. See OPERATION: Processing Commands.  
This bit is asserted if the unit is not providing power to the output, regardless of the reason, including simply  
not being enabled. The off-bit is clear if unit is allowed to provide power to the output.  
b[5] Status_word_vout_ov  
b[4] Status_word_iout_oc  
b[3] Status_word_vin_uv  
b[2] Status_word_temp  
b[1] Status_word_cml  
An output overvoltage fault has occurred.  
An output overcurrent fault has occurred.  
A V undervoltage fault has occurred.  
IN  
A temperature fault or warning has occurred. See STATUS_TEMPERATURE.  
A communication, memory or logic fault has occurred. See STATUS_CML.  
A fault/warning not listed in b[7:1] has occurred.  
b[0] Status_word_high_byte  
STATUS_VOUT  
The STATUS_VOUT command returns the summary of the output voltage faults or warnings which have occurred, as  
shown in the following table:  
STATUS_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_vout_ov_fault  
b[6] Status_vout_ov_warn  
b[5] Status_vout_uv_warn  
b[4] Status_vout_uv_fault  
b[3] Status_vout_max_fault  
Overvoltage fault.  
Overvoltage warning.  
Undervoltage warning  
Undervoltage fault.  
VOUT_MAX fault. An attempt has been made to set the output voltage to a value higher than allowed by the  
VOUT_MAX command. After being cleared, Status_vout_max_fault will not report additional faults until a channel  
state transition (off-then-on) has been performed or a valid output voltage, lower than allowed by VOUT_MAX, has  
been set.  
b[2] Status_vout_ton_max_fault TON_MAX_FAULT sequencing fault.  
b[1] Status_vout_toff_max_warn Not supported. Always returns 0.  
b[0] Status_vout_tracking_error Not supported. Always returns 0.  
2974fa  
62  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
STATUS_IOUT  
The STATUS_IOUT command returns the summary of the output current faults or warnings which have occurred, as  
shown in the following table:  
STATUS_IOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_iout_oc_fault  
b[6] Status_iout_oc_uv_fault  
b[5] Status_iout_oc_warn  
b[4] Status_iout_uc_fault  
Overcurrent fault.  
Not Supported. Always returns 0.  
Overcurrent warning  
Undercurrent fault.  
b[3] Status_iout_curr_share_fault Not Supported. Always returns 0.  
b[2] Status_pout_power_limiting Not Supported. Always returns 0.  
b[1] Status_pout_overpower_fault Not Supported. Always returns 0.  
b[0] Status_pout_overpower_warn Not Supported. Always returns 0.  
STATUS_INPUT  
The STATUS_INPUT command returns the summary of the V faults or warnings which have occurred, as shown in  
IN  
the following table:  
STATUS_INPUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_input_ov_fault  
b[6] Status_input_ov_warn  
b[5] Status_input_uv_warn  
b[4] Status_input_uv_fault  
b[3] Status_input_off  
V
V
V
V
overvoltage fault  
IN  
IN  
IN  
IN  
overvoltage warning  
undervoltage warning  
undervoltage fault  
Unit is off for insufficient input voltage.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
b[2] IIN overcurrent fault  
b[1] IIN overcurrent warn  
b[0] PIN overpower warn  
STATUS_TEMPERATURE  
The STATUS_TEMPERATURE command returns the summary of the temperature faults or warnings which have oc-  
curred, as shown in the following table. Note that this information is paged and refers to the temperature of the as-  
sociated external diode.  
STATUS_TEMPERATURE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_temperature_ot_fault  
Overtemperature fault.  
b[6] Status_temperature_ot_warn Overtemperature warning.  
b[5] Status_temperature_ut_warn Undertemperature warning.  
b[4] Status_temperature_ut_fault  
b[3] Reserved  
Undertemperature fault.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
b[2] Reserved  
b[1] Reserved  
b[0] Reserved  
2974fa  
63  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
STATUS_CML  
The STATUS_CML command returns the summary of the communication, memory and logic faults or warnings which  
have occurred, as shown in the following table:  
STATUS_CML Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_cml_cmd_fault  
1 = An illegal or unsupported command fault has occurred.  
0 = No fault has occurred.  
b[6] Status_cml_data_fault  
b[5] Status_cml_pec_fault  
1 = Illegal or unsupported data received.  
0 = No fault has occurred.  
1 = A packet error check fault has occurred. Note: PEC checking is always active in the LTC2974. Any extra byte  
received before a STOP will set Status_cml_pec_fault unless the extra byte is a matching PEC byte.  
0 = No fault has occurred.  
b[4] Status_cml_memory_fault 1 = A fault has occurred in the EEPROM.  
0 = No fault has occurred.  
b[3] Status_cml_processor_fault Not supported, always returns 0.  
b[2] Reserved  
Reserved, always returns 0.  
b[1] Status_cml_pmbus_fault  
1 = A communication fault other than ones listed in this table has occurred. This is a catch all category for illegally  
2
formed I C/SMBus commands (Example: An address byte with read =1 received immediately after a START).  
0 = No fault has occurred.  
b[0] Status_cml_unknown_fault Not supported, always returns 0.  
STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC command returns manufacturer specific status flags. Bits marked CHANNEL = All are  
not paged. Bits marked STICKY = Yes stay set until a CLEAR_FAULTS is issued or the channel is commanded on by  
the user. Bits marked ALERT = Yes pull ALERTB low when the bit is set. Bits marked OFF = Yes indicate that the event  
can be configured elsewhere to turn the channel off.  
STATUS_MFR_SPECIFIC Data Contents  
BIT(S) SYMBOL  
OPERATION  
CHANNEL STICKY ALERT OFF  
b[7] Status_mfr_discharge  
1 = A V  
state.  
discharge fault occurred while attempting to enter the ON Current Page Yes  
Yes Yes  
OUT  
0 = No V  
discharge fault has occurred.  
OUT  
b[6] Status_mfr_fault1_in  
b[5] Status_mfr_fault0_in  
This channel attempted to turn on while the FAULTB1 pin was  
asserted low, or this channel has shut down at least once in  
response to a FAULTB1 pin asserting low since the last CONTROL  
pin toggle, OPERATION command ON/OFF cycle or CLEAR_FAULTS  
command. If Mfr_track_en_chann is set, Status_mfr_fault1_in may  
also be set for the channel causing the fault.  
Current Page Yes  
Current Page Yes  
Yes Yes  
This channel attempted to turn on while the FAULTB0 pin was  
asserted low, or this channel has shut down at least once in  
response to a FAULTB0 pin asserting low since the last CONTROL  
pin toggle, OPERATION command ON/OFF cycle or CLEAR_FAULTS  
command. If Mfr_track_en_chann is set, Status_mfr_fault0_in may  
also be set for the channel causing the fault.  
Yes Yes  
b[4] Status_mfr_servo_target_reached Servo target has been reached.  
Current Page  
Current Page  
No  
No  
No  
No  
No  
No  
b[3] Status_mfr_dac_connected  
DAC is connected and driving V  
pin.  
DAC  
2974fa  
64  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
b[2] Status_mfr_dac_saturated  
A previous servo operation terminated with maximum or minimum  
DAC value.  
Current Page Yes  
No  
No  
b[1] Status_mfr_auxfaultb_faulted_off AUXFAULTB has been de-asserted due to a V  
or I  
fault.  
All  
All  
No  
No  
No  
No  
OUT  
OUT  
b[0] Status_mfr_watchdog_fault  
1 = A watchdog fault has occurred.  
0 = No watchdog fault has occurred.  
Yes  
Yes  
MFR_PADS  
The MFR_PADS command provides read-only access of digital pads (pins). The input values are before any deglitch-  
ing logic.  
MFR_PADS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15] Mfr_pads_pwrgd_drive  
0 = PWRGD pad is being driven low by this chip.  
1 = PWRGD pad is not being driven low by this chip.  
0 = ALERTB pad is being driven low by this chip.  
1 = ALERTB pad is not being driven low by this chip.  
bit[1] used for FAULTB0 pad, bit[0] used for FAULTB1 pad as follows:  
0 = FAULTB pad is being driven low by this chip.  
1 = FAULTB pad is not being driven low by this chip.  
Always returns 00b.  
b[14] Mfr_pads_alertb_drive  
b[13:12] Mfr_pads_faultb_drive[1:0]  
b[11:10] Reserved[1:0]  
b[9:8] Mfr_pads_asel1[1:0]  
11: Logic high detected on ASEL1 input pad.  
10: ASEL1 input pad is floating.  
01: Reserved.  
00: Logic low detected on ASEL1 input pad.  
11: Logic high detected on ASEL0 input pad.  
10: ASEL0 input pad is floating.  
b[7:6] Mfr_pads_asel0[1:0]  
01: Reserved.  
00: Logic low detected on ASEL0 input pad.  
1: Logic high detected on CONTROL1 pad.  
0: Logic low detected on CONTROL1 pad.  
1: Logic high detected on CONTROL0 pad.  
0: Logic low detected on CONTROL0 pad.  
bit[1] used for FAULTB0 pad, bit[0] used for FAULTB1 pad as follows:  
1: Logic high detected on FAULTB pad.  
0: Logic low detected on FAULTB pad.  
1: Logic high detected on CONTROL2 pad.  
0: Logic low detected on CONTROL2 pad.  
1: Logic high detected on CONTROL3 pad.  
0: Logic low detected on CONTROL3 pad.  
b[5]  
b[4]  
Mfr_pads_control1  
Mfr_pads_control0  
b[3:2] Mfr_pads_faultb[1:0]  
b[1]  
b[0]  
Mfr_pads_control2  
Mfr_pads_control3  
MFR_COMMON  
This command returns status information for the alert, device busy, share-clock pin (SHARE_CLK) and the write-protect  
pin (WP).  
2974fa  
65  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
This is the only command that may still be read when the LTC2974 is busy processing an EEPROM or other command.  
It may be polled by the host to determine when the LTC2974 is available to process a PMBus command. A busy device  
will always acknowledge its address but will NACK the command byte and set Status_byte_busy and Status_word_busy  
when it receives a command that it cannot immediately process. ALERTB will not be asserted low in this case.  
MFR_COMMON Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_common_alertb  
Returns alert status.  
1: ALERTB is de-asserted high.  
0: ALERTB is asserted low.  
b[6] Mfr_common_busyb  
Returns device busy status.  
1: The device is available to process PMBus commands.  
0: The device is busy and will NACK PMBus commands.  
Read only, always returns 1s.  
b[5:2] Reserved  
b[1] Mfr_common_share_clk  
Returns the status of the share-clock pin.  
1: Share-clock pin is being held low.  
0: Share-clock pin is active.  
b[0] Mfr_common_write_protect Returns the status of the write-protect pin.  
1: Write-protect pin is high.  
0: Write-protect pin is low.  
TELEMETRY  
CMD  
DEFAULT REF  
COMMAND NAME  
READ_VIN  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
0x88 Input supply voltage.  
R Word  
R Word  
R Word  
R Word  
N
Y
Y
Y
L11  
L16  
L11  
L11  
V
V
NA  
NA  
NA  
NA  
67  
67  
67  
67  
READ_VOUT  
0x8B DC/DC converter output voltage.  
0x8C DC/DC converter output current.  
READ_IOUT  
A
READ_TEMPERATURE_1  
0x8D External diode junction temperature. This  
is the value used for all temperature related  
processing, including IOUT_CAL_GAIN.  
°C  
READ_TEMPERATURE_2  
READ_POUT  
0x8E Internal junction temperature.  
0x96 DC/DC converter output power.  
R Word  
R Word  
R Word  
N
Y
Y
L11  
L11  
CF  
°C  
W
NA  
NA  
NA  
67  
67  
67  
MFR_READ_IOUT  
0xBB Alternate data format for READ_IOUT. One  
LSB = 2.5mA.  
2.5mA  
MFR_IOUT_SENSE_VOLTAGE 0xFA Absolute value of VISENSEP – VISENSEM. R Word  
One LSB = 3.05µV.  
Y
CF  
3.05µV  
NA  
68  
MFR_VIN_PEAK  
MFR_VOUT_PEAK  
MFR_IOUT_PEAK  
0xDE Maximum measured value of READ_VIN.  
R Word  
N
Y
Y
Y
L11  
L16  
L11  
L11  
V
V
NA  
NA  
NA  
NA  
69  
69  
69  
69  
0xDD Maximum measured value of READ_VOUT. R Word  
0xD7 Maximum measured value of READ_IOUT.  
R Word  
R Word  
A
MFR_TEMPERATURE_1_PEAK 0xDF Maximum measured value of READ_  
TEMPERATURE_1.  
°C  
MFR_VIN_MIN  
MFR_VOUT_MIN  
MFR_IOUT_MIN  
0xFC Minimum measured value of READ_VIN.  
0xFB Minimum measured value of READ_VOUT.  
0xD8 Minimum measured value of READ_IOUT.  
R Word  
R Word  
R Word  
R Word  
N
Y
Y
Y
L11  
L16  
L11  
L11  
V
V
NA  
NA  
NA  
NA  
69  
69  
69  
69  
A
MFR_TEMPERATURE_1_MIN 0xFD Minimum measured value of READ_  
TEMPERATURE_1.  
°C  
2974fa  
66  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
READ_VIN  
This command returns the most recent ADC measured value of the input voltage at the V  
pin.  
IN_SNS  
READ_VOUT  
This command returns the most recent ADC measured value of the channel’s output voltage.  
READ_IOUT  
This command returns the most recent ADC measured value of the channel’s output current.  
READ_TEMPERATURE_1  
This command returns the most recent measured value of the external diode temperature in °C. This value is used for  
all temperature related operations and calculations. This command is paged. READ_TEMPERATURE_2 is substituted  
for READ_TEMPERATURE_1 if the associated T  
network fails to detect a valid temperature.  
SENSE  
The T  
network will fail to detect a valid temperature under the following conditions:  
SENSE  
The T  
pin is shorted to a constant voltage.  
SENSE  
The sense diode has an ideality factor greater than N_TS max.  
Floating the T pin is not recommended and may return unpredictable temperature values.  
SENSE  
READ_TEMPERATURE_2  
This command returns the most recent ADC measured value of junction temperature in °C as determined by the  
LTC2974’s internal temperature sensor. This register is for information purposes and does not generate any faults,  
warnings, or affect any other registers or internal calculations unless it is used as READ_TEMPERATURE_1. This  
command is not paged.  
READ_TEMPERATURE_2 is substituted for READ_TEMPERATURE_1 if a channel’s T  
valid temperature.  
network fails to detect a  
SENSE  
READ_POUT  
This command returns the most recent ADC measured value of the channel’s output power in watts.  
MFR_READ_IOUT  
This command returns the most recent ADC measured value of the channel’s output current, using a custom format  
that provides better numeric representation granularity than the READ_IOUT command for currents whose absolute  
value is between 2A and 82A.  
2974fa  
67  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_READ_IOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_read_iout[15:0]  
Channel output current expressed in custom format for improved resolution at high currents.  
Value = Y • 2.5 where Y = b[15:0] is a signed two’s-complement number.  
Example:  
MFR_READ_IOUT = 5mA  
For b[15:0] = 0x0002  
Value = 2 • 2.5 = 5mA  
The granularity of the returned value is always 2.5mA, and the return value is limited to 81.92A. Use the READ_IOUT  
command for larger currents. Note that the accuracy of the returned value is always limited by the ADC Characteristics  
listed in the Electrical Characteristics section.  
Comparison of Granularity Due to Numeric Format  
READ_IOUT  
MFR_READ_IOUT  
GRANULARITY  
CURRENT RANGE  
31.25mA ≤ I < 62.5mA  
GRANULARITY  
61µA  
122µA  
244µA  
488µA  
977µA  
1.95mA  
3.9mA  
7.8mA  
15.6mA  
31.3mA  
62.5mA  
125mA  
125mA  
250mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
2.5mA  
Saturated  
Saturated  
OUT  
62.5mA ≤ I  
< 125mA  
< 250mA  
< 500mA  
OUT  
OUT  
OUT  
125mA ≤ I  
250mA ≤ I  
0.5A ≤ I  
< 1A  
OUT  
1A ≤ I  
2A ≤ I  
4A ≤ I  
8A ≤ I  
< 2A  
< 4A  
< 8A  
OUT  
OUT  
OUT  
OUT  
< 16A  
16A ≤ I  
32A ≤ I  
64A ≤ I  
82A ≤ I  
< 32A  
< 64A  
< 82A  
< 128A  
OUT  
OUT  
OUT  
OUT  
128A ≤ I  
< 256A  
OUT  
MFR_IOUT_SENSE_VOLTAGE  
This command returns the absolute value of the voltage measured between I  
READ_IOUT ADC conversion without any temperature correction.  
and I  
during the last  
SENSEPn  
SENSEMn  
MFR_IOUT_SENSE_VOLTAGE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_iout_sense_voltage Absolute value of raw voltage conversion measured between I  
and I  
.
SENSEPn  
SENSEMn  
–13  
Value = Y • 0.025 • 2 where Y = b[15:0] is an unsigned integer.  
Example:  
MFR_IOUT_SENSE_VOLTAGE = 1.544mV  
For b[15:0] = 0x1FA=506  
–13  
Value = 506 • 0.025 • 2 = 1.544mV  
2974fa  
68  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_VIN_PEAK  
This command returns the maximum ADC measured value of the input voltage. This register is reset to 0x7C00  
25  
(–2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VOUT_PEAK  
This command returns the maximum ADC measured value of the channel’s output voltage. This register is reset to  
0xF800 (0.0) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_IOUT_PEAK  
This commands returns the maximum ADC measured value of the channel’s output current. This register is reset to  
25  
0x7C00 (–2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_TEMPERATURE_1_PEAK  
This command returns the maximum measured value of the external diode temperature in °C. This register is reset  
25  
to 0x7C00 (–2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VIN_MIN  
This command returns the minimum ADC measured value of the input voltage. This register is reset to 0x7BFF (ap-  
25  
proximately 2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VOUT_MIN  
This command returns the minimum ADC measured value of the channel’s output voltage. This register is reset to  
0xFFFF (7.9999) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
Updates are disabled when Margin Low (Ignore Faults and Warnings) is enabled.  
MFR_IOUT_MIN  
This command returns the minimum ADC measured values of the channel’s output current. This register is reset to  
25  
0x7BFF (approximately 2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command  
is executed.  
MFR_TEMPERATURE_1_MIN  
This command returns the minimum measured value of the external diode temperature in °C. This register is reset to  
25  
0x7BFF (approximately 2 ) when the LTC2974 emerges from power-on reset or when a CLEAR_FAULTS command  
is executed.  
2974fa  
69  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
FAULT LOGGING  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
MFR_FAULT_LOG_STORE  
0xEA Command a transfer of the fault log from  
RAM to EEPROM.  
Send Byte  
N
N
N
NA  
NA  
NA  
70  
70  
71  
MFR_FAULT_LOG_RESTORE 0xEB Command a transfer of the fault log  
previously stored in EEPROM back to RAM.  
Send Byte  
Send Byte  
MFR_FAULT_LOG_CLEAR  
0xEC Initialize the EEPROM block reserved for  
fault logging and clear any previous fault  
logging locks.  
MFR_FAULT_LOG_STATUS  
MFR_FAULT_LOG  
0xED Fault logging status.  
R Byte  
N
N
Reg  
Reg  
Y
Y
NA  
NA  
71  
71  
0xEE Fault log data bytes. This sequentially  
retrieved data is used to assemble a  
complete fault log.  
R Block  
Fault Log Operation  
A conceptual diagram of the fault log is shown in Figure 22. The fault log provides black box capability for the LTC2974.  
During normal operation the contents of the status registers, the output voltage/current/temperature readings, the  
input voltage readings, as well as peak and min values of these quantities, are stored in a continuously updated buffer  
in RAM. You can think of the operation as being similar to a strip chart recorder. When a fault occurs, the contents are  
written into EEPROM for non volatile storage. The EEPROM fault log is then locked. The part can be powered down  
with the fault log available for reading at a later time.  
RAM 255 BYTES  
EEPROM 255 BYTES  
8
ADC READINGS  
CONTINUOUSLY  
FILL BUFFER  
TIME OF FAULT  
TRANSFER TO  
EEPROM AND  
LOCK  
.
.
.
.
.
.
AFTER FAULT  
READ FROM  
EEPROM AND  
LOCK BUFFER  
2974 F22  
Figure 22: Fault Logging  
MFR_FAULT_LOG_STORE  
This command allows the user to transfer data from the RAM buffer to EEPROM.  
MFR_FAULT_LOG_RESTORE  
This command allows the user to transfer a copy of the fault-log data from the EEPROM to the RAM buffer. After a  
restore the RAM buffer is locked until a successful MFR_FAULT_LOG read.  
2974fa  
70  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_FAULT_LOG_CLEAR  
This command initializes the EEPROM block reserved for fault logging. Any previous fault log stored in EEPROM will  
be erased by this operation and logging of the fault log RAM to EEPROM will be enabled. Make sure that Mfr_fault_  
log_status_ram = 0 before issuing the MFR_FAULT_LOG_CLEAR command.  
MFR_FAULT_LOG_STATUS  
This register is used to manage fault log events. The Mfr_fault_log_status_eeprom bit is set after a MFR_FAULT_LOG_  
STORE command or a faulted-off event triggers a transfer of the fault log from RAM to EEPROM. This bit is cleared  
by a MFR_FAULT_LOG_CLEAR command.  
Mfr_fault_log_status_ram is set after a MFR_FAULT_ LOG_RESTORE to indicate that the data in the RAM has been  
restored from EEPROM and not yet read using a MFR_FAULT_LOG command. This bit is cleared only by a successful  
execution of an MFR_FAULT_LOG command.  
MFR_FAULT_LOG_STATUS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:2] Reserved  
Read only, always returns 0s.  
b[1] Mfr_fault_log_status_ram  
Fault log RAM status:  
0: The fault log RAM allows updates.  
1: The fault log RAM is locked until the next MFR_FAULT_LOG read.  
b[0] Mfr_fault_log_status_eeprom Fault log EEPROM status:  
0: The transfer of the fault log RAM to the EEPROM is enabled.  
1: The transfer of the fault log RAM to the EEPROM is inhibited.  
MFR_FAULT_LOG  
Read only. This 2040-bit (255 byte) data block contains a copy of the RAM buffer fault log. The RAM buffer is continu-  
ously updated after each ADC conversion as long as Mfr_fault_log_status_ram is clear.  
With Mfr_config_all_fault_log_enable = 1 and Mfr_fault_log_status_eeprom = 0, the RAM buffer is transferred to EE-  
PROM whenever an LTC2974 fault causes a channel to latch off or a MFR_FAULT_LOG_STORE command is received.  
This transfer is delayed until the ADC has updated its READ values for all channels when Mfr_config_all_fast_fault_log  
is clear, otherwise it happens within 24ms. This optional delay can be used to ensure that the slower ADC monitored  
values are all updated for the case where a fast supervisor detected fault initiates the transfer to EEPROM.  
Mfr_fault_log_status_eeprom is set high after the RAM buffer is transferred to EEPROM and not cleared until a  
MFR_FAULT_LOG_CLEAR is received, even if the LTC2974 is reset or powered down. Fault log EEPROM transfers are  
not initiated as a result of Status_mfr_discharge events.  
During a MFR_FAULT_LOG read, data is returned one byte at a time as defined in Table 2. The fault log data is parti-  
tioned into two sections. The first section is referred to as the preamble and contains the Position_last pointer, time  
information and peak and min values. The second section contains a chronological record of telemetry and requires  
Position_last for proper interpretation. The fault log stores approximately 300ms of telemetry. To prevent timeouts  
during block reads, it is recommended that Mfr_config_all_longer_pmbus_timeout be set to 1.  
2974fa  
71  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
Table 2. Data Block Contents  
Table 2. Data Block Contents  
DATA  
DATA  
BYTE* DESCRIPTION  
BYTE* DESCRIPTION  
Position_last[7:0]  
0
Position of fault log pointer when  
Mfr_temperature_peak2[7:0]  
Mfr_temperature_peak2[15:8]  
Mfr_temperature_min2[7:0]  
Mfr_temperature_min2[15:8]  
Mfr_iout_peak2[7:0]  
Mfr_iout_peak2[15:8]  
Mfr_iout_min2[7:0]  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
fault occurred.  
SharedTime[7:0]  
1
41-bit share-clock counter value  
when fault occurred. Counter  
LSB is in 200μs increments.  
SharedTime[15:8]  
2
SharedTime[23:16]  
3
SharedTime[31:24]  
4
Mfr_iout_min2[15:8]  
Mfr_vout_peak3[7:0]  
Mfr_vout_peak3[15:8]  
Mfr_vout_min3[7:0]  
SharedTime[39:32]  
5
SharedTime[40]  
6
Mfr_vout_peak0[7:0]  
Mfr_vout_peak0[15:8]  
Mfr_vout_min0[7:0]  
Mfr_vout_min0[15:8]  
Mfr_temperature_peak0[7:0]  
Mfr_temperature_peak0[15:8]  
Mfr_temperature_min0[7:0]  
Mfr_temperature_min0[15:8]  
Mfr_iout_peak0[7:0]  
Mfr_iout_peak0[15:8]  
Mfr_iout_min0[7:0]  
7
8
Mfr_vout_min3[15:8]  
Mfr_temperature_peak3[7:0]  
Mfr_temperature_peak3[15:8]  
Mfr_temperature_min3[7:0]  
Mfr_temperature_min3[15:8]  
Mfr_iout_peak3[7:0]  
Mfr_iout_peak3[15:8]  
Mfr_iout_min3[7:0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
Mfr_iout_min3[15:8]  
Status_vout0[7:0]  
Mfr_iout_min0[15:8]  
Mfr_vin_peak[7:0]  
Status_iout0[7:0]  
Status_mfr_specific0[7:0]  
Status_vout1[7:0]  
Mfr_vin_peak[15:8]  
Mfr_vin_min[7:0]  
Status_iout1[7:0]  
Mfr_vin_min[15:8]  
Status_mfr_specific1[7:0]  
Status_vout2[7:0]  
Mfr_vout_peak1[7:0]  
Mfr_vout_peak1[15:8]  
Mfr_vout_min1[7:0]  
Mfr_vout_min1[15:8]  
Mfr_temperature_peak1[7:0]  
Mfr_temperature_peak1[15:8]  
Mfr_temperature_min1[7:0]  
Mfr_temperature_min1[15:8]  
Mfr_iout_peak1[7:0]  
Mfr_iout_peak1[15:8]  
Mfr_iout_min1[7:0]  
Status_iout2[7:0]  
Status_mfr_specific2[7:0]  
Status_vout3[7:0]  
Status_iout3[7:0]  
Status_mfr_specific3[7:0]  
71 bytes for preamble  
Fault_log [Position_last]  
71  
72  
Fault_log [Position_last-1]  
.
.
Mfr_iout_min1[15:8]  
Mfr_vout_peak2[7:0]  
Mfr_vout_peak2[15:8]  
Mfr_vout_min2[7:0]  
Mfr_vout_min2[15:8]  
.
Fault_log [Position_last-170]  
Reserved  
237  
238-  
254  
2974fa  
72  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
Table 2. Data Block Contents  
POSITION  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
DATA  
DATA  
BYTE* DESCRIPTION  
Number of loops: (238 – 71)/54  
= 3.1  
Read_vout1[15:8]  
Status_vout1[7:0]  
Status_mfr_specific1[7:0]  
Read_temperature_1_1[7:0]  
Read_temperature_1_1[15:8]  
Status_temperature1[7:0]  
Status_iout1[7:0]  
*Note that PMBus data byte numbers start at 1 rather than 0.  
See Figure 13 Block Read.  
The data returned between bytes 71 and 237 of the  
previous table is interpreted using Position_last and the  
following table. The key to identifying the data located in  
byte 71 is to locate the DATA corresponding to POSITION  
= Position_last in the next table. Subsequent bytes are  
identified by decrementing the value of POSITION. For  
example: If Position_last = 8 then the first data returned  
in a block read is Status_temperature of page 0 followed  
by Read_temperature_1[15:8] of page 0 followed by  
Read_temperature_1[7:0]ofpage0andsoon.SeeTable3.  
Read_iout1[7:0]  
Read_iout1[15:8]  
Read_pout1[7:0]  
Read_pout1[15:8]  
Read_vout2[7:0]  
Read_vout2[15:8]  
Status_vout2[7:0]  
Status_mfr_specific2[7:0]  
Read_temperature_1_2[7:0]  
Read_temperature_1_2[15:8]  
Status_temperature2[7:0]  
Status_iout2[7:0]  
Table 3. Interpreting Cyclical Loop Data  
POSITION  
DATA  
0
1
Read_temperature_2[7:0]  
Read_temperature_2[15:8]  
Read_vout0[7:0]  
Read_iout2[7:0]  
2
Read_iout2[15:8]  
3
Read_vout0[15:8]  
Status_vout0[7:0]  
Status_mfr_specific0[7:0]  
Read_temperature_1_0[7:0]  
Read_temperature_1_0[15:8]  
Status_temperature0[7:0]  
Status_iout0[7:0]  
Read_iout0[7:0]  
Read_pout2[7:0]  
4
Read_pout2[15:8]  
5
Read_vout3[7:0]  
6
Read_vout3[15:8]  
7
Status_vout3[7:0]  
8
Status_mfr_specific3[7:0]  
Read_temperature_1_3[7:0]  
Read_temperature_1_3[15:8]  
Status_temperature3[7:0]  
Status_iout3[7:0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Read_iout0[15:8]  
Read_pout0[7:0]  
Read_pout0[15:8]  
Read_vin[7:0]  
Read_iout3[7:0]  
Read_iout3[15:8]  
Read_vin[15:8]  
Read_pout3[7:0]  
Status_input[7:0]  
0x0  
Read_pout3[15:8]  
Total Bytes = 54  
Read_vout1[7:0]  
2974fa  
73  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
MFR_FAULT_LOG Read Example  
PREAMBLE INFORMATION  
BYTE BYTE  
The following table fully decodes a sample fault log read  
with Position_last = 13 to help clarify the cyclical nature  
of the operation.  
NUMBER NUMBER  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
28  
1C  
Mfr_temperature_  
peak1[15:8]  
Data Block Contents  
29  
30  
1D  
1E  
Mfr_temperature_  
min1[7:0]  
PREAMBLE INFORMATION  
BYTE  
BYTE  
Mfr_temperature_  
min1[15:8]  
NUMBER NUMBER  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
31  
32  
33  
34  
35  
36  
37  
38  
39  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
Mfr_iout_peak1[7:0]  
Mfr_iout_peak1[15:8]  
Mfr_iout_min1[7:0]  
Mfr_iout_min1[15:8]  
Mfr_vout_peak2[7:0]  
Mfr_vout_peak2[15:8]  
Mfr_vout_min2[7:0]  
Mfr_vout_min2[15:8]  
0
00  
Position_last[7:0] = 13 Position of fault-  
log pointer when  
fault occurred.  
1
2
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
SharedTime[7:0]  
41-bit share-  
clock counter  
value when fault  
occurred. Counter  
LSB is in 200µs  
increments.  
SharedTime[15:8]  
SharedTime[23:16]  
SharedTime[31:24]  
SharedTime[39:32]  
SharedTime[40]  
3
4
5
Mfr_temperature_  
peak2[7:0]  
6
7
Mfr_vout_peak0[7:0]  
Mfr_vout_peak0[15:8]  
Mfr_vout_min0[7:0]  
Mfr_vout_min0[15:8]  
40  
41  
42  
28  
29  
2A  
Mfr_temperature_  
peak2[15:8]  
8
9
Mfr_temperature_  
min2[7:0]  
10  
11  
Mfr_temperature_  
peak0[7:0]  
Mfr_temperature_  
min2[15:8]  
12  
13  
14  
0C  
0D  
0E  
Mfr_temperature_  
peak0[15:8]  
43  
44  
45  
46  
47  
48  
49  
50  
51  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
Mfr_iout_peak2[7:0]  
Mfr_iout_peak2[15:8]  
Mfr_iout_min2[7:0]  
Mfr_iout_min2[15:8]  
Mfr_vout_peak3[7:0]  
Mfr_vout_peak3[15:8]  
Mfr_vout_min3[7:0]  
Mfr_vout_min3[15:8]  
Mfr_temperature_  
min0[7:0]  
Mfr_temperature_  
min0[15:8]  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
Mfr_iout_peak0[7:0]  
Mfr_iout_peak0[15:8]  
Mfr_iout_min0[7:0]  
Mfr_iout_min0[15:8]  
Mfr_vin_peak_[7:0]  
Mfr_vin_peak_[15:8]  
Mfr_vin_min_[7:0]  
Mfr_vin_min_[15:8]  
Mfr_vout_peak1[7:0]  
Mfr_vout_peak1[15:8]  
Mfr_vout_min1[7:0]  
Mfr_vout_min1[15:8]  
Mfr_temperature_  
peak3[7:0]  
52  
53  
54  
34  
35  
36  
Mfr_temperature_  
peak3[15:8]  
Mfr_temperature_  
min3[7:0]  
Mfr_temperature_  
min3[15:8]  
55  
56  
57  
58  
59  
37  
38  
39  
3A  
3B  
Mfr_iout_peak3[7:0]  
Mfr_iout_peak3[15:8]  
Mfr_iout_min3[7:0]  
Mfr_iout_min3[15:8]  
Status_vout0[7:0]  
Mfr_temperature_  
peak1[7:0]  
2974fa  
74  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
PREAMBLE INFORMATION  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER  
BYTE  
BYTE  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
DECIMAL  
HEX DECIMAL  
MUX LOOP 1  
Read_pout3[15:8]  
Read_pout3[7:0]  
Read_iout3[15:8]  
Read_iout3[7:0]  
Status_iout3[7:0]  
60  
61  
3C  
Status_iout0[7:0]  
85  
86  
87  
88  
89  
90  
55  
56  
57  
58  
59  
5A  
53  
52  
51  
50  
49  
48  
3D  
Status_  
temperature0[7:0]  
62  
63  
64  
3E  
3F  
40  
Status_vout1[7:0]  
Status_iout1[7:0]  
Status_  
temperature1[7:0]  
Status_  
65  
66  
67  
41  
42  
43  
Status_vout2[7:0]  
Status_iout2[7:0]  
temperature3[7:0]  
91  
92  
93  
5B  
5C  
5D  
47  
46  
45  
Read_  
temperature_1_3[15:8]  
Status_  
temperature2[7:0]  
Read_  
temperature_1_3[7:0]  
68  
69  
70  
44  
45  
46  
Status_vout3[7:0]  
Status_iout3[7:0]  
Status_mfr_  
specific3[7:0]  
Status_  
temperature3[7:0]  
End of Preamble  
94  
95  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
44  
43  
42  
41  
40  
39  
38  
37  
36  
Status_vout3[7:0]  
Read_vout3[15:8]  
Read_vout3[7:0]  
Read_pout2[15:8]  
Read_pout2[7:0]  
Read_iout2[15:8]  
Read_iout2[7:0]  
Status_iout2[7:0]  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
96  
BYTE  
BYTE  
97  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
98  
DECIMAL  
HEX DECIMAL  
MUX LOOP 0  
Read_pout0[15:8]  
Read_pout0[7:0]  
Read_iout0[15:8]  
Read_iout0[7:0]  
Status_iout0[7:0]  
99  
71  
72  
73  
74  
75  
76  
47  
48  
49  
4A  
4B  
4C  
13  
12  
11  
10  
9
Position_last  
100  
101  
102  
Status_  
temperature2[7:0]  
103  
104  
105  
67  
78  
69  
35  
34  
33  
Read_  
temperature_1_2[15:8]  
8
Status_  
temperature0[7:0]  
Read_  
temperature_1_2[7:0]  
77  
78  
79  
4D  
4E  
4F  
7
6
5
Read_  
temperature_1_0[15:8]  
Status_mfr_  
specific2[7:0]  
Read_  
temperature_1_0[7:0]  
106  
107  
108  
109  
110  
111  
112  
113  
114  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
32  
31  
30  
29  
28  
27  
26  
25  
24  
Status_vout2[7:0]  
Read_vout2[15:8]  
Read_vout2[7:0]  
Read_pout1[15:8]  
Read_pout1[7:0]  
Read_iout1[15:8]  
Read_iout1[7:0]  
Status_iout1[7:0]  
Status_mfr_  
specific0[7:0]  
80  
81  
82  
83  
50  
51  
52  
53  
4
3
2
1
Status_vout0[7:0]  
Read_vout0[15:8]  
Read_vout0[7:0]  
Read_  
temperature_2[15:8]  
84  
54  
0
Read_  
temperature_2[7:0]  
Status_  
temperature2[7:0]  
115  
73  
23  
Read_  
temperature_1_1[15:8]  
2974fa  
75  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
CYCLICAL MUX LOOP DATA  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
DECIMAL  
HEX DECIMAL  
MUX LOOP 1  
DECIMAL  
HEX DECIMAL  
MUX LOOP 2  
116  
74  
75  
22  
21  
Read_  
144  
90  
91  
92  
93  
48  
47  
46  
45  
Status_  
temperature_1_1[7:0]  
temperature3[7:0]  
117  
Status_mfr_  
specific1[7:0]  
145  
146  
147  
Read_  
temperature_1_3[15:8]  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Status_vout1[7:0]  
Read_vout1[15:8]  
Read_vout1[7:0]  
0x0  
Read_  
temperature_1_3[7:0]  
Status_mfr_  
specific3[7:0]  
148  
149  
150  
151  
152  
153  
154  
155  
156  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
44  
43  
42  
41  
40  
39  
38  
37  
36  
Status_vout3[7:0]  
Read_vout3[15:8]  
Read_vout3[7:0]  
Read_pout2[15:8]  
Read_pout2[7:0]  
Read_iout2[15:8]  
Read_iout2[7:0]  
Status_iout2[7:0]  
Status_input[7:0]  
Read_vin[15:8]  
Read_vin[7:0]  
Read_pout0[15:8]  
Read_pout0[7:0]  
Read_iout0[15:8]  
Read_iout0[7:0]  
Status_iout0[7:0]  
Status_  
temperature2[7:0]  
8
Status_  
temperature0[7:0]  
157  
158  
159  
9D  
9E  
9F  
35  
34  
33  
Read_  
temperature_1_2[15:8]  
131  
132  
133  
83  
84  
85  
7
6
5
Read_  
temperature_1_0[15:8]  
Read_  
temperature_1_2[7:0]  
Read_  
temperature_1_0[7:0]  
Status_mfr_  
specific2[7:0]  
Status_mfr_  
specific0[7:0]  
160  
161  
162  
163  
164  
165  
166  
167  
168  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
32  
31  
30  
29  
28  
27  
26  
25  
24  
Status_vout2[7:0]  
Read_vout2[15:8]  
Read_vout2[7:0]  
Read_pout1[15:8]  
Read_pout1[7:0]  
Read_iout1[15:8]  
Read_iout1[7:0]  
Status_iout1[7:0]  
134  
135  
136  
137  
86  
87  
88  
89  
4
3
2
1
Status_vout0[7:0]  
Read_vout0[15:8]  
Read_vout0[7:0]  
Read_  
temperature_2[15:8]  
138  
8A  
0
Read_  
temperature_2[7:0]  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
NUMBER NUMBER NUMBER  
Status_  
temperature2[7:0]  
BYTE  
BYTE  
54 BYTES PER  
LOOP  
169  
170  
171  
A9  
AA  
AB  
23  
22  
21  
Read_  
temperature_1_1[15:8]  
DECIMAL  
HEX DECIMAL  
MUX LOOP 2  
Read_pout3[15:8]  
Read_pout3[7:0]  
Read_iout3[15:8]  
Read_iout3[7:0]  
Status_iout3[7:0]  
139  
8B  
8C  
8D  
8E  
8F  
53  
52  
51  
50  
49  
Read_  
temperature_1_1[7:0]  
140  
141  
Status_mfr_  
specific1[7:0]  
142  
172  
173  
AC  
AD  
20  
19  
Status_vout1[7:0]  
Read_vout1[15:8]  
143  
2974fa  
76  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
CYCLICAL MUX LOOP DATA  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
DECIMAL  
174  
HEX DECIMAL  
MUX LOOP 2  
Read_vout1[7:0]  
0x0  
DECIMAL  
HEX DECIMAL  
MUX LOOP 3  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
201  
C9  
45  
Status_mfr_  
specific3[7:0]  
175  
202  
203  
204  
205  
206  
207  
208  
209  
210  
CA  
CB  
CC  
CD  
CE  
CF  
44  
43  
42  
41  
40  
39  
38  
37  
36  
Status_vout3[7:0]  
Read_vout3[15:8]  
Read_vout3[7:0]  
Read_pout2[15:8]  
Read_pout2[7:0]  
Read_iout2[15:8]  
Read_iout2[7:0]  
Status_iout2[7:0]  
176  
Status_input[7:0]  
Read_vin[15:8]  
Read_vin[7:0]  
177  
178  
179  
Read_pout0[15:8]  
Read_pout0[7:0]  
Read_iout0[15:8]  
Read_iout0[7:0]  
Status_iout0[7:0]  
180  
181  
D0  
D1  
D2  
182  
183  
Status_  
temperature2[7:0]  
184  
8
Status_  
temperature0[7:0]  
211  
212  
213  
D3  
D4  
D5  
35  
34  
33  
Read_  
185  
186  
187  
B9  
BA  
BB  
7
6
5
Read_  
temperature_1_2[15:8]  
temperature_1_0[15:8]  
Read_  
temperature_1_2[7:0]  
Read_  
temperature_1_0[7:0]  
Status_mfr_  
specific2[7:0]  
Status_mfr_  
specific0[7:0]  
214  
215  
216  
217  
218  
219  
220  
221  
222  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
32  
31  
30  
29  
28  
27  
26  
25  
24  
Status_vout2[7:0]  
Read_vout2[15:8]  
Read_vout2[7:0]  
Read_pout1[15:8]  
Read_pout1[7:0]  
Read_iout1[15:8]  
Read_iout1[7:0]  
Status_iout1[7:0]  
188  
189  
190  
191  
BC  
BD  
BE  
BF  
4
3
2
1
Status_vout0[7:0]  
Read_vout0[15:8]  
Read_vout0[7:0]  
Read_  
temperature_2[15:8]  
192  
C0  
0
Read_  
temperature_2[7:0]  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
NUMBER NUMBER NUMBER  
Status_  
temperature2[7:0]  
BYTE  
BYTE  
54 BYTES PER  
LOOP  
223  
224  
225  
DF  
E0  
E1  
23  
22  
21  
Read_  
temperature_1_1[15:8]  
DECIMAL  
HEX DECIMAL  
MUX LOOP 3  
Read_pout3[15:8]  
Read_pout3[7:0]  
Read_iout3[15:8]  
Read_iout3[7:0]  
Status_iout3[7:0]  
193  
C1  
C2  
C3  
C4  
C5  
C6  
53  
52  
51  
50  
49  
48  
Read_  
temperature_1_1[7:0]  
194  
195  
Status_mfr_  
specific1[7:0]  
196  
197  
226  
227  
228  
229  
230  
231  
232  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
20  
19  
18  
17  
16  
15  
14  
Status_vout1[7:0]  
Read_vout1[15:8]  
Read_vout1[7:0]  
0x0  
198  
Status_  
temperature_3[7:0]  
199  
200  
C7  
C8  
47  
46  
Read_  
temperature_1_3[15:8]  
Status_input[7:0]  
Read_vin[15:8]  
Read_vin[7:0]  
Read_  
temperature_1_3[7:0]  
2974fa  
77  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
CYCLICAL MUX LOOP DATA  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
54 BYTES PER  
LOOP  
DECIMAL  
233  
HEX DECIMAL  
MUX LOOP 3  
Read_pout0[15:8]  
Read_pout0[7:0]  
Read_iout0[15:8]  
Read_iout0[7:0]  
Status_iout0[7:0]  
E9  
EA  
EB  
EC  
ED  
13  
12  
11  
10  
9
234  
235  
236  
237  
Last valid fault  
log byte  
238  
EE  
0x00  
Bytes EE - FE  
return 0x00  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
This is PMBUS  
byte 255. It must  
be read to clear  
Mfr_fault_log_  
status_ram.  
IDENTIFICATION/INFORMATION  
CMD  
DEFAULT REF  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
CAPABILITY  
0x19 Summary of PMBus optional communication  
protocols supported by this device.  
R Byte  
N
Reg  
0xB0  
0x11  
79  
79  
PMBUS_REVISION  
0x98 PMBus revision supported by this device.  
Current revision is 1.1.  
R Byte  
N
Reg  
MFR_SPECIAL_ID  
MFR_SPECIAL_LOT  
0xE7 Manufacturer code for identifying the LTC2974. R Word  
N
Y
Reg  
Reg  
Y
Y
0x0213  
79  
79  
0xE8 Customer dependent codes that identify the  
factory programmed user configuration stored  
in EEPROM. Contact factory for default value.  
R Byte  
2974fa  
78  
For more information www.linear.com/LTC2974  
LTC2974  
PMBUS COMMAND DESCRIPTION  
CAPABILITY  
The CAPABILITY command provides a way for a host system to determine some key capabilities of the LTC2974.  
CAPABILITY Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Capability_pec  
Hard coded to 1 indicating Packet Error Checking is supported. Reading the Mfr_config_all_pec_en bit will indicate  
whether PEC is currently required.  
b[6:5] Capability_scl_max Hard coded to 01b indicating the maximum supported bus speed is 400kHz.  
b[4] Capability_smb_alert Hard coded to 1 indicating this device does have an ALERTB pin and does support the SMBus Alert Response Protocol.  
b[3:0] Reserved  
Always returns 0.  
PMBus_REVISION  
PMBus_REVISION Data Contents  
BIT(S) SYMBOL  
OPERATION  
Reports the PMBus standard revision compliance. This is hard-coded to 0x11 for revision 1.1.  
b[7:0] PMBus_rev  
MFR_SPECIAL_ID  
This register contains the manufacturer ID for the LTC2974. Always returns 0x0213.  
MFR_SPECIAL_LOT  
These paged registers contain information that identifies the user configuration that was programmed at the factory.  
Contact the factory to request a custom factory programmed user configuration and special lot number.  
USER SCRATCHPAD  
CMD  
DEFAULT REF  
COMMAND NAME  
USER_DATA_00  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM VALUE PAGE  
0xB0 Manufacturer reserved for LTpowerPlay.  
0xB1 Manufacturer reserved for LTpowerPlay.  
0xB2 OEM Reserved.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
N
Y
N
Y
N
Y
Y
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Y
Y
Y
Y
Y
Y
N/A  
N/A  
N/A  
0x00  
0x00  
NA  
79  
79  
79  
79  
79  
79  
79  
USER_DATA_01  
USER_DATA_02  
USER_DATA_03  
0xB3 Scratchpad location.  
USER_DATA_04  
0xB4 Scratchpad location.  
MFR_LTC_RESERVED_1  
MFR_LTC_RESERVED_2  
0xB5 Manufacturer reserved.  
0xBC Manufacturer reserved.  
NA  
USER_DATA_00, USER_DATA_01, USER_DATA_02, USER_DATA_03, USER_DATA_04, MFR_LTC_RESERVED_1  
and MFR_LTC_RESERVED_2  
These registers are provided as user scratchpad and additional manufacturer reserved locations.  
USER_DATA_03 and USER_DATA_04 are available for user scratch pad use. These 10 bytes (1 unpaged word plus  
4 paged words) might be used for traceability or revision information such as serial number, board model number,  
assembly location, or assembly date.  
2974fa  
79  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
OVERVIEW  
V
pins. All functionality is available when using this  
DD33  
alternate power method. The higher voltages needed for  
the V pins and bias for the V pins are charge  
The LTC2974 is a power management IC that is capable  
of sequencing, margining, trimming, supervising output  
voltage for OV/UV conditions, supervising output current  
for OC/UC conditions, fault management, and voltage/  
current/temperature readback for four DC/DC converter  
channels.InputvoltageandLTC2974junctiontemperature  
readback are also available. Linear Technology Power  
System Managers can coordinate operation among mul-  
tiple devices using common SHARE_CLK, FAULTB, and  
CONTROL pins. The LTC2974 utilizes a PMBus compliant  
interface and command set.  
OUT_EN  
SENSE  
pumped from V  
.
DD33  
SETTING COMMAND REGISTER VALUES  
The command register settings described herein are in-  
tendedasareferenceandforthepurposeofunderstanding  
the registers in a software development environment. In  
actualpractice,theLTC2974canbecompletelyconfigured  
for stand-alone operation with the LTC USB to I C/SMBus/  
PMBus controller (DC1613) and software GUI using intui-  
tive menu driven objects.  
2
POWERING THE LTC2974  
SEQUENCE, SERVO, MARGIN AND RESTART  
OPERATIONS  
The LTC2974 can be powered two ways. The first method  
requires that a voltage between 4.5V and 15V be applied  
to the V  
pin. See Figure 23. An internal linear regula-  
PWR  
tor converts V  
internal circuitry of the LTC2974.  
Command Units On or Off  
down to 3.3V which drives all of the  
PWR  
Threecontrolparametersdeterminehowaparticularchan-  
nelisturnedonandoff:TheCONTROLpins,theOPERATION  
commandandthevalueoftheinputvoltagemeasuredatthe  
Alternatively, power from an external 3.3V supply may be  
applieddirectlytotheV  
pins11and12usingavoltage  
DD33  
V
pin(V ). Inallcases,VINmustexceedVIN_ONin  
IN_SNS  
IN  
between 3.13V and 3.47V. See Figure 24. Tie V  
to the  
PWR  
ordertoenablethedevicetorespondtotheCONTROLpins  
orOPERATIONcommands.WhenV dropsbelowVIN_OFF  
IN  
4.5V < V  
< 15V  
PWR  
animmediateOFForsequenceoffafterTOFF_DELAYofall  
channels will result (See Mfr_config_track_enn). Refer  
to the OPERATION section in the data sheet for a detailed  
descriptionoftheON_OFF_CONFIGcommand.  
V
V
IN_SNS  
PWR  
0.1µF  
0.1µF  
0.1µF  
V
V
V
V
DD33  
DD33  
DD25  
DD25  
LTC2974*  
GND  
Some examples of typical ON/OFF configurations are:  
1. A DC/DC converter may be configured to turn on any  
*SOME DETAILS  
OMITTED FOR CLARITY  
2978 F23  
time V exceeds VIN_ON.  
IN  
2. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command.  
Figure 23. Powering LTC2974 Directly from an Intermediate Bus  
3. A DC/DC converter may be configured to turn on only  
via the CONTROL pin.  
EXTERNAL 3.3V  
0.1µF  
V
PWR  
V
V
V
V
DD33  
DD33  
DD25  
DD25  
4. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command and the  
CONTROL pin is asserted.  
LTC2974*  
GND  
0.1µF  
*SOME DETAILS  
OMITTED FOR CLARITY  
2978 F24  
On Sequencing  
Figure 24. Powering LTC2974 from External 3.3V Supply  
The TON_DELAY command sets the amount of time that  
2974fa  
80  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
a channel will wait following the start of an ON sequence  
can be placed in a high impedance state thus allowing the  
DC/DC converter output voltage to go to its nominal value,  
DCn(NOM)  
before its V  
pin will enable a DC/DC converter. Once  
OUT_EN  
theDC/DCconverterhasbeenenabled,theTON_RISEvalue  
determines the time at which the device soft-connects  
the DAC and servos the DC/DC converter output to the  
VOUT_COMMAND value. The TON_MAX_FAULT_LIMIT  
value determines the time at which the device checks  
for an undervoltage condition. If a TON_MAX_FAULT oc-  
curs, the channel can be configured to disable the DC/DC  
converter and propagate the fault to other channels using  
the bidirectional FAULTB pins. Figure 25 shows a typical  
on-sequence using the CONTROL pin. Note that overvolt-  
agefaultsarecheckedagainsttheVOUT_OV_FAULT_LIMIT  
value at all times the device is powered up and not in a  
reset state nor margining while ignoring OVs.  
V
.RefertotheMFR_CONFIG_LTC2974command  
for details on how to configure the output voltage servo.  
Servo Modes  
The ADC, DAC and internal processor comprise a digital  
servo loop that can be configured to operate in several  
usefulmodes.Theservotargetreferstothedesiredoutput  
voltage.  
Continuous/non-continuous trim mode: MFR_  
CONFIG_LTC2974 b[7]. In continuous trim mode, the  
servo will update the DAC in a closed loop fashion each  
timeittakesaV reading.Theupdaterateisdetermined  
OUT  
bythetimeittakestostepthroughtheADCMUXwhichis  
no more than t  
. See Electrical Characteristics  
UPDATE_ADC  
On State Operation  
tableNote5. Innon-continuoustrimmode, theservowill  
drive the DAC until the ADC measures the output voltage  
desired and then stop updating the DAC.  
Once a channel has reached the ON state, the OPERA-  
TION command can be used to command the DC/DC  
converter’s output to margin high, margin low, or return to  
a nominal output voltage indicated by VOUT_COMMAND.  
The user also has the option of configuring a channel to  
continuouslytrimtheoutputoftheDC/DCconvertertothe  
Non-continuous servo on warn mode: MFR_CONFIG_  
LTC2974 b[7] = 0, b[6] = 1. When in non-continuous  
mode, the LTC2974 will re-trim (re-servo) the output if  
the output drifts beyond the OV or UV warn limits.  
VOUT_COMMAND voltage, or the channel’s V  
output  
DACn  
V
CONTROL  
V
OUT_EN  
VOUT_OV_FAULT_LIMIT  
V
OUT_COMMAND  
V
DC(NOM)  
VOUT_UV_FAULT_LIMIT  
V
OUT  
2974 F25  
TON_RISE  
TON_DELAY  
TON_MAX_FAULT_LIMIT  
Figure 25. Typical ON Sequence Using Control Pin  
2974fa  
81  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
DAC Modes  
V
Off Threshold Voltage  
OUT  
The DACs that drive the V  
pins can operate in several  
The MFR_VOUT_DISCHARGE_THRESHOLD command  
register allows the user to specify the OFF threshold that  
the output voltage must decay below before the channel  
can enter/re-enter the ON state. The OFF threshold voltage  
is specified by multiplying MFR_VOUT_DISCHARGE_  
THRESHOLD and VOUT_COMMAND. In the event that an  
output voltage has not decayed below its OFF threshold  
before attempting to enter the ON state, the channel will  
continue to be held off, the appropriate bit is set in the  
STATUS_MFR_SPECIFICregister, andtheALERTBpinwill  
be asserted low. When the output voltage has decayed  
belowitsOFFthreshold,thechannelcanentertheONstate.  
DACn  
useful modes. See MFR_CONFIG_LTC2974.  
• Soft-connect. Using the LTC patented soft-connect  
feature, the DAC output is driven to within 1 LSB of  
the voltage at the DC/DC’s feedback node before con-  
necting, to avoid introducing transients on the output.  
This mode is used when servoing the output voltage.  
During startup, the LTC2974 waits until TON_RISE has  
expired before connecting the DAC. This is the most  
common operating mode.  
• Disconnected. DAC output is high Z.  
• DAC manual with soft-connect. Non servo mode. The  
DAC soft-connects to the feedback node. Soft-connect  
drivestheDACcodetomatchthevoltageatthefeedback  
node. After connection, the DAC is moved by writing  
DAC codes to the MFR_DAC register.  
Automatic Restart via MFR_RESTART_DELAY  
Command and CONTROL pin  
An automatic restart sequence can be initiated by driving  
the CONTROL pin to the off state for >10μs and then re-  
leasing it. The automatic restart disables all V  
pins  
OUT_EN  
• DAC manual with hard connect. Non servo mode. The  
DAC hard connects to the feedback node using the cur-  
rent value in MFR_DAC. After connection, the DAC is  
moved by writing DAC codes to the MFR_DAC register.  
that are mapped to a particular CONTROL pin for a time  
period = MFR_RESTART_DELAY and then starts all DC/  
DCConvertersaccordingtotheirrespectiveTON_DELAYs.  
(see Figure 26). V  
pins are mapped to one of the  
OUT_EN  
CONTROLpinsbytheMFR_CONFIG_LTC2974command.  
This feature allows a host that is about to reset to restart  
the power in a controlled manner after it has recovered.  
Margining  
The LTC2974 margins and trims the output of a DC/DC  
converter by forcing a voltage across an external resistor  
connectedbetweentheDACoutputandthefeedbacknode  
or the trim pin. Preset limits for margining are stored in  
the VOUT_MARGIN_HIGH/LOW registers. Margining is  
actuated by writing the appropriate bits to the OPERA-  
TION register.  
CONTROL  
PIN BOUNCE  
V
CONTROL  
V
OUT_EN0  
2974 F26  
TOFF_DELAY0  
MFR_RESTART_DELAY  
TON_DELAY0  
Margining requires the DAC to be connected. Margin  
requests that occur when the DAC is disconnected will  
be ignored.  
Figure 26. Off Sequence with Automatic Restart  
FAULT MANAGEMENT  
Off Sequencing  
Output Overvoltage, Undervoltage, Overcurrent, and  
Undercurrent Faults  
An off sequence is initiated using the CONTROL pin or the  
OPERATIONcommand.TheTOFF_DELAYvaluedetermines  
the amount of time that elapses from the beginning of the  
off sequence until each channel’s V  
low, thus disabling its DC/DC converter.  
Thehigh-speedvoltagesupervisorOVandUVfaultthresh-  
olds are configured using the VOUT_OV_FAULT_LIMIT  
and VOUT_UV_FAULT_LIMIT commands, respectively.  
TheVOUT_OV_FAULT_RESPONSEandVOUT_UV_FAULT_  
pin is pulled  
OUT_EN  
RESPONSE registers determine the responses to  
2974fa  
82  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
OV/UV faults. In addition, the high-speed current supervi-  
sor OC and UC fault thresholds are configured using the  
IOUT_OC_FAULT_LIMITandIOUT_UC_FAULT_LIMITcom-  
mands, respectively. The IOUT_OC_FAULT_RESPONSE  
and IOUT_UC_FAULT_RESPONSE commands determine  
the responses to OC/UC faults. Fault responses can range  
from disabling the DC/DC converter immediately, waiting  
to see if the fault condition persists for some interval be-  
fore disabling the DC/DC converter, or allowing the DC/DC  
converter to continue operating in spite of the fault. If a  
DC/DC converter is disabled, the LTC2974 can be config-  
ured to retry one to six times, retry continuously without  
limitation, or latch-off. The retry interval is specified using  
the MFR_RETRY_DELAY command. Latched faults are  
resetbytogglingtheCONTROLpin, usingtheOPERATION  
command, or removing and reapplying the bias voltage to  
VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT, and  
IOUT_OC_WARN_LIMIT registers, respectively. Note that  
thereisnoI  
UCwarningthreshold. Ifawarningoccurs,  
OUT  
the corresponding bits are set in the status registers and  
the ALERTB output is asserted low. Note that a warning  
will never cause a V  
converter.  
output pin to disable a DC/DC  
OUT_EN  
Configuring the AUXFAULTB Output  
The AUXFAULTB output may be used to indicate an output  
OV, OC, or UC fault. Use the MFR_CONFIG2_LTC2974  
and MFR_CONFIG3_LTC2974 registers to configure the  
AUXFAULTB pin to assert low in response to VOUT_OV,  
IOUT_OC or IOUT_UC fault conditions. The AUXFAULTB  
output will stop pulling low when the LTC2974 is com-  
manded to re-enter the ON state following a faulted-off  
condition.  
the V  
pin. All fault and warning conditions result in  
IN_SNS  
the ALERTB pinbeing asserted lowandthecorresponding  
bits being set in the status registers. The CLEAR_FAULTS  
command resets the contents of the status registers and  
de-asserts the ALERTB output.  
A charge-pumped 5µA pull-up to 12V is also available on  
the AUXFAULTB output. Refer to the MFR_CONFIG_ALL_  
LTC2974 register description in the PMBUS COMMAND  
DESCRIPTION section for more information.  
Output Overvoltage, Undervoltage, and Overcurrent  
Warnings  
Figure 27 shows an application circuit where the AUX-  
FAULTB output is used to trigger a SCR crowbar on the  
intermediate bus in order to protect the DC/DC converter’s  
load from a catastrophic fault such as a stuck top-gate.  
OV, UV, and OC warning thresholds are processed by  
the LTC2974’s ADC. These thresholds are set by the  
R
Q1  
SENSE  
0.007Ω  
Si4894BDY  
V
IN  
4.5V < V  
< 15V  
IBUS  
C
BYPASS  
V
V
OUT  
IN_SNS  
V
V
PWR  
DAC0  
DC/DC  
CONVERTER  
100Ω  
68Ω  
V
V
SENSE  
GATE  
LTC4210-1  
SENSEP0  
CC  
0.1µF  
LTC2974*  
24.3k  
V
FB  
LOAD  
10k  
0.01µF  
ON  
0.01µF  
MCR12DC  
MMBT2907  
220Ω  
TIMER GND  
V
10k  
SGND  
SENSEM0  
V
RUN/SS  
0.22µF  
OUT_EN0  
4.99k  
0.01µF  
GND  
2974 F27  
REFP  
AUXFAULTB  
REFM  
GND  
V
V
V
V
DD25 DD25  
DD33 DD33  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF FOUR CHANNELS SHOWN  
0.1µF  
0.1µF  
Figure 27. Application Circuit with Crowbar Protection on Intermediate Bus  
2974fa  
83  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
Multi-Channel Fault Management  
command. In multi-part applications that are sensitive to  
timingdifferences, itisrecommendedthattheVin_share_  
enable bit of the MFR_CONFIG_ALL_LTC2974 register be  
set high in order to allow SHARE_CLK to synchronize on/  
off sequencing in response to the VIN_ON and VIN_OFF  
thresholds.  
Multi-channel fault management is handled using the  
bidirectional FAULTB pins. Figure 28 illustrates the con-  
nections between channels and the FAULTB pins.  
• The MFR_FAULTBn_PROPAGATE register acts like a  
programmableswitchthatallowsfaulted_offconditions  
from a particular channel (PAGE) to propagate to either  
FAULTBoutput.TheMFR_FAULTBn_RESPONSEregister  
controls similar switches on the inputs to each channel  
that allow any channel to shut down in response to any  
combination of the FAULTB pins. Channels responding  
to a FAULTB pin pulling low will attempt a new start  
sequence when the FAULTB pin in question is released  
by the faulted channel.  
• Connecting all AUXFAULTB lines together will allow  
selected faults on any DC/DC converter’s output in the  
array to shut off a common input switch.  
• ALERTB is typically one line in an array of PMBus con-  
verters.TheLTC2974allowsarichcombinationoffaults  
and warnings to be propagated to the ALERTB pin.  
• WDI/RESETB can be used to put the LTC2974 in the  
power-on reset state. Pull WDI/RESETB low for at least  
t
to enter this state.  
• A FAULTB pin can also be asserted low by an external  
driver in order to initiate an immediate off-sequence  
after a 10μs deglitch delay.  
RESETB  
• The FAULTB lines can be connected together to create  
fault dependencies. Figure 29 shows a configuration  
where a fault on any FAULTB will pull all others low.  
This is useful for arrays where it is desired to abort  
a startup sequence in the event any channel does not  
come up (see Figure 30).  
INTERCONNECT BETWEEN MULTIPLE LTC2974’S  
Figure 29 shows how to interconnect the pins in a typical  
multi-LTC2974 array.  
• PWRGD reflects the status of the outputs that are  
mapped to it by the MFR_PWRGD_EN command. Fig-  
ure 29 shows all the PWRGD pins connected together,  
but any combination may be used.  
• All V  
lines should be tied together in a star  
IN_SNS  
type connection at the point where V is to be sensed.  
IN  
This will minimize timing errors for the case where the  
ON_OFF_CONFIGisconfiguredtostarttheLTC2974based  
on V and ignore the CONTROL line and the OPERATION  
IN  
Mfr_faultb0_response, page = 0  
Mfr_faultb0_propagate_chan0  
FAULTED_OFF  
CHANNEL 0  
EVENT PROCESSOR  
PAGE = 0  
FAULTB0  
FAULTB1  
Mfr_faultb1_response, page = 0  
Mfr_faultb1_propagate_chan0  
Mfr_faultb0_response, page = 1  
Mfr_faultb1_response, page = 1  
Mfr_faultb0_propagate_chan1  
Mfr_faultb1_propagate_chan1  
FAULTED_OFF  
FAULTED_OFF  
FAULTED_OFF  
CHANNEL 1  
EVENT PROCESSOR  
PAGE = 1  
Mfr_faultb0_response, page = 2  
Mfr_faultb1_response, page = 2  
Mfr_faultb0_propagate_chan2  
Mfr_faultb1_propagate_chan2  
CHANNEL 2  
EVENT PROCESSOR  
PAGE = 2  
Mfr_faultb0_response, page = 3  
Mfr_faultb1_response, page = 3  
Mfr_faultb0_propagate_chan3  
Mfr_faultb1_propagate_chan3  
CHANNEL 3  
EVENT PROCESSOR  
PAGE = 3  
2974 F28  
Figure 28. Channel Fault Management Block Diagram  
2974fa  
84  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
TO V OF  
IN  
TO INPUT  
SWITCH  
TO HOST CONTROLLER  
DC/DCs  
LTC2974 #1  
VIN_SNS  
LTC2974 #n  
VIN_SNS  
AUXFAULTB  
AUXFAULTB  
SDA  
SCL  
SDA  
SCL  
ALERTB  
CONTROL0  
ALERTB  
CONTROL0  
WDI/RESETB  
FAULTB0  
WDI/RESETB  
FAULTB0  
SHARE_CLK  
PWRGD  
SHARE_CLK  
PWRGD  
GND  
GND  
2974 F29  
TO OTHER LTC2974s–10k EQUIVALENT PULL-UP RECOMMENDED  
ON EACH LINE EXCEPT SHARE_CLK (USE 5.49k)  
Figure 29. Typical Connections between Multiple LTC2974s  
V
CONTROL  
V
OUT0  
TON_DELAY0  
TON_DELAY1  
V
V
OUT1  
OUT2  
TON_DELAY2  
V
OUTn  
TON_DELAYn  
BUSSED  
FAULTBn  
V
PINS  
2974 F30  
TON_MAX_FAULT1  
Figure 30. Aborted On-Sequence Due to Channel 1 Short  
APPLICATION CIRCUITS  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors  
The following four-step procedure should be used to  
calculate the resistor values required for the application  
circuit shown in Figure 31.  
Figure 31 shows a typical application circuit for trimming/  
margining a power supply with an external feedback  
1. AssumevaluesforfeedbackresistorR20andthenominal  
network. The V  
and V  
differential inputs  
SENSEP0  
SENSEM0  
DC/DC converter output voltage V  
for R10.  
, and solve  
DC(NOM)  
sense the load voltage directly, and a correction voltage  
is developed on the V pin by the closed-loop servo  
DAC0  
algorithm. The V  
output is connected to the DC/DC  
V
is the output voltage of the DC/DC converter  
DAC0  
DC(NOM)  
when the LTC2974’s V  
converter’s feedback node through resistor R30. For this  
configuration, set Mfr_config_dac_pol to 0.  
pin is in a high impedance  
DAC0  
2974fa  
85  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
V
V
4.5V < V  
< 15V  
IN  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
V
DAC0  
V
SENSEP0  
DC/DC  
CONVERTER  
R30  
V
V
V
V
DD33  
DD33  
DD25  
DD25  
R20  
R10  
LTC2974*  
V
LOAD  
FB  
0.1µF  
V
SGND  
SENSEM0  
V
RUN/SS  
OUT_EN0  
GND  
GND  
2974 F31  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF FOUR CHANNELS SHOWN  
Figure 31. Application Circuit for DC/DC Converters with External Feedback Resistors  
state. R10 is a function of R20, V  
, the voltage at  
4. Re-calculate the minimum, nominal, and maximum  
DC/DC converter output voltages and the resulting  
margining resolution.  
DC(NOM)  
the feedback node (V ) when the loop is in regulation,  
FB  
and the feedback node’s input current (I ).  
FB  
R20 VFB  
R10 =  
R20  
R10  
(1)  
VDC(NOM) = VFB 1+  
+IFB R20  
(4)  
VDC(NOM) IFB R20 – V  
FB  
R20  
R30  
R20  
R30  
VDC(MIN) = VDC(NOM)  
V  
– V  
(5)  
(6)  
2. Solve for the value of R30 that yields the maximum  
required DC/DC converter output voltage V  
(
)
FB  
DAC0(F /S)  
.
DC(MAX)  
VDC(MAX) = VDC(NOM)  
+
V  
FB  
When V  
is at 0V, the output of the DC/DC converter  
DAC0  
is at its maximum voltage.  
R20  
VDAC0(F /S)  
R20 VFB  
R30 ≤  
R30  
(2)  
VRES  
=
V/DAC LSB  
(7)  
VDC(MAX) – VDC(NOM)  
1024  
3. Solve for the minimum value of V  
that is needed  
DAC0  
Trimming and Margining DC/DC Converters with a  
TRIM Pin  
to yield the minimum required DC/DC converter output  
voltage V  
.
DC(MIN)  
Figure 32 illustrates a typical application circuit for trim-  
ming/margining the output voltage of a DC/DC converter  
TheDAChastwofull-scalesettings, 1.38Vand2.65V. In  
ordertoselecttheappropriatefull-scalesetting,calculate  
with a TRIM Pin. The LTC2974’s V  
pin connects to  
DAC0  
the minimum required V  
output voltage:  
DAC0(F/S)  
the TRIM pin through resistor R30. For this configuration,  
settheDACpolaritybitMfr_config_dac_polinMFR_CON-  
FIG_LTC2974 to 1.  
R30  
VDAC0(F/S) > VDC(NOM) – VDC(MIN)  
+ VFB (3)  
(
)
R20  
2974fa  
86  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
V
V
4.5V < V  
< 15V  
IN  
IBUS  
+
O
V
V
IN_SNS  
PWR  
R30  
0.1µF  
TRIM  
V
V
DAC0  
V
SENSEP0  
+
V
V
V
V
SENSE  
DD33  
DD33  
DD25  
DD25  
DC/DC  
LTC2974*  
LOAD  
CONVERTER  
0.1µF  
V
V
SENSEM0  
SENSE  
V
ON/OFFB  
OUT_EN0  
V
O
GND  
2974 F32  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF FOUR CHANNELS SHOWN  
Figure 32. Application Circuit for DC/DC Converters with Trim Pin  
DC/DC converters with a TRIM pin may be margined  
high or low by connecting an external resistor between  
Two-Step Resistor and DAC Full-Scale Voltage Selection  
Procedure for DC/DC Converters with a TRIM Pin  
the TRIM pin and either the V  
or V  
pin. The  
SENSEP  
SENSEM  
The following two-step procedure should be used to cal-  
culatetheresistorvalueforR30andtherequiredfull-scale  
DAC voltage (refer to Figure 32).  
relationships between these resistors and the ∆% change  
in the output voltage of the DC/DC converter are typically  
expressed as:  
1. Solve for R30:  
RTRIM 50  
RTRIM_DOWN  
=
– RTRIM  
(8)  
50 – DOWN  
%
%
DOWN  
R30 RTRIM  
(10)  
%
DOWN  
RTRIM_UP  
=
2. Calculate the maximum required output voltage for  
DAC0  
V 100 + ∆ %  
2 VREF UP %  
50  
 ∆UP %  
(
)
UP  
DC  
V
:
RTRIM  
– 1 (9)  
UP %  
VDAC 1+  
VREF  
(11)  
0
%
where R  
is the resistance looking into the TRIM pin,  
DOWN  
TRIM  
V
V
is the TRIM pin’s open-circuit output voltage and  
is the DC/DC converter’s nominal output voltage.  
REF  
DC  
∆ % and ∆  
UP  
Note:NotallDC/DCconvertersfollowthesetrimequations,  
especially newer bricks. Consult LTC Field Application  
Engineering.  
% denote the percentage change in the  
DOWN  
converter’s output voltage when margining up or down,  
respectively.  
2974fa  
87  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
Measuring Current with a Sense Resistor  
C
CM1  
=L/(DCR•R ).C  
shouldbeselectedtoprovide  
CM1  
CM2  
a second stage corner frequency at < 1/10 of the DC/DC  
converter’sswitchingfrequency.Inaddition,C needsto  
A circuit for measuring current with a sense resistor is  
shown in Figure 33. The balanced filter rejects both com-  
mon mode and differential mode noise from the output  
of the DC/DC converter. The filter is placed directly across  
the sense resistor in series with the DC/DC converter’s in-  
ductor. Note that the current sense inputs must be limited  
CM2  
be much smaller than C  
in order to prevent significant  
CM1  
loading of the filter’s first stage.  
Single Phase Design Example  
As a design example for a DCR current sense application,  
to less than 6V with respect to ground. Select R and  
CM  
assume L = 2.2μH, DCR = 10mΩ, and F = 500kHz.  
C
such that the filter’s corner frequency is < 1/10 the  
SW  
CM  
DC/DC converter’s switching frequency. This will result in  
a current sense waveform that offers a good compromise  
between the voltage ripple and the delay through the filter.  
Let R  
= 1kΩ and solve for C  
:
CM1  
CM1  
2.2µH  
10m1kΩ  
CCM1  
= 220nF  
Avalue1kΩforR issuggestedinordertominimizegain  
CM  
errors due to the current sense inputs’ internal resistance.  
Let R  
= 1kΩ. In order to get a second pole at  
CM2  
F /10 = 50kHz:  
SW  
Measuring Current with Inductor DCR  
1
Figure 34 shows the circuit for applications that require  
DCR current sense. A second order R-C filter is required  
in these applications in order to minimize the ripple volt-  
age seen at the current sense inputs. A value of 1kΩ  
CCM2  
= 3.18nF  
2π 50kHz 1kΩ  
Let C  
= 3.3nF. Note that since C  
the loading effects of the second stage filter on the  
matched first stage are not significant. Consequently, the  
delay time constant through the filter for the current sense  
waveform will be approximately 3μs.  
is much less than  
CM2  
CM2  
C
CM1  
is suggested for R  
and R  
in order to minimize  
CM1  
CM2  
gain errors due the current sense inputs’ internal resis-  
tance. C should be selected to provide cancellation  
CM1  
of the zero created by the DCR and inductance, i.e.  
Measuring Multiphase Currents  
R
CM  
CM  
I
I
SENSEP  
For current sense applications with more than one phase,  
R-C averaging may be employed. Figure 35 shows an  
example of this approach for a 3-phase system with DCR  
current sensing. The current sense waveforms are aver-  
aged together prior to being applied to the second stage of  
C
C
CM  
LTC2974  
R
CM  
SENSEM  
L
R
SNS  
2974 F33  
LOAD CURRENT  
Figure 33.Sense Resistor Current Sensing Circuits  
the filter consisting of R  
and C . Because the R  
CM2  
CM2 CM1  
resistors for the three phases are in parallel, the value of  
R
CM2  
R
CM1  
must be multiplied by the number of phases. Also  
I
I
SENSEP  
C
C
CM2  
note that since the DCRs are effectively in parallel, the  
value for IOUT_CAL_GAIN will be equal to the inductor’s  
DCR divided by the number of phases. Care should be  
taken in the layout of the multiphase inductors to keep the  
PCB trace resistance from the DC side of each inductor to  
the summing node balanced in order to provide the most  
accurate results.  
LTC2974  
C
C
CM1  
CM1  
R
CM2  
CM2  
SENSEM  
2974 F34  
R
R
CM1  
CM1  
L
SWX0  
DCR  
Figure 34. DCR Current Sensing Circuits  
2974fa  
88  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
SWX1  
R
CM1  
R
CM1  
R
CM1  
R
CM2  
C
CM2  
C
CM2  
I
I
SENSEP  
L
LTC2974  
SENSEM  
DCR  
2974 F35  
R
CM1/3  
R
CM2  
C
CM1  
C
CM2  
DCR  
L
DCR  
L
TO LOAD  
SWX2  
SWX3  
Figure 35. Multiphase DCR Current Sensing Circuits  
Multiphase Design Example  
Sensing Negative Voltages  
Figure 37 shows the LTC2974 sensing a negative power  
supply (V ). The R1/R2 resistor divider translates the  
Using the same values for inductance and DCR from  
the previous design example, the value for R  
3kΩ for a three phase DC/DC converter if C  
220nF. Similarly, the value for IOUT_CAL_GAIN will be  
DCR/3 = 3.33mΩ.  
will be  
CM1  
EE  
is left at  
negative supply voltage to the LTC2974’s V  
input  
CM1  
SENSEM1  
while the V  
input is tied to the REFP pin which has  
SENSEP1  
a typical output voltage of 1.23V. Read_vout is determined  
from the following equation:  
Anti-aliasing Filter Considerations  
R2  
R1  
VEE = VREFP – READ_ VOUT •  
+ 1 –  
(
)
Noisy environments require an anti-aliasing filter on  
the input to the LTC2974’s ADC. The R-C circuit shown  
in Figure 36 is adequate for most situations. Keep  
R40=R50200tominimizeADCgainerrors, andselect  
a value for capacitors C10 and C20 that does not add too  
much additional response time to the OV/UV supervisor,  
e.g. τ = 10μs (R = 100Ω, C = 0.10μF).  
(14)  
1µA R2  
Where READ_VOUT returns V  
– V  
SENSEP  
SENSEM  
Thevoltagedividershouldbeconfiguredinordertopresent  
about 0.5V to the voltage sense inputs when the negative  
supply reaches its POWER_GOOD_ON threshold so that  
V
4.5V < V  
IBUS  
< 15V  
IN  
V
V
IN_SNS  
V
PWR  
OUT  
0.1µF  
V
DAC0  
V
SENSEP0  
DC/DC  
R30  
V
V
V
V
DD33  
DD33  
DD25  
DD25  
CONVERTER  
R40  
R50  
R20  
R10  
C10  
C20  
LTC2974*  
GND  
V
LOAD  
FB  
0.1µF  
V
SGND  
SENSEM0  
V
RUN/SS  
OUT_EN0  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF FOUR CHANNELS SHOWN  
2974 F36  
Figure 36. Anti-Aliasing Filter on VSENSE Lines  
2974fa  
89  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
4.5V < V  
IBUS  
< 15V  
V
V
IN_SNS  
PWR  
LTC2974  
1.23V TYP  
0.1µF  
REFP  
REFM  
SDA  
V
SENSEP1  
SCL  
PMBus  
INTERFACE  
1µA AT 0.5V  
0.1µF  
R1 = 4.99k  
R2 = 120k  
ALERTB  
CONTROL  
V
SENSEM1  
WDI/RESETB  
FAULTB  
V
= –12V  
EE  
SHARE_CLK  
ASEL0  
POWER_GOOD_ON = 0.5V FOR V POWER_GOOD = –11.414V  
EE  
PWRGD  
WHERE V POWER_GOOD =  
EE  
ASEL1  
V
REFP  
– POWER_GOOD_ON (R2/R1 + 1) – 1µA • R2  
WDI/RESETB  
WP GND  
ONLY ONE OF FOUR CHANNELS SHOWN,  
SOME DETAILS OMITTED FOR CLARITY  
2974 F37  
Figure 37. Sensing Negative Voltages  
the current flowing out of the V  
pin is minimized  
Figure39showstherecommendedschematictousewhen  
the LTC2974 is powered by the system 3.3V through its  
SENSEMn  
to~1µA.TherelationshipbetweenthePOWER_GOOD_ON  
registervalueandthecorrespondingnegativesupplyvalue  
can be determined using equation 14.  
V
and V  
pins. The LTC4412 ideal OR’ing circuit  
DD33  
PWR  
allowseitherthecontrollerorsystemtopowertheLTC2974.  
Becauseofthecontroller’slimitedcurrentsourcingcapabil-  
ity, only the LTC2974s, their associated pull up resistors  
2
Connecting the DC1613 USB to I C/SMBus/PMBus  
Controller to the LTC2974 in System  
2
and the I C/SMBus pull-up resistors should be powered  
2
The DC1613 USB to I C/SMBus/PMBus Controller can  
fromtheORed3.3Vsupply.Inaddition,anydevicesharing  
2
be interfaced to the LTC2974s on the user’s board for  
programming, telemetry and system debug. The control-  
ler, when used in conjunction with LTpowerPlay software,  
providesapowerfulwaytodebuganentirepowersystem.  
Failuresarequicklydiagnosedusingtelemetry,faultstatus  
registers and the fault log. The final configuration can be  
quickly developed and stored to the LTC2974’s EEPROM.  
I C/SMBus bus connections with the LTC2974 should not  
have body diodes between the SDA/SCL pins and its V  
DD  
node because this will interfere with bus communication  
in the absence of system power.  
2
TheDC1613controller’sI C/SMBusconnectionsareopto-  
isolated from the PC’s USB port. The 3.3V supply from the  
controller and the LTC2974’s V  
pin can be paralleled  
DD33  
Figure 38 and Figure 39 illustrate application schematics  
for powering, programming and communicating with one  
or more LTC2974’s via the DC1613 I C/SMBus/PMBus  
controller regardless of whether or not system power is  
present.  
because the LTC LDOs that generate these voltages can be  
backdriven and draw <10μA. The controller’s 3.3V current  
limit is 100mA.  
2
Figure38showstherecommendedschematictousewhen  
the LTC2974 is powered by the system intermediate bus  
through its V  
pin.  
PWR  
2974fa  
90  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
REPEAT OUTLINED CIRCUIT FOR EVERY LTC2974  
150k  
49.9k  
4.5V TO 15V  
0.1µF  
V
PWR  
LTC2974*  
Si1303  
ISOLATED 3.3V  
V
V
DD33  
DD33  
SCL  
0.1µF  
0.1µF  
GND  
SDA  
V
V
DD25  
DD25  
TO DC1613  
I C/SMBUS/PMBUS  
CONTROLLER  
2
10k  
10k  
5.49k  
SCL  
SDA  
SHARE_CLK  
WP GND  
2974 F38  
*PIN CONNECTIONS  
OMITTED FOR CLARITY  
TO/FROM OTHER  
LTC2974s  
Figure 38. DC1613 Controller Connections When VPWR Is Used  
TP0101K-SOT23  
OR’D 3.3V  
V
SYSTEM 3.3V  
PWR  
0.1µF  
0.1µF  
LTC4412  
SENSE  
V
V
DD33  
DD33  
V
IN  
GND  
CTL  
GATE  
STAT  
V
V
DD25  
DD25  
IDEAL DIODE  
LTC2974*  
ISOLATED 3.3V  
SCL  
SCL  
SDA  
GND  
SHARE_CLK  
SDA  
WP GND  
TO DC1613  
I C/SMBUS/PMBUS  
CONTROLLER  
2
2974 F39  
TO/FROM OTHER  
LTC2974s  
*PIN CONNECTIONS  
OMITTED FOR CLARITY  
2
NOTE: DC1613 CONTROLLER I C CONNECTIONS ARE OPTO-ISOLATED  
ISOLATED 3.3V FROM LTC CONTROLLER CAN BE BACK DRIVEN AND WILL ONLY DRAW <10µA  
ISOLATED 3.3V CURRENT LIMIT IS 100mA  
Figure 39. DC1613 Controller Connections When LTC2974 Is Powered Directly from 3.3V  
2974fa  
91  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
ACCURATE DCR TEMPERATURE COMPENSATION  
board temperature sensor, and the inductor thermal time  
constant τ. The thermal resistance θ [°C/W], is used to  
IS  
Using the DC resistance of the inductor as a current shunt  
element has several advantages – no additional power  
loss, lower circuit complexity and cost. However, the  
strongtemperaturedependenceoftheinductorresistance  
and the difficulty in measuring the exact inductor core  
temperatureintroduceerrorsinthecurrentmeasurement.  
For copper, a change of inductor temperature of only 1°C  
correspondstoapproximately0.39%currentgainchange.  
Figure 40 shows a sample layout using the integrated  
DC/DC converter LTC3601 (right) and its corresponding  
thermalimage(left). Theconverterisproviding1.8V, 1.5A  
to the output load.  
calculate the steady state difference between the sensed  
temperature T and the internal inductor temperature T  
S
I
for a given power dissipated in the inductor P :  
I
T – T = θ P = θ V I  
IS DCR OUT  
(1.1)  
I
S
IS  
I
Theadditionaltemperatureriseisusedforamoreaccurate  
estimate of the inductor DC resistance R :  
I
R = R0 (1 + a [T – T + θ V I ])  
(1.2)  
is the inductor DC voltage  
is the RMS value of the output current, R0 is  
I
S
REF  
IS DCR OUT  
In the equations above, V  
drop, I  
DCR  
OUT  
the inductor DC resistance at the reference temperature  
T
andaisthetemperaturecoefficientoftheresistance.  
Heat dissipation in the inductor under high load condi-  
tions creates transient and steady state thermal gradients  
between the inductor and the temperature sensor, and the  
sensed temperature does not accurately represent the  
inductor core temperature. This temperature gradient is  
clearlyvisibleinthethermalimageofFigure40.Inaddition,  
transient heating/cooling effects have to be accounted for  
in order to reduce the transient errors introduced when  
load current changes are faster than heat transfer time  
constants of the inductor. Both of these problems are  
addressed by introducing two additional parameters: the  
REF  
Since most inductors are made of copper, we can expect  
a temperature coefficient close to a = 3900ppm/°C.  
CU  
For a given a, the remaining parameters θ and R0 can  
IS  
be calibrated at a single temperature using only two load  
currents:  
R2R1 P2+P1 – R2+R1 P2P1  
(
)(  
)
(
)(  
)
R0=  
(1.3)  
(1.4)  
a T2T1 P2+P1 – P2P1 2+ a T1+ T22T  
(
)(  
)
(
)
(
)
REF   
a R1+R2 T2 T1 – R2R1 2+ a T1+ T22T  
(
(
)(  
)(  
)
)
(
(
)
(
)
1
aR0  
REF   
θIS  
=
a T2T1 P2+P1 – P2P1 2+ a T1+ T22T  
)
(
)
REF   
thermal resistance θ from the inductor core to the on-  
IS  
LTC3601  
INDUCTOR  
TEMPERATURE  
SENSOR  
2974 F40  
Figure 40. Thermal Image of a DC/DC Converter Showing the Difference Between  
the Actual Inductor Temperature and the Temperature Sensing Point  
2974fa  
92  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
The inductor resistance, R = V  
/I  
, power dis-  
nominal DC resistance R0, and the settling characteristic  
K
DCR(K) OUT(K)  
sipation P = V  
K
I and the sensed temperature  
is used to measure the inductor thermal time constant τ.  
K
DCR(K) OUT(K)  
T ,(K=1,2)arerecordedforeachloadcurrent.Toincrease  
To get the best performance, the temperature sensor has  
to be as close as possible to the inductor and away from  
other significant heat sources. For example in Figure 40,  
the bipolar sense transistor is close to the inductor and  
away from the switcher. Connecting the collector of the  
PNPtothelocalpowergroundplaneassuresgoodthermal  
contact to the inductor, while the base and emitter should  
be routed to the LTC2974 separately, and the base con-  
nected to the signal ground close to LTC2974.  
theaccuracyincalculatingθ ,thetwoloadcurrentsshould  
IS  
be chosen around I1 = 10% and I2 = 90% of the current  
range of the system.  
Theinductorthermaltimeconstantτmodelsthefirstorder  
thermalresponseoftheinductorandallowsaccurateDCR  
compensation during load transients. During a transition  
from low to high load current, the inductor resistance  
increases due to the self-heating. If we apply a single load  
step from the low current I1 to the higher current I2, the  
voltage across the inductor will change instantaneously  
from I1R1 to I2R1 and then slowly approach I2R2. Here  
R1 is the steady state resistance at the given temperature  
and load current I1, and R2 is the slightly higher DC resis-  
tance at I2, due to the inductor self-heating. Note that the  
LTpowerPlay: AN INTERACTIVE GUI FOR POWER  
MANAGERS  
LTpowerPlay is a powerful Windows based development  
environment that supports Linear Technology Power Sys-  
tem Manager ICs with EEPROM, including the LTC2974  
4-channel PMBus Power System Manager. The software  
supports a variety of different tasks. You can use LTpow-  
erPlay to evaluate Linear Technology ICs by connecting  
to a demo board system. LTpowerPlay can also be used  
in an offline mode (with no hardware present) in order  
to build a multi-chip configuration file that can be saved  
and re-loaded at a later time. LTpowerPlay provides un-  
precedented diagnostic and debug features. It becomes a  
valuablediagnostictoolduringboardbring-uptoprogram  
thepowermanagementschemeinasystem. LTpowerPlay  
electrical time constant τ = L/R is several orders of mag-  
EL  
nitude shorter than the thermal one, and “instantaneous”  
is relative to the thermal time constant. The two settled  
regions give us the data sets (I1, T1, R1, P1) and (I2, T2,  
R2, P2) and the two-point calibration technique (1.3-1.4)  
is used to extract the steady-state parameters θ and R0  
IS  
(given a previously characterized average a). The relative  
current error calculated using the steady-state expression  
(1.2) will peak immediately after the load step, and then  
decay to zero with the inductor thermal time constant τ.  
I  
I
2
(t)= a θIS V2I2V1I1 et/τ  
(1.5)  
utilizes Linear Technology’s DC1613 USB-to-I C/SMBus/  
(
)
PMBus Controller to communicate with one of many  
potential targets, including the DC1809/DC1810 demo  
board set, the DC1735 socketed programming board, or  
a customer target system. The software also provides an  
automatic update feature to keep the software current  
with the latest set of device drivers and documentation.  
A great deal of context sensitive help is available within  
LTpowerPlay along with several tutorial demos. Complete  
information is available at:  
The time constant τ is calculated from the slope of the  
best-fit line y = ln(∆I/I) = a1 + a2t:  
1
a2  
τ = –  
(1.6)  
In summary, a single load current step is all that is needed  
tocalibratetheDCRcurrentmeasurement. Thestablepor-  
tionsoftheresponsegiveusthethermalresistanceθ and  
IS  
www.linear.com/ltpowerplay  
2974fa  
93  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
PCB ASSEMBLY AND LAYOUT SUGGESTIONS  
down to the PCB or mother board substrate. It is a good  
practice to minimize the presence of voids within the  
exposed pad inter-connection. Total elimination of voids  
is difficult, but the design of the exposed pad stencil is  
key. Figure 42 shows a suggested screen print pattern.  
The proposed stencil design enables out-gassing of the  
solderpasteduringreflowaswellasregulatingthefinished  
solder thickness. See IPC7525A  
Bypass Capacitor Placement  
The LTC2974 requires 0.1µF bypass capacitors between  
the V  
pins and GND, the V  
pin and GND, and the  
DD33  
DD25  
REFP pin and REFM pin. If the chip is being powered from  
the V input, then that pin should also be bypassed to  
PWR  
GND by a 0.1µF capacitor. In order to be effective, these  
capacitors should be made of a high quality ceramic  
dielectric such as X5R or X7R and be placed as close to  
the chip as possible.  
Unused ADC Sense Inputs  
Connect all unused ADC sense inputs (V  
,
SENSEPn  
) to GND. In a system  
V
, I  
or I  
SENSEMn SENSEPn  
SENSEMn  
Exposed Pad Stencil Design  
where the inputs are connected to removable cards and  
maybeleftfloatingincertainsituations,connecttheinputs  
to GND using 100k resistors. Place the 100k resistors  
The LTC2974’s package is thermally and electrically ef-  
ficient. This is enabled by the exposed die attach pad on  
the under side of the package which must be soldered  
before any filter components, as shown in Figure 41, to  
2974fa  
94  
For more information www.linear.com/LTC2974  
LTC2974  
APPLICATIONS INFORMATION  
V
SENSEP  
LTC2974  
SENSEM  
QFN PACKAGE  
APERATURE DESIGN 50% TO 80% REDUCTION  
100k  
GROUND PLANE  
V
100k  
2974 F41  
Figure 41. Connecting Unused Inputs to GND  
prevent loading of the filter. The temperature sense inputs  
(T  
)maybeleftfloating. Thetemperturereportedon  
SENSEn  
SENSEn  
floating T  
inputs will be the internal die temperature  
(READ_TEMPERATURE_2).  
PCB Board Layout  
2974 F42  
Mechanical stress on a PC board and soldering-induced  
stress can cause the LTC2974’s reference voltage and the  
voltage drift to shift. A simple way to reduce the stress-  
related shifts is to mount the IC near the short edge of  
the PC board, or in a corner. The board acts as a stress  
boundary, or a region where the flexure of the board is  
minimal.  
Figure 42. Suggested Screen Pattern for Die Attach Pad  
2974fa  
95  
For more information www.linear.com/LTC2974  
LTC2974  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705 Rev C)  
0.70 ±0.05  
7.15 ±0.05  
7.50 REF  
8.10 ±0.05 9.50 ±0.05  
(4 SIDES)  
7.15 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 ± 0.05  
R = 0.115  
TYP  
9 .00 ± 0.10  
(4 SIDES)  
R = 0.10  
TYP  
63 64  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
7.15 ± 0.10  
7.50 REF  
(4-SIDES)  
7.15 ± 0.10  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
2974fa  
96  
For more information www.linear.com/LTC2974  
LTC2974  
REVISION HISTORY  
REV  
DATE DESCRIPTION  
PAGE NUMBER  
A
5/13 Title, Features and Description revised.  
1
5, 9  
6
Added specifications: t , t  
, t  
.
INIT UPDATE_ADC OFF_MIN  
Changed V  
minimums to 1.3 and 2.5 from 1.32 and 2.53.  
FS_VDAC  
Curve G08: Corrected Y-axis units from mA to µA.  
Block Diagram revised.  
10  
15  
2
RESETB section: Clarified I C disabled, 10k resistor and capacitance.  
18  
Typical Delay numbers in EEPROM Related Commands table updated.  
19  
TON_RISE Description: Changed “output starts to rise” to “V  
pin goes high.”  
24, 51  
26, 44  
OUT_ENn  
Changed data format for MFR_DAC and MFR_I2C_BASE_ADDRESS to Reg from U16. Changed default value for  
MFR_SPECIAL_ID to 0x0213 from 0x0212.  
Removed U16 row from Data Formats table.  
27  
30, 31  
32  
Operation, ON_OFF_CONFIG sections: Added sentence on waiting a t  
b[5:4] Operation: Added warning about undefined MFR_DAC.  
.
OFF_MIN  
b[3] to b[0] Operation: Clarified that setting these bits disables UV and UC.  
Changed Format for MFR_RETRY_COUNT to Reg from U16.  
36  
54  
STATUS_VOUT b[3] Operation: Clarified behavior after bit is cleared.  
62  
STATUS_MFR_SPECIFIC section: Added STICKY, ALERT, OFF columns; removed FAULT column. Added column  
definitions above table.  
64  
STATUS_MFR_SPECIFIC b[6] and b[5]: Clarified behavior if MFR_TRACK_EN_CHANn is set.  
MFR_VOUT_MIN: Clarified when updates are disabled.  
64  
69  
MFR_FAULT_LOG_CLEAR: Clarified conditions before issuing this command.  
MFR_SPECIAL_ID: Changed value from 0x0210 to 0x0213.  
Added section: Unused ADC Sense Inputs.  
71  
78, 79  
94  
2974fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
97  
LTC2974  
TYPICAL APPLICATION  
0.1µF  
3.3V  
0.1µF  
9
65 28 13 14 11 12 10 36 35 51 52 55 56 59 60  
8
330nF  
330nF  
MMBT3906  
15  
27  
V
IN  
V
IN  
T
T
SENSE2  
SENSE0  
TG  
TG  
MMBT3906  
SWX  
SWX  
53  
1
57  
61  
V
V
V
DAC0  
DAC2  
BG  
BG  
V
SENSEP0  
SENSEP2  
DC/DC  
CONVERTER  
V
DC/DC  
CONVERTER  
V
LOAD  
LOAD  
FB  
FB  
2
62  
V
V
I
RUN/SS SGND  
PGND  
SGND RUN/SS  
PGND  
SENSEM0  
SENSEM2  
SENSEM2  
42  
41  
3
46  
45  
5
I
I
SENSEM0  
SENSEP0  
I
SENSEP2  
V
OUT_EN2  
V
OUT_EN0  
19  
20  
21  
37  
39  
GND  
GND  
GND  
GND  
GND  
38  
40  
REFP  
0.1µF  
LTC2974  
REFM  
330nF  
MMBT3906  
330nF  
MMBT3906  
16  
34  
V
V
IN  
IN  
T
T
SENSE3  
SENSE1  
TG  
TG  
SWX  
SWX  
54  
63  
58  
49  
V
V
V
DAC1  
DAC3  
BG  
BG  
V
SENSEP1  
SENSEP3  
DC/DC  
CONVERTER  
V
DC/DC  
CONVERTER  
V
LOAD  
LOAD  
FB  
FB  
64  
50  
V
V
I
RUN/SS SGND  
PGND  
SGND RUN/SS  
PGND  
SENSEM1  
SENSEM3  
SENSEM3  
44  
43  
4
48  
47  
6
I
I
SENSEM1  
SENSEP1  
I
SENSEP3  
V
OUT_EN3  
V
OUT_EN1  
7
AUXFAULTB  
0V  
INTERMEDIATE  
BUS  
2974 TA02  
3.3V  
26 25 18 29 30 31 17 23 22 33 32  
24  
10k  
10k  
10k  
10k  
3.3V  
3.3V  
10k  
10k  
10k  
10k  
10k  
10k  
5.49k  
10k  
TO/FROM OTHER LTC2974s, LTC2978s AND MICROCONTROLLER  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
2
LTC2970  
LTC2977  
LTC3880  
LTC3883  
Dual I C Power Supply Monitor and Margining Controller 5V to 15V, 0.5% TUE 14-Bit ADC, 8-Bit DAC, Temperature Sensor  
8-Channel PMBus Power System Manager  
0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision  
0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
Dual Output PolyPhase Step-Down DC/DC Controller  
Single Output PolyPhase Step-Down DC/DC Controller 0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
2974fa  
LT 0513 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
98  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2974  
ꢀLINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LTC2974IUPPBF

4-Channel PMBus Power System Manager
Linear

LTC2977

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977CUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977IUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear

LTC2978

Octal Digital Power Supply Manager with EEPROM
Linear System

LTC2978A

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978ACUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978AIUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978CUPPBF

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear

LTC2978CUPTRPBF

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear

LTC2978IUPPBF

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear