LTC3541-2 [Linear]

High Efficiency Buck + VLDO Regulator; 高效率降压+ VLDO稳压器
LTC3541-2
型号: LTC3541-2
厂家: Linear    Linear
描述:

High Efficiency Buck + VLDO Regulator
高效率降压+ VLDO稳压器

稳压器
文件: 总20页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3541-2  
High Efficiency  
Buck + VLDO Regulator  
U
DESCRIPTIO  
FEATURES  
High Efficiency, 500mA Buck Plus 300mA VLDO  
TheꢀLTC®3541-2ꢀcombinesꢀaꢀsynchronousꢀbuckꢀDC/  
DCꢀconverterꢀwithꢀaꢀveryꢀlowꢀdropoutꢀlinearꢀregulatorꢀ  
(VLDOTMregulator)andinternalfeedbackresistornetworksꢀ  
toꢀprovideꢀtwoꢀoutputꢀvoltagesꢀfromꢀaꢀsingleꢀinputꢀvolt-  
ageꢀwithꢀminimalꢀexternalꢀcomponents.ꢀWhenꢀconfiguredꢀ  
forꢀdualꢀoutputꢀoperation,ꢀtheꢀLTC3541-2’sꢀautoꢀstart-upꢀ  
featureꢀwillꢀbringꢀtheꢀ1.875Vꢀbuckꢀoutputꢀintoꢀregulationꢀ  
inꢀaꢀcontrolledꢀmanner,ꢀpriorꢀtoꢀenablingꢀtheꢀ1.5VꢀVLDOꢀ  
outputꢀwithoutꢀtheꢀneedꢀforꢀexternalꢀpinꢀcontrol.ꢀTheꢀ  
1.5VꢀVLDO/linearꢀregulatorꢀoutputꢀpriorꢀtoꢀ1.875Vꢀbuckꢀ  
outputꢀsequencingꢀmayꢀalsoꢀbeꢀobtainedꢀviaꢀexternalꢀpinꢀ  
control.ꢀTheꢀinputꢀvoltageꢀrangeꢀisꢀideallyꢀsuitedꢀforꢀLi-Ionꢀ  
batteryꢀapplicationsꢀpoweringꢀsub-3.3Vꢀlogicꢀfromꢀ5Vꢀorꢀ  
3.3Vꢀrails.  
Regulator  
Auto Start-Up Powers Buck Output Prior to VLDO/  
Linear Regulator Output  
Independent 500mA High Efficiency Buck  
(V : 2.7V to 5.5V)  
IN  
300mA VLDO Regulator with 30mA Standalone Mode  
No External Schottky Diodes Required  
FixedBuck Output Voltage: 1.875V  
VLDO Input Voltage Range (LV : 1.6V to 5.5V)  
IN  
FixedVLDO Output Voltage: 1.5V  
ꢀ SelectableꢀFixedꢀFrequency,ꢀPulse-SkipꢀOperation  
ꢀ orꢀBurstꢀMode®ꢀOperation  
ꢀ Short-CircuitꢀProtected  
ꢀ CurrentꢀModeꢀOperationꢀforꢀExcellentꢀLineꢀandꢀLoadꢀ  
Thesynchronousbuckconverterprovidesahighefficiencyꢀ  
output,typically90%.Itcanprovideupto500mAofoutputꢀ  
currentꢀwhileꢀswitchingꢀatꢀ2.25MHz,ꢀallowingꢀtheꢀuseꢀofꢀ  
smallꢀsurfaceꢀmountꢀinductorsꢀandꢀcapacitors.ꢀAꢀmode-  
selectꢀpinꢀallowsꢀBurstꢀModeꢀoperationꢀtoꢀbeꢀenabledꢀforꢀ  
higherefficiencyatlightloadcurrents,ordisabledforlowerꢀ  
noise,constantfrequencyoperation.ꢀ  
TransientꢀResponse  
ꢀ ShutdownꢀCurrent:ꢀ<3µA  
ꢀ ConstantꢀFrequencyꢀOperation:ꢀ2.25MHz  
ꢀ LowꢀDropoutꢀBuckꢀOperation:ꢀ100%ꢀDutyꢀCycle  
ꢀ Small,ꢀThermallyꢀEnhanced,ꢀ10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀ  
DFNꢀPackage  
U
TheVLDOregulatorprovidesalownoise,lowvoltageꢀ  
outputcapableofprovidingupto300mAofoutputcurrentꢀ  
usingꢀonlyꢀaꢀ2.2µFꢀceramicꢀcapacitor.ꢀTheꢀinputꢀsupplyꢀ  
voltageꢀofꢀtheꢀVLDOꢀregulatorꢀ(LV )ꢀmayꢀcomeꢀfromꢀtheꢀ  
buckꢀregulatorꢀoutputꢀorꢀaꢀseparateꢀsupply.  
APPLICATIO S  
ꢀ DigitalꢀCameras  
ꢀ CellularꢀPhones  
IN  
ꢀ PCꢀCards  
ꢀ WirelessꢀandꢀDSLꢀModems  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
ꢀ OtherꢀPortableꢀPowerꢀSystems  
Corporation. VLDO is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5481178, 6611131, 6304066, 6498466, 6580258.  
U
Buck (Burst) Efficiency vs Load Current  
TYPICAL APPLICATIO  
100  
1
V
= 3V  
V
IN  
IN  
90  
2.9V TO 5.5V  
EFFICIENCY  
80  
0.1  
70  
SW  
ENVLDO  
MODE  
60  
50  
V
IN  
POWER LOSS  
2.2µH  
0.01  
0.001  
0.0001  
LTC3541-2  
ENBUCK GND  
40  
30  
20  
10  
0
V
OUT1  
V
OUT  
1.875V  
200mA  
V
OUT2  
1.5V  
LV  
LV  
IN  
OUT  
300mA  
PGND  
10µF  
2.2µF  
35412 TA01a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35412 TA01b  
35412fb  
            
                         
ꢀ ENVLDO,ꢀENBUCK,ꢀMODE,ꢀSWꢀ......–0.3VꢀtoꢀV ꢀ+ꢀ0.3V  
IN  
                            
LTC3541-2  
W W W U  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
SupplyꢀVoltages:  
ꢀ V ,ꢀLV ꢀ.................................................. –0.3Vꢀtoꢀ6V  
V
1
2
3
4
5
10 SW  
IN  
IN  
IN  
ENBUcK  
9
8
7
6
ENVLDO  
ꢀ LV ꢀ–ꢀV ꢀ..........................................................<0.3V  
IN  
IN  
11  
V
MODE  
GND  
OUT  
Nc  
PinꢀVoltages:  
LV  
LV  
IN  
OUT  
LinearꢀRegulatorꢀI  
ꢀ(100ms)ꢀ(Noteꢀ9)......100mA  
OUT(MAX)  
DD PAcKAGE  
10-LEAD (3mm × 3mm) PLASTIc DFN  
OperatingꢀAmbientꢀTemperatureꢀRangeꢀ  
(Noteꢀ2).................................................... –40°Cꢀtoꢀ85°C  
JunctionꢀTemperatureꢀ(Notesꢀ5,ꢀ10)...................... 125°C  
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ125°C  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ43°C/W  
JA  
EXPOSEDꢀPADꢀ(PINꢀ11)ꢀISꢀPGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
JMAX  
ORDERꢀPARTꢀNUMBER  
LTC3541EDD-2  
DDꢀPARTꢀMARKING  
LCHQ  
Order OptionsꢀꢀꢀTapeꢀandꢀReel:ꢀAddꢀ#TRꢀ  
LeadꢀFree:ꢀAddꢀ#PBFꢀꢀꢀLeadꢀFreeꢀTapeꢀandꢀReel:ꢀAddꢀ#TRPBFꢀ  
LeadꢀFreeꢀPartꢀMarking:ꢀhttp://www.linear.com/leadfree/  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Note 2)  
SYMBOL  
PARAMETER  
PeakꢀInductorꢀCurrent  
CONDITIONS  
V ꢀ=ꢀ4.2Vꢀ(Noteꢀ8)  
IN  
MIN  
0.8  
TYP  
0.95  
MAX  
1.25  
UNITS  
Aꢀ  
I
PK  
V
V
InputꢀVoltageꢀRange  
(Noteꢀ4)  
2.7  
5.5  
0.4  
V
IN  
BuckꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ2.7Vꢀtoꢀ5.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
0.04  
2.2  
2.2  
0.8  
%/V  
IN(LINEREG)  
IN  
IN  
IN  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
IN  
VLDOꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ2.9Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀ  
mV/V  
mV/V  
mV/V  
IN  
IN  
OUT  
IN  
(ReferredꢀtoꢀLV  
)
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V, I  
ꢀ=ꢀ100mAꢀ  
OUT  
IN  
ꢀ OUT(VLDO)  
LinearꢀRegulatorꢀV ꢀLineꢀ  
V ꢀ=ꢀ2.9Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀ0V,ꢀꢀ  
IN OUT  
ENVLDOꢀ=ꢀV ,ꢀI  
IN  
Regulationꢀ(ReferredꢀtoꢀLV  
)
ꢀ=ꢀ10mA  
OUT  
IN OUT(LDO)  
LV  
LV ꢀLineꢀRegulationꢀꢀ  
LV ꢀ=ꢀ1.6Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ5.5V,ꢀLV ꢀ=ꢀ1.5V,ꢀꢀ  
IN(LINEREG)  
IN  
IN IN OUT  
(ReferredꢀtoꢀLV  
)
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀꢀ  
OUT  
IN  
IN  
IN  
I
ꢀ=ꢀ100mA  
OUT(VLDO)  
VLDO  
LV ꢀ–ꢀLV ꢀDropoutꢀVoltage LV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀꢀ  
20  
50  
mV  
DO  
IN  
OUT  
OUT  
IN  
IN  
MODEꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ50mAꢀ(Noteꢀ9)  
IN OUT(VLDO)  
V
BuckꢀOutputꢀLoadꢀRegulationꢀ ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
0.5  
%
%
LOADREG  
IN  
IN  
VLDOꢀOutputꢀLoadꢀRegulationꢀ  
I
ꢀ=ꢀ1mAꢀ–ꢀ300mA,ꢀLV ꢀ=ꢀ1.875V,ꢀLV ꢀ=ꢀ1.5V,ꢀ  
0.25  
0.5  
0.5  
OUT(VLDO)  
IN  
OUT  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV  
IN  
IN  
IN  
LinearꢀRegulatorꢀOutputꢀLoadꢀꢀ  
Regulation  
I
ꢀ=ꢀ1mAꢀ–ꢀ30mA,ꢀLV ꢀ=ꢀ1.5V,ꢀꢀ  
0.25ꢀ  
%
OUT(LDO)  
OUT  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV  
IN  
V
V
ReferenceꢀRegulationꢀVoltageꢀ ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀT ꢀ=ꢀ25°C  
1.837  
1.833  
1.828  
1.47  
1.875  
1.875  
1.875  
1.5  
1.913  
1.917  
1.922  
1.53  
V
V
V
V
V
V
VOUT  
IN  
A
(Noteꢀ6)ꢀ  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ReferenceꢀRegulationꢀVoltageꢀ ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀT ꢀ=ꢀ25°C  
LVOUT  
IN  
A
(Noteꢀ7)  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
1.466  
1.462  
1.5  
1.534  
1.538  
IN  
A
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
1.5  
IN  
A
35412fb  
LTC3541-2  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.875V,ꢀLV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
85  
µA  
S
IN  
OUT  
IN  
BurstꢀModeꢀSleepꢀꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
IN  
V
ꢀ=ꢀ2.11V  
VOUT  
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.875V,ꢀLV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
315  
300  
55  
µA  
µA  
µA  
µA  
µA  
IN  
OUT  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
V
ꢀ=ꢀ1.64V  
IN  
VOUT  
Buckꢀ+ꢀVLDOꢀ  
LV ꢀ=ꢀ1.875V,ꢀLV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
IN  
OUT  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
IN OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
V
V
ꢀ=ꢀ1.64V  
IN  
VOUT  
Buckꢀ  
ꢀ=ꢀ2.11V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
VOUT  
OUT(BUCK)  
IN  
BurstꢀModeꢀSleepꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
V ꢀQuiescentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ1.64V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
300  
285  
VOUT  
OUT(BUCK)  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
V ꢀQuiscentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ1.64V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
VOUT  
OUT(BUCK)  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV  
IN  
V ꢀQuiescentꢀCurrent  
IN  
LinearꢀRegulatorꢀV ꢀQuiescentꢀ LV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀꢀ  
50  
2.5  
0.1  
µA  
µA  
µA  
IN  
OUT  
IN  
Current  
I
ꢀ=ꢀ10µA  
OUT(VLDO)  
V ꢀShutdownꢀQuiescentꢀ  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
IN  
Current  
LV ꢀShutdownꢀQuiescentꢀ  
LV ꢀ=ꢀ3.6V,ꢀENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
IN  
IN  
Current  
f
OscillatorꢀFrequency  
1.8  
0.9  
2.25  
0.25  
0.35  
0.01  
2.7  
1
MHz  
Ω
OSC  
R
R
I
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
I
I
ꢀ=ꢀ100mA  
PFET  
DS(ON)  
SW  
Ω
ꢀ=ꢀ–100mA  
SW  
NFET  
DS(ON)  
SWꢀLeakage  
Enableꢀ=ꢀ0V,ꢀV ꢀ=ꢀ0Vꢀorꢀ6V,ꢀV ꢀ=ꢀ6V  
SW IN  
µA  
V
LSW  
V
InputꢀPinꢀHighꢀThreshold  
InputꢀPinꢀLowꢀThreshold  
InputꢀPinꢀCurrent  
MODE,ꢀENBUCK,ꢀENVLDO  
IH  
IL  
V
I
I
I
MODE,ꢀENBUCK,ꢀENVLDO  
0.3  
1
V
,ꢀ  
0.01  
µA  
MODE  
ENBUCK  
ENVLDO  
,ꢀ  
Note 6:ꢀTheꢀLTC3541-2ꢀisꢀtestedꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀthatꢀconnectsꢀ  
ꢀtoꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifier.ꢀForꢀtheꢀreferenceꢀregulationꢀ  
andꢀlineꢀregulationꢀtests,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀsetꢀtoꢀtheꢀ  
midpoint.ꢀForꢀtheꢀloadꢀregulationꢀtest,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀ  
drivenꢀtoꢀtheꢀminimumꢀandꢀmaximumꢀofꢀtheꢀsignalꢀrange.  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
V
BUCKFB  
Note 2:ꢀTheꢀLTC3541-2ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀVLDO/linearꢀregulatorꢀoutputꢀisꢀtestedꢀandꢀspecifiedꢀ  
underꢀpulseꢀloadꢀconditionsꢀsuchꢀthatꢀT ꢀ≈ꢀT ,ꢀandꢀareꢀ100%ꢀproductionꢀ  
Note 7:ꢀMeasurementꢀmadeꢀinꢀclosedꢀloopꢀlinearꢀregulatorꢀconfigurationꢀ  
withꢀLV ꢀ=ꢀ1.5V,ꢀI  
ꢀ=ꢀ10µA.  
LOAD  
OUT  
J
A
testedꢀatꢀ25°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀ  
temperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀcorrelationꢀ  
withꢀstatisticalꢀprocessꢀcontrols.  
Note 8:ꢀMeasurementꢀmadeꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀwithꢀslopeꢀ  
compensationꢀdisabled.  
Note 9:ꢀMeasurementꢀisꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀstatisticalꢀ  
processꢀcontrol.  
Note 10:ꢀThisꢀICꢀincludesꢀovertemperatureꢀprotectionꢀthatꢀisꢀintendedꢀ  
toꢀprotectꢀtheꢀdeviceꢀduringꢀmomentaryꢀoverloadꢀconditions.ꢀJunctionꢀ  
temperatureꢀwillꢀexceedꢀ125°Cꢀwhenꢀovertemperatureꢀprotectionꢀisꢀactive.ꢀ  
Continuousꢀoperationꢀaboveꢀtheꢀspecifiedꢀmaximumꢀoperatingꢀjunctionꢀ  
temperatureꢀmayꢀimpairꢀdeviceꢀreliability.  
Note 3:ꢀMinimumꢀoperatingꢀLV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀregulationꢀis:ꢀꢀ ꢀ  
IN  
LV ꢀ≥ꢀLV ꢀ+ꢀV  
.
IN  
OUT  
DROPOUT  
Note 4:ꢀMinimumꢀoperatingꢀV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀandꢀlinearꢀ  
IN  
regulatorꢀregulationꢀis:ꢀꢀ  
V ꢀ≥ꢀLV ꢀ+ꢀ1.4V.  
IN  
OUT  
Note 5:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperature,ꢀT ,ꢀandꢀpowerꢀ  
J
A
dissipation,ꢀP ,ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
T ꢀ=ꢀT ꢀ+ꢀ(P ꢀ•ꢀ43°C/W)  
J A D  
35412fb  
LTC3541-2  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Efficiency vs Input Voltage for  
Buck (Pulse Skip)  
Efficiency vs Input Voltage for  
Buck (Burst)  
Efficiency vs Load Current for  
Buck (Pulse Skip)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 2.7V  
IN  
I
= 500mA  
OUT  
V
= 3.6V  
IN  
I
= 500mA  
OUT  
V
= 4.2V  
IN  
I
= 100mA  
OUT  
I
= 30mA  
I
= 100mA  
OUT  
OUT  
I
= 30mA  
OUT  
4
INPUT VOLTAGE (V)  
2
3
5
6
0.1  
1
10  
100  
1000  
2
3
4
5
6
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
35412 G03  
35412 G01  
35412 G02  
VLDO Dropout Voltage  
vs Load Current  
Buck (Burst) Plus VLDO Bias  
Current vs VLDO Load Current  
Efficiency vs Load Current for  
Buck (Burst)  
100  
100  
80  
250  
200  
150  
100  
50  
V
= 2.7V  
V
= 3.6V  
IN  
IN  
V
= 3.6V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 0  
LOAD_BUCK  
BIAS VIN LVIN LOAD  
= I + I  
– I  
V
= 3V  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
60  
V
= 4.2V  
IN  
40  
20  
0
0
0
100  
150  
200  
250  
300  
0.1  
1
10  
100  
1000  
50  
1
10  
100  
0.1  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
35412 G04  
35412 G05  
35412 G06  
Output (Auto Start-Up Sequence,  
Buck in Pulse Skip) vs Time  
Oscillator Frequency  
vs Temperature  
2.50  
V
= 3.6V  
IN  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
V
OUT  
1V/DIV  
LV  
1V/DIV  
OUT  
V
IN  
2V/DIV  
35412 G07  
I
I
= 200mA  
LVOUT  
2ms/DIV  
VOUT  
= 300mA  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
35412 G08  
35412fb  
LTC3541-2  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency  
vs Supply Voltage  
VLDO/Linear Regulator Reference  
vs Temperature  
Buck Reference vs Temperature  
0.410  
0.408  
0.406  
0.404  
0.402  
0.400  
0.398  
0.396  
0.394  
0.392  
0.390  
0.820  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
0.780  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= 3.6V  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
IN  
–50  
0
25  
50  
75 100 125  
–25  
50  
TEMPERATURE (°C)  
125  
3
4
5
6
–50  
0
25  
75  
–25  
100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
35412 G19  
35412 G09  
35412 G20  
Buck (Pulse Skip) Load Step from  
1mA to 500mA  
RDS(0N) vs Temperature  
Buck (Burst) and VLDO Output  
0.700  
0.600  
0.500  
0.400  
0.300  
0.200  
0.100  
0
L
V
VOUT  
OUT  
10mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
V
L
OUT  
500mA/DIV  
10mV/DIV  
SYNCH SWITCH  
MAIN SWITCH  
AC COUPLED  
I
LOAD  
500mA/DIV  
V
V
V
= 2.5V  
= 3.6V  
= 5.5V  
35412 G21  
35412 G11  
IN  
IN  
IN  
V
= 3.6V  
2µs/DIV  
V
V
I
= 3.6V  
40µs/DIV  
IN  
IN  
OUT  
LOAD  
LV  
V
= 1.5V  
= 1.875V  
= 1mA TO 500mA  
OUT  
= 1.875V  
= 50mA  
OUT  
I
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
LOAD  
Burst Mode OPERATION  
35412 G10  
Buck (Burst) Load Step from  
1mA to 500mA  
VLDO Load Step from 1mA to  
300mA  
VLDO Load Step from 100mA to  
300mA  
V
OUT  
100mV/DIV  
LV  
OUT  
LV  
OUT  
AC COUPLED  
20mV/DIV  
20mV/DIV  
AC COUPLED  
AC COUPLED  
I
L
500mA/DIV  
I
LOAD  
I
I
LOAD  
250mA/DIV  
LOAD  
250mA/DIV  
500mA/DIV  
35412 G12  
35412 G13  
35412 G14  
V
V
I
= 3.6V  
40µs/DIV  
V
V
I
= 3.6V  
200µs/DIV  
V
= 3.6V  
200µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
= 1.875V  
= 1.5V  
LV  
I
= 1.5V  
OUT  
= 1mA TO 500mA  
= 1mA TO 300mA  
= 100mA TO 300mA  
LOAD  
LOAD  
LOAD  
35412fb  
LTC3541-2  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Linear Regulator to VLDO  
Transient Step, Load = 1mA  
Linear Regulator to VLDO  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
OUT  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
I
LOAD  
50mA/DIV  
I
LOAD  
50mA/DIV  
35412 G15  
35412 G16  
V
= 3.6V  
40µs/DIV  
V
= 3.6V  
IN  
40µs/DIV  
IN  
LV  
= 1.5V  
LV  
= 1.5V  
OUT  
OUT  
I
= 1mA  
I
= 30mA  
LOAD  
LOAD  
VLDO to Linear Regulator  
Transient Step, Load = 1mA  
VLDO to Linear Regulator  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
OUT  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
I
LOAD  
I
50mA/DIV  
LOAD  
50mA/DIV  
35412 G18  
35412 G17  
V
= 3.6V  
40µs/DIV  
V
= 3.6V  
40µs/DIV  
IN  
IN  
LV  
I
= 1.5V  
LV  
I
= 1.5V  
OUT  
OUT  
= 30mA  
= 1mA  
LOAD  
LOAD  
35412fb  
LTC3541-2  
U U  
U
PI FU CTIO S  
V (Pin 1):ꢀMainꢀSupplyꢀPin.ꢀThisꢀpinꢀmustꢀbeꢀcloselyꢀ  
SW (Pin 10):SwitchNodePin.Thispinconnectstheꢀ  
internalꢀmainꢀandꢀsynchronousꢀpowerꢀMOSFETꢀswitchesꢀ  
toꢀtheꢀexternalꢀinductorꢀforꢀtheꢀbuckꢀregulator.  
IN  
decoupledꢀtoꢀGNDꢀwithꢀaꢀ10µFꢀorꢀgreaterꢀcapacitor.  
ENBUCK (Pin 2):ꢀBuckꢀEnableꢀPin.ꢀThisꢀpinꢀenablesꢀtheꢀ  
buckꢀregulatorꢀwhenꢀdrivenꢀtoꢀaꢀlogicꢀhigh.  
Exposed Pad (Pin 11):GroundPin.Thispinmustbeꢀ  
solderedꢀtoꢀtheꢀPCBꢀtoꢀprovideꢀbothꢀelectricalꢀcontactꢀtoꢀ  
groundꢀandꢀgoodꢀthermalꢀcontactꢀtoꢀtheꢀPCB.  
V
(Pin3):BuckRegulatorOutputPin.Thispinreceivesꢀ  
OUT  
theꢀbuckꢀregulator’sꢀoutputꢀvoltage.  
Note:ꢀTableꢀ1ꢀdetailsꢀtheꢀtruthꢀtableꢀforꢀtheꢀcontrolꢀpinsꢀ  
ofꢀtheꢀLTC3541-2.  
NC(Pin4):NotConnected.Thispinmustnotbeconnectedꢀ  
orꢀcapacitivelyꢀloaded.  
Table 1. LTC3541-2 Control Pin Truth Table  
LV  
(Pin 5):ꢀVLDO/LinearꢀRegulatorꢀOutputꢀPin.ꢀThisꢀ  
OUT  
PIN NAME  
OPERATIONAL DESCRIPTION  
pinꢀprovidesꢀtheꢀregulatedꢀoutputꢀvoltageꢀfromꢀtheꢀVLDOꢀ  
ENBUCK ENVLDO MODE  
orꢀlinearꢀregulator.  
0
0
0
1
X
X
LTC3541-2ꢀPoweredꢀDown  
LV (Pin 6):VLDO/LinearRegulatorInputSupplyPin.ꢀ  
IN  
BuckꢀPoweredꢀDown,ꢀVLDOꢀPoweredꢀ  
Down,ꢀLinearꢀRegulatorꢀEnabled  
ThisꢀpinꢀprovidesꢀtheꢀinputꢀsupplyꢀvoltageꢀforꢀtheꢀVLDOꢀ  
powerꢀFET.  
1
1
1
1
0
0
1
1
0
1
0
1
BuckꢀEnabled,ꢀVLDOꢀPoweredꢀDown,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀꢀꢀ  
BurstꢀModeꢀOperation  
GND (Pin 7):ꢀAnalogꢀGroundꢀPin.  
BuckꢀEnabled,ꢀVLDOꢀPoweredꢀDown,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀꢀ  
Pulse-SkipꢀModeꢀOperation  
MODE (Pin 8):ꢀBuckꢀModeꢀSelectionꢀPin.ꢀThisꢀpinꢀenablesꢀ  
buckPulse-Skipoperationwhendriventoalogichighꢀ  
andꢀenablesꢀbuckꢀBurstꢀModeꢀoperationꢀwhenꢀdrivenꢀtoꢀ  
aꢀlogicꢀlow.  
BuckꢀEnabled,ꢀVLDOꢀEnabled,ꢀLinearꢀ  
RegulatorꢀPoweredꢀDown,ꢀBurstꢀModeꢀ  
Operation  
ENVLDO (Pin 9):ꢀ VLDO/Linearꢀ Regulatorꢀ Enableꢀ Pin.ꢀ  
Whenꢀdrivenꢀtoꢀaꢀlogicꢀhigh,ꢀthisꢀpinꢀenablesꢀtheꢀlinearꢀ  
regulatorꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀdrivenꢀtoꢀaꢀlogicꢀlow,ꢀ  
andꢀenablesꢀtheꢀVLDOꢀregulatorꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀ  
drivenꢀtoꢀaꢀlogicꢀhigh.  
BuckꢀEnabled,ꢀVLDOꢀEnabled,ꢀLinearꢀ  
RegulatorꢀPoweredꢀDown,ꢀPulse-Skipꢀ  
ModeꢀOperation  
35412fb  
LTC3541-2  
U
U
W
FU CTIO AL BLOCK DIAGRA  
V
I
= 1.875V  
= 500mA  
OUT(BUCK)  
OUT(BUCK)  
2.2µH  
V
LV  
+ 1.4V  
OUT  
IN(MIN)  
10µF  
10  
SW  
V
IN  
1
500mA BUCK  
SW  
V
IN  
REF  
FB  
GND  
V
OUT  
3
6
PGND  
LV  
IN  
VLDO/LINEAR REG  
V
LV  
IN  
IN  
REF  
LV  
= 1.5V  
OUT  
+
REF  
I
I
= 300mA (LDO)  
OUT  
OUT  
= 30mA (LINEAR REG)  
LFB  
ENBUCK  
ENVLDO  
MODE  
LV  
OUT  
2
9
8
5
CNTRL  
CONTROL  
LOGIC  
GND  
2.2µF  
GND  
7
PGND  
11  
35412 F01  
Figure 1. LTC3541-2 Functional Block Diagram  
35412fb  
LTC3541-2  
U
OPERATIO  
TheꢀLTC3541-2containsꢀaꢀhighꢀefficiencyꢀsynchronousꢀ  
buckꢀconverter,ꢀaꢀveryꢀlowꢀdropoutꢀregulatorꢀ(VLDO),ꢀandꢀ  
aꢀlinearꢀregulatorꢀthatꢀcanꢀbeꢀusedꢀtoꢀprovideꢀupꢀtoꢀtwoꢀ  
outputꢀvoltagesꢀfromꢀaꢀsingleꢀinputꢀvoltageꢀmakingꢀtheꢀ  
LTC3541-2idealforapplicationswithlimitedboardspace.ꢀ  
Theꢀcombinationꢀandꢀconfigurationꢀofꢀtheseꢀmajorꢀblocksꢀ  
withinꢀtheꢀLTC3541-2ꢀisꢀdeterminedꢀbyꢀwayꢀofꢀtheꢀcontrolꢀ  
pinsꢀENBUCKꢀandꢀENVLDOꢀasꢀdefinedꢀinꢀTableꢀ1.  
Buck Regulator Control Loop  
TheꢀLTC3541-2ꢀinternalꢀbuckꢀregulatorꢀusesꢀaꢀconstantꢀ  
frequency,currentmode,step-downarchitecture.Boththeꢀ  
main(top,P-channelMOSFET)andsynchronous(bottom,ꢀ  
N-channelꢀMOSFET)ꢀswitchesꢀareꢀinternal.ꢀDuringꢀnormalꢀ  
operation,ꢀtheꢀinternalꢀmainꢀswitchꢀisꢀturnedꢀonꢀatꢀtheꢀbe-  
ginningꢀofꢀeachꢀclockꢀcycleꢀprovidedꢀtheꢀinternalꢀfeedbackꢀ  
voltageꢀtoꢀtheꢀbuckꢀisꢀlessꢀthanꢀtheꢀreferenceꢀvoltage.ꢀTheꢀ  
currentꢀintoꢀtheꢀinductorꢀprovidedꢀtoꢀtheꢀloadꢀincreasesꢀ  
untilꢀtheꢀcurrentꢀlimitꢀisꢀreached.ꢀOnceꢀtheꢀcurrentꢀlimitꢀisꢀ  
reachedꢀtheꢀmainꢀswitchꢀturnsꢀoffꢀandꢀtheꢀenergyꢀstoredꢀ  
intheinductorowsthroughthebottomsynchronousꢀ  
switchꢀintoꢀtheꢀloadꢀuntilꢀtheꢀnextꢀclockꢀcycle.  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀhighꢀandꢀENVLDOꢀ  
driventoalogiclow,theLTC3541-2enablesthebuckꢀ  
converterꢀ toꢀ efficientlyꢀ reduceꢀ theꢀ voltageꢀ providedꢀ atꢀ  
theꢀV ꢀinputꢀpinꢀtoꢀanꢀoutputꢀvoltageꢀofꢀ1.875Vꢀwhichꢀ  
IN  
isꢀsetꢀbyꢀanꢀinternalꢀfeedbackꢀresistorꢀnetwork.ꢀTheꢀbuckꢀ  
regulatorꢀcanꢀbeꢀconfiguredꢀforꢀPulse-SkipꢀorꢀBurstꢀModeꢀ  
operationꢀbyꢀdrivingꢀtheꢀMODEꢀpinꢀtoꢀaꢀlogicꢀhighꢀorꢀlogicꢀ  
lowꢀrespectively.ꢀTheꢀbuckꢀregulatorꢀisꢀcapableꢀofꢀprovid-  
ingꢀaꢀmaximumꢀoutputꢀcurrentꢀofꢀ500mA,ꢀwhichꢀmustꢀbeꢀ  
takenꢀintoꢀconsiderationꢀwhenꢀusingꢀtheꢀbuckꢀregulatorꢀ  
toꢀprovideꢀtheꢀpowerꢀforꢀbothꢀtheꢀVLDOꢀregulatorꢀandꢀforꢀ  
externalꢀloads.ꢀ  
Thepeakinductorcurrentisdeterminedbycomparingtheꢀ  
buckꢀfeedbackꢀsignalꢀtoꢀanꢀinternalꢀ0.8Vꢀreference.ꢀWhenꢀ  
theloadcurrentincreases,theoutputofthebuckandꢀ  
henceꢀtheꢀbuckꢀfeedbackꢀsignalꢀdecrease.ꢀThisꢀdecreaseꢀ  
causesthepeakinductorcurrenttoincreaseuntiltheaver-  
ageꢀinductorꢀcurrentꢀmatchesꢀtheꢀloadꢀcurrent.ꢀWhileꢀtheꢀ  
mainꢀswitchꢀisꢀoff,ꢀtheꢀsynchronousꢀswitchꢀisꢀturnedꢀonꢀ  
untilꢀeitherꢀtheꢀinductorꢀcurrentꢀstartsꢀtoꢀreverseꢀdirectionꢀ  
orꢀtheꢀbeginningꢀofꢀaꢀnewꢀclockꢀcycle.  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀlowꢀandꢀENVLDOꢀ  
drivenꢀtoꢀaꢀlogicꢀhigh,ꢀtheꢀLTC3541-2ꢀenablesꢀtheꢀlinearꢀ  
regulator,ꢀprovidingꢀaꢀlowꢀnoiseꢀregulatedꢀoutputꢀvoltageꢀ  
WhentheMODEpinisdriventoalogiclow,theLTC3541-2ꢀ  
buckꢀregulatorꢀoperatesꢀinꢀBurstꢀModeꢀoperationꢀforꢀhighꢀ  
efficiency.ꢀInꢀthisꢀmode,ꢀtheꢀmainꢀswitchꢀoperatesꢀbasedꢀ  
uponloaddemand.InBurstModeoperationthepeakꢀ  
inductorꢀcurrentꢀisꢀsetꢀtoꢀaꢀfixedꢀvalue,ꢀwhereꢀeachꢀburstꢀ  
eventꢀcanꢀlastꢀfromꢀaꢀfewꢀclockꢀcyclesꢀatꢀlightꢀloadsꢀtoꢀ  
nearlyꢀ continuousꢀ cyclingꢀ atꢀ moderateꢀ loads.ꢀ Betweenꢀ  
burstꢀeventsꢀtheꢀmainꢀswitchꢀandꢀanyꢀunneededꢀcircuitryꢀ  
areturnedoff,reducingthequiescentcurrent.Inthissleepꢀ  
state,ꢀtheꢀloadꢀisꢀbeingꢀsuppliedꢀsolelyꢀfromꢀtheꢀoutputꢀ  
capacitor.ꢀAsꢀtheꢀoutputꢀvoltageꢀdroops,ꢀanꢀinternalꢀerrorꢀ  
amplifier’sꢀoutputꢀrisesꢀuntilꢀaꢀwakeꢀthresholdꢀisꢀreachedꢀ  
causingꢀtheꢀmainꢀswitchꢀtoꢀagainꢀturnꢀon.ꢀThisꢀprocessꢀ  
repeatsꢀatꢀaꢀrateꢀthatꢀisꢀdependantꢀuponꢀtheꢀloadꢀcurrentꢀ  
demand.  
ofꢀ1.5VꢀatꢀtheꢀLV ꢀpinꢀwhileꢀdrawingꢀminimalꢀquiescentꢀ  
OUT  
currentꢀfromꢀtheꢀV ꢀinputꢀpin.ꢀThisꢀfeatureꢀallowsꢀoutputꢀ  
IN  
voltageꢀLV ꢀtoꢀbeꢀbroughtꢀintoꢀregulationꢀwithoutꢀtheꢀ  
OUT  
presenceꢀofꢀtheꢀLV ꢀvoltage.ꢀ  
IN  
Withꢀ theꢀ ENBUCKꢀ andꢀ ENVLDOꢀ pinsꢀ bothꢀ drivenꢀ toꢀ aꢀ  
logicꢀ high,ꢀ theꢀ LTC3541-2ꢀ enablesꢀ theꢀ highꢀ efficiencyꢀ  
buckꢀconverterꢀandꢀVLDO,ꢀprovidingꢀdualꢀoutputꢀopera-  
tionꢀfromꢀaꢀsingleꢀinputꢀvoltage.ꢀWhenꢀconfiguredꢀinꢀthisꢀ  
manner,theLTC3541-2’sautostart-upsequencingfeatureꢀ  
willꢀbringꢀtheꢀbuckꢀoutputꢀ(1.875V)ꢀintoꢀregulationꢀinꢀaꢀ  
controlledꢀmannerꢀpriorꢀtoꢀenablingꢀtheꢀVLDOꢀregulatorꢀ  
(1.5V)ꢀwithoutꢀtheꢀneedꢀforꢀexternalꢀpinꢀcontrol.ꢀAꢀdetailedꢀ  
discussionꢀofꢀtheꢀtransitionsꢀbetweenꢀtheꢀVLDOꢀregula-  
torꢀandꢀlinearꢀregulatorꢀcanꢀbeꢀfoundꢀinꢀtheꢀVLDO/Linearꢀ  
RegulatorꢀLoopꢀsection.ꢀ  
35412fb  
LTC3541-2  
U
OPERATIO  
WhentheMODEpinisdriventoalogichightheLTC3541-2ꢀ  
operatesinPulse-Skipmodeforlowoutputvoltageripple.ꢀ  
Inthismode,theLTC3541-2continuestoswitchataꢀ  
constantꢀfrequencyꢀdownꢀtoꢀveryꢀlowꢀcurrents,ꢀwhereꢀitꢀ  
willꢀbeginꢀskippingꢀpulsesꢀusedꢀtoꢀcontrolꢀtheꢀmainꢀ(top)ꢀ  
switchꢀtoꢀmaintainꢀtheꢀproperꢀaverageꢀinductorꢀcurrent.  
TheꢀN-channelꢀMOSFET,ꢀincorporatedꢀinꢀtheꢀVLDOꢀregula-  
tor,ꢀhasꢀitsꢀdrainꢀconnectedꢀtoꢀtheꢀLV ꢀpinꢀasꢀshownꢀinꢀ  
IN  
Figure1.Toensurereliableoperation,theLV voltageꢀ  
IN  
mustꢀbeꢀstableꢀbeforeꢀtheꢀVLDOꢀregulatorꢀisꢀenabled.ꢀForꢀ  
theꢀcaseꢀwhereꢀtheꢀvoltageꢀonꢀtheꢀLV ꢀpinꢀisꢀsuppliedꢀbyꢀ  
IN  
thebuckregulator,theinternalpowersupplysequenc-  
ingꢀlogicꢀassuresꢀvoltagesꢀareꢀappliedꢀinꢀtheꢀappropriateꢀ  
manner.ꢀForꢀtheꢀcaseꢀwhereꢀanꢀexternalꢀsupplyꢀisꢀusedꢀtoꢀ  
Iftheinputsupplyvoltageisdecreasedtoavalueap-  
proachingꢀtheꢀoutputꢀvoltage,ꢀtheꢀdutyꢀcycleꢀofꢀtheꢀbuckꢀ  
isincreasedtowardmaximumon-timeand100%dutyꢀ  
cycle.ꢀTheꢀoutputꢀvoltageꢀwillꢀthenꢀbeꢀdeterminedꢀbyꢀtheꢀ  
inputvoltageminusthevoltagedropacrossthemainꢀ  
switchꢀandꢀtheꢀinductor.  
powerꢀtheꢀLV ꢀpin,ꢀtheꢀexternallyꢀsuppliedꢀLV ꢀvoltageꢀ  
IN  
IN  
mustꢀbeꢀstableꢀ1msꢀbeforeꢀtheꢀENVLDOꢀisꢀbroughtꢀfromꢀ  
aꢀlowꢀtoꢀaꢀhigh.ꢀFurther,ꢀtheꢀexternallyꢀsuppliedꢀLV ꢀmustꢀ  
IN  
beꢀreducedꢀinꢀconjunctionꢀwithꢀV ꢀwheneverꢀV ꢀisꢀpulledꢀ  
IN  
IN  
lowꢀorꢀremoved.  
VLDO/Linear Regulator Loop  
Theꢀlinearꢀregulatorꢀisꢀdesignedꢀtoꢀprovideꢀaꢀlowerꢀoutputꢀ  
currentꢀthanꢀthatꢀavailableꢀfromꢀtheꢀVLDOꢀregulator.ꢀTheꢀ  
linearꢀregulator’sꢀoutput,ꢀpassꢀtransistorꢀhasꢀitsꢀdrainꢀtiedꢀ  
InꢀtheꢀLTC3541-2,theꢀVLDOꢀandꢀlinearꢀregulatorꢀloopsꢀ  
consistofanamplifierandN-channelMOSFEToutputꢀ  
stagesthatservotheoutputtomaintainaregulatoroutputꢀ  
toꢀtheꢀV ꢀrail.ꢀThisꢀallowsꢀtheꢀlinearꢀregulatorꢀtoꢀbeꢀturnedꢀ  
IN  
onꢀpriorꢀto,ꢀandꢀindependentꢀof,ꢀtheꢀbuckꢀregulatorꢀwhichꢀ  
ordinarilyꢀdrivesꢀtheꢀVLDOꢀregulator.ꢀTheꢀlinearꢀregulatorꢀ  
isprovidedwiththermalprotectionthatisdesignedtoꢀ  
disableꢀtheꢀlinearꢀregulatorꢀfunctionꢀwhenꢀtheꢀoutputꢀpassꢀ  
transistor’sꢀjunctionꢀtemperatureꢀreachesꢀapproximatelyꢀ  
160°C.ꢀ Inꢀ additionꢀ toꢀ thermalꢀ protection,ꢀ short-circuitꢀ  
detectionꢀisꢀprovidedꢀtoꢀdisableꢀtheꢀlinearꢀregulatorꢀfunc-  
tionꢀwhenꢀaꢀshort-circuitꢀconditionꢀisꢀsensed.ꢀThisꢀcircuitꢀ  
isꢀdesignedꢀsuchꢀthatꢀanꢀoutputꢀcurrentꢀofꢀapproximatelyꢀ  
120mAꢀcanꢀbeꢀprovidedꢀbeforeꢀthisꢀcircuitꢀwillꢀtrigger.ꢀAsꢀ  
detailedintheElectricalCharacteristics,thelinearregulatorꢀ  
willꢀbeꢀoutꢀofꢀregulationꢀwhenꢀthisꢀeventꢀoccurs.ꢀBothꢀtheꢀ  
thermalandshort-circuitfaultsaretreatedascatastrophicꢀ  
faultconditions.TheLTC3541-2willberesetupontheꢀ  
detectionꢀofꢀeitherꢀevent.  
voltage,ꢀLV .ꢀTheꢀinternalꢀreferenceꢀvoltageꢀprovidedꢀtoꢀ  
OUT  
theꢀamplifierꢀisꢀ0.4Vꢀallowingꢀforꢀaꢀwideꢀrangeꢀofꢀoutputꢀ  
voltages.ꢀLoopꢀconfigurationsꢀenablingꢀtheꢀVLDOꢀorꢀtheꢀ  
linearꢀregulatorꢀareꢀstableꢀwithꢀanꢀoutputꢀcapacitanceꢀasꢀ  
lowꢀasꢀ2.2µFꢀandꢀasꢀhighꢀasꢀ100µF.ꢀBothꢀtheꢀVLDOꢀandꢀ  
thelinearregulatorsarecapableofoperatingwithaninputꢀ  
voltage,ꢀV ,ꢀasꢀlowꢀasꢀ2.9V.ꢀ  
IN  
TheꢀVLDOꢀregulatorꢀisꢀdesignedꢀtoꢀprovideꢀupꢀtoꢀ300mAꢀ  
ofoutputcurrentataverylowLV ꢀtoꢀLV ꢀvoltage.ꢀThisꢀ  
IN  
OUT  
allowsꢀaꢀclean,ꢀsecondary,ꢀanalogꢀsupplyꢀvoltageꢀtoꢀbeꢀ  
providedꢀwithꢀaꢀminimumꢀdropꢀinꢀefficiency.ꢀTheꢀVLDOꢀ  
regulatorꢀisꢀprovidedꢀwithꢀthermalꢀprotectionꢀthatꢀisꢀde-  
signedtodisabletheVLDOfunctionwhentheoutput,passꢀ  
transistor’sꢀjunctionꢀtemperatureꢀreachesꢀapproximatelyꢀ  
160°C.Inadditiontothermalprotection,short-circuitꢀ  
detectionisprovidedtodisabletheVLDOfunctionwhenaꢀ  
short-circuitꢀconditionꢀisꢀsensed.ꢀThisꢀcircuitꢀisꢀdesignedꢀ  
suchꢀthatꢀanꢀoutputꢀcurrentꢀofꢀapproximatelyꢀ1Aꢀcanꢀbeꢀ  
providedꢀbeforeꢀthisꢀcircuitꢀwillꢀtrigger.ꢀAsꢀdetailedꢀinꢀtheꢀ  
ElectricalꢀCharacteristics,ꢀtheꢀVLDOꢀregulatorꢀwillꢀbeꢀoutꢀ  
ofꢀregulationꢀwhenꢀthisꢀeventꢀoccurs.ꢀBothꢀtheꢀthermalꢀ  
andshort-circuitfaults,whendetected,aretreatedasꢀ  
catastrophicꢀ faultꢀ conditions.ꢀ Theꢀ LTC3541-2ꢀ willꢀ beꢀ  
resetꢀuponꢀtheꢀdetectionꢀofꢀeitherꢀevent.  
TheꢀN-channelꢀMOSFET,ꢀincorporatedꢀinꢀtheꢀlinearꢀregu-  
lator,ꢀhasꢀitsꢀdrainꢀconnectedꢀtoꢀtheꢀV ꢀpinꢀasꢀshownꢀinꢀ  
IN  
Figureꢀ1.ꢀTheꢀsizeꢀofꢀtheseꢀMOSFETsꢀandꢀtheirꢀassociatedꢀ  
powerꢀbussingꢀisꢀdesignedꢀtoꢀaccomodateꢀ30mAꢀofꢀDCꢀ  
current.ꢀCurrentsꢀaboveꢀthisꢀvalueꢀcanꢀbeꢀsupportedꢀforꢀ  
shortꢀ periodsꢀ asꢀ stipulatedꢀ inꢀ theꢀ Absoluteꢀ Maximumꢀ  
Ratings.  
35412fb  
ꢀ0  
LTC3541-2  
U
OPERATIO  
TransitioningꢀfromꢀlinearꢀregulatorꢀmodeꢀtoꢀVLDOꢀmode,ꢀ  
accomplishedꢀbyꢀbringingꢀENBUCKꢀfromꢀaꢀlogicꢀlowꢀtoꢀaꢀ  
logicꢀhighꢀwhileꢀENVLDOꢀisꢀaꢀlogicꢀhigh,ꢀisꢀdesignedꢀtoꢀbeꢀ  
asꢀseamlessꢀandꢀtransientꢀfreeꢀasꢀpossible.ꢀTheꢀpreciseꢀ  
Inasimilarmanner,transitioningfromVLDOmodetoꢀ  
linearregulatormode,accomplishedbybringingENBUCKꢀ  
fromꢀaꢀhighꢀlowꢀtoꢀaꢀlogicꢀlowꢀwhileꢀENVLDOꢀisꢀaꢀlogicꢀ  
high,ꢀisꢀdesignedꢀtoꢀbeꢀasꢀseamlessꢀandꢀtransientꢀfreeꢀasꢀ  
transientresponseofLV duetothistransitionisaꢀ  
possible.ꢀAgain,ꢀtheꢀpreciseꢀtransientꢀresponseꢀofꢀLV  
OUT  
OUT  
functionꢀofꢀC ꢀandꢀtheꢀloadꢀcurrent.ꢀWaveformsꢀgivenꢀ  
dueꢀtoꢀthisꢀtransitionꢀisꢀaꢀfunctionꢀofꢀC ꢀandꢀtheꢀloadꢀ  
OUT  
OUT  
inꢀtheꢀTypicalꢀPerformanceꢀCharacteristicsꢀsectionꢀshowꢀ  
current.ꢀ Waveformsꢀ givenꢀ inꢀ theꢀ Typicalꢀ Performanceꢀ  
typicalꢀtransientꢀresponsesꢀusingꢀtheꢀminimumꢀC ꢀofꢀ  
Characteristicsꢀsectionꢀshowꢀtypicalꢀtransientꢀresponsesꢀ  
OUT  
2.2µFꢀandꢀloadꢀcurrentsꢀofꢀ1mAꢀandꢀ30mAꢀrespectively.ꢀ  
usingꢀtheꢀminimumꢀC ꢀofꢀ2.2µFꢀandꢀloadꢀcurrentsꢀofꢀ  
OUT  
Generally,ꢀ theꢀ amplitudeꢀ ofꢀ anyꢀ transientsꢀ presentꢀ willꢀ  
1mAꢀandꢀ30mAꢀrespectively.ꢀGenerally,ꢀtheꢀamplitudeꢀofꢀ  
decreaseasC ꢀisincreased.Toensurereliableoperationꢀ  
anyꢀtransientsꢀpresentꢀwillꢀdecreaseꢀasꢀC ꢀisꢀincreased.ꢀ  
OUT  
OUT  
andꢀadherenceꢀtoꢀtheꢀloadꢀregulationꢀlimitsꢀpresentedꢀinꢀ  
Toensurereliableoperationandadherencetotheloadꢀ  
regulationꢀlimitsꢀpresentedꢀinꢀtheꢀElectricalꢀCharactersticsꢀ  
table,theloadcurrentmustnotexceedthelinearregulatorꢀ  
theꢀElectricalꢀCharactersticsꢀtable,ꢀtheꢀloadꢀcurrentꢀmustꢀ  
notꢀexceedꢀtheꢀlinearꢀregulatorꢀI ꢀlimitꢀofꢀ30mAꢀwithinꢀ  
OUT  
20msꢀafterꢀENBUCKꢀhasꢀtransitionedꢀtoꢀaꢀlogicꢀhigh.ꢀTheꢀ  
I
ꢀlimitꢀofꢀ30mAꢀ1msꢀpriorꢀtoꢀENBUCKꢀtransitioningꢀtoꢀ  
OUT  
300mAꢀ I ꢀ limitꢀ ofꢀ VLDOꢀ appliesꢀ thereafter.ꢀ Further,ꢀ  
aꢀlogicꢀlowꢀandꢀthereafer.ꢀFurther,ꢀforꢀconfigurationsꢀthatꢀ  
doꢀnotꢀuseꢀtheꢀLTC3541-2’sꢀbuckꢀregulatorꢀtoꢀprovideꢀtheꢀ  
OUT  
forꢀconfigurationsꢀthatꢀdoꢀnotꢀuseꢀtheꢀLTC3541-2’sꢀbuckꢀ  
regulatortoprovidetheVLDOinputvoltage(LV ),theuserꢀ  
VLDOinputvoltage(LV ),theusermustcontinuetoensureꢀ  
IN  
IN  
mustꢀensureꢀaꢀstableꢀLV ꢀvoltageꢀisꢀpresentꢀnoꢀlessꢀthanꢀ  
aꢀstableꢀLV ꢀvoltageꢀnoꢀlessꢀthanꢀ1msꢀafterꢀENBUCKꢀhasꢀ  
IN  
IN  
1msꢀpriorꢀtoꢀENBUCKꢀtransitioningꢀtoꢀaꢀlogicꢀhigh.  
transitionedꢀtoꢀaꢀlogicꢀlow.  
35412fb  
ꢀꢀ  
LTC3541-2  
U U  
W U  
APPLICATIO S I FOR ATIO  
TheꢀbasicꢀLTC3541-2ꢀapplicationꢀcircuitꢀisꢀshownꢀonꢀtheꢀ  
firstꢀpageꢀofꢀthisꢀdataꢀsheet.ꢀExternalꢀcomponentꢀselectionꢀ  
isdrivenbytheloadrequirementandrequirestheselectionꢀ  
Table 2. Representative Surface Mount Inductors  
PART  
NUMBER  
VALUE  
(µH)  
DCR  
MAX DC  
SIZE  
3
(Ω MAX) CURRENT (A) W × L × H (mm )  
Sumidaꢀ  
CDRH3D23  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.025ꢀ  
0.029ꢀ  
0.038ꢀ  
0.048  
2ꢀ  
3.9ꢀ×ꢀ3.9ꢀ×ꢀ2.4  
ofꢀL,ꢀfollowedꢀbyꢀC ,ꢀC ꢀandꢀtheꢀselectionꢀofꢀtheꢀoutputꢀ  
IN OUT  
1.65ꢀ  
1.3ꢀ  
1.1  
capacitorꢀforꢀtheꢀVLDOꢀandꢀlinearꢀregulator.ꢀ  
Sumidaꢀ  
2.2ꢀ  
3.3  
0.116ꢀ  
0.174  
0.950ꢀ  
0.770  
3.5ꢀ×ꢀ4.3ꢀ×ꢀ0.8  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
BUCK REGULATOR  
Inductor Selection  
CMD4D06  
Coilcraftꢀ  
ME3220  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.058ꢀ  
0.068ꢀ  
0.104ꢀ  
0.138  
2.7ꢀ  
2.2ꢀ  
1.8ꢀ  
1.3  
Formostapplications,theappropriateinductorvaluewillbeꢀ  
2.2µH.Itsvalueischosenlargelybasedonthedesiredrippleꢀ  
currentandburstrippleperformance.Generally,largevalueꢀ  
inductorsreduceripplecurrent,andconversely,smallvalueꢀ  
Murataꢀ  
LQH3C  
1.0ꢀ  
2.2  
0.060ꢀ  
0.097  
1.00ꢀ  
0.79  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
C and C  
IN  
Selection  
inductorsproducehigherripplecurrent.HigherV ꢀorV  
OUT  
IN  
OUT  
mayꢀalsoꢀincreaseꢀtheꢀrippleꢀcurrentꢀasꢀshownꢀinꢀEquationꢀ  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀV /V .ꢀToꢀpreventꢀlargeꢀ  
voltageꢀtransients,ꢀaꢀlowꢀESRꢀinputꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumRMScurrentmustbeused.ThemaximumRMSꢀ  
capacitorꢀcurrentꢀisꢀgivenꢀby:  
1.ꢀAꢀreasonableꢀstartingꢀpointꢀforꢀsettingꢀrippleꢀcurrentꢀisꢀ  
OUT IN  
ΔI ꢀ=ꢀ200mAꢀ(40%ꢀofꢀ500mA).  
L
VOUT  
VIN  
1
ΔIL =  
VOUT 1−  
(1)  
f L  
( )( )  
1/2  
VOUT V V  
(
)
IN  
OUT  
TheꢀDCꢀcurrentꢀratingꢀofꢀtheꢀinductorꢀshouldꢀbeꢀatꢀleastꢀ  
equalꢀtoꢀtheꢀmaximumꢀloadꢀcurrentꢀplusꢀhalfꢀtheꢀrippleꢀ  
currentꢀtoꢀpreventꢀcoreꢀsaturation.ꢀThus,ꢀaꢀ600mAꢀratedꢀ  
inductorꢀshouldꢀbeꢀenoughꢀforꢀmostꢀapplicationsꢀ(500mAꢀ  
+ꢀ100mA).ꢀForꢀbetterꢀefficiency,ꢀchooseꢀaꢀlowꢀDCꢀresis-  
tanceꢀinductor.  
cIN required IRMS IOMAX  
VIN  
Thisꢀ formulaꢀ hasꢀ aꢀ maximumꢀ atꢀ V ꢀ =ꢀ 2V ,ꢀ whereꢀ  
IN  
OUT  
I
ꢀ=ꢀI /2.ꢀThisꢀsimple,ꢀworst-caseꢀconditionꢀisꢀcom-  
RMS  
OUT  
monlyusedfordesign.Notethatthecapacitormanu-  
facturer’sꢀrippleꢀcurrentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀ2000ꢀ  
hoursꢀofꢀlife.ꢀThisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀ  
capacitorꢀorꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtempera-  
tureꢀthanꢀrequired.ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀwithꢀ  
anyꢀquestionꢀregardingꢀproperꢀcapacitorꢀchoice.  
Inductor Core Selection  
Differentꢀ coreꢀ materialsꢀ andꢀ shapesꢀ willꢀ changeꢀ theꢀ  
size/currentandprice/currentrelationshipofaninduc-  
tor.Toroidorꢀshieldedꢀpotꢀcoresꢀinꢀferriteꢀorꢀpermalloyꢀ  
materialsꢀareꢀsmallꢀandꢀdon’tꢀradiateꢀmuchꢀenergy,ꢀbutꢀ  
generallyꢀcostꢀmoreꢀthanꢀpowderedꢀironꢀcoreꢀinductorsꢀ  
withꢀsimilarꢀelectricalꢀcharacteristics.ꢀTheꢀchoiceꢀofꢀwhichꢀ  
styleꢀinductorꢀtoꢀuseꢀoftenꢀdependsꢀmoreꢀonꢀtheꢀpriceꢀvsꢀ  
sizeꢀrequirementꢀandꢀanyꢀradiatedꢀfield/EMIꢀrequirementsꢀ  
ratherthanwhattheLTC3541-2requirestooperate.Tableꢀ2ꢀ  
showsꢀsomeꢀtypicalꢀsurfaceꢀmountꢀinductorsꢀthatꢀworkꢀ  
wellꢀinꢀLTC3541-2ꢀapplications.  
TheꢀselectionꢀofꢀC ꢀforꢀtheꢀbuckꢀregulatorꢀisꢀdrivenꢀbyꢀ  
OUT  
thedesiredbucklooptransientresponse,requiredeffectiveꢀ  
seriesꢀresistanceꢀ(ESR)ꢀandꢀburstꢀrippleꢀperformance.  
TheLTC3541-2minimizestherequirednumberofexternalꢀ  
componentsꢀbyꢀprovidingꢀinternalꢀloopꢀcompensationꢀforꢀ  
theꢀbuckꢀregulatorꢀloop.ꢀLoopꢀstability,ꢀtransientꢀresponseꢀ  
andꢀburstꢀrippleꢀperformanceꢀcanꢀbeꢀtailoredꢀbyꢀchoiceꢀ  
ofꢀoutputꢀcapacitance.ꢀForꢀmanyꢀapplications,ꢀdesirableꢀ  
35412fb  
ꢀꢁ  
LTC3541-2  
U U  
W U  
APPLICATIO S I FOR ATIO  
stability,ꢀtransientꢀresponseꢀandꢀrippleꢀperformanceꢀcanꢀ  
beꢀ obtainedꢀ byꢀ choosingꢀ anꢀ outputꢀ capacitorꢀ valueꢀ ofꢀ  
10µFꢀtoꢀ22µF.ꢀ  
Whenꢀchoosingꢀtheꢀinputꢀandꢀoutputꢀceramicꢀcapacitors,ꢀ  
choosetheX5RorX7Rdielectricformulations.Theseꢀ  
dielectricsꢀhaveꢀtheꢀbestꢀtemperatureꢀandꢀvoltageꢀcharac-  
teristicsꢀofꢀallꢀtheꢀceramicsꢀforꢀaꢀgivenꢀvalueꢀandꢀsize.  
Typically,onceꢀtheꢀESRꢀrequirementꢀforꢀC ꢀhasꢀbeenꢀ  
OUT  
met,theRMScurrentratinggenerallyfarexceedstheꢀ  
Checking Transient Response  
I
ꢀ requirement.ꢀ Theꢀ outputꢀ rippleꢀ ΔV ꢀ isꢀ  
RIPPLE(P-P)  
determinedꢀby:  
OUT  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀ  
atꢀtheꢀloadꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀtakeꢀ  
severalꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀloadꢀcurrent.ꢀWhenꢀ  
1
ΔVOUT ≅ ΔIL ESR+  
8fc  
OUT   
aꢀloadꢀstepꢀoccurs,ꢀV ꢀimmediatelyꢀshiftsꢀbyꢀanꢀamountꢀ  
OUT  
equalꢀtoꢀ(ΔI  
ꢀ•ꢀESR),ꢀwhereꢀESRꢀisꢀtheꢀeffectiveꢀseriesꢀ  
LOAD  
whereꢀfꢀ=ꢀoperatingꢀfrequency,ꢀC ꢀ=ꢀoutputꢀcapacitanceꢀ  
OUT  
resistanceꢀofꢀC .ꢀΔI  
ꢀalsoꢀbeginsꢀtoꢀchargeꢀorꢀdis-  
OUT  
LOAD  
andꢀΔI ꢀ=ꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀForꢀaꢀfixedꢀoutputꢀ  
L
chargeC ,whichgeneratesafeedbackerrorsignal.Theꢀ  
OUT  
voltage,theoutputrippleishighestatmaximuminputꢀ  
regulatorꢀloopꢀthenꢀactsꢀtoꢀreturnꢀV ꢀtoꢀitsꢀsteady-stateꢀ  
value.ꢀDuringꢀthisꢀrecoveryꢀtimeꢀV ꢀcanꢀbeꢀmonitoredꢀ  
OUT  
OUT  
voltageꢀsinceꢀΔI ꢀincreasesꢀwithꢀinputꢀvoltage.  
L
forovershootorringingthatwouldindicateastabilityꢀ  
problem.ꢀForꢀaꢀdetailedꢀexplanationꢀofꢀswitchingꢀcontrolꢀ  
loopꢀtheoryꢀseeꢀApplicationꢀNoteꢀ76.  
Aluminumelectrolyticanddrytantalumcapacitorsarebothꢀ  
availableꢀinꢀsurfaceꢀmountꢀconfigurations.ꢀInꢀtheꢀcaseꢀofꢀ  
tantalum,ꢀitꢀisꢀcriticalꢀthatꢀtheꢀcapacitorsꢀareꢀsurgeꢀtestedꢀ  
foruseinswitchingpowersupplies.Anexcellentchoiceisꢀ  
theꢀAVXꢀTPSꢀseriesꢀofꢀsurfaceꢀmountꢀtantalum.ꢀTheseꢀareꢀ  
speciallyꢀconstructedꢀandꢀtestedꢀforꢀlowꢀESRꢀsoꢀtheyꢀgiveꢀ  
theꢀlowestꢀESRꢀforꢀaꢀgivenꢀvolume.ꢀOtherꢀcapacitorꢀtypesꢀ  
includeꢀSanyoꢀPOSCAP,ꢀKemetꢀT510ꢀandꢀT495ꢀseries,ꢀandꢀ  
Sprague593Dand595Dseries.Consultthemanufacturerꢀ  
forꢀotherꢀspecificꢀrecommendations.  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedꢀbypassꢀcapacitorsꢀareꢀeffectivelyꢀputꢀinꢀparal-  
lelꢀwithꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀ  
OUT  
OUT  
canꢀdeliverꢀenoughꢀcurrentꢀtoꢀpreventꢀthisꢀproblemꢀifꢀtheꢀ  
loadꢀswitchꢀresistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀTheꢀ  
onlyꢀsolutionꢀisꢀtoꢀlimitꢀtheꢀriseꢀtimeꢀofꢀtheꢀswitchꢀdriveꢀ  
soꢀ thatꢀ theꢀ loadꢀ riseꢀ timeꢀ isꢀ limitedꢀ toꢀ approximatelyꢀ  
Using Ceramic Input and Output Capacitors  
(25C  
).Thus,a10µFcapacitorchargingto3.3Vꢀ  
LOAD  
Highvalue,lowcostceramiccapacitorsarenowbecomingꢀ  
availableꢀinꢀsmallerꢀcaseꢀsizes.ꢀTheirꢀhighꢀrippleꢀcurrent,ꢀ  
highvoltagerating,andlowESRmakethemidealforꢀ  
switchingꢀregulatorꢀapplications.ꢀSinceꢀtheꢀLTC3541-2’sꢀ  
controlloopdoesnotdependontheoutputcapacitor’sESRꢀ  
forstableoperation,ceramiccapacitorscanbeusedfreelyꢀ  
toꢀachieveꢀveryꢀlowꢀoutputꢀrippleꢀandꢀsmallꢀcircuitꢀsize.  
wouldrequirea250µsrisetime,limitingthechargingꢀ  
currentꢀtoꢀaboutꢀ130mA.  
VLDO/LINEAR REGULATOR  
Output Capacitance and Transient Response  
TheꢀLTC3541-2ꢀisꢀdesignedꢀtoꢀbeꢀstableꢀwithꢀaꢀwideꢀrangeꢀ  
ofceramicoutputcapacitors.TheESRoftheoutputcapaci-  
torꢀaffectsꢀstability,ꢀmostꢀnotablyꢀwithꢀsmallꢀcapacitors.ꢀAꢀ  
minimumꢀoutputꢀcapacitorꢀofꢀ2.2µFꢀwithꢀanꢀESRꢀofꢀ0.05Ωꢀ  
orlessisrecommendedtoensurestability.TheLTC3541-2ꢀ  
VLDOisamicropowerdeviceandoutputtransientresponseꢀ  
willbeafunctionofoutputcapacitance.Largervaluesꢀ  
ofꢀoutputꢀcapacitanceꢀdecreaseꢀtheꢀpeakꢀdeviationsꢀandꢀ  
provideimprovedtransientresponseforlargerloadcurrentꢀ  
However,caremustbetakenwhenceramiccapacitorsꢀ  
areusedattheinputandtheoutput.Whenaceramicꢀ  
capacitorꢀisꢀusedꢀatꢀtheꢀinputꢀandꢀtheꢀpowerꢀisꢀsuppliedꢀ  
byꢀaꢀwallꢀadapterꢀthroughꢀlongꢀwires,ꢀaꢀloadꢀstepꢀatꢀtheꢀ  
outputꢀcanꢀinduceꢀringingꢀatꢀtheꢀinput,ꢀV .ꢀAtꢀbest,ꢀthisꢀ  
IN  
ringingꢀcanꢀcoupleꢀtoꢀtheꢀoutputꢀandꢀbeꢀmistakenꢀasꢀloopꢀ  
instability.ꢀAtꢀworst,ꢀaꢀsuddenꢀinrushꢀofꢀcurrentꢀthroughꢀ  
theꢀlongꢀwiresꢀcanꢀpotentiallyꢀcauseꢀaꢀvoltageꢀspikeꢀatꢀV ,ꢀ  
IN  
largeꢀenoughꢀtoꢀdamageꢀtheꢀpart.  
35412fb  
ꢀꢂ  
LTC3541-2  
U U  
W U  
APPLICATIO S I FOR ATIO  
changes.ꢀNoteꢀthatꢀbypassꢀcapacitorsꢀusedꢀtoꢀdecoupleꢀ  
individualcomponentspoweredbytheLTC3541-2willꢀ  
increaseꢀtheꢀeffectiveꢀoutputꢀcapacitorꢀvalue.ꢀHighꢀESRꢀ  
tantalumꢀ andꢀ electrolyticꢀ capacitorsꢀ mayꢀ beꢀ used,ꢀ butꢀ  
alowESRceramiccapacitormustbeinparallelattheꢀ  
output.ꢀThereꢀisꢀnoꢀminimumꢀESRꢀorꢀmaximumꢀcapacitorꢀ  
sizeꢀrequirement.  
andꢀY5Vꢀdielectricsꢀareꢀgoodꢀforꢀprovidingꢀhighꢀcapaci-  
tancesꢀinꢀaꢀsmallꢀpackage,ꢀbutꢀexhibitꢀlargeꢀvoltageꢀandꢀ  
temperaturecoefficientsasshowninFigures6and7.ꢀ  
Whenꢀusedꢀwithꢀaꢀ2Vꢀregulator,ꢀaꢀ1µFꢀY5Vꢀcapacitorꢀcanꢀ  
loseꢀasꢀmuchꢀasꢀ75%ꢀofꢀitsꢀinitialꢀcapacitanceꢀoverꢀtheꢀ  
operatingtemperaturerange.TheX5RandX7Rdielectricsꢀ  
resultꢀinꢀmoreꢀstableꢀcharacteristicsꢀandꢀareꢀusuallyꢀmoreꢀ  
suitableꢀforꢀuseꢀasꢀtheꢀoutputꢀcapacitor.ꢀTheꢀX7Rꢀtypeꢀhasꢀ  
betterꢀstabilityꢀacrossꢀtemperature,ꢀwhileꢀtheꢀX5Rꢀisꢀlessꢀ  
expensiveꢀandꢀisꢀavailableꢀinꢀhigherꢀvalues.ꢀInꢀallꢀcases,ꢀ  
theꢀoutputꢀcapacitanceꢀshouldꢀneverꢀdropꢀbelowꢀ1µFꢀorꢀ  
instabilityꢀorꢀdegradedꢀperformanceꢀmayꢀoccur.  
Extraꢀconsiderationꢀmustꢀbeꢀgivenꢀtoꢀtheꢀuseꢀofꢀceramicꢀ  
capacitors.ꢀCeramicꢀcapacitorsꢀareꢀmanufacturedꢀwithꢀaꢀ  
varietyꢀofꢀdielectrics,ꢀeachꢀwithꢀdifferentꢀbehaviorꢀacrossꢀ  
temperatureꢀ andꢀ appliedꢀ voltage.ꢀ Theꢀ mostꢀ commonꢀ  
dielectricsusedareZ5U,Y5V,X5RandX7R.TheZ5Uꢀ  
EFFICIENCY CONSIDERATIONS  
20  
BOTH cAPAcITORS ARE 1µF,  
10V, 0603 cASE SIZE  
0
Generally,ꢀtheꢀefficiencyꢀofꢀaꢀregulatorꢀisꢀequalꢀtoꢀtheꢀout-  
putꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀItꢀisꢀ  
oftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossꢀtermsꢀtoꢀdetermineꢀ  
whichꢀtermsꢀareꢀlimitingꢀefficiencyꢀandꢀwhatꢀifꢀanyꢀchangeꢀ  
wouldꢀyieldꢀtheꢀgreatestꢀimprovement.ꢀEfficiencyꢀcanꢀbeꢀ  
expressedꢀas:  
X5R  
–20  
–40  
Y5V  
–60  
–80  
ꢀ Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossꢀtermsꢀasꢀaꢀper-  
centageꢀofꢀinputꢀpower.  
–100  
0
8
2
4
6
10  
Dc BIAS VOLTAGE (V)  
35412 F06  
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,threemainsourcestypicallyaccountforthemajor-  
Figure 6. Change in Capacitor vs Bias Voltage  
ityꢀofꢀtheꢀlossesꢀinꢀtheꢀLTC3541-2ꢀcircuits:ꢀV ꢀquiescentꢀ  
IN  
2
current,ꢀI Rꢀlosses,ꢀandꢀlossꢀacrossꢀVLDOꢀoutputꢀdevice.ꢀ  
20  
WhenꢀoperatingꢀwithꢀbothꢀtheꢀbuckꢀandꢀVLDOꢀregulatorꢀ  
0
active(ENBUCKandENVLDOequaltologichigh),V ꢀ  
IN  
X5R  
quiescentꢀcurrentꢀlossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀ  
–20  
deviceꢀdominateꢀtheꢀefficiencyꢀlossꢀatꢀlowꢀloadꢀcurrents,ꢀ  
Y5V  
2
whereasꢀtheꢀI RꢀlossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀ  
–40  
–60  
devicedominatetheefficiencylossatmediumtohighloadꢀ  
currents.ꢀAtꢀlowꢀloadꢀcurrentsꢀwithꢀtheꢀpartꢀoperatingꢀwithꢀ  
theꢀlinearꢀregulatorꢀ(ENBUCKꢀequalꢀtoꢀlogicꢀlow,ꢀENVLDOꢀ  
equalꢀtoꢀlogicꢀhigh),ꢀefficiencyꢀisꢀtypicallyꢀdominatedꢀbyꢀ  
–80  
BOTH cAPAcITORS ARE 1µF,  
10V, 0603 cASE SIZE  
–100  
theꢀlossꢀacrossꢀtheꢀlinearꢀregulatorꢀoutputꢀdeviceꢀandꢀV ꢀ  
IN  
–50  
0
25  
50  
75  
–25  
TEMPERATURE (°c)  
quiescentcurrent.Inatypicalefficiencyplot,theefficiencyꢀ  
curveꢀatꢀveryꢀlowꢀloadꢀcurrentsꢀcanꢀbeꢀmisleadingꢀsinceꢀ  
theꢀactualꢀpowerꢀlostꢀisꢀofꢀlittleꢀconsequence.  
35412 F07  
Figure 7. Change in Capacitor vs Temperature  
35412fb  
ꢀꢃ  
LTC3541-2  
U U  
W U  
APPLICATIO S I FOR ATIO  
1.ꢀTheꢀV ꢀquiescentꢀcurrentꢀlossꢀinꢀtheꢀbuckꢀisꢀdueꢀtoꢀtwoꢀ  
THERMAL CONSIDERATIONS  
IN  
components:ꢀtheꢀDCꢀbiasꢀcurrentꢀasꢀgivenꢀinꢀtheꢀElectricalꢀ  
Characteristicsꢀandꢀtheꢀinternalꢀmainꢀswitchꢀandꢀsynchro-  
nousswitchgatechargecurrents.Thegatechargecurrentꢀ  
resultsꢀfromꢀswitchingꢀtheꢀgateꢀcapacitanceꢀofꢀtheꢀinternalꢀ  
powerꢀswitches.ꢀEachꢀtimeꢀtheꢀgateꢀisꢀswitchedꢀfromꢀhighꢀ  
toꢀlowꢀtoꢀhighꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀfromꢀ  
Theꢀ LTC3541-2ꢀ requiresꢀ theꢀ packageꢀ backplaneꢀ metalꢀ  
(GNDꢀpin)ꢀtoꢀbeꢀwellꢀsolderedꢀtoꢀtheꢀPCꢀboard.ꢀThisꢀgivesꢀ  
theꢀ DFNꢀ packageꢀ exceptionalꢀ thermalꢀ properties.ꢀ Theꢀ  
powerhandlingcapabilityofthedevicewillbelimitedꢀ  
bythemaximumratedjunctiontemperatureof125°C.ꢀ  
TheꢀLTC3541-2ꢀhasꢀinternalꢀthermalꢀlimitingꢀdesignedꢀtoꢀ  
protectthedeviceduringmomentaryoverloadconditions.ꢀ  
Forꢀcontinuousꢀnormalꢀconditions,ꢀtheꢀmaximumꢀjunctionꢀ  
temperatureꢀratingꢀofꢀ125°Cꢀmustꢀnotꢀbeꢀexceeded.ꢀItꢀisꢀ  
importantꢀtoꢀgiveꢀcarefulꢀconsiderationꢀtoꢀallꢀsourcesꢀofꢀ  
thermalꢀresistanceꢀfromꢀjunctionꢀtoꢀambient.ꢀAdditionalꢀ  
heatꢀsourcesꢀmountedꢀnearbyꢀmustꢀalsoꢀbeꢀconsidered.ꢀ  
Forꢀsurfaceꢀmountꢀdevices,ꢀheatꢀsinkingꢀisꢀaccomplishedꢀ  
byꢀusingꢀtheꢀheat-spreadingꢀcapabilitiesꢀofꢀtheꢀPCꢀboardꢀ  
andꢀitsꢀcopperꢀtraces.ꢀCopperꢀboardꢀstiffenersꢀandꢀplatedꢀ  
throughꢀholesꢀcanꢀalsoꢀbeꢀusedꢀtoꢀspreadꢀtheꢀheatꢀgener-  
atedꢀbyꢀpowerꢀdevices.  
V ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀtheꢀcurrentꢀoutꢀofꢀ  
IN  
V ꢀthatꢀisꢀtypicallyꢀlargerꢀthanꢀtheꢀDCꢀbiasꢀcurrentꢀandꢀ  
IN  
proportionaltofrequency.BoththeDCbiasandgatechargeꢀ  
lossesꢀareꢀproportionalꢀtoꢀV ꢀandꢀthusꢀtheirꢀeffectsꢀwillꢀ  
IN  
beꢀmoreꢀpronouncedꢀatꢀhigherꢀsupplyꢀvoltages.  
2
2.ꢀI Rꢀlossesꢀareꢀcalculatedꢀfromꢀtheꢀresistancesꢀofꢀtheꢀ  
internalꢀswitches,ꢀR ,ꢀandꢀexternalꢀinductorꢀR .ꢀInꢀcon-  
SW  
L
tinuousmode,theaverageoutputcurrentowingthroughꢀ  
inductorꢀLꢀisꢀ“chopped”ꢀbetweenꢀtheꢀmainꢀswitchꢀandꢀtheꢀ  
synchronousꢀswitch.ꢀThus,ꢀtheꢀseriesꢀresistanceꢀlookingꢀ  
intotheSWpinisafunctionofbothtopandbottomꢀ  
MOSFETꢀR ꢀandꢀtheꢀdutyꢀcycleꢀ(DC)ꢀasꢀfollows:  
DS(ON)  
ToꢀavoidꢀtheꢀLTC3541-2ꢀexceedingꢀtheꢀmaximumꢀjunctionꢀ  
temperature,ꢀsomeꢀthermalꢀanalysisꢀisꢀrequired.ꢀTheꢀgoalꢀ  
ofꢀtheꢀthermalꢀanalysisꢀisꢀtoꢀdetermineꢀwhetherꢀtheꢀpowerꢀ  
dissipatedꢀexceedsꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀofꢀ  
theꢀpart.ꢀTheꢀtemperatureꢀriseꢀisꢀgivenꢀby:  
ꢀ R ꢀ=ꢀ(R  
)(DC)ꢀ+ꢀ(R )(1ꢀ–ꢀDC)  
DS(ON)TOP DS(ON)BOT  
SW  
TheꢀR  
ꢀforꢀbothꢀtheꢀtopꢀandꢀbottomꢀMOSFETsꢀcanꢀ  
DS(ON)  
beꢀobtainedꢀfromꢀtheꢀTypicalꢀPerformanceꢀCharacteristicsꢀ  
2
curves.Thus,toobtainI Rlosses,simplyaddR toꢀ  
SW  
R ꢀandꢀmultiplyꢀtheꢀresultꢀbyꢀtheꢀsquareꢀofꢀtheꢀaverageꢀ  
ꢀ T ꢀ=ꢀP •ꢀθ  
L
R
Dꢀ JA  
outputꢀcurrent.  
whereꢀP ꢀisꢀtheꢀpowerꢀdissipatedꢀbyꢀtheꢀregulatorꢀandꢀθ ꢀ  
D
JA  
3.LossesintheVLDO/linearregulatorareduetotheDCbiasꢀ  
currentsasgivenintheElectricalCharacteristicsandtotheꢀ  
isꢀtheꢀthermalꢀresistanceꢀfromꢀtheꢀjunctionꢀofꢀtheꢀdieꢀtoꢀ  
theꢀambientꢀtemperature.  
(V V )voltagedropacrosstheinternaloutputdeviceꢀ  
IN  
OUT  
Theꢀjunctionꢀtemperature,ꢀT ,ꢀisꢀgivenꢀby:  
J
transistor.  
ꢀ T ꢀ=ꢀT ꢀ+ꢀT  
R
J
A
Otherꢀ lossesꢀ whenꢀ theꢀ buckꢀ andꢀ VLDOꢀ regulatorꢀ areꢀ  
inoperation(ENBUCKandꢀ ENVLDOequallogichigh),ꢀ  
whereꢀT ꢀisꢀtheꢀambientꢀtemperature.  
A
includingꢀC ꢀandꢀC ꢀESRꢀdissipativeꢀlossesꢀandꢀinduc-  
IN  
OUT  
torꢀcoreꢀlosses,ꢀgenerallyꢀaccountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀ  
additionalꢀloss.  
35412fb  
ꢀꢄ  
LTC3541-2  
U U  
W U  
APPLICATIO S I FOR ATIO  
Asanexample,considertheLTC3541-2withaninputꢀ DESIGN EXAMPLE  
voltageꢀV ꢀofꢀ2.9V,ꢀanꢀLV ꢀvoltageꢀofꢀ1.875V,ꢀanꢀLV ꢀ  
IN  
IN  
OUT  
Asꢀaꢀdesignꢀexample,ꢀassumeꢀtheꢀLTC3541-2ꢀisꢀusedꢀinꢀ  
aꢀsingleꢀlithium-ionꢀbatteryꢀpoweredꢀcellularꢀphoneꢀap-  
voltageꢀofꢀ1.5V,ꢀaꢀloadꢀcurrentꢀofꢀ300mAꢀforꢀtheꢀVLDOꢀ  
regulator,aloadcurrentof200mAforthebuck(totalꢀ  
loadforbuck=500mA),andanambienttemperatureꢀ  
ofꢀ85°C.ꢀFromꢀtheꢀtypicalꢀperformanceꢀgraphꢀofꢀswitchꢀ  
plication.ꢀTheꢀV ꢀwillꢀbeꢀoperatingꢀfromꢀaꢀmaximumꢀofꢀ  
IN  
4.2Vꢀdownꢀtoꢀaboutꢀ2.9V.ꢀTheꢀloadꢀcurrentꢀrequirementꢀ  
isꢀaꢀmaximumꢀofꢀ0.5Aꢀforꢀtheꢀbuckꢀoutputꢀbutꢀmostꢀofꢀ  
theꢀtimeꢀitꢀwillꢀbeꢀinꢀstandbyꢀmode,ꢀrequiringꢀonlyꢀ2mA.ꢀ  
Efficiencyꢀatꢀbothꢀlowꢀandꢀhighꢀloadꢀcurrentsꢀisꢀimportant.ꢀ  
Theꢀoutputꢀvoltageꢀforꢀtheꢀbuckꢀisꢀ1.875V.ꢀTheꢀrequire-  
mentꢀforꢀtheꢀoutputꢀofꢀtheꢀVLDOꢀregulatorꢀisꢀ1.5Vꢀoutputꢀ  
voltageꢀwhileꢀprovidingꢀupꢀtoꢀ0.3Aꢀofꢀcurrent.ꢀWithꢀthisꢀ  
informationꢀweꢀcanꢀcalculateꢀLꢀusingꢀEquationꢀ2:  
resistance,ꢀtheꢀR  
ꢀofꢀtheꢀP-channelꢀswitchꢀatꢀ85°Cꢀisꢀ  
DS(ON)  
approximately0.25Ω.TheR  
oftheN-channelswitchꢀ  
DS(ON)  
isapproximately0.4Ω.Therefore,powerdissipatedbytheꢀ  
partꢀisꢀapproximately:  
2
ꢀ P =(I  
) R +(I  
)ꢀ  
D
LOADBUCK  
SW  
LOADVLDO ꢀ  
ꢀ ꢀ ꢀꢀꢀꢀ(LV ꢀ–ꢀLV )ꢀ=ꢀ188mW  
IN  
OUT  
VOUT  
VIN  
1
f ΔI  
(
Forꢀtheꢀ3mmꢀ×ꢀ3mmꢀDFNꢀpackage,ꢀtheꢀθ ꢀisꢀ43°C/W.  
JA  
L =  
VOUT 1−  
(2)  
( )  
)
L
Thus,ꢀtheꢀjunctionꢀtemperatureꢀofꢀtheꢀregulatorꢀis:  
ꢀ T ꢀ=ꢀ85°Cꢀ+ꢀ(0.188)(43)ꢀ=ꢀ93°C  
SubstitutingV ꢀ=1.875V,V =3.55V(typ),ΔI =200mAꢀ  
J
OUT  
IN  
L
andꢀfꢀ=ꢀ2.25MHzꢀinꢀEquationꢀ3ꢀgives:  
whichꢀisꢀwellꢀbelowꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀ  
ofꢀ125°C.  
1.8V  
2.25MHz(200mA)  
1.8V  
3.45V  
L =  
1−  
=1.91µH  
(3)  
Noteꢀthatꢀatꢀhigherꢀsupplyꢀvoltages,ꢀtheꢀjunctionꢀtempera-  
tureꢀisꢀlowerꢀdueꢀtoꢀreducedꢀswitchꢀresistanceꢀR  
.
DS(ON)  
Aꢀ2.2µHꢀinductorꢀworksꢀwellꢀforꢀthisꢀapplication.ꢀForꢀbestꢀ  
efficiencyꢀchooseꢀaꢀ600mAꢀorꢀgreaterꢀinductorꢀwithꢀlessꢀ  
thanꢀ0.2Ωꢀseriesꢀresistance.  
PC BOARD LAYOUT CHECKLIST  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistshouldbeusedtoensureproperoperationoftheꢀ  
LTC3541-2.ꢀCheckꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
C ꢀwillꢀrequireꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ0.25Aꢀ  
IN  
=ꢀ I  
/2ꢀ atꢀ temperatureꢀ .ꢀ C ꢀ forꢀ theꢀ buckꢀ isꢀ  
LOAD(MAX)  
OUT  
chosenꢀtoꢀhaveꢀaꢀvalueꢀofꢀ22µFꢀandꢀanꢀESRꢀofꢀlessꢀthanꢀ  
0.25Ω.Inmostcases,aceramiccapacitorwillsatisfyꢀ  
thisꢀrequirement.  
1.ꢀTheꢀpowerꢀtraces,ꢀconsistingꢀofꢀtheꢀGNDꢀtrace,ꢀtheꢀSWꢀ  
traceꢀandꢀtheꢀV ꢀtraceꢀshouldꢀbeꢀkeptꢀshort,ꢀdirectꢀandꢀ  
IN  
wide.  
C
ꢀforꢀtheꢀVLDOꢀregulatorꢀisꢀchosenꢀasꢀ2.2µF.  
OUT  
2.ꢀDoesꢀtheꢀ(+)ꢀplateꢀofꢀC ꢀconnectꢀtoꢀV ꢀasꢀcloselyꢀasꢀ  
IN  
IN  
possible?ꢀThisꢀcapacitorꢀprovidesꢀtheꢀACꢀcurrentꢀtoꢀtheꢀ  
internalꢀpowerꢀMOSFETs.  
3.ꢀKeepꢀtheꢀswitchingꢀnode,ꢀSW,ꢀawayꢀfromꢀtheꢀsensitiveꢀ  
LFBꢀnode.  
4.ꢀ Keepꢀ theꢀ (–)ꢀ platesꢀ ofꢀ C ꢀ andꢀ C ꢀ asꢀ closeꢀ asꢀ  
IN  
OUT  
possible.  
35412fb  
ꢀꢅ  
LTC3541-2  
U
TYPICAL APPLICATIO S  
Dual Output with Minimal External Components Using Auto Start-Up Sequence,  
Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
2.9V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
IN  
2.2µH  
LV  
OUT  
LTC3541-2  
ENBUCK GND  
1V/DIV  
V
V
OUT  
OUT1  
V
IN  
V
1.875V  
200mA  
OUT2  
2V/DIV  
1.5V  
LV  
LV  
OUT  
PGND  
IN  
300mA  
10µF  
2.2µF  
35412TA02b  
35412 TA02a  
I
I
= 200mA  
LVOUT  
2ms/DIV  
VOUT  
= 300mA  
Dual Output with Minimal External Components Using Auto-Start-Up  
Sequence, Buck in Pulse-Skip Mode for Low Noise Operation  
V
IN  
2.9V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
IN  
2.2µH  
LV  
OUT  
LTC3541-2  
1V/DIV  
ENBUCK  
GND  
V
V
OUT1  
OUT  
V
IN  
1.875V  
200mA  
V
OUT2  
2V/DIV  
1.5V  
LV  
LV  
OUT  
PGND  
IN  
300mA  
10µF  
2.2µF  
35412TA03b  
35412 TA03a  
I
I
= 200mA  
LVOUT  
2ms/DIV  
VOUT  
= 300mA  
35412fb  
ꢀꢆ  
LTC3541-2  
U
TYPICAL APPLICATIO S  
Dual Output Using Minimal External Components with VOUT2 Controlled by External Logic  
Signal, Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
2.9V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
IN  
2.2µH  
LV  
LTC3541-2  
OUT  
1V/DIV  
ENBUCK  
GND  
V
V
OUT1  
OUT  
V
IN  
1.875V  
200mA  
V
OUT2  
2V/DIV  
1.5V  
LV  
LV  
OUT  
PGND  
IN  
300mA  
10µF  
2.2µF  
35412 TA04a  
35412TA04b  
I
I
= 200mA  
LVOUT  
4ms/DIV  
VOUT  
= 300mA  
Dual Output Using Minimal External Components with VOUT1 Controlled by External Logic  
Signal, Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
2.9V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
LV  
IN  
OUT  
2.2µH  
1V/DIV  
LTC3541-2  
ENBUCK GND  
V
IN  
2V/DIV  
V
V
OUT1  
OUT  
1.875V  
200mA  
V
OUT2  
LV  
LV  
PGND  
1.5V  
IN  
OUT  
300mA  
2.2µF  
10µF  
35412TA05b  
I
I
= 200mA  
LVOUT  
4ms/DIV  
VOUT  
35412 TA05a  
= 30mA  
35412fb  
ꢀꢇ  
LTC3541-2  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Referenꢀe LTc DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PAcKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSc  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITcH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSc  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEc PAcKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
cHEcK THE LTc WEBSITE DATA SHEET FOR cURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO ScALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PAcKAGE DO NOT INcLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXcEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENcE FOR PIN 1 LOcATION ON THE  
TOP AND BOTTOM OF PAcKAGE  
35412fb  
Information furnished by Linear Teꢀhnology corporation is believed to be aꢀꢀurate and reliable.  
However, no responsibility is assumed for its use. Linear Teꢀhnology corporation makes no represen-  
tation that the interꢀonneꢀtion of its ꢀirꢀuits as desꢀribed herein will not infringe on existing patent rights.  
ꢀꢈ  
LTC3541-2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
LT®3023ꢀ  
Dual,ꢀ2x100mA,ꢀLowꢀNoiseꢀMicropowerꢀLDOꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀMSꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
OUT  
RMS(P-P)  
1µFꢀCeramicꢀCapacitorsꢀ  
LT3024ꢀ  
Dual,ꢀ100mA/500mA,ꢀLowꢀNoiseꢀMicropowerꢀLDO  
300mA,ꢀMicropowerꢀVLDOꢀLinearꢀRegulator  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
OUT  
1µFꢀCeramicꢀCapacitorsꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ60µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀTSSOPꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
RMS(P-P)  
LTC3025ꢀ  
V :ꢀ0.9Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.4V,ꢀ2.7Vꢀtoꢀ5.5VꢀBiasꢀVoltageꢀRequired,ꢀꢀ  
IN  
DO  
OUT(MIN)  
ꢀ=ꢀ45mV,ꢀI ꢀ=ꢀ50µA,ꢀI ꢀ<ꢀ1µA,ꢀV ꢀ=ꢀADJ,ꢀDFNꢀPackages,ꢀStableꢀwithꢀ  
Q SD OUT  
V
1µFꢀCeramicꢀCapacitors  
LTC3407  
LTC3407-2  
LTC3445  
DualꢀSynchronousꢀ600mAꢀSynchronousꢀStep-Downꢀ 1.5MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
DualꢀSynchronousꢀ800mAꢀSynchronousꢀStep-Downꢀ 2.25MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator,ꢀ2.25MHz  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
2
2
I CꢀControllableꢀBuckꢀRegulatorꢀwithꢀTwoꢀLDOsꢀandꢀ 600mA,ꢀ1.5MHzꢀCurrentꢀModeꢀBuckꢀRegulator,ꢀI CꢀProgrammableꢀ  
BackupꢀBatteryꢀInput  
V
ꢀfromꢀ0.85Vꢀtoꢀ1.55V,ꢀtwoꢀ50mAꢀLDOs,ꢀBackupꢀBatteryꢀInputꢀwithꢀ  
OUT  
PowerPathꢀControl,ꢀQFNꢀPackageꢀ  
LTC3446  
LTC3448  
LTC3541  
TripleꢀOutputꢀStep-DownꢀConverterꢀ1AꢀOutputꢀBuck,ꢀ V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀBuckꢀ=ꢀ0.8V,ꢀV  
ꢀVDLOꢀ=ꢀ0.4V  
,ꢀ  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
TwoꢀEachꢀ300mAꢀVDLOs  
14-PinꢀDFNꢀPackage  
V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ0.6V,ꢀSwitchesꢀtoꢀLDOꢀModeꢀatꢀ≤3A,ꢀꢀ  
OUT(MIN)  
600mAꢀ(I ),ꢀHighꢀEfficiency,ꢀ1.5MHz/2.25MHzꢀ  
OUT  
IN  
SynchronousꢀStep-DownꢀRegulatorꢀwithꢀLDOꢀMode  
DD8,ꢀMS8/EꢀPackages  
HighꢀEfficiencyꢀBuckꢀ+ꢀVLDOꢀRegulator  
V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV  
ꢀBuckꢀ=ꢀ0.8V,ꢀV  
ꢀVLDOꢀ=ꢀ0.4V,ꢀꢀ  
IN  
OUT(MIN)  
OUT(MIN)  
3mmꢀ×ꢀ3mmꢀ10-PinꢀDFNꢀPackage  
LTC3548/LTC3548-1ꢀ Dualꢀ800mA/400mAꢀI ,ꢀ2.25MHz,ꢀSynchronousꢀꢀ  
95%ꢀEfficiency,ꢀV :ꢀ2.5Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.6V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀ  
OUT(MIN) Q SD  
OUT  
IN  
LTC3548-2  
Step-DownꢀDC/DCꢀConverter  
DFNꢀandꢀ10-PinꢀMSꢀPackages  
LTC3700  
Step-DownꢀDC/DCꢀControllerꢀwithꢀLDOꢀRegulator  
V ꢀfromꢀ2.65Vꢀtoꢀ9.8V,ꢀConstantꢀFrequencyꢀ550kHzꢀOperation  
IN  
PowerPathꢀisꢀaꢀtrademarkꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀ  
35412fb  
LT 0407 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 Mꢀcarthy Blvd., Milpitas, cA 95035-7417  
ꢁ0  
ꢀ●ꢀ  
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.ꢀom  

相关型号:

LTC3541-3

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-1#PBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1#TRPBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1-PBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-1-TRPBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2#PBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-2#TRPBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-3

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-3#TR

IC 1.25 A SWITCHING REGULATOR, 2700 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, PLASTIC, M0-229WEED-2, DFN-10, Switching Regulator or Controller
Linear

LTC3541EDD-3#TRPBF

LTC3541-3 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear