LTC3419IMS#PBF [Linear]

LTC3419 - Dual Monolithic 600mA Synchronous Step-Down Regulator; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3419IMS#PBF
型号: LTC3419IMS#PBF
厂家: Linear    Linear
描述:

LTC3419 - Dual Monolithic 600mA Synchronous Step-Down Regulator; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3419  
Dual Monolithic 600mA  
Synchronous Step-Down  
Regulator  
FEATURES  
DESCRIPTION  
The LTC®3419 is a dual, 2.25MHz, constant-frequency,  
synchronous step-down DC/DC converter in a tiny  
3mm × 3mm DFN package. 100% duty cycle provides  
low dropout operation, extending battery life in portable  
systems. Lowoutputvoltagesaresupportedwiththe0.6V  
feedback reference voltage. Each regulator can supply  
600mA output current.  
n
High Efficiency Dual Step-Down Outputs: Up to 96%  
n
600mA Current per Channel at V = 3V  
IN  
n
Only 35μA Quiescent Current During Operation  
(Both Channels)  
n
2.25MHz Constant-Frequency Operation  
n
2.5V to 5.5V Input Voltage Range  
n
Low Dropout Operation: 100% Duty Cycle  
n
No Schottky Diodes Required  
The input voltage range is 2.5V to 5.5V, making it ideal  
for Li-Ion and USB powered applications. Supply current  
during operation is only 35μA and drops to <1μA in  
shutdown. A user-selectable mode input allows the user  
to trade off between high efficiency Burst Mode operation  
and pulse-skipping mode.  
n
Internally Compensated for All Ceramic Capacitors  
n
Independent Internal Soft-Start for Each Channel  
n
Available in Fixed Output Versions  
n
Current Mode Operation for Excellent Line and Load  
Transient Response  
n
0.6V Reference Allows Low Output Voltages  
User-Selectable Burst Mode® Operation  
n
An internally set 2.25MHz switching frequency allows the  
useoftinysurfacemountinductorsandcapacitors. Internal  
soft-start reduces inrush current during start-up. Both  
outputs are internally compensated to work with ceramic  
outputcapacitors. TheLTC3419isavailableinalowprofile  
(0.75mm)3mm×3mmDFNpackage.TheLTC3419isalso  
available in a fixed output voltage configuration selected  
via internal resistor dividers (see Table 2).  
n
Short-Circuit Protected  
Ultralow Shutdown Current: I < 1μA  
Available in Small MSOP or 3mm × 3mm DFN-8  
Packages  
n
Q
n
APPLICATIONS  
n
Cellular Telephones  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 5481178, 6127815, 6304066, 6498466, 6580258, 6611131.  
n
Digital Still Cameras  
n
Wireless and DSL Modems  
n
Portable Media Players  
n
PDAs/Palmtop PCs  
Efficiency and Power Loss  
vs Output Current  
TYPICAL APPLICATION  
Dual Monolithic Buck Regulator in 8-Lead 3 × 3 DFN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
V
= 3.6V  
IN  
V
IN  
2.5V TO 5.5V  
1
10μF  
RUN2  
V
IN  
RUN1  
MODE  
0.1  
LTC3419  
SW2  
SW1  
3.3μH  
22pF  
3.3μH  
22pF  
V
V
OUT1  
OUT2  
2.5V AT  
600mA  
1.8V AT  
600mA  
0.01  
0.001  
0.0001  
V
OUT  
V
OUT  
V
OUT  
= 1.2V  
= 1.8V  
= 2.5V  
V
FB2  
V
FB1  
GND  
118k  
187k  
10μF  
10μF  
59k  
59k  
0.1  
1
10  
100  
1000  
3419 TA01  
OUTPUT CURRENT (mA)  
3419 TA01b  
3419fa  
1
LTC3419  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Input Supply Voltage (V )............................. –0.3 to 6V  
Peak SW Source and Sink Current (Note 2).............1.3A  
Operating Junction Temperature Range  
IN  
V
, V ........................................0.3V to V + 0.3V  
FB1 FB2  
IN  
RUN1, RUN2, MODE........................0.3V to V + 0.3V  
(Note 3) .................................................–40 to 125°C  
Junction Temperature (Note 6) ............................. 125°C  
Storage Temperature Range...................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
IN  
SW1, SW2 .......................................0.3V to V + 0.3V  
IN  
P-Channel SW Source Current (DC) (Note 2).......800mA  
N-Channel SW Source Current (DC) (Note 2) ......800mA  
MSOP Package ................................................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
8
7
6
5
V
FB2  
FB1  
V
1
2
3
4
5
10  
9
V
FB2  
FB1  
RUN1  
MODE  
SW1  
RUN2  
SW2  
RUN1  
MODE  
SW1  
RUN2  
SW2  
9
8
7
6
V
IN  
V
GND  
GND  
IN  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm s 3mm) PLASTIC DFN  
T
= 125°C, θ = 120°C/W  
JMAX  
JA  
T
= 125°C, θ = 40°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3419EDD#PBF  
LTC3419EDD-1#PBF  
LTC3419IDD#PBF  
LTC3419IDD-1#PBF  
LTC3419EMS#PBF  
LTC3419EMS-1#PBF  
LTC3419IMS#PBF  
LTC3419IMS-1#PBF  
TAPE AND REEL  
PART MARKING*  
LCQJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC3419EDD#TRPBF  
LTC3419EDD-1#TRPBF  
LTC3419IDD#TRPBF  
LTC3419IDD-1#TRPBF  
LTC3419EMS#TRPBF  
LTC3419EMS-1#TRPBF  
LTC3419IMS#TRPBF  
LTC3419IMS-1#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LCWW  
LCQJ  
LCWW  
LTCQK  
LTCWX  
LTCQK  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
LTCWX  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3419fa  
2
LTC3419  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C, VIN = 3.6V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
V
IN  
V
IN  
Operating Voltage  
2.5  
V
V
IN  
V
UV  
Undervoltage Lockout  
V
Low to High  
IN  
2.1  
3
2.5  
I
Feedback Pin Input Current  
LTC3419  
LTC3419-1  
30  
5
nA  
μA  
FB  
V
Regulated Feedback Voltage (Channel 1) LTC3419E, 0°C < T < 85°C  
0.590  
0.588  
1.544  
0.582  
1.533  
0.600  
0.600  
1.575  
0.6  
0.610  
0.612  
1.606  
0.618  
1.617  
V
V
V
V
V
FBREG1  
FBREG2  
J
LTC3419E, –40°C < T < 85°C  
J
LTC3419E-1, –40°C < T < 85°C  
J
LTC3419I, –40°C < T < 125°C  
J
LTC3419I-1, –40°C < T < 125°C  
1.575  
J
V
Regulated Feedback Voltage (Channel 2) LTC3419E, 0°C < T < 85°C  
0.590  
0.588  
1.764  
0.582  
1.753  
0.600  
0.600  
1.8  
0.6  
1.8  
0.610  
0.612  
1.836  
0.618  
1.847  
V
V
V
V
V
J
LTC3419E, –40°C < T < 85°C  
J
LTC3419E-1, –40°C < T < 85°C  
J
LTC3419I, –40°C < T < 125°C  
J
LTC3419I-1, –40°C < T < 125°C  
J
Reference Voltage Line Regulation  
Output Voltage Load Regulation  
V
= 2.5V to 5.5V (Note 7)  
0.3  
0.5  
0.5  
%/V  
%
ΔV  
ΔV  
IN  
LINE REG  
I
= 0mA to 600mA (Note 7)  
LOAD  
LOAD REG  
I
Input DC Supply Current  
Active Mode (Note 4)  
Sleep Mode  
S
V
= V = 0.95 × V  
FBREG  
500  
35  
0.1  
700  
60  
1
μA  
μA  
μA  
FB1  
FB1  
FB2  
V
= V = 1.05 × V  
, V = 5.5V  
FB2  
FBREG IN  
Shutdown  
RUN1 = RUN2 = 0V, V = 5.5V  
IN  
f
I
Oscillator Frequency  
V
= V  
FBREG  
1.8  
2.25  
2.7  
MHz  
OSC  
FB  
IN  
Peak Switch Current Limit  
Channel 1 (600mA)  
Channel 2 (600mA)  
V
= 3V, V < V  
, Duty Cycle < 35%  
FBREG  
LIM  
FB  
900  
900  
1200  
1200  
mA  
mA  
R
Channel 1 (Note 5)  
DS(ON)  
Top Switch On-Resistance  
Bottom Switch On-Resistance  
Channel 2 (Note 5)  
V
V
= 3.6V, I = 100mA  
0.4  
0.4  
0.6  
0.6  
Ω
Ω
IN  
IN  
SW  
= 3.6V, I = 100mA  
SW  
Top Switch On-Resistance  
Bottom Switch On-Resistance  
V
V
= 3.6V, I = 100mA  
0.4  
0.4  
0.6  
0.6  
Ω
Ω
IN  
IN  
SW  
= 3.6V, I = 100mA  
SW  
I
t
Switch Leakage Current  
Soft-Start Time  
V
= 5V, V = 0V  
RUN  
0.01  
0.95  
1
1
1.3  
1.2  
1
μA  
ms  
V
SW(LKG)  
IN  
V
FB  
from 10% to 90% Full Scale  
0.1  
0.4  
SOFTSTART  
V
RUN Threshold High  
RUN  
RUN  
I
RUN Leakage Current  
MODE Threshold High  
MODE Leakage Current  
Output Ripple in Burst Mode Operation  
0.01  
1
μA  
V
V
0.4  
1.2  
1
MODE  
MODE  
I
0.01  
20  
μA  
V
V
OUT  
= 1.5V, C  
= 10μF  
mV  
P-P  
BURST  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Dynamic supply current is higher due to the internal gate charge  
being delivered at the switching frequency.  
Note 5: The DFN switch on-resistance is guaranteed by correlation to  
wafer level measurements.  
Note 2: Guaranteed by long term current density limitations.  
Note 6: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 7: The converter is tested in a proprietary test mode that connects  
the output of the error amplifier to the SW pin, which is connected to an  
Note 3: The LTC3419E and LTC3419E-1 are guaranteed to meet specified  
performance from 0°C to 85°C. Specifications over the –40°C to 125°C  
operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3419I and LTC3419I-1 are guaranteed to meet specified performance  
over the full –40°C to 125°C operating junction temperature range.  
external servo loop.  
3419fa  
3
LTC3419  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 3.6V, unless otherwise noted.  
Burst Mode Operation  
Pulse Skip Mode Operation  
Efficiency vs Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
I
= 100mA  
OUT  
SW  
2V/DIV  
SW  
2V/DIV  
I
= 1mA  
V
OUT  
OUT  
V
OUT  
50mV/DIV  
I
= 600mA  
OUT  
50mV/DIV  
AC-COUPLED  
I
= 10mA  
OUT  
AC-COUPLED  
I
L
I
L
100mA/DIV  
100mA/DIV  
I
= 0.1mA  
4.5  
OUT  
3419 G01  
3419 G02  
2μs/DIV  
5μs/DIV  
V
V
LOAD  
= 3.6V  
V
V
= 3.6V  
IN  
OUT  
I
LOAD  
IN  
V
= 1.8V  
OUT  
= 1.8V  
= 1.8V  
= 5mA  
OUT  
I
= 25mA  
2.5  
3.0  
3.5  
4.0  
(V)  
5.0  
5.5  
V
IN  
3419 G03  
Reference Voltage  
vs Temperature  
Oscillator Frequency  
vs Temperature  
Supply Current  
vs Temperature  
1.5  
1.0  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
55  
50  
45  
40  
35  
30  
25  
20  
15  
RUN1 = RUN2 = V  
LOAD  
IN  
I
= 0A  
V
= 4.2V  
IN  
0.5  
V
= 3.6V  
V
= 5.5V  
IN  
IN  
0
V
= 2.7V  
V
= 2.7V  
IN  
IN  
–0.5  
–1.0  
–1.5  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3419 G04  
3419 G05  
3419 G06  
Switch On-Resistance  
vs Input Voltage  
Switch On-Resistance  
vs Temperature  
Switch Leakage vs Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN SWITCH  
MAIN SWITCH  
MAIN SWITCH  
SYNCHRONOUS  
SWITCH  
SYNCHRONOUS SWITCH  
SYNCHRONOUS  
SWITCH  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
–50 –25  
0
25  
50  
75 100 125  
V
V
IN  
TEMPERATURE (°C)  
IN  
3419 G07  
3419 G08  
3419 G09  
3419fa  
4
LTC3419  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 3.6V, unless otherwise noted.  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
V
= 1.2V  
1
V
= 1.8V  
1
V
OUT  
= 2.5V  
1
OUT  
OUT  
0.1  
10  
100  
1000  
0.1  
10  
100  
1000  
0.1  
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3419 G10  
3419 G11  
3419 G12  
Efficiency vs Load Current  
Load Regulation  
Load Regulation  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
V
= 1.8V  
OUT  
OUT  
OUT  
OUT  
Burst Mode OPERATION  
PULSE SKIP MODE  
Burst Mode OPERATION  
–0.5  
–1.0  
–0.5  
–1.0  
Burst Mode OPERATION  
PULSE SKIP MODE  
V
= 1.8V  
1
OUT  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
0.1  
10  
100  
1000  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3419 G13  
3419 G14  
3419 G15  
Line Regulation  
Start-Up from Shutdown  
Start-Up from Shutdown  
0.6  
0.4  
V
= 1.8V  
= 100mA  
OUT  
I
LOAD  
RUN  
2V/DIV  
RUN  
2V/DIV  
0.2  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
0
I
LOAD  
I
L
–0.2  
–0.4  
–0.6  
500mA/DIV  
500mA/DIV  
3419 G17  
3419 G18  
250μs/DIV  
250μs/DIV  
V
V
I
= 3.6V  
V
V
R
= 3.6V  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 0A  
= 1.8V  
= 3Ω  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
LOAD  
LOAD  
V
IN  
3419 G16  
3419fa  
5
LTC3419  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VIN = 3.6V, unless otherwise noted.  
Load Step  
Load Step  
Load Step  
V
V
V
OUT  
OUT  
OUT  
100mV/DIV  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
AC-COUPLED  
I
I
L
L
I
L
500mA/DIV  
500mA/DIV  
500mA/DIV  
I
I
LOAD  
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
500mA/DIV  
3419 G19  
3419 G20  
3419 G21  
20μs/DIV  
20μs/DIV  
20μs/DIV  
V
V
LOAD  
= 3.6V  
V
V
LOAD  
= 3.6V  
V
= 3.6V  
IN  
IN  
IN  
= 1.8V  
= 1.8V  
V
= 1.2V  
OUT  
OUT  
OUT  
I
= 0A TO 600mA  
I
= 40mA TO 600mA  
I
= 40mA TO 600mA  
LOAD  
PIN FUNCTIONS  
(DD/MS)  
V
(Pin1/Pin1):Regulator1OutputFeedback.Receives  
SW2 (Pin 6/Pin 8): Regulator 2 Switch Node Connection  
FB1  
the feedback voltage from the external resistive divider  
across the regulator 1 output. Nominal voltage for this  
pin is 0.6V.  
to the Inductor. This pin swings from V to GND.  
IN  
RUN2 (Pin 7/Pin 9): Regulator 2 Enable. Forcing this pin  
to V enables regulator 2, while forcing it to GND causes  
IN  
RUN1 (Pin 2/Pin 2): Regulator 1 Enable. Forcing this pin  
regulator 2 to shut down.  
to V enables regulator 1, while forcing it to GND causes  
IN  
V
(Pin8/Pin10):Regulator2OutputFeedback.Receives  
FB2  
regulator 1 to shut down.  
the feedback voltage from the external resistive divider  
across the regulator 2 output. Nominal voltage for this  
pin is 0.6V.  
MODE (Pin 3/Pin 3): Mode Select Input. To select pulse-  
skippingmode, tietoV . GroundingthispinselectsBurst  
IN  
Mode operation. Do not leave this pin floating.  
Exposed Pad (Pin 9/NA): Ground. The Exposed Pad must  
be soldered to PCB for optimal thermal performance.  
SW1 (Pin 4/Pin 4): Regulator 1 Switch Node Connection  
to the Inductor. This pin swings from V to GND.  
IN  
GND (NA/Pins 5, 6): Ground. Connect to the (–) terminal  
V
(Pin 5/Pin 7): Main Power Supply. Must be closely  
IN  
of C , and the (–) terminal of C . Pin 5 of the MS  
OUT  
IN  
de-coupled to GND.  
package must be soldered to the PC board for optimal  
thermal performance.  
3419fa  
6
LTC3419  
FUNCTIONAL DIAGRAM  
REGULATOR 1  
MODE  
3
BURST  
CLAMP  
5
V
IN  
SLOPE  
COMP  
V
FB1  
1
+
SLEEP  
+
I
TH  
EA  
I
COMP  
V
+
SLEEP  
BURST  
Q
0.6V  
S
R
RS  
LATCH  
SOFT-START  
Q
SWITCHING  
LOGIC  
AND  
BLANKING  
CIRCUIT  
ANTI  
SHOOT-  
THRU  
4
9
SW1  
GND  
+
I
RCMP  
SHUTDOWN  
2
7
SLEEP2  
SLEEP1  
RUN1  
RUN2  
0.6V REF  
OSC  
OSC  
REGULATOR 2 (IDENTICAL TO REGULATOR 1)  
8
6
SW2  
V
FB2  
3419 FD  
3419fa  
7
LTC3419  
OPERATION  
The LTC3419 uses a constant-frequency, current mode  
architecture. The operating frequency is set at 2.25MHz.  
Both channels share the same clock and run in-phase.  
MOSFET on. This cycle repeats at a rate that is dependent  
on load demand.  
For applications where low ripple voltage and constant-  
frequency operation is a higher priority than light load  
efficiency,pulse-skippingmodecanbeusedbyconnecting  
The output voltage is set by an external resistor divider  
returned to the V pins. An error amplifier compares the  
FB  
the MODE pin to V . In this mode, the peak inductor  
dividedoutputvoltagewithareferencevoltageof0.6Vand  
regulates the peak inductor current accordingly.  
IN  
current is not fixed, which allows the LTC3419 to switch  
at a constant-frequency down to very low currents, where  
it will begin skipping pulses.  
Main Control Loop  
Duringnormaloperation,thetoppowerswitch(P-channel  
MOSFET) is turned on at the beginning of a clock cycle  
Dropout Operation  
When the input supply voltage decreases toward the  
output voltage the duty cycle increases to 100%, which  
is the dropout condition. In dropout, the PMOS switch is  
turnedoncontinuouslywiththeoutputvoltagebeingequal  
to the input voltage minus the voltage drops across the  
internal P-channel MOSFET and the inductor.  
when the V voltage is below the reference voltage. The  
FB  
current into the inductor and the load increases until the  
peak inductor current (controlled by I ) is reached. The  
TH  
RS latch turns off the synchronous switch and energy  
stored in the inductor is discharged through the bottom  
switch (N-channel MOSFET) into the load until the next  
clock cycle begins, or until the inductor current begins to  
An important design consideration is that the R  
DS(ON)  
reverse (sensed by the I  
comparator).  
RCMP  
of the P-channel switch increases with decreasing input  
supply voltage (see Typical Performance Characteristics).  
Therefore, theusershouldcalculatetheworst-casepower  
dissipation when the LTC3419 is used at 100% duty cycle  
with low input voltage (see Thermal Considerations in the  
Applications Information section).  
The peak inductor current is controlled by the internally  
compensated I voltage, which is the output of the error  
TH  
amplifier.ThisamplifierregulatestheV pintotheinternal  
FB  
0.6V reference by adjusting the peak inductor current  
accordingly.  
Soft-Start  
Light Load Operation  
Inordertominimizetheinrushcurrentontheinputbypass  
capacitor,theLTC3419slowlyrampsuptheoutputvoltage  
duringstart-up. WhenevertheRUN1orRUN2pinispulled  
high, the corresponding output will ramp from zero to  
full-scale over a time period of approximately 750μs. This  
prevents the LTC3419 from having to quickly charge the  
output capacitor and thus supplying an excessive amount  
of instantaneous current.  
There are two modes to control the LTC3419 at light load  
currents:BurstModeoperationandpulse-skippingmode.  
Both automatically transition from continuous operation  
to the selected mode when the load current is low.  
Tooptimizeefficiency,BurstModeoperationcanbeselected  
by grounding the MODE pin. When the load is relatively  
light, the peak inductor current (as set by I ) remains  
TH  
fixedatapproximately60mAandthePMOSswitchoperates  
intermittently based on load demand. By running cycles  
periodically, the switching losses are minimized.  
Short-Circuit Protection  
When either regulator output is shorted to ground, the  
corresponding internal N-channel switch is forced on for  
a longer time period for each cycle in order to allow the  
inductor to discharge, thus preventing inductor current  
runaway. This technique has the effect of decreasing  
switching frequency. Once the short is removed, normal  
operation resumes and the regulator output will return to  
The duration of each burst event can range from a few  
cycles at light load to almost continuous cycling with  
short sleep intervals at moderate loads. During the sleep  
intervals, the load current is being supplied solely from  
the output capacitor. As the output voltage droops, the  
error amplifier output rises above the sleep threshold,  
signaling the burst comparator to trip and turn the top  
its nominal voltage.  
3419fa  
8
LTC3419  
APPLICATIONS INFORMATION  
AgeneralLTC3419applicationcircuitisshowninFigure1.  
External component selection is driven by the load  
requirement, and begins with the selection of the  
inductor L. Once the inductor is chosen, C and C  
or shielded pot cores in ferrite or permalloy materials are  
small and do not radiate much energy, but generally cost  
more than powdered iron core inductors with similar  
electrical characteristics. The choice of which style  
inductor to use often depends more on the price versus  
sizerequirements,andanyradiatedeld/EMIrequirements,  
than on what the LTC3419 requires to operate. Table 1  
shows some typical surface mount inductors that work  
well in LTC3419 applications.  
IN  
OUT  
can be selected.  
Inductor Selection  
Although the inductor does not influence the operating  
frequency, the inductor value has a direct effect on ripple  
current. The inductor ripple current ΔI decreases with  
L
Table 1. Representative Surface Mount Inductors  
higher inductance and increases with higher V or V  
:
IN  
OUT  
MANU-  
MAX DC  
FACTURER PART NUMBER VALUE CURRENT DCR HEIGHT  
VOUT  
fO L  
VOUT  
Taiyo Yuden CB2016T2R2M  
CB2012T2R2M  
2.2μH  
2.2μH  
3.3μH  
510mA  
530mA  
410mA  
1.6mm  
1.25mm  
1.6mm  
ΔIL =  
• 1−  
(1)  
0.13Ω  
0.33Ω  
0.27Ω  
V
IN  
CB2016T3R3M  
Panasonic  
Sumida  
Murata  
ELT5KT4R7M  
4.7μH  
4.7μH  
950mA  
630mA  
450mA  
1.2mm  
2mm  
0.2Ω  
0.086Ω  
0.2Ω  
Accepting larger values of ΔI allows the use of low  
L
CDRH2D18/LD  
inductances, but results in higher output voltage ripple,  
greater core losses, and lower output current capability.  
A reasonable starting point for setting ripple current is  
40%ofthemaximumoutputloadcurrent.So,fora600mA  
LQH32CN4R7M23 4.7μH  
2mm  
Taiyo Yuden NR30102R2M  
NR30104R7M  
2.2μH  
4.7μH  
1100mA  
750mA  
1mm  
1mm  
0.1Ω  
0.19Ω  
FDK  
FDKMIPF2520D  
FDKMIPF2520D  
FDKMIPF2520D  
4.7μH  
3.3μH  
2.2μH  
1100mA  
1200mA  
1300mA  
1mm  
1mm  
1mm  
0.11Ω  
0.1Ω  
0.08Ω  
regulator, ΔI = 240mA (40% of 600mA).  
L
The inductor value will also have an effect on Burst Mode  
operation. The transition to low current operation begins  
when the peak inductor current falls below a level set by  
the internal burst clamp. Lower inductor values result in  
higher ripple current which causes the transition to occur  
at lower load currents. This causes a dip in efficiency in  
the upper range of low current operation. Furthermore,  
lower inductance values will cause the bursts to occur  
with increased frequency.  
TDK  
VLF3010AT4R7- 4.7μH  
MR70  
700mA  
870mA  
1000mA  
1mm  
1mm  
1mm  
0.28Ω  
0.17Ω  
0.12Ω  
VLF3010AT3R3- 3.3μH  
MR87  
VLF3010AT2R2- 2.2μH  
M1R0  
Input Capacitor (C ) Selection  
IN  
In continuous mode, the input current of the converter is a  
square wave with a duty cycle of approximately V /V .  
Topreventlargevoltagetransients, alowequivalentseries  
resistance (ESR) input capacitor sized for the maximum  
RMS current must be used. The maximum RMS capacitor  
current is given by:  
OUT IN  
Inductor Core Selection  
Different core materials and shapes will change the size/  
currentandprice/currentrelationshipofaninductor.Toroid  
V
IN  
2.5V TO 5.5V  
VOUT(V VOUT  
)
IN  
C1  
IRMS IMAX  
RUN2  
V
RUN1  
MODE  
IN  
V
IN  
LTC3419  
SW2  
SW1  
L2  
L1  
V
OUT2  
V
OUT1  
Where the maximum average output current I  
equals  
C
F2  
C
F1  
MAX  
the peak current minus half the peak-to-peak ripple cur-  
rent, I = I – ΔI /2. This formula has a maximum at  
V
V
FB1  
FB2  
GND  
MAX  
LIM  
L
R4  
R2  
C
OUT2  
C
OUT1  
R3  
R1  
V = 2V , where I = I /2. This simple worst-case  
IN  
OUT  
RMS OUT  
3419 F01  
is commonly used to design because even significant  
Figure 1. LTC3419 General Schematic  
3419fa  
9
LTC3419  
APPLICATIONS INFORMATION  
deviations do not offer much relief. Note that capacitor  
manufacturer’s ripple current ratings are often based on  
only2000hourslifetime.Thismakesitadvisabletofurther  
deratethecapacitor,orchooseacapacitorratedatahigher  
temperaturethanrequired.Severalcapacitorsmayalsobe  
paralleled to meet the size or height requirements of the  
design. An additional 0.1μF to 1μF ceramic capacitor is  
However, care must be taken when ceramic capacitors are  
used at the input. When a ceramic capacitor is used at the  
input and the power is supplied by a wall adapter through  
long wires, a load step at the output can induce ringing at  
theinput, V . Atbest, thisringingcancoupletotheoutput  
IN  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
also recommended on V for high frequency decoupling  
cause a voltage spike at V , large enough to damage the  
IN  
IN  
when not using an all-ceramic capacitor solution.  
part. For more information, see Application Note 88.  
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
Output Capacitor (C ) Selection  
OUT  
The selection of C  
is driven by the required effective  
OUT  
seriesresistance(ESR).Typically,oncetheESRrequirement  
for C has been met, the RMS current rating generally  
OUT  
farexceeds the I  
requirement. Theoutput ripple  
Setting the Output Voltage  
RIPPLE(P-P)  
ΔV  
is determined by:  
OUT  
The LTC3419 regulates the V  
and V  
pins to 0.6V  
FB1  
FB2  
during regulation. Thus, the output voltage is set by a  
resistive divider according to the following formula:  
1
ΔVOUT ΔI ESR+  
L
8fOCOUT  
R2  
R1  
VOUT = 0.6V 1+  
(2)  
wheref =operatingfrequency,C  
=outputcapacitance  
O
L
OUT  
and ΔI = ripple current in the inductor. For a fixed output  
voltage, the output ripple is highest at maximum input  
Keeping the current small (<10μA) in these resistors  
maximizes efficiency, but making it too small may allow  
stray capacitance to cause noise problems or reduce the  
phase margin of the error amp loop.  
voltage since ΔI increases with input voltage.  
L
Iftantalumcapacitorsareused,itiscriticalthatthecapacitors  
are surge tested for use in switching power supplies. An  
excellent choice is the AVX TPS series of surface mount  
tantalum.Thesearespeciallyconstructedandtestedforlow  
ESR so they give the lowest ESR for a given volume. Other  
capacitor types include Sanyo POSCAP, Kemet T510 and  
T495 series, and Sprague 593D and 595D series. Consult  
the manufacturer for other specific recommendations.  
To improve the frequency response of the main control  
loop, a feedback capacitor (C ) may also be used. Great  
F
care should be taken to route the V line away from noise  
FB  
sources, such as the inductor or the SW line.  
Fixed output versions of the LTC3419 (e.g. LTC3419-1)  
include an internal resistive divider, eliminating the need  
for external resistors. The resistor divider is chosen  
Using Ceramic Input and Output Capacitors  
such that the V input current is approximately 3μA. For  
FB  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high  
ripple current, high voltage rating and low ESR make  
them ideal for switching regulator applications. Because  
the LTC3419 control loop does not depend on the output  
capacitor’s ESR for stable operation, ceramic capacitors  
can be used freely to achieve very low output ripple and  
small circuit size.  
these versions the V pin should be connected directly  
FB  
to V . Table 2 lists the fixed output voltages available  
OUT  
for the LTC3419.  
Table 2. Fixed Output Voltage Versions  
PART NUMBER  
LTC3419  
V
V
OUT2  
OUT1  
Adjustable  
1.575V  
Adjustable  
1.8V  
LTC3419-1  
3419fa  
10  
LTC3419  
APPLICATIONS INFORMATION  
Checking Transient Response  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Percent efficiency can  
be expressed as:  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators  
take several cycles to respond to a step in load current.  
% Efficiency = 100% – (L1 + L2 + L3 + ...)  
When a load step occurs, V  
immediately shifts by an  
OUT  
amount equal to ΔI  
series resistance of C . ΔI  
• ESR, where ESR is the effective  
LOAD  
whereL1,L2,etc.,aretheindividuallossesasapercentage  
of input power.  
also begins to charge or  
OUT LOAD  
dischargeC  
generatingafeedbackerrorsignalusedby  
OUT  
Although all dissipative elements in the circuit produce  
losses, four sources usually account for the losses in  
theregulatortoreturnV toitssteady-statevalue.During  
this recovery time, V  
or ringing that would indicate a stability problem.  
OUT  
can be monitored for overshoot  
OUT  
LTC3419 circuits: 1) V quiescent current, 2) switching  
IN  
2
losses, 3) I R losses, 4) other system losses.  
The initial output voltage step may not be within the  
bandwidth of the feedback loop, so the standard second  
order overshoot/DC ratio cannot be used to determine the  
1. The V current is the DC supply current given in the  
IN  
Electrical Characteristics which excludes MOSFET  
driver and control currents. V current results in a  
IN  
phase margin. In addition, feedback capacitors (C and  
F1  
small (<0.1%) loss that increases with V , even at  
IN  
C )canbeaddedtoimprovethehighfrequencyresponse,  
F2  
no load.  
as shown in Figure 1. Capacitor C provides phase lead by  
F
2. The switching current is the sum of the MOSFET driver  
andcontrolcurrents.TheMOSFETdrivercurrentresults  
from switching the gate capacitance of the power  
MOSFETs. Each time a MOSFET gate is switched from  
low to high to low again, a packet of charge dQ moves  
creating a high frequency zero with R2 which improves  
the phase margin.  
Theoutputvoltagesettlingbehaviorisrelatedtothestability  
of the closed-loop system and will demonstrate the actual  
overall supply performance. For a detailed explanation of  
optimizing the compensation components, including a re-  
view of control loop theory, refer to Application Note 76.  
from V to ground. The resulting dQ/dt is a current  
IN  
out of V that is typically much larger than the DC bias  
IN  
current. In continuous mode, I  
= f (Q + Q ),  
GATECHG  
O T B  
where Q and Q are the gate charges of the internal top  
Insomeapplications,amoreseveretransientcanbecaused  
byswitchinginloadswithlarge(>1μF)inputcapacitors.The  
discharged input capacitors are effectively put in parallel  
T
B
and bottom MOSFET switches. The gate charge losses  
are proportional to V and thus their effects will be  
IN  
more pronounced at higher supply voltages.  
with C , causing a rapid drop in V . No regulator can  
OUT  
OUT  
2
deliverenoughcurrenttopreventthisproblemiftheswitch  
connectingtheloadhaslowresistanceandisdrivenquickly.  
Thesolutionistolimittheturn-onspeedoftheloadswitch  
driver. A Hot Swap™ controller is designed specifically for  
this purpose and usually incorporates current limiting,  
short-circuit protection, and soft-starting.  
3. I R losses are calculated from the DC resistances  
of the internal switches, R , and external inductor,  
SW  
R . In continuous mode, the average output current  
L
flows through inductor L, but is “chopped” between  
the internal top and bottom switches. Thus, the series  
resistance looking into the SW pin is a function of both  
top and bottom MOSFET R  
(DC) as follows:  
and the duty cycle  
DS(ON)  
Efficiency Considerations  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
R
SW  
= (R ) • (DC) + (R ) • (1– DC)  
DS(ON)TOP DS(ON)BOT  
Hot Swap is a trademark of Linear Technology Corporation.  
3419fa  
11  
LTC3419  
APPLICATIONS INFORMATION  
TheR  
forboththetopandbottomMOSFETscanbe  
Given that the thermal resistance of a properly soldered  
DFN package is approximately 40°C/W, the junction  
temperature of an LTC3419 device operating in a 70°C  
ambient temperature is approximately:  
DS(ON)  
obtained from the Typical Performance Characteristics  
2
curves. Thus, to obtain I R losses:  
2
2
I R losses = I  
• (R + R )  
SW L  
OUT  
T = (2 • 0.216W • 40°C/W) + 70°C = 87.3°C  
J
4. Other “hidden” losses, such as copper trace and  
internal battery resistances, can account for additional  
efficiency degradations in portable systems. It is very  
important to include these “system” level losses in  
the design of a system. The internal battery and fuse  
resistancelossescanbeminimizedbymakingsurethat  
which is well below the absolute maximum junction  
temperature of 125°C.  
PC Board Layout Considerations  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
LTC3419.Theseitemsarealsoillustratedgraphicallyinthe  
layout diagrams of Figures 2 and 3. Check the following  
in your layout:  
C has adequate charge storage and very low ESR at  
IN  
the switching frequency. Other losses, including diode  
conduction losses during dead-time, and inductor  
core losses, generally account for less than 2% total  
additional loss.  
1. Does the capacitor C connect to the power V (Pin 5)  
IN  
IN  
and GND (Pin 9) as closely as possible? This capacitor  
provides the AC current of the internal power MOSFETs  
and their drivers.  
Thermal Considerations  
In a majority of applications, the LTC3419 does not  
dissipate much heat due to its high efficiency. In the  
unlikely event that the junction temperature somehow  
reachesapproximately150°C,bothpowerswitcheswillbe  
turned off and the SW node will become high impedance.  
The goal of the following thermal analysis is to determine  
whetherthepowerdissipatedcausesenoughtemperature  
risetoexceedthemaximumjunctiontemperature(125°C)  
of the part. The temperature rise is given by:  
2. Are the respective C  
and L closely connected? The  
OUT  
(–) plate of C  
returns current to GND and the (–)  
OUT  
plate of C .  
IN  
3. The resistor divider, R1 and R2, must be connected  
between the (+) plate of C and a ground sense line  
OUT1  
terminatednearGND(Pin9). ThefeedbacksignalsV  
FB1  
andV shouldberoutedawayfromnoisycomponents  
FB2  
and traces, such as the SW lines (Pins 4 and 6), and  
their trace length should be minimized.  
T
= P θ  
D JA  
RISE  
Where P is the power dissipated by the regulator and  
D
4. Keep sensitive components away from the SW pins, if  
θ
is the thermal resistance from the junction of the die  
to the ambient temperature. The junction temperature,  
T , is given by:  
JA  
possible. The input capacitor C and the resistors R1,  
IN  
R2, R3 and R4 should be routed away from the SW  
J
traces and the inductors.  
T = T  
J
+ T  
AMBIENT  
RISE  
5. A ground plane is preferred, but if not available, keep  
the signal and power grounds segregated with small  
signal components returning to the GND pin at a single  
point. These ground traces should not share the high  
As a worst-case example, consider the case when the  
LTC3419isindropoutonbothchannelsataninputvoltage  
of 2.7V with a load current of 600mA and an ambient  
temperature of 70°C. From the Typical Performance  
current path of C or C  
.
IN  
OUT  
Characteristics graph of Switch Resistance, the R  
DS(ON)  
6. Flood all unused areas on all layers with copper.  
Flooding with copper will reduce the temperature rise  
of power components. These copper areas should be  
of the main switch is 0.6Ω. Therefore, power dissipated  
by each channel is:  
2
P = I  
D
• R  
= 216mV  
DS(ON)  
OUT  
connected to V or GND.  
IN  
3419fa  
12  
LTC3419  
APPLICATIONS INFORMATION  
V
IN  
2.5V TO 5.5V  
C1  
RUN2  
V
RUN1  
MODE  
IN  
LTC3419  
SW2  
SW1  
L2  
L1  
V
OUT2  
V
OUT1  
C
C
F1  
F2  
V
V
FB1  
FB2  
GND  
R4  
R2  
C
OUT2  
C
OUT1  
R3  
R1  
3419 F02  
BOLD LINES INDICATE HIGH CURRENT PATHS  
Figure 2. LTC3419 Layout Diagram (See Board Layout Checklist)  
C
C
F2  
F1  
R2  
R1  
R3  
R4  
V
V
OUT2  
OUT1  
C
OUT1  
C
OUT2  
VIA TO V  
IN  
V
V
FB2  
FB1  
L1  
L2  
RUN1  
MODE  
SW1  
RUN2  
SW2  
V
IN  
VIA TO GND  
GND  
C
IN  
3419 F03  
Figure 3. LTC3419 Suggested Layout  
Design Example  
A 10μF ceramic capacitor should be more than sufficient  
for this output capacitor. As for the input capacitor, a  
As a design example, consider using the LTC3419 in a  
portable application with a Li-Ion battery. The battery  
typical value of C = 10μF should suffice, as the source  
IN  
impedance of a Li-Ion battery is very low.  
provides a V ranging from 2.8V to 4.2V. The load on  
IN  
each channel requires a maximum of 600mA in active  
The feedback resistors program the output voltage. To  
maintain high efficiency at light loads, the current in these  
resistors should be kept small. Choosing 10μA with the  
0.6V feedback voltage makes R1~60k. A close standard  
1% resistor is 59k. Using Equation 2.  
mode and 2mA in standby mode. The output voltages are  
V
OUT1  
= 2.5V and V  
= 1.8V.  
OUT2  
Start with channel 1. First, calculate the inductor value  
for about 40% ripple current (240mA in this example) at  
maximum V . Using a derivation of Equation 1:  
V
0.6  
IN  
OUT  
R2 =  
1 R1= 187k  
2.5V  
2.5V  
4.2V  
L1=  
• 1−  
= 1.87μH  
2.25MHz (240mA)  
An optional 22pF feedback capacitor (C ) may be used  
F1  
to improve transient response.  
For the inductor, use the closest standard value of  
2.2μH.  
3419fa  
13  
LTC3419  
APPLICATIONS INFORMATION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Using the same analysis for channel 2 (V  
= 1.8V),  
OUT2  
the results are:  
L2 = 1.9μH  
R3 = 59k  
R4 = 118k  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
C
= 22pF  
IN  
IN  
IN  
F2  
V
= 1.8V  
1
OUT  
Figure 4 shows the complete schematic for this example,  
along with the efficiency curve and transient response.  
0.1  
10  
100  
1000  
OUTPUT CURRENT (mA)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
2.5V TO 5.5V  
C1  
10μF  
RUN2  
V
RUN1  
MODE  
IN  
L2  
2.2μH  
L1  
LTC3419  
SW2  
SW1  
2.2μH  
V
V
OUT1  
OUT2  
1.8V AT  
600mA  
2.5V AT  
600mA  
C
, 22pF  
C , 22pF  
F1  
F2  
V
FB2  
V
FB1  
C
R4  
GND  
R2  
187k  
C
R3  
59k  
R1  
59k  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
OUT2  
OUT1  
10μF  
IN  
IN  
IN  
10μF  
118k  
V
OUT  
= 2.5V  
1
3419 F04a  
0.1  
10  
100  
1000  
OUTPUT CURRENT (mA)  
C1, C2, C3: TAIYO YUDEN JMK316BJ106ML  
L1, L2: TDK VLF3010AT2R2M1RD  
3419 F04b  
Figure 4a. Design Example Circuit  
Figure 4b. Efficiency vs Output Current  
Transient Response  
Load Step  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
L
L
500mA/DIV  
500mA/DIV  
I
I
LOAD  
500mA/DIV  
LOAD  
500mA/DIV  
3419 F04c1  
3419 F04c2  
20μs/DIV  
20μs/DIV  
V
V
LOAD  
= 3.6V  
V
= 3.6V  
IN  
IN  
= 1.8V  
V
= 2.5V  
OUT  
OUT  
I
= 40mA TO 600mA  
I
= 40mA TO 600mA  
LOAD  
Figure 4c. Transient Response  
3419fa  
14  
LTC3419  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 0.10  
8
TYP  
5
0.675 0.05  
3.5 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10 1.65 0.10  
PACKAGE  
OUTLINE  
(4 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 0.127  
(.035 .005)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.497 0.076  
(.0196 .003)  
REF  
10 9  
8
7 6  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
0.50  
(.0197)  
BSC  
0.305 0.038  
(.0120 .0015)  
TYP  
1
2
3
4 5  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0° – 6° TYP  
DETAIL “A”  
0.254  
(.010)  
0.18  
(.007)  
GAUGE PLANE  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.53 0.152  
(.021 .006)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE  
0.102mm (.004") MAX  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
3419fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3419  
TYPICAL APPLICATIONS  
Dual 600mA Buck Converter  
1.8V/1.575V Dual 600mA Buck Converter  
V
V
IN  
2.5V TO 5.5V  
IN  
2.5V TO 5.5V  
C1  
C1  
10μF  
10μF  
RUN2  
V
RUN1  
MODE  
RUN2  
V
RUN1  
MODE  
IN  
IN  
L2  
3.3μH  
L1  
3.3μH  
L2  
3.3μH  
L1  
LTC3419  
SW2  
SW1  
LTC3419-1  
SW2  
SW1  
3.3μH  
V
V
V
V
OUT1  
OUT2  
1.8V AT  
600mA  
OUT1  
OUT2  
2.5V AT  
600mA  
1.575V AT  
600mA  
1.8V AT  
600mA  
C
F2  
, 22pF  
C
, 22pF  
F1  
V
V
V
FB2  
V
FB1  
FB2  
FB1  
C
GND  
C
C
GND  
C
R4  
118k  
R3  
59k  
R1  
R2  
OUT2  
10μF  
OUT1  
10μF  
OUT2  
10μF  
OUT1  
10μF  
59k 187k  
3419 TA02  
3419 TA03  
C1, C2, C3: TAIYO YUDEN JMK316BJ106ML  
L1, L2: TDK VLF3010AT3R3M1RD  
C1, C2, C3: TAIYO YUDEN JMK316BJ106ML  
L1, L2: TDK VLF3010AT3R3M1RD  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3405/LTC3405A  
300mA I , 1.5MHz, Synchronous  
95% Efficiency, V  
= 2.5V, V  
= 2.5V, V  
= 2.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 0.8V, I = 20μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
IN(MAX)  
IN(MAX)  
IN(MAX)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converters  
ThinSOTTM Package  
LTC3406/LTC3406B  
600mA I , 1.5MHz, Synchronous  
96% Efficiency, V  
ThinSOT Package  
= 0.6V, I = 20μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
Step-Down DC/DC Converters  
LTC3407/LTC3407-2 Dual 600mA/800mA I , 1.5MHz/  
95% Efficiency, V  
= 0.6V, I = 40μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
2.25MHz, Synchronous Step-Down  
DC/DC Converters  
MS10E and DFN Packages  
LTC3409  
600mA I , 1.7MHz/2.6MHz,  
96% Efficiency, V  
DFN Package  
= 1.6V, V  
= 5.5V, V  
= 0.6V, I = 65μA, I = <1μA,  
OUT(MIN) Q SD  
OUT  
IN(MIN)  
IN(MAX)  
Synchronous Step-Down DC/DC  
Converter  
LTC3410/LTC3410B  
LTC3411  
300mA I , 2.25MHz, Synchronous  
95% Efficiency, V  
SC70 Package  
= 2.5V, V  
= 2.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 5.5V, V  
= 0.8V, I = 26μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
IN(MAX)  
IN(MAX)  
IN(MAX)  
IN(MAX)  
IN(MAX)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converters  
1.25A I , 4MHz, Synchronous  
95% Efficiency, V  
= 0.8V, I = 60μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
Step-Down DC/DC Converter  
MS10 and DFN Packages  
LTC3412  
2.5A I  
4MHz, Synchronous  
95% Efficiency, V  
= 2.5V, V  
= 0.8V, I = 60μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
Step-Down DC/DC Converter  
TSSOP-16E Package  
LTC3441/LTC3442,  
LTC3443  
1.2A I 2MHz, Synchronous  
95% Efficiency, V  
SD  
= 2.4V, V  
: 2.4V to 5.25V, I = 50μA,  
Q
OUT  
IN(MIN)  
Buck-Boost DC/DC Converters  
I
= <1μA, DFN Package  
LTC3531/LTC3531-3/ 200mA I , 1.5MHz, Synchronous  
LTC3531-3.3  
95% Efficiency, V  
= 1.8V, V  
: 2V to 5V, I = 16μA,  
Q
OUT  
IN(MIN)  
Buck-Boost DC/DC Converter  
I
= <1μA, ThinSOT and DFN Packages  
SD  
LTC3532  
500mA I , 2MHz, Synchronous  
95% Efficiency, V  
SD  
= 2.4V, V  
: 2.4V to 5.25V, I = 35μA,  
Q
OUT  
IN(MIN)  
IN(MAX)  
Buck-Boost DC/DC Converter  
I
= <1μA, MS10 and DFN Packages  
LTC3547/LTC3547B  
Dual 300mA I , 2.25MHz,  
95% Efficiency, V  
DFN-8 Package  
= 2.5V, V  
: 0.6V, I = 40μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
IN(MAX)  
Synchronous Step-Down DC/DC  
Converters  
LTC3548/LTC3548-1/ Dual 400mA and 800mA I  
,
95% Efficiency, V  
= 2.5V, V  
= 5.5V, V  
= 5.5V, V  
: 0.6V, I = 40μA, I = <1μA,  
Q SD  
OUT  
IN(MIN)  
IN(MAX)  
IN(MAX)  
OUT(MIN)  
LTC3548-2  
2.25MHz, Synchronous Step-Down  
DC/DC Converters  
MS10E and DFN Packages  
LTC3561  
1.25A I , 4MHz, Synchronous  
95% Efficiency, V  
DFN Package  
= 2.5V, V  
: 0.8V, I = 240μA, I = <1μA,  
OUT(MIN) Q SD  
OUT  
IN(MIN)  
Step-Down DC/DC Converter  
ThinSOT™ is a trademark of Linear Technology Corporation.  
3419fa  
LT 0309 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3419IMS#TRPBF

LTC3419 - Dual Monolithic 600mA Synchronous Step-Down Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3419IMS-1#TRPBF

LTC3419 - Dual Monolithic 600mA Synchronous Step-Down Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3421

3A, 3MHz Micropower Synchronous Boost Converter with Output Disconnect
Linear

LTC3421EUF

3A, 3MHz Micropower Synchronous Boost Converter with Output Disconnect
Linear

LTC3421EUF#PBF

LTC3421 - 3A, 3MHz Micropower Synchronous Boost Converter with Output Disconnect; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3421EUF#TR

LTC3421 - 3A, 3MHz Micropower Synchronous Boost Converter with Output Disconnect; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3422

1.5A, 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3422EDD

1.5A, 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3422EDD#PBF

LTC3422 - 1.5A, 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3422EDD#TR

LTC3422 - 1.5A, 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3422EDD#TRPBF

LTC3422 - 1.5A, 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3423

Low Output Voltage 3MHz Micropower Synchronous Boost Converters
Linear System