LTC3589_1 [Linear]

8-Output Regulator with Sequencing and I2C; 8路输出稳压器,带有排序和I2C
LTC3589_1
型号: LTC3589_1
厂家: Linear    Linear
描述:

8-Output Regulator with Sequencing and I2C
8路输出稳压器,带有排序和I2C

稳压器
文件: 总46页 (文件大小:2398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3589  
8-Output Regulator with  
2
Sequencing and I C  
FEATURES  
DESCRIPTION  
2
The LTC®3589 is a complete power management solu-  
tion for ARM and ARM-based processors and advanced  
portable microprocessor systems. The device contains  
three synchronous step-down DC/DC converters for  
core, memory and SoC rails, a synchronous buck-boost  
regulator for I/O at 3.3V to 5V, and three 250mA LDO  
n
Triple I C Adjustable High Efficiency Step-Down DC/  
DC Converters: 1.6A, 1A, 1A  
n
High Efficiency 1.2A Buck-Boost DC/DC Converter  
n
Triple 250mA LDO Regulators  
n
Pushbutton ON/OFF Control with System Reset  
n
Flexible Pin-Strap Sequencing Operation  
2
2
n
regulators for low noise analog supplies. An I C serial  
I C and Independent Enable Control Pins  
n
port is used to control regulator enables, output voltage  
levels, dynamic voltage scaling and slew rate, operating  
modes and status reporting.  
Power Good and Reset Outputs  
n
Dynamic Voltage Scaling and Slew Rate Control  
n
Selectable 2.25MHz or 1.12MHz Switching Frequency  
n
Always-Alive 25mA LDO Regulator  
Regulator start-up is sequenced by connecting outputs to  
n
2
8µA Standby Current  
enable pins in the desired order or via the I C port. System  
n
40-Pin 6mm × 6mm × 0.75mm QFN  
power-on, power-off and reset functions are controlled by  
2
pushbutton interface, pin inputs, or I C interface.  
APPLICATIONS  
The LTC3589 supports i.MX, PXA and OMAP proces-  
sors with eight independent rails at appropriate power  
levels. Other features include interface signals such  
as the VSTB pin that toggles between programmed run  
and standby output voltages on up to four rails simulta-  
neously. The device is available in a low profile 40-pin  
6mm × 6mm exposed pad QFN package.  
n
Handheld Instruments and Scanners  
n
Portable Industrial Devices  
n
Automotive Infotainment  
n
Medical Devices  
n
High End Consumer Devices  
n
Multirail Systems  
n
Supports Freescale i.MX, Marvell PXA and Other  
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
Application Processors  
TYPICAL APPLICATION  
V
2.7V TO 5.5V  
IN  
Start-Up Sequence  
1µH  
V
V
IN  
CORE  
VRTC 1.2V  
AT 25mA  
0.6V TO 1.2V  
AT 1.6A  
SW1  
SW2  
SW3  
LDO1_STDBY  
I/O  
22µF  
22µF  
1µF  
WAKE  
(1V/DIV)  
1.5µH  
1.5µH  
V
MEMORY  
0.9V TO 1.2V  
AT 250mA  
SRAM  
LTC3589  
0.9V TO 1.8V  
AT 1A  
LDO2  
V
1µF  
1µF  
SRAM  
ANALOG  
0.5V/DIV  
V
SOC  
ANALOG 1.8V  
AT 250mA  
LDO3  
LDO4  
0.625V TO 1.25V  
AT 1A  
V
SOC  
22µF  
22µF  
MEMORY  
1.8V, 2.5V,  
2.8V, 3.3V  
AT 250mA  
2.7µH  
V
CORE  
3
SW4AB  
SW4CD  
1µF  
2
I C  
3589 TA01b  
7
500µs/DIV  
I/O  
ENABLES  
PWR_ON  
3.3V AT 1.2A  
OR 5V AT 1A  
BB_OUT  
WAKE  
4
ON  
STATUS  
GND  
3589 TA01a  
3589fb  
1
LTC3589  
TABLE OF CONTENTS  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Pin Configuration ................................................................................................................. 3  
Order Information................................................................................................................. 3  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .......................................................................................... 9  
Pin Functions.....................................................................................................................13  
Block Diagram....................................................................................................................15  
Operation..........................................................................................................................16  
Introduction.......................................................................................................................................................... 16  
Always-On LDO..................................................................................................................................................... 17  
Step-Down Switching Regulators......................................................................................................................... 19  
Buck-Boost Switching Regulator .......................................................................................................................... 23  
Slewing DAC Reference Operation........................................................................................................................ 27  
Pushbutton Operation........................................................................................................................................... 28  
Enable and Power-On Sequencing ........................................................................................................................ 30  
Fault Detection, Shutdown, and Reporting............................................................................................................ 31  
2
I C Operation........................................................................................................................................................ 33  
Thermal Considerations and Board Layout........................................................................................................... 39  
Applications Information .......................................................................................................41  
Typical Application ..............................................................................................................43  
Package Description ............................................................................................................44  
Revision History .................................................................................................................45  
Typical Application ..............................................................................................................46  
Related Parts.....................................................................................................................46  
3589fb  
2
LTC3589  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 3)  
SW1, SW2, SW3, SW4AB, SW4CD (Transients < 1ms,  
Duty Cycle < 1%) ......................................... –0.3V to 7V  
VSTB, EN1, EN2, EN3, EN4, EN_LDO2, EN_LDO34, ON,  
PBSTAT, WAKE, RSTO, PWR_ON, IRQ, ....... –0.3V to 6V  
PV , PV , PV , PV ............... –0.3V to V + 0.3V  
SDA, SCL ......................................–0.3V to DV + 0.3V  
IN1  
IN2  
, V  
DD  
IN3  
IN4  
IN  
IN +  
DD  
V
..........................–0.3V to V  
0.3V  
Operating Junction Temperature Range  
IN_LDO2 IN_LDO34  
V , DV ..................................................... –0.3V to 6V  
IN  
(Note 2).................................................. –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
LDO1_STBY,LDO1_FB,BUCK1_FB,BUCK2_FB,BUCK3_FB,  
BB_FB, BB_OUT, LDO2, LDO2_FB,LDO3, LDO4, PGOOD,  
PIN CONFIGURATION  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
V
1
2
3
4
5
6
7
8
9
30  
29  
28  
SCL  
IN_LDO2  
LDO2  
PGOOD  
VSTB  
LDO3  
LDO4  
27 PV  
IN3  
V
26 SW3  
25  
41  
GND  
IN_LD34  
PV  
SW2  
IN1  
SW1  
24 PV  
IN2  
RSTO  
23  
WAKE  
EN_LDO2  
22 PBSTAT  
21  
EN1 10  
ON  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 125°C, θ = 34°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3589EUJ#PBF  
LTC3589IUJ#PBF  
LTC3589HUJ#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3589UJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3589EUJ#TRPBF  
LTC3589IUJ#TRPBF  
LTC3589HUJ#TRPBF  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
LTC3589UJ  
–40°C to 125°C  
LTC3589UJ  
–40°C to 150°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3589fb  
3
LTC3589  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_LDO2 = VIN_LDO34  
= DVDD = 3.8V. All regulators disabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
18  
UNITS  
V
l
l
l
V
Operating Input Supply Voltage, V  
2.7  
IN  
IN  
I
f
V
Quiescent Current  
IN  
All Enables = 0V  
8
µA  
VINLDO1  
OSC  
Oscillator Frequency  
1.8  
2.25  
2.6  
MHz  
Step-Down Switching Regulators 1, 2, and 3  
l
l
I
Pulse-Skipping Mode V Quiescent Current  
V
= 0.85V (Note 5)  
120  
23  
200  
µA  
VIN  
IN  
FB  
per Buck  
Burst Mode® V Quiescent Current per Buck  
40  
50  
µA  
nA  
IN  
I
Feedback Pin Input Current  
Maximum Duty Cycle  
V
V
= 0.8V  
= 0V  
–50  
100  
FB  
FB  
FB  
D
R
%
X
SW Pull-Down Resistance  
Soft-Start Rate  
Regulators Disabled  
(Note 6)  
2.5  
0.8  
kΩ  
V/ms  
V
SW  
t
SS  
l
l
l
V
Maximum Feedback Voltage  
BxDTV1 = BxDTV2 = 11111,  
V
0.735  
0.351  
2.0  
0.75  
0.765  
0.374  
FB(MAX)  
= 2.7V to 5.5V  
IN  
V
V
Feedback LSB Step Size  
12.5  
mV  
V
FB(LSB)  
FB(MIN)  
Minimum Feedback Voltage  
BxDTV1 = BxDTV2 = 00000,  
V
0.3625  
= 2.7V to 5.5V  
IN  
1.6A Step-Down Switching Regulator 1 (Buck 1)  
Peak PMOS Current Limit SW1  
I
2.7  
180  
110  
A
mΩ  
mΩ  
LIM1  
RP1  
RN1  
R
R
of PMOS1  
of NMOS1  
I
I
= 100mA  
= 100mA  
DS(ON)  
DS(ON)  
SW1  
SW1  
1.0A Step-Down Switching Regulators 2 and 3  
Peak PMOS Current Limit SW2 and SW3  
l
I
1.5  
1.9  
250  
130  
A
mΩ  
mΩ  
LIM2, 3  
RP2, 3  
RN2, 3  
R
R
of PMOS2 and PMOS3  
of NMOS2 and NMOS3  
DS(ON)  
DS(ON)  
1.2A Buck-Boost Switching Regulator 4 (Buck-Boost)  
l
l
I
PWM Mode V Quiescent Current  
V
V
= 0.85V (Note 5)  
BB_FB  
115  
19  
170  
35  
µA  
µA  
VIN  
IN  
Burst Mode V Quiescent Current  
IN  
l
V
V
Feedback Voltage  
= 2.7V to 5.5V, V = 5.5V  
OUT  
0.776  
1.8  
0.8  
0.824  
5.0  
V
V
BB_FB  
OUTBB  
LIM4  
IN  
Output Voltage Range  
l
I
I
I
I
Peak PMOS Current Limit SW4AB  
Forward Burst Current Limit (Switch A)  
Reverse Current Limit (Switch D)  
Reverse Burst Current Limit (Switch D)  
2.3  
2.9  
600  
1
A
Burst Mode Operation  
Burst Mode Operation  
mA  
A
PEAK4  
LIMR4  
ZERO4  
0
mA  
mΩ  
mΩ  
kΩ  
V/ms  
nA  
RP4  
RN4  
R
R
of Switch A and Switch D  
of Switch B and Switch C  
I
I
= I  
= I  
= 100mA  
160  
110  
2.5  
2
DS(ON)  
DS(ON)  
SW4AB  
SW4AB  
SW4CD  
SW4CD  
= –100mA  
R
BB_OUT Pull-Down Resistance  
Soft-Start Rate  
Regulator Disabled  
(Note 6)  
OUT4  
t
I
SS  
FB  
Feedback Pin Input Current  
V
= 0.85V  
–50  
50  
FB  
3589fb  
4
LTC3589  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_LDO2 = VIN_LDO34  
= DVDD = 3.8V. All regulators disabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO Regulators  
t
Soft-Start Time LDO2, LDO3, LDO4  
100  
2.5  
µs  
LDO_SS  
R
Output Pull-Down Resistance LDO2, LDO3,  
LDO4  
LDO Disabled  
kΩ  
LDO_PD  
Always-On Regulator (LDO1_STDBY)  
l
V
V
LDO1 Feedback Voltage  
LDO1 Line Regulation  
0.76  
25  
0.8  
0.84  
V
LDO1_FB  
LDO1  
I
= 1mA, LDO1_STBY = 1.2V,  
0.15  
%/V  
LDO1_STBY  
IN  
V
= 2.7V to 5.5V  
LDO1 Load Regulation  
I
= 0.1mA to 25mA,  
0.1  
%
LDO1  
LDO1_STBY = 1.2V  
l
I
I
Available Output Current  
Short-Circuit Output Current Limit  
Dropout Voltage (Note 4)  
LDO1_FB Input Current  
mA  
mA  
mV  
nA  
LDO1  
65  
100  
50  
LDO1_SC  
V
I
= 25mA, LDO1_STBY = 3.3V  
200  
DROP1  
LDO1  
I
V
= 0.85V  
LDO1_FB  
–50  
1.7  
LDO1_FB  
LDO Regulator 2 (LDO2)  
l
V
V
Input Voltage Range  
V
IN  
V
IN_LDO2  
IN_LDO2  
l
l
I
V
V
Quiescent Current  
Shutdown Current  
Regulator Enabled  
Regulator Disabled  
12  
0
20  
1
µA  
µA  
VIN_LDO2  
IN_LDO2  
IN_LDO2  
l
l
I
V
Quiescent Current  
IN  
EN_LDO2 = High  
50  
0.75  
85  
µA  
V
VIN  
V
V
V
LDO2 Maximum Feedback Voltage  
LDO2 Feedback LSB Step Size  
LDO2 Minimum Feedback Voltage  
L2DTV1 = L2DTV2 = 11111  
0.735  
0.351  
0.765  
FB2(MAX)  
FB2(LSB)  
FB2(MIN)  
12.5  
mV  
V
l
L2DTV1 = L2DTV2 = 00000  
0.3625  
0.374  
V
= V = 2.7V to 5.5V,  
IN  
IN_LDO2  
I
I
I
= 1mA  
LDO2  
LDO2  
LDO2  
LDO2 Line Regulation  
=1mA, V  
= 2.7V to 5.5V  
0.01  
0.01  
%/V  
%
INLDO2  
LDO2 Load Regulation  
= 1mA to 250mA  
l
I
I
LDO2 Available Output Current  
LDO2 Short-Circuit Current Limit  
Dropout Voltage (Note 4)  
250  
300  
mA  
mA  
OUT2  
SC2  
450  
600  
V
I
I
= 200mA, V  
= 200mA, V  
= 2.5V  
= 1.2V  
140  
350  
180  
500  
mV  
mV  
DROP2  
LDO2  
LDO2  
LDO2  
LDO2  
I
LDO2_FB Input Current  
V
= 0.8V  
LDO2_FB  
–50  
50  
nA  
LDO2_FB  
LDO Regulator 3 (LDO3)  
l
V
V
Input Range  
2.35  
V
IN  
V
IN_LDO34  
IN_LDO34  
l
l
I
V
V
Quiescent Current  
Shutdown Current  
Regulator Enabled  
Regulator Disabled  
15  
0
25  
1
µA  
µA  
VIN_LDO34  
IN_LDO34  
IN_LDO34  
l
l
I
V
Quiescent Current  
IN  
50  
85  
µA  
V
VIN  
V
LDO3 Output Voltage  
V
= V = 2.7V to 5V,  
1.746  
1.8  
1.854  
LDO3  
IN_LDO34  
IN  
I
I
I
= 1mA  
LDO3  
LDO3  
LDO3  
LD03 Line Regulation  
=1mA, V  
= 2.7V to 5.5V  
0.01  
0.05  
%/V  
%
INLDO34  
LDO3 Load Regulation  
= 1mA to 250mA  
l
I
I
LDO3 Available Output Current  
LDO3 Short-Circuit Current Limit  
LDO3 Dropout Voltage (Note 4)  
250  
300  
mA  
mA  
mV  
LDO3  
450  
190  
600  
250  
LDO3_SC  
V
I
= 200mA, V  
= 1.8V  
LDO3  
DROP3  
LDO3  
3589fb  
5
LTC3589  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_LDO2 = VIN_LDO34  
= DVDD = 3.8V. All regulators disabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO Regulator 4 (LDO4)  
l
V
V
Input Range  
2.35  
V
IN  
V
IN_LDO34  
IN_LDO34  
I
V
V
Quiescent Current  
Shutdown Current  
Regulator Enabled  
Regulator Disabled  
l
l
14  
0
24  
1
µA  
µA  
VIN_LDO34  
IN_LDO34  
IN_LDO34  
l
I
Enabled V Quiescent Current  
50  
85  
µA  
VIN  
IN  
l
l
l
l
V
LDO 4 Output Voltage  
I
= 1mA, L2DTV2[6:5] = 00  
2.716  
2.425  
1.746  
3.201  
2.8  
2.5  
1.8  
3.3  
2.884  
2.575  
1.854  
3.399  
V
V
V
V
LDO4  
LDO4  
L2DTV2[6:5] = 01  
L2DTV2[6:5] = 10  
L2DTV2[6:5] = 11  
LD04 Line Regulation  
I
=1mA, V  
= 1.8V  
= 2.7V to 5.5V,  
INLDO4  
0.01  
%/V  
LDO4  
OUT  
V
LDO4 Load Regulation  
I
= 1mA to 250mA  
0.05  
%
mA  
mA  
LDO4  
l
I
I
LDO4 Available Output Current  
LDO4 Short-Circuit Current Limit  
LDO4 Dropout Voltage (Note 4)  
250  
300  
LDO4  
450  
600  
LDO4_SC  
V
I
I
= 200mA, V  
= 200mA, V  
= 3.3V  
= 1.8V  
120  
190  
160  
250  
mV  
mV  
DROP4  
LDO4  
LDO4  
LDO4  
LDO4  
Enable Inputs  
l
V
Threshold Rising, All Enables Low  
0.8  
1.2  
V
ENx_THR  
l
l
V
V
Threshold Rising, Any Enable High  
Threshold Falling, Any Enable High  
0.5  
0.45  
0.530  
V
V
ENx_THR2  
ENx_THF2  
0.420  
R
Input Pull-Down Resistance  
4.5  
MΩ  
ENX  
VSTB, PWR_ON Inputs  
l
l
V
V
VSTB Pin Threshold Rising  
VSTB Pin Threshold Falling  
0.8  
0.7  
1.2  
1.2  
V
V
VSTB_THR  
VSTB_THF  
0.4  
0.4  
R
Pull-Down Resistence  
4.5  
MΩ  
VSTB  
l
l
V
V
PWR_ON Pin Threshold Rising  
PWR_ON Pin Threshold Falling  
0.8  
0.7  
V
V
PWR_ONTHR  
PWR_ONTHF  
R
Pull-Down Resistence  
4.5  
MΩ  
PWR_ON  
2
I C Port  
l
DV  
DV Input Supply Voltage  
1.6  
5.5  
V
µA  
V
DD  
DD  
I
DV Quiescent Current  
SCL/SDA = 0kHz  
0.5  
0.8  
DVDD  
DD  
V
DV UVLO Level  
DVDD_UVLO  
DD  
ADDRESS  
LTC3589 Device Address – Write  
LTC3589 Device Address – Read  
01101000  
01101001  
V
V
SDA, SCL SDA and SCL Input Threshold Rising  
SDA, SCL SDA and SCL Input Threshold Falling  
70  
%DV  
%DV  
IH  
IL  
DD  
DD  
30  
250  
0.4  
I
I
SDA and SCL Input Current  
SDA Output Low Voltage  
SDA = SCL = 0V to 5.5V  
I = 3mA  
SDA  
–250  
nA  
V
IHSCx ILSCx  
l
V
SDA  
OL  
SCL  
BUF  
f
t
SCL Clock Operating Frequency  
400  
kHz  
µs  
Bus Free Time Between Stop and Start  
Condition  
1.3  
t
t
Hold Time After (Repeated) Start Condition  
Repeated Start Condition Set-Up Time  
0.6  
0.6  
µs  
µs  
HD_STA  
SU_STA  
3589fb  
6
LTC3589  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_LDO2 = VIN_LDO34  
= DVDD = 3.8V. All regulators disabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.6  
0
TYP  
MAX  
UNITS  
µs  
t
t
t
t
t
t
t
t
t
Stop Condition Set-Up Time  
Data Hold Time Output  
Data Hold Time Input  
Data Set-Up Time  
SU_STO  
900  
ns  
HD_DAT(O)  
0
ns  
HD_DAT(I)  
100  
1.3  
0.6  
ns  
SU_DAT  
SCL Clock Low Period  
SCL Clock High Period  
Data Fall Time  
µs  
LOW  
µs  
HIGH  
C = Capacitance of One BUS Line (pF)  
B
20 + 0.1C  
B
300  
300  
50  
ns  
f
Data Rise Time  
C = Capacitance of One BUS Line (pF)  
B
20 + 0.1C  
B
ns  
r
Input Spike Supression Pulse Width  
ns  
SP  
Pushbutton Interface  
l
l
V
ON Threshold Rising  
ON Threshold Falling  
0.8  
0.7  
1.2  
V
V
ON_TH  
0.4  
I
ON Input Current  
ON = V  
–100  
100  
nA  
µA  
ON  
IN  
ON = 0V  
40  
50  
0.2  
400  
5
t
t
t
t
t
t
t
t
t
t
ON Low Time to PBSTAT Low  
ON High Time to PBSTAT High  
ON Low Time to WAKE High  
ON Low Time to Hard Reset  
PBSTAT Minimum Pulse Width  
PBSTAT Blanking from WAKE Low  
Minimum WAKE Low Time  
ms  
µs  
ms  
s
ON_PBSTAT1  
ON_PBSTAT2  
ON_WAKE  
ON_HR  
50  
1
ms  
s
PBSTAT_PW  
PBSTAT_BK  
WAKE_OFF  
WAKE_ON  
PWR_ON  
1
s
WAKE High Time with PWR_ON = 0V  
PWR_ON High to WAKE High  
PWR_ON Low WAKE Low  
5
s
50  
50  
ms  
ms  
PWR_OFF  
Status Output Pins (PBSTAT, WAKE, PGOOD, RSTO, IRQ)  
V
PBSTAT Output Low Voltage  
I
= 3mA  
= 3.8V  
0.1  
0.1  
0.1  
0.4  
0.1  
0.4  
0.1  
0.4  
0.1  
V
µA  
V
PBSTAT  
PBSTAT  
PBSTAT  
I
PBSTAT Output High Leakage Current  
WAKE Output Low Voltage  
V
–0.1  
–0.1  
–0.1  
PBSTAT  
V
I
= 3mA  
= 3.8V  
WAKE  
WAKE  
I
WAKE Output High Leakage Current  
PGOOD Output Low Voltage  
V
µA  
V
WAKE  
WAKE  
V
I
= 3mA  
= 3.8V  
PGOOD  
PGOOD  
PGOOD  
I
PGOOD Output High Leakage Current  
V
µA  
PGOOD  
V
V
V
V
PGOOD Threshold Rising  
PGOOD Threshold Falling  
–6  
–8  
%
%
PGOOD  
NRSTO  
UVLO  
LDO1 Power Good Threshold Rising  
LDO1 Power Good Threshold Falling  
–6  
–8  
%
%
Undervoltage Lockout Rising  
Undervoltage Lockout Falling  
2.65  
2.55  
2.7  
V
V
Undervoltage Warning Rising  
Undervoltage Warning Falling  
3
2.9  
UVWARN  
3589fb  
7
LTC3589  
The l denotes the specifications which apply over the full operating junction  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_LDO2 = VIN_LDO34  
= DVDD = 3.8V. All regulators disabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.1  
–0.1  
TYP  
MAX  
0.4  
UNITS  
V
RSTO Output Low Voltage  
RSTO Output High Leakage Current  
IRQ Output Low Voltage  
IRQ Output High Leakage Current  
I
= 3mA  
= 3.8V  
0.1  
V
µA  
V
RSTO  
RSTO  
RSTO  
I
V
0.1  
RSTO  
V
I
= 3mA  
= 3.8V  
0.1  
0.4  
IRQ  
IRQ  
I
V
0.1  
µA  
IRQ  
IRQ  
Note 1: Stresses beyond those listed Under Absolute Maximum ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum rating condition for extended periods may affect device  
reliability and lifetime.  
impedance θ = 34°C/W.  
Note that the maximum ambient temperature consistent with these  
specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal impedance and  
other environmental factors.  
Note 3: The LTC3589 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating temperature  
may impair device reliability.  
JA  
Note 2: The LTC3589 is tested under pulsed load conditions such that T ≈  
J
T .  
A
The LTC3589E is guaranteed to meet specifications from 0°C to 85°C  
junction temperature. Specifications over the –40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTC3589I is guaranteed  
over the –40°C to 125°C operating junction temperature range and the  
LTC3589H is guaranteed over the full –40°C to 150°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures greater  
Note 4: Dropout voltage is defined as (V – V ) for LDO1 or  
IN  
LDO  
(V  
IN_LDO  
– V ) for other LDOs when V  
is 3% lower than V  
LDO  
LDO  
LDO  
measured with V = V  
= 4.3V.  
IN  
IN_LDO  
Note 5: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 6: Soft-start measured in test mode with regulator error amplifier in  
unity gain mode.  
than 125°C. The junction temperature (T in °C) is calculated from the  
J
ambient temperature (T in °C) and power dissipation (PD, in Watts)  
A
according to the formula:  
T = T + (PD • θ ), where the package junction to ambient thermal  
J
A
JA  
3589fb  
8
LTC3589  
VIN = 3.8V, TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Step-Down Switching Regulator  
IVIN vs VIN  
Standby IVIN vs VIN  
LDO2 to LDO4 IVIN vs VIN  
250  
200  
150  
100  
50  
900  
14  
12  
PULSE-SKIPPING MODE  
800  
ENABLE THREE LDOs  
ENABLE THREE BUCKS  
ENABLE TWO BUCKS  
700  
600  
500  
400  
300  
200  
10  
8
ENABLE TWO LDOs  
ENABLE ONE LDO  
6
ENABLE ONE BUCK  
4
2
100  
0
0
0
3.0  
3.5  
4.5  
5.0  
5.5  
3.0  
3.5  
4.5  
5.0  
5.5  
3.0  
3.5  
4.5  
5.0  
5.5  
2.5  
4.0  
(V)  
2.5  
4.0  
(V)  
2.5  
4.0  
(V)  
V
V
V
IN  
IN  
IN  
22554 G01  
3589 G02  
3589 G03  
Step-Down Switching Regulator  
IVIN vs VIN  
Input Supply Current  
vs Temperature  
Buck-Boost IVIN vs VIN  
120  
100  
80  
60  
40  
20  
0
1200  
1000  
800  
600  
400  
200  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
Burst Mode OPERATION  
ENABLE THREE BUCKS  
ALL REGULATORS ENABLED  
PULSE-SKIPPING MODE  
PWM MODE  
ENABLE TWO BUCKS  
ENABLE ONE BUCK  
ALL REGULATORS ENABLED  
Burst Mode OPERATION  
Burst Mode OPERATION  
STANDBY (ONLY LDO1 ON)  
0
3.0  
3.5  
4.5  
5.0  
5.5  
2.5  
4.0  
(V)  
–25  
0
75 100 125 150  
25 50  
TEMPERATURE (°C)  
3.0  
3.5  
5.0  
5.5  
–50  
2.5  
4.0  
(V)  
4.5  
V
V
IN  
IN  
3589 G04  
3589 G05  
3589 G06  
Oscillator Frequency  
vs Temperature  
Switching Frequency Change vs VIN  
Buck-Boost Efficiency vs IOUT  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.0  
0.8  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 3.8V  
IN  
BURST  
0.6  
0.4  
0.2  
PWM MODE  
0
–0.2  
–0.4  
–0.6  
–0.8  
V
= 5.0V  
= 2.5V  
= 3.3V  
OUT  
V
V
OUT  
OUT  
10  
0
–10  
30  
TEMPERATURE (°C)  
110  
150  
–50  
70  
3.0  
3.5  
4.5  
5.0  
5.5  
2.5  
4.0  
(V)  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
V
IN  
3589 G9  
3589 G07  
3589 G08  
3589fb  
9
LTC3589  
TYPICAL PERFORMANCE CHARACTERISTICS VIN = 3.8V, TA = 25°C, unless otherwise noted.  
Step-Down Switching Regulator 1  
Efficiency vs IOUT  
Step-Down Switching Regulator 2  
Efficiency vs IOUT  
Buck-Boost Efficiency vs IOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 3.3V  
V
= 1.2V  
V
= 1.8V  
OUT  
OUT  
OUT  
BURST  
BURST  
BURST  
PWM MODE  
FORCED  
CONTINUOUS  
FORCED  
CONTINUOUS  
V
V
V
= 5.0V  
= 4.2V  
= 3.0V  
IN  
IN  
IN  
PULSE-SKIPPING  
10  
0
PULSE-SKIPPING  
10  
0
10  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3589 G10  
3589 G11  
3589 G12  
Step-Down Switching Regulator 3  
Efficiency vs IOUT  
Step-Down Switching Regulator  
RDS(ON) vs Temperature  
Buck-Boost RDS(ON) vs Temperature  
0.25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.40  
0.35  
0.30  
0.25  
0.20  
V
= 3.3V  
OUT  
0.20  
0.15  
0.10  
BURST  
PMOS  
BUCK2, 3 PMOS  
BUCK1 PMOS  
PULSE-  
SKIPPING  
NMOS  
FORCED  
CONTINUOUS  
BUCK2, 3 NMOS  
0.15  
0.10  
0.05  
0
BUCK1 NMOS  
0.05  
0
10  
0
–10  
30  
TEMPERATURE (°C)  
110  
150  
–50  
70  
0.01  
0.1  
1
10  
100  
1000  
–50  
–10  
30  
70  
110  
150  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
3589 G13  
3589 G15  
3589 G14  
Step-Down Switching  
Regulator Current Limit  
vs Temperature  
Buck-Boost Current Limit  
vs Temperature  
Step-Down Switching Regulator  
Soft-Start  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
BUCK1  
V
OUT  
PEAK LIMIT  
CLAMP LIMIT  
500mV/DIV  
200mA/DIV  
BUCK2, BUCK3  
I
L
3589 G18  
200µs/DIV  
–25  
0
25 50  
TEMPERATURE (°C)  
125 150  
–25  
0
25 50  
125 150  
75 100  
–50  
75 100  
–50  
TEMPERATURE (°C)  
3589 G16  
3589 G17  
3589fb  
10  
LTC3589  
TYPICAL PERFORMANCE CHARACTERISTICS VIN = 3.8V, TA = 25°C, unless otherwise noted.  
Buck-Boost Switching Regulator  
Soft-Start  
Step-Down Switching Regulator 1  
Load Step  
Dynamic Voltage Slew  
PULSE-SKIPPING MODE  
1V/DIV  
V
V
OUT  
OUT  
V
50mV/DIV  
1A/DIV  
OUT  
1V/DIV  
PGOOD  
5V/DIV  
5V/DIV  
I
LOAD  
500mA/DIV  
V
STB  
I
L
3589 G20  
3589 G21  
3589 G19  
200µs/DIV  
= 1.75mV/µs  
40µs/DIV  
100µs/DIV  
V
LOAD CAPACITANCE = 44µF  
RRCR  
Step-Down Switching Regulator 1  
Load Step  
Buck-Boost Switching Regulator 1  
Load Step  
Maximum Buck-Boost Load  
Current vs VIN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Burst Mode OPERATION  
V
V
OUT  
OUT  
50mV/DIV  
1A/DIV  
200mV/DIV  
I
LOAD  
I
LOAD  
1A/DIV  
V
= 1.5V  
= 3.3V  
= 5V  
3589 G22  
3589 G23  
OUT  
40µs/DIV  
40µs/DIV  
V
V
OUT  
OUT  
LOAD CAPACITANCE = 44µF  
LOAD CAPACITANCE = 22µF  
3.0  
3.5  
4.5  
5.0  
5.5  
2.5  
4.0  
(V)  
V
IN  
3589 G24  
LDO1 Short-Circuit Current  
vs Temperature  
LDO1 Dropout Voltage  
vs Temperature  
LDO1 Output Change vs VIN  
0.5  
80  
70  
60  
50  
500  
V
= 25mA  
LDO1  
V
= 1.8V  
LDO1  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
400  
300  
200  
100  
0
V
= 3.3V  
LDO1  
40  
30  
20  
V
V
V
V
= 1.2V  
= 1.8V  
= 2.8V  
= 3.3V  
LDO1  
LDO1  
LDO1  
LDO1  
3
4
5
2
–25  
0
25 50  
125 150  
75 100  
–25  
0
25 50  
125 150  
75 100  
–50  
–50  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN  
3589 G26  
3589 G27  
3589 G25  
3589fb  
11  
LTC3589  
TYPICAL PERFORMANCE CHARACTERISTICS VIN = 3.8V, TA = 25°C, unless otherwise noted.  
LDO2, LDO3, LDO4 Dropout  
Voltage vs Temperature  
LDO2, LDO3, LDO4 Dropout  
Voltage vs Load Current  
LDO2, LDO3, LDO4 Short-Circuit  
Current vs Temperature  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
500  
400  
300  
200  
100  
0
V
= 1.2V  
LDO  
V
= 1.2V  
LDO  
V
LDO  
= 1.8V  
V
= 1.8V  
LDO  
300  
250  
200  
V
LDO  
= 3.3V  
V
= 3.3V  
LDO  
50  
100  
LOAD CURRENT (mA)  
250  
–25  
0
25 50  
125 150  
75 100  
–25  
0
25 50  
125 150  
75 100  
0
150  
200  
–50  
–50  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3589 G29  
3589 G30  
3589 G28  
LDO2, LDO3, LDO4 Enable  
Response  
LDO2, LDO3, LDO4 Load Step  
Response  
LDO1 Load Step Response  
V
=2.8V  
LDO4  
1.2V  
V
LDO3  
=1.8V  
V
LDO1  
50mV/DIV  
1.8V  
V
LDO  
50mV/DIV  
1V/DIV  
V
=1.2V  
LDO2  
20mA  
220mA  
I
I
LDO1  
LDO  
V
,V  
EN_LDO2 EN_LDO34  
100µs/DIV  
10mA/DIV  
100mA/DIV  
1mA  
10mA  
3589 G33  
3589 G31  
3589 G32  
40µs/DIV  
10µs/DIV  
LOAD CAPACITANCE = 1µF  
LOAD CAPACITANCE = 1µF  
3589fb  
12  
LTC3589  
PIN FUNCTIONS  
IN_LDO2  
be bypassed to ground with a 1µF or greater ceramic  
capacitor.  
V
(Pin 1): Power Input for LDO2. This pin should  
SW4AB (Pin 12): Switch Pin for Buck-Boost Switching  
Regulator 4. Connected to the buck-boost internal power  
switches A and B. Connect an inductor between this pin  
and SW4CD (Pin 19).  
LDO2 (Pin 2): Output Voltage of LDO2. Nominal output  
voltage is set with a resistor feedback divider that servos  
EN3 (Pin 13): Enable Step-Down Switching Regulator 3.  
Active high input to enable step-down switching  
regulator 3. A weak pull-down forces EN3 low when left  
floating.  
2
to an I C register controlled DAC reference. This pin must  
be bypassed to ground with a 1µF or greater ceramic  
capacitor.  
LDO3 (Pin 3): Output Voltage of LDO3. Nominal output  
voltage is fixed at 1.8V. This pin must be bypassed to  
ground with a 1µF or greater ceramic capacitor.  
EN4 (Pin 14): Enable Buck-Boost Switching Regulator 4.  
Active high input to enable buck-boost switching  
regulator 4. A weak pull-down forces EN4 low when left  
floating.  
LDO4 (Pin 4): Output Voltage of LDO4. Output voltages  
2
of 1.8V, 2.5V, 2.8V, and 3.3V are selected via the I C port.  
PV (Pin 15): Power Input for Switching Regulator 4.  
IN4  
This pin must be bypassed to ground with a 1µF or greater  
ceramic capacitor.  
Tie this pin to V supply. This pin should be bypassed to  
IN  
ground with a 4.7µF or greater ceramic capacitor.  
V
(Pin 5): Power Input for LDO3 and LDO4. This  
BB_OUT(Pin16):OutputVoltageofBuck-BoostSwitching  
Regulator 4. This pin must be bypassed to ground with a  
22µF or greater ceramic capacitor.  
IN_LDO34  
pin should be bypassed to ground with a 1µF or greater  
ceramic capacitor.  
PV  
(Pin 6): Power Input for Step-Down Switching  
IRQ (Pin 17): Interrupt Request Output. Open-drain  
driver is pulled low for power good, undervoltage, and  
overtemperature warning and fault conditions. Clear IRQ  
IN1  
Regulator 1. Tie this pin to V supply. This pin should  
IN  
be bypassed to ground with a 4.7µF or greater ceramic  
capacitor.  
2
by writing to the I C CLIRQ command register.  
SW1 (Pin 7): Switch Pin for Step-Down Switching  
Regulator 1. Connect one side of step-down switching  
regulator 1 inductor to this pin.  
EN_LDO34 (Pin 18): Enable LDO3 and LDO4 Logic Input.  
Active high to enable LDO3 and LDO4. Disable LDO4 via  
2
2
I C software commands using I C command registers  
OVEN or L2DTV2. A weak pull-down forces EN_LDO34  
low when left floating.  
RSTO (Pin 8): Reset Output. Open-drain output pulls low  
when the always-on regulator LDO1 is below regulation  
and during a hard reset initiated by a pushbutton input.  
SW4CD (Pin 19): Switch Pin for Buck-Boost Switching  
Regulator 4. Connected to the buck-boost internal power  
switches C and D. Connect an inductor between this node  
and SW4AB (Pin 12).  
EN_LDO2 (Pin 9): Enable LDO2 Logic Input. Active high  
input to enable LDO2. A weak pull-down forces EN_LDO2  
low when left floating.  
PWR_ON (Pin 20): External Power-On. Handshaking pin  
toacknowledgesuccessfulpower-onsequence. PWR_ON  
must be driven high within five seconds of WAKE going  
high to keep power on. It can be used to activate the WAKE  
output by driving high. Drive low to shut down WAKE.  
EN1 (Pin 10): Enable Step-Down Switching Regulator 1.  
Active high input to enable step-down switching  
regulator 1. A weak pull-down forces EN1 low when left  
floating.  
EN2 (Pin 11): Enable Step-Down Switching Regulator 2.  
Active high input to enable step-down switching  
regulator 2. A weak pull-down forces EN2 low when left  
floating.  
ON (Pin 21): Pushbutton Input. A weak internal pull-up  
forces ON high when left floating. A normally open push-  
button is connected from ON to ground to force a low  
state on this pin.  
3589fb  
13  
LTC3589  
PIN FUNCTIONS  
2
PBSTAT (Pin 22): Pushbutton Status. Open-drain output  
to be used for processor interrupts. PBSTAT mirrors the  
status of ON pushbutton pin. PBSTAT is delayed 50ms  
from ON pin for debounce.  
DV (Pin 32): Supply Voltage for I C Serial Port. This  
DD  
2
pin sets the logic reference level of SCL and SDA I C pins.  
2
DV resets I C registers to power on state when driven  
DD  
to <1V. SCL and SDA logic levels are scaled to DV . Con-  
DD  
nect a 0.1µF decoupling capacitor from this pin to ground.  
WAKE(Pin23):SystemWakeUp.Open-draindriveroutput  
releases high when signaled by pushbutton activation or  
PWR_ON input. It may be used to initiate a pin-strapped  
power-up sequence by connecting to a regulator enable  
pin to initiate a pin-strapped power-on sequence.  
BUCK2_FB (Pin 33): Feedback Input for Step-Down  
Switching Regulator 2. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 2 to this pin to ground.  
PVIN2 (Pin 24): Power Input for Step-Down Switching  
BUCK3_FB (Pin 34): Feedback Input for Step-Down  
Switching Regulator 3. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 3 to this pin to ground.  
Regulator 2. Tie this pin to V supply. This pin should  
IN  
be bypassed to ground with a 4.7µF or greater ceramic  
capacitor.  
SW2(Pin25):SwitchPinforStep-DownSwitchingRegula-  
tor 2. Connect one side of step-down switching regulator  
2 inductor to this pin.  
LDO1_FB (Pin 35): Feedback Input for LDO1. Set out-  
put voltage using a resistor divider connected from  
LDO1_STDBY to this pin to ground.  
SW3(Pin26):SwitchPinforStep-DownSwitchingRegula-  
tor 3. Connect one side of step-down switching regulator  
3 inductor to this pin.  
LDO1_STDBY (Pin 36): Always-On LDO1 Output. This pin  
providesanalways-onsupplyvoltageusefulforlightloads  
such as a watchdog microprocessor or a real-time clock.  
Connect a 1µF capacitor from LDO1_STBY to ground.  
PVIN3 (Pin 27): Power Input for Step-Down Switching  
Regulator 3. Tie this pin to the V supply. This pin should  
V
(Pin 37): Supply Voltage Input. This pin should  
IN  
be bypassed to ground with a 1µF or greater ceramic  
capacitor.  
IN  
be bypassed to ground with a 4.7µF or greater ceramic  
capacitor.  
VSTB (Pin 28): Voltage Standby. When VSTB is low, DAC  
reference registers are selected by bit values in command  
register VCCR. When VSTB is high, the DAC registers are  
forced xxDVT2 registers. Tie VSTB to ground if unused.  
LDO2_FB(Pin38):FeedbackInputforLDO2.Setfull-scale  
output voltage using a resistor divider connected from  
LDO2_OUT to this pin to ground.  
BUCK1_FB (Pin 39): Feedback Input for Step-Down  
Switching Regulator 1. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 1 to this pin to ground.  
PGOOD (Pin 29): Power Good Output. Open-drain output  
pulls down when any regulator falls below power good  
threshold and during regulator dynamic voltage slew  
2
unlessdisabledinI Cregister. Pullsdownwhenallregula-  
BB_FB(Pin40):FeedbackInputforBuck-BoostSwitching  
Regulator 4. Set the output voltage using resistor divider  
connected from BB_OUT to this pin to ground.  
tors are disabled.  
2
SCL (Pin 30): Clock Input Pin for the I C Serial Port. The  
2
I C logic levels are scaled with respect to DV .  
DD  
GND(ExposedPadPin41):Ground.TheExposedPadmust  
be connected to a continuous ground plane on the second  
layer of the printed circuit board by several interconnect  
viasdirectlyundertheLTC3589formaximumheattransfer.  
2
SDA (Pin 31): Data Input Pin for the I C Serial Port. The  
2
I C logic levels are scaled with respect to DV .  
DD  
3589fb  
14  
LTC3589  
BLOCK DIAGRAM  
V
IN  
PV  
IN4  
I/O AT 1.2A  
BB_OUT  
V
BUCK-BOOST  
REF  
OK  
VRTC AT 25mA  
LDO1_STDBY  
SW4AB  
SW4CD  
V
REF  
LDO1_FB  
ALWAYS ON LDO1  
EN  
OK  
BB_FB  
IRQ  
PV  
IN1  
ON (PB)  
PBSTAT  
WAKE  
BUCK 1  
CONTROL + SEQUENCE  
V
CORE  
AT 1.6A  
EN  
OK  
SW1  
PWR_ON  
VSTB  
V
REF  
DAC  
BUCK1_FB  
EN1  
EN-PINS  
PV  
EN2  
IN2  
2
EN-I C  
EN3  
BUCK 2  
EN4  
V
SRAM  
AT 1A  
EN_LDO2  
EN_LDO34  
EN  
OK  
SW2  
V
REF  
DAC  
n
BUCK2_FB  
DV  
DD  
PV  
IN3  
SDA  
SCL  
2
I C  
BUCK 3  
PGOOD  
V
SOC  
AT 1A  
EN  
OK  
SW3  
V
REF  
DAC  
DAC  
RSTO  
7
BUCK3_FB  
POWER  
GOOD  
V
IN_LDO2  
LDO2  
LDO3  
V
REF  
V
MEM  
AT 250mA  
LDO2  
EN  
OK  
LDO2_FB  
V
IN_LDO34  
LDO4  
V
V
REF  
REF  
EN  
OK  
EN  
OK  
1.8V,  
2.5V, 2.8V, 3.3V  
AT 250mA  
LDO4  
LDO3  
V
1.8V  
ANALOG  
AT 250mA  
3589 BD  
GND (EXPOSED PAD)  
3589fb  
15  
LTC3589  
OPERATION  
INTRODUCTION  
2
or forced continuous, are set using the I C interface. In  
pulse-skipping mode the regulator will support 100%  
duty cycle. For best efficiency at low output loads select  
BurstModeoperation.Forcedcontinuousmodeminimizes  
output voltage ripple at light loads.  
The LTC3589 is a complete power management solution  
for portable microprocessors and peripheral devices. It  
generates a total of eight voltage rails for supplying power  
totheprocessorcore,SDRAM,systemmemory,PCcards,  
always-on real-time clock and HDD functions. Supplying  
the voltage rails are an always-on low quiescent current  
25mA LDO, one 1.6A and two 1A step-down regulators, a  
1.2A buck-boost regulator, and three 250mA low dropout  
regulators. Supporting the multiple regulators is a highly  
configurable power-on sequencing capability, dynamic  
voltage slewing DAC output voltage control, a pushbutton  
The 4-switch buck-boost DC/DC voltage mode converter  
generates a user-programmable output voltage rail from  
1.8V to 5V. Utilizing a proprietary switching algorithm,  
the buck-boost converter maintains high efficiency and  
low noise operation with input voltages that are above,  
below or equal to the required output rail. The buck-boost  
error amplifier uses a fixed 0.8V reference and the output  
voltage is set by an external resistor divider. Burst Mode  
2
interface controller, regulator control via an I C interface,  
2
and extensive status and interrupt outputs.  
operation is enabled through the I C control registers. No  
external compensation components are required for the  
buck-boost converter.  
The LTC3589 operates over an input supply range of 2.7V  
to 5.5V. The input supplies for the 250mA LDO regulators  
may operate as low as 1.7V to limit power loss at low  
output voltages.  
The reference inputs for the three step-down regulators  
and LDO2 are 5-bit D to A converters with up-down ramp-  
ing at selectable slew rates. The slew endpoint voltages  
The always-on LDO1 provides a resistor programmable  
output voltage as low as 0.8V and is capable of supplying  
25mA. With only the always-on LDO active the LTC3589  
draws just 8µA (typical). Always-on LDO1 will continue to  
2
and select bits are stored in I C registers for each DAC.  
2
A select bit in the I C command registers chooses which  
register to use for each target voltage. Variable reference  
slew rates from 0.88mV/µs to 7mV/µs are selectable in  
operate with V levels as low as 2.0V (typical) to maintain  
IN  
2
the I C register. Each of the four DACs has independent  
memory and RTC function as long as possible.  
voltage, voltage select, and slew rate control registers.  
Eachofthe250mALDOregulatorshasuniqueoutputvolt-  
age configurations. LDO3 has a fixed 1.8V output. LDO4  
TheLTC3589isequippedwithapushbuttoncontrolcircuit  
that will activate the WAKE output, indicate pushbutton  
status via the PBSTAT pin, and initiate a hard reset shut-  
down of the regulators. Grounding the ON pin with the  
pushbutton for 400ms will force the WAKE pin to release  
HIGH. The WAKE pin output can be tied to the enable pin  
of the first regulator in a power-on sequence. Once in the  
power-on state, subsequent pushes of the button longer  
than 50ms are mirrored by the PBSTAT output. Holding  
ON LOW for five seconds disables all the regulators, pulls  
down the WAKE pin, and pulls down RSTO for one second  
to indicate to the processor that a hard reset occurred. All  
regulator enables and pushbutton inputs are inhibited for  
one second following the hard reset.  
2
has four output levels selectable via the I C interface.  
Its possible outputs are 1.8V, 2.5V, 2.8V, and 3.3V. LDO2  
has a dynamically slewing DAC set point reference and  
an external feedback pin to set the output voltage range  
with a resistive divider. Each LDO draws 60µA (typical)  
quiescent current.  
The LTC3589 includes three internally compensated  
constant-frequency current mode step-down switching  
regulators providing 1A, 1A, and 1.6A. Step-down regula-  
tor switching frequencies of 2.25MHz or 1.125MHz are  
independently selected for each step-down regulator  
2
using the I C command registers. The power-on default  
frequency is 2.25MHz. Each of the step-down regulators  
havedynamicallyslewingDACinputreferencesandexternal  
feedback pins to set output voltage range. The step-down  
regulators three operating modes, pulse-skipping, burst,  
TheLTC3589hasexibleoptionsforenablingandsequenc-  
ing the regulator enables. The regulators are enabled us-  
2
ing input pins or the I C serial port. To define a power-on  
3589fb  
16  
LTC3589  
OPERATION  
sequencetietheenableoftherstregulatortobepowered  
up to the WAKE pin. Connect the first regulators output  
to the enable pin of the second regulator, and so on. One  
or more regulators may be started in any sequence. Each  
enable pin has a 200µs (typical) delay between the pin  
and the internal enable of the regulator. When the system  
controllers are satisfied that power rails are up, the con-  
troller must drive PWR_ON HIGH to keep WAKE active. To  
ensurecorrectstart-upsequencing,theregulatorsoutputs  
are monitored by voltage comparators which require each  
output to discharge below 300mV before re-enabling. A  
software control command register function is available  
which sets the regulators to effectively ignore their enable  
other keep-alive circuits. The LDO is guaranteed to sup-  
port a 25mA load. A 1µF low impedance ceramic bypass  
capacitor from LDO1_STBY to GND is required for com-  
pensation. A power good monitor pulls RSTO LOW for a  
minimum of 14ms (typical) whenever LDO1_STBY is 8%  
below its regulation target. An LDO1_STBY undervoltage  
condition is reported in the PGOOD status register. The  
output voltage of LDO1 is set with a resistor divider con-  
nected from LDO1_STBY to the feedback pin LDO1_FB,  
as shown in Figure 1.  
R1  
R2  
VLDO_STBY =0.8 1+  
(V)  
2
pins but respond to I C register enables. This function  
enables software-only control of any combination of pin-  
strappedregulatorsandisusefulforimplementingsystem  
power saving modes. Keep-alive mode exempts selected  
regulators from turning off during normal shutdown. In  
keep-alive mode, the LTC3589 powers down normally  
and is ready for the next start-up sequence, but selected  
regulatorsarekeptontopowermemoryorotherfunctions  
during system standby modes.  
Typical values for R1 are in the range of 40k to 1M.  
V
IN  
+
0.8V  
LDO1_STBY  
1µF  
R1  
R2  
LDO1_FB  
3589 F01  
The LTC3589 will shut down all regulators and pull down  
the WAKE pin under high temperature, V undervoltage,  
IN  
and extended low regulator output voltage conditions.  
Status of a hard shutdown is reported by the IRQ status  
pin and the IRQSTAT status register.  
Figure 1. Always-On LDO Application Circuit  
LDO1_STBY is protected from short-circuits and over-  
loading.  
2
The I C serial port on the LTC3589 contains 13 command  
registers for controlling each of the regulators, one read-  
only register for monitoring each regulators power good  
status, one read-only register for reading the cause of  
an IRQ event, and one clear IRQ command register. The  
250mA LDO REGULATORS  
ThreeLDOregulatorsontheLTC3589willeachdeliverupto  
250mAoutput.TheLDOregulatorsareenabledbypininput  
or I C command register. Pin EN_LDO2 enables LDO2 and  
pin EN_LDO34 enables LDO3 and LDO4 together. An I C  
2
LTC3589 I C supports random addressing of any register.  
2
2
ALWAYS-ON LDO  
command register bit is available to decouple LDO4 from  
pin EN_LDO34 so that LDO4 is under command register  
controlonly.Alltheregulatorshavecurrentlimitprotection  
circuits. When disabled, a 2.5k internal pull-down resistor  
is connected to the regulators output.  
TheLTC3589includesalowquiescentcurrentlowdropout  
regulator that remains powered whenever a valid supply  
is present on V . The always-on LDO will remain active  
IN  
until V drops below 2.0V (typical). This is below the  
IN  
2.5V undervoltage threshold in effect for the rest of the  
LTC3589 circuits. The always-on LDO is used to provide  
power to a standby microcontroller, real-time clock, or  
3589fb  
17  
LTC3589  
OPERATION  
2
To help reduce LDO power loss in the system, the regula-  
Table 1. Shows the I C command register settings used  
tors have dedicated supply inputs that may be lower than  
to control LDO2.  
the main V supply. Connect a low ESR 1µF capacitor to  
IN  
Table 1. LDO 2 Command Register Settings  
each of the output pins LDO2, LDO3, and LDO4.  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
LDO Regulator 2  
OVEN[4]  
SCR2[4]  
VCCR[5]  
0*  
1
Disable  
Enable  
One of the LTC3589 dynamic slewing DACs serves as the  
reference input of LDO2. The output range of LDO2 is set  
using an external resistor divider connected from LDO2  
to the feedback pin LDO2_FB, as shown in Figure 2. Set  
the output voltage of LDO2 using the following formula:  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
0*  
1
Select Register L2DTV1 (V1) Reference  
Select Register L2DTV2 (V2) Reference  
VCCR[6]  
1
Initiate Dynamic Voltage Slew  
VRRCR[7-6]  
00  
01  
10  
Reference Slew Rate = 0.88mV/µs  
Reference Slew Rate = 1.75mV/µs  
Reference Slew Rate = 3.5mV/µs  
R1  
R2  
VOUT = 1+  
(0.3625+L2DTVx 0.0125)  
11* Reference Slew Rate = 7mV/µs  
L2DTV1[4-0]  
L2DTV1[5]  
11001* DAC Dynamic Target Voltage V1  
L2DTVxisthevebitwordcontainedintheLDO2dynamic  
target voltage 1 (L2DTV1) or the LDO2 dynamic target  
voltage 2 (L2DTV2) command registers. The default value  
of L2DTVx[4-0] is 11001 to output a reference voltage  
of 0.675V. LDO2 is enabled by writing bit 4 in the output  
voltage enable (OVEN) command register to 1 or driving  
theLDO2_ENpinhigh.Wheneverthecommandisgivento  
slew LDO2 DAC reference to a lower voltage an integrated  
2.5k pull-down resistor is connected to LDO2 output.  
0*  
1
Force PGOOD Low When Slewing  
Normal PGOOD Operation When Slewing  
L2DTV1[7]  
0*  
1
Shutdown LDO2 Normally  
Keep LDO2 Alive  
L2DTV2[4-0]  
11001* DAC Dynamic Target Voltage V2  
* Denotes Default Power-On Value  
LDO Regulator 3  
LDO3 is a fixed 1.8V output regulator. LDO3 is enabled  
by driving pin EN_LDO34 high or by writing command  
register OVEN[5] to 1.  
PV  
IN  
EA  
2
Table 2 shows the I C command register settings used  
LDO2  
FB  
0.3625V  
TO 0.75V  
to control LDO3.  
1µF  
R1  
R2  
Table 2. LDO 3 Command Register Settings  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
5
DAC  
OVEN[5]  
SCR2[5]  
0*  
1
Disable  
Enable  
3589 F02  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
Figure 2. LDO2 Application Circuit  
* Denotes Default Power-On Value  
3589fb  
18  
LTC3589  
OPERATION  
LDO Regulator 4  
PV  
IN  
EN  
LDO4 has four output voltage options that are controlled  
by the contents of command register L2DTV2 bits 6  
and 5. By default, pin EN_LDO34 enables and disables  
LDO3 and LDO4 simultaneously when command register  
bits OVEN[5] and OVEN[6] are LOW. When EN_LDO34 is  
LOW, LDO3 and LDO4 are controlled by writing to com-  
mand register bits OVEN[5] and OVEN[6] respectively.  
WhencommandregisterbitL2DTV2[7]isHIGH,controlof  
LDO4 is disconnected from pin EN_LDO34 and controlled  
by command register bit OVEN[6] regardless of the status  
PWM  
L1  
CONTROL  
SW  
FB  
MODE  
C
OUT  
R1  
R2  
C
FB  
0.3625V  
TO 0.75V  
5
DAC  
3589 F03  
2
of EN_LDO34. Table 3 shows the I C command register  
settings used to control LDO4.  
Figure 3. Step-Down Switching Regulator  
Application Circuit  
Table 3. LDO 4 Command Register Settings  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
of 0.675V. Typical values for R1 are in the range of 40k  
OVEN[6]  
0*  
1
Disable  
Enable  
to 1M. The capacitor C cancels the pole created by the  
FB  
feedback resistors and the input capacitance on the FB pin  
and also helps to improve load step transient response.  
A value of 10pF is recommended for most applications.  
Experimentation with capacitor sizes between 10pF and  
33pF may yield improved transient response.  
SCR2[6]  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
L2DTV2[6-5]  
00*  
01  
10  
11  
V
V
V
V
= 2.8V  
= 2.5V  
= 1.8V  
= 3.3V  
LDO4  
LDO4  
LDO4  
LDO4  
L2DTV2[7]  
0*  
1
LDO4 Enable Controlled by EN_LDO34  
LDO4 Enable Controlled by OVEN[6]  
Operating Modes  
* Denotes Default Power-On Value  
Thestep-downswitchingregulatorsincludethreepossible  
operating modes to meet the noise and power needs of a  
variety of applications.  
STEP-DOWN SWITCHING REGULATORS  
Output Voltage Programming  
In pulse-skipping mode, at the start of every cycle, a latch  
is set that turns on the main P-channel MOSFET switch.  
During the cycle, a current comparator compares the  
peak inductor current to the output of an error amplifier.  
The output of the current comparator resets the latch.  
At this time the P-channel MOSFET switch turns off and  
the N-channel MOSFET synchronous rectifier turns on.  
The N-channel MOSFET synchronous rectifier will turn  
off when the end of the clock cycle is reached or if the  
inductor current drops through zero. Using this method  
of operation, the error amplifier adjusts the peak inductor  
current to deliver the required output power. All necessary  
loop compensation is internal to the step-down switching  
regulator requiring only a single ceramic output capacitor  
for stability. At light loads in pulse-skipping mode, the  
inductor current may reach zero on each pulse that will  
3589fb  
Each of the step-down converters uses a dynamically  
slewing DAC output for its reference. The full-scale output  
voltage is set by using a resistor divider connected from  
the step-down switching regulator output to the feedback  
pins (B1_FB, B2_FB, and B3_FB), as shown in Figure 3.  
Set the output voltage of step-down switching regulators  
using the following formula:  
R1  
R2  
VOUT = 1+  
(0.3625+BxDTVx 0.0125)(V)  
BxDTVx is the decimal value of the five bit binary number  
2
intheI CBxDTV1orBxDTV2commandregisters.BxDTV1  
andBxDTV2defaultto11001tooutputareferencevoltage  
19  
LTC3589  
OPERATION  
turn off the N-channel MOSFET synchronous rectifier. In  
thiscasethe switch node (SW1, SW2, or SW3)goes HIGH  
impedance and the switch node will ring. This is discon-  
tinuous operation and is normal behavior for a switching  
regulator. At very light loads in pulse-skipping mode, the  
step-down switching regulators will automatically skip  
pulses as needed to maintain output regulation. At high  
Set the mode of operation for the step-down switching  
2
regulators by using the I C command register SCR1. Each  
of the three regulators has independent mode control.  
Astep-downswitchingregulatormayenteradropoutcondi-  
tion when its input voltage drops to near its programmed  
outputvoltage. Forexample, adischargingbatteryvoltage  
of 3.4V dropping to the regulators programmed output  
voltage of 3.3V. When this happens the duty cycle of the  
P-channel MOSFET switch is increased until it turns on  
continuously with 100% duty cycle. In dropout, the regu-  
lators output voltage equals the regulators input voltage  
minus the voltage drops across the internal P-channel  
MOSFET and the inductor DC resistance.  
duty cycle (V  
> V /2) it is possible for the inductor  
OUTX  
IN  
current to reverse at light loads causing the step-down  
switchingregulatortooperatecontinuously.Whenoperat-  
ing continuously, regulation and low noise output voltage  
are maintained, but input operating current will increase  
to a few milliamps.  
In the forced continuous mode of operation, the inductor  
current is allowed to be less than zero over the full range  
of duty cycles. Operating in forced continuous mode is  
a lower noise option at light loads than pulse-skipping  
2
Table 4, Table 5, and Table 6 show the I C command  
register settings used to control the step-down switching  
regulators.  
operation but with the drawback of higher V current  
Table 4. Step-Down Switching Regulator 1 Command Register  
Settings  
IN  
due to the continuous operation of the MOSFET switch  
and rectifier. Since the inductor current is allowed to be  
negative in forced continuous operation the step-down  
switching regulator has the ability to sink output current.  
TheLTC3589automaticallyforcesthestep-downswitching  
regulator into forced continuous mode when dynamically  
slewing the DAC voltage reference down.  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
SCR1[1-0]  
00*  
01  
10  
Pulse-Skipping Mode  
Burst Mode Operation  
Forced Continuous Mode  
OVEN[0]  
SCR2[0]  
VCCR[1]  
0*  
1
Disable  
Enable  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
When the LTC3589 step-down switching regulators are in  
Burst Mode operation, they automatically switch between  
fixed frequency pulse-skipping operation and hysteretic  
Burst Mode control as a function of the load current. At  
light loads the step-down switching regulators control  
the inductor current directly and use a hysteretic control  
looptominimizebothnoiseandswitchinglosses. Whilein  
Burst Mode operation, the output capacitor is charged to a  
voltage slightly higher than the regulation point. The step-  
downswitchingregulatorthengoesintoalowpowersleep  
mode during which the output capacitor provides the load  
current. In sleep mode, most of the switching regulator’s  
circuitry is powered off to conserve battery power. When  
the output voltage drops below the regulation point the  
regulator’s circuitry is powered on and another burst cycle  
begins. As the load current increases, the time between  
burst cycles decreases. Above a load current about ¼  
rated output load, the step-down switching regulators will  
switch to low noise constant-frequency PWM operation.  
0*  
1
Select Register B1DTV1 (V1) Reference  
Select Register B1DTV2 (V2) Reference  
VCCR[0]  
1
Initiate Dynamic Voltage Slew  
VRRCR[1-0]  
00  
Reference Slew Rate = 0.88mV/µs  
Reference Slew Rate = 1.75mV/µs  
Reference Slew Rate = 3.5mV/µs  
Reference Slew Rate = 7mV/µs  
01  
10  
11*  
B1DTV1[5]  
0*  
1
Force PGOOD Low When Slewing  
Normal PGOOD Operation When Slewing  
B1DTV1[4-0]  
B1DTV2[4-0]  
B1DTV2[5]  
11001* DAC Dynamic Target Voltage V1  
11001* DAC Dynamic Target Voltage V2  
0*  
1
2.25MHz Switching Frequency  
1.125MHz Switching Frequency  
B1DTV2[6]  
B1DTV2[7]  
0*  
1
Switch on Clock Phase 1  
Switch on Clock Phase 2  
0*  
1
Shutdown Regulator 1 Normally  
Keep Regulator 1 Alive  
* Denotes Default Power-On Value  
3589fb  
20  
LTC3589  
OPERATION  
Soft-Start  
Switching EMI Control  
Soft-start is accomplished by gradually increasing the  
input reference voltage on each step-down switching  
regulator from 0V to the dynamic reference DAC output  
level at a rate of 0.8V/ms. This allows each output to  
rise slowly, helping minimize inrush current required to  
charge up the regulator output capacitor. A soft-start cycle  
occurs whenever a regulator is enabled either initially or  
while powering up following a fault condition. A soft-start  
cycle is not triggered by a change of operating modes or  
a dynamic voltage slew. During soft-start the converter is  
forced to pulse-skipping mode regardless of the settings  
in the SCR1 command register.  
The step-down switching regulators contain new pat-  
ent pending circuitry to limit the edge rate of the switch  
nodes SW1, SW2, and SW3. This new circuitry controls  
the transition of the switch node over a period of a few  
nanoseconds, significantly reducing radiated EMI and  
conducted supply noise while maintaining high efficiency.  
Since slowing the slew rate of the switch nodes causes  
efficiency loss, the slew rate of the step-down switching  
2
regulators is adjustable using the I C command register  
B1DTV1 bits 6 and 7. Optimize efficiency or EMI as neces-  
sary with four different slew rate settings. The power-on  
default is the fastest slew rate, highest efficiency setting.  
Table 5. Step-Down Switching Regulator 2 Command Register  
Settings  
Table 6. Step-Down Switching Regulator 3 Command Register  
Settings  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
SCR1[3-2]  
00*  
01  
10  
Pulse-Skipping Mode  
SCR1[5-4]  
00*  
01  
10  
Pulse-Skipping Mode  
Burst Mode Operation  
Burst Mode Operation  
Forced Continuous Mode  
Forced Continuous Mode  
OVEN[1]  
SCR2[1]  
VCCR[3]  
0*  
1
Disable  
Enable  
OVEN[2]  
SCR2[2]  
VCCR[5]  
0*  
1
Disable  
Enable  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable immediately  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
0*  
1
Select Register B2DTV1 (V1) Reference  
Select Register B2DTV2 (V2) Reference  
0*  
1
Select Register B3DTV1 (V1) Reference  
Select Register B3DTV2 (V2) Reference  
VCCR[2]  
1
Initiate Dynamic Voltage Slew  
VCCR[4]  
1
Initiate Dynamic Voltage Slew  
VRRCR[3-2]  
00  
Reference Slew Rate = 0.88mV/µs  
Reference Slew Rate = 1.75mV/µs  
Reference Slew Rate = 3.5mV/µs  
Reference Slew Rate = 7mV/µs  
VRRCR[5-4]  
00  
Reference Slew Rate = 0.88mV/µs  
Reference Slew Rate = 1.75mV/µs  
Reference Slew Rate = 3.5mV/µs  
Reference Slew Rate = 7mV/µs  
01  
01  
10  
11*  
10  
11*  
B2DTV1[5]  
0*  
1
Force PGOOD Low When Slewing  
Normal PGOOD Operation When Slewing  
B3DTV1[5]  
0*  
1
Force PGOOD Low When Slewing  
Normal PGOOD Operation When Slewing  
B2DTV1[4-0]  
B2DTV2[4-0]  
B2DTV2[5]  
11001* DAC Dynamic Target Voltage V1  
11001* DAC Dynamic Target Voltage V2  
B3DTV1[4-0]  
B3DTV2[4-0]  
B3DTV2[5]  
11001* DAC Dynamic Target Voltage V1  
11001* DAC Dynamic Target Voltage V2  
0*  
1
2.25MHz Switching Frequency  
1.125MHz Switching Frequency  
0*  
1
2.25MHz Switching Frequency  
1.125MHz Switching Frequency  
B2DTV2[6]  
B2DTV2[7]  
0*  
1
Switch on Clock Phase 1  
Switch on Clock Phase 2  
B3DTV2[6]  
B3DTV2[7]  
0*  
1
Switch on Clock Phase 1  
Switch on Clock Phase 2  
0*  
1
Shutdown Regulator 2 Normally  
Keep Regulator 2 Alive  
0*  
1
Shutdown Regulator 3 Normally  
Keep Regulator 3 Alive  
* Denotes Default Power-On Value  
* Denotes Default Power-On Value  
3589fb  
21  
LTC3589  
OPERATION  
Operating Frequency  
Inductor Selection  
The switching frequency of each of the LTC3589 step-  
downswitchingregulatorsmaybeindependentlysetusing  
Thechoiceofstep-downswitchingregulatorinductorinflu-  
ences the efficiency of the converter and the magnitude of  
theoutputvoltageripple. Largerinductancevaluesreduce  
inductor current ripple and therefore lower output voltage  
ripple. A larger value inductor improves efficiency by low-  
ering the peak current to be closer to the average output  
current. Larger inductors, however, generally have higher  
series resistance that counters the efficiency advantage  
of reduced peak current.  
2
I C command register bits B1DTV2[5], B2DTV2[5] and  
B3DTV2[5]. The power-on default frequency is 2.25MHz.  
Writing bit BxDTV2[5] HIGH will reduce the switching fre-  
quencyto1.125MHz. Selectionoftheoperatingfrequency  
is determined by desired efficiency, component size and  
converter duty cycle.  
Operation at lower frequency improves efficiency by  
reducing internal gate charge and switching losses but  
requires larger inductance and capacitance values for  
comparable output ripple voltage. The lowest duty cycle  
of the step-down switching regulator is determined by  
the converters minimum on-time. Minimum on-time is  
the shortest time duration that the converter is capable of  
turning its top PMOS on and off again. The time consists  
of the gate charge time plus internal delays associated  
with peak current sensing. The minimum on-time of the  
LTC3589 is approximately 90ns. If the duty cycle falls  
below what can be accommodated by the minimum on-  
time, the converter will begin to skip cycles. The output  
voltage will continue to be regulated but the ripple voltage  
and current will increase. With the switching frequency  
set to 2.25MHz, the minimum supported duty cycle is  
20%. Switching at 1.125MHz the converter can support  
a 10% duty cycle.  
Inductorripplecurrentisafunctionofswitchingfrequency,  
inductance, V , and V , as shown in this equation:  
IN  
OUT  
OUT   
V
1
f L  
OUT  
VIN  
ΔIL =  
V  
1–  
InanexampleapplicationtheLTC3589step-downswitching  
regulator 3 has a maximum load of 1A, V equals 3.8V,  
IN  
and V  
is set for 1.2V. A good starting design point for  
OUT  
inductor ripple is 30% of output current or 300mA. Using  
the equation for ripple current, a 1.2µH inductor should  
be selected.  
An inductor with low DC resistance will improve converter  
efficiency.SelectaninductorwithaDCcurrentratingatleast  
1.5 times larger than the maximum load current to ensure  
the inductor does not saturate during normal operations.  
If short-circuit is a possible condition, the inductor should  
be rated to handle the maximum peak current specified  
for the step-down converter. Table 7 shows inductors that  
work well with the step-down switching regulators.  
Phase Selection  
To reduce the cycle by cycle peak current drawn by the  
switching regulators, the clock phase of each of the  
LTC3589 step-down switching regulators can be set using  
Input/Output Capacitor Selection  
2
I C command register bits B1DTV2[6], B2DTV2[6] and  
LowESR(equivalentseriesresistance)ceramiccapacitors  
should be used at both the output and input supply of the  
switchingregulators. OnlyX5RorX7Rceramiccapacitors  
should be used because they retain their capacitance over  
wider voltage and temperature ranges than other ceramic  
types. A 22µF capacitor is sufficient for the step-down  
B3DTV2[6]. The internal full-rate clock has a nominal  
duty cycle of 20% while the half-rate clocks have a 50%  
duty cycle. Setting the command register bits high will  
delay the start of each converter switching cycle by 20%  
or 50% depending on the selected operating frequency.  
3589fb  
22  
LTC3589  
OPERATION  
switching regulator outputs. For good transient response  
and stability the output capacitor should retain at least  
10µF of capacitance over operating temperature and bias  
voltage. Place at least 4.7µF decoupling capacitance as  
PV  
A
BB_OUT  
IN4  
D
SW4AB  
SW4CD  
B
C
close as possible to each PV pin. Refer to Table 11 for  
IN  
recommended ceramic capacitor manufacturers.  
BUCK-BOOST SWITCHING REGULATOR  
Output Voltage Programming  
EN  
MODE  
PWM  
CONTROL  
Set the output voltage of the LTC3589 buck-boost switch-  
ing regulator using an external resistor divider connected  
from BB_OUT to the feedback pin BB_FB and to GND, as  
shown in Figure 4.  
R1  
R2  
22µF  
BB_FB  
+
0.8V  
3589 F04  
R1  
R2  
VBB_OUT = 0.8 1+  
(V)  
Figure 4. Buck-Boost Switching Regulator Application Circuit  
Table 7. Inductors for Step-Down Switching Regulator 1  
VALUE  
MAX DC  
CURRENT (A)  
MANUFACTURERS  
PART NUMBER  
(µH)  
DCR (Ω)  
SIZE (mm) W × L × H  
Coilcraft  
XPL4020-102ML  
XPL4020-152ML  
XPL4020-222ML  
LPS6225-222ML  
LPS6225-332ML  
LPS6225-472ML  
1.0  
1.5  
2.2  
2.2  
3.3  
4.7  
0.029  
0.036  
0.060  
0.045  
0.055  
0.065  
4.00  
3.60  
2.60  
3.90  
3.50  
3.00  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
6.0 × 6.0 × 2.0  
6.0 × 6.0 × 2.0  
6.0 × 6.0 × 2.0  
Cooper  
SD14-1R2-R  
SD14-1R5-R  
SD14-2R0-R  
SD25-2R2-R  
1.2  
1.5  
2.0  
2.2  
0.034  
0.039  
0.045  
0.031  
3.35  
2.91  
2.56  
2.80  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 2.5  
Sumida  
TDK  
CDRH5D16NP-3R3N  
3.3  
0.045  
2.60  
5.6 × 5.6 × 1.8  
VLF5014ST-1R0N2R7  
VLF5014st-2R2N2R3  
VLCF5020T-2R2N2R6-1  
1.0  
2.2  
2.2  
0.050  
0.073  
0.071  
2.7  
2.3  
2.6  
4.8 × 4.6 × 1.4  
4.8 × 4.6 × 1.4  
5.0 × 5.0 × 2.0  
TOKO  
Tokin  
1124BS-1R2N  
1124BS-1R8N  
1.2  
1.8  
0.047  
0.056  
2.9  
2.7  
4.5 × 4.7 × 1.8  
4.5 × 4.7 × 1.8  
H-DI-0520-2R2  
H-DI-0630-2R4  
H-DI-0630-3R8  
2.2  
2.4  
3.8  
0.048  
0.028  
0.040  
2.6  
2.5  
2
5.3 × 5.3 × 2.0  
6.3 × 6.3 × 3.0  
6.3 × 6.3 × 3.0  
Wurth  
744042001  
744052002  
744053003  
7440530047  
7440430022  
1.0  
2.5  
3.0  
4.7  
2.2  
0.028  
0.030  
0.024  
0.030  
0.023  
2.60  
2.4  
2.8  
2.4  
2.5  
4.8 × 4.8 × 1.8  
5.8 × 5.8 × 1.8  
5.8 × 5.8 × 2.8  
5.8 × 5.8 × 2.8  
4.8 × 4.8 × 2.8  
3589fb  
23  
LTC3589  
OPERATION  
Table 8. Inductors for Step-Down Switching Regulators 2 and 3  
VALUE  
(µH)  
MAX DC  
CURRENT (A)  
MANUFACTURERS  
PART NUMBER  
DCR (Ω)  
SIZE (mm) W × L × H  
Coilcraft  
XPL4020-102ML  
XPL4020-152ML  
XPL4020-472ML  
1.0  
1.5  
4.7  
0.029  
0.036  
0.130  
4.00  
3.60  
1.90  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
Cooper  
SD14-1R2-R  
SD14-3R2-R  
SD25-3R3-R  
1.2  
3.2  
3.3  
0.034  
0.066  
0.038  
3.35  
2.00  
2.21  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
4.8 × 4.8 × 2.5  
Sumida  
TDK  
CDRH5D16NP-4R7N  
4.7  
3.3  
0.064  
0.059  
2.05  
1.46  
5.6 × 5.6 × 1.8  
4.2 × 4.2 × 1.8  
CDRH38D16RHPNP-3R3M  
VLF5014ST-2R2N2R3  
VLCF5020T-2R7N2R2-1  
VLCF5020T-3R3N2R0-1  
2.2  
2.7  
3.3  
0.073  
0.083  
0.096  
2.3  
2.2  
2
4.8 × 4.6 × 1.4  
5.0 × 5.0 × 2.0  
5.0 × 5.0 × 2.0  
TOKO  
Tokin  
1124BS-2R4N  
1124BS-3R3N  
2.4  
3.3  
0.065  
0.074  
2.30  
2.10  
4.5 × 4.7 × 1.8  
4.5 × 4.7 × 1.8  
H-DI-0520-3R3  
H-DI-0520-4R7  
H-DI-0630-3R8  
H-DI-0630-4R7  
3.3  
4.7  
3.8  
4.7  
0.062  
0.090  
0.040  
0.043  
2.00  
1.80  
2.00  
1.90  
5.3 × 5.3 × 2.0  
5.3 × 5.3 × 2.0  
6.3 × 6.3 × 3.0  
6.3 × 6.3 × 3.0  
Wurth  
744043004  
744052002  
7440530047  
744042003  
7440430022  
4.7  
2.5  
4.7  
3.3  
2.2  
0.052  
0.030  
0.030  
0.055  
0.023  
1.55  
2.4  
5.0 × 5.0 × 3.0  
5.8 × 5.8 × 1.8  
5.8 × 5.8 × 2.8  
4.8 × 4.8 × 1.8  
4.8 × 4.8 × 2.8  
2.4  
1.95  
2.5  
The value of R1 plays a role in setting the dynamics of  
the buck-boost voltage mode control loop. In general, a  
larger value for R1 will increase stability but reduce the  
speed of the transient response. A good starting point is  
to choose R1 equal to 1MΩ and calculate the value of R2  
needed to set the target output voltage. If a large output  
capacitorisused,thebandwidthoftheconverterisreduced  
and R1 may be reduced to improve transient response. If  
a large inductor or small output capacitor is used then a  
larger R1 should be used to bring the loop toward more  
stable operation.  
the converter to transition between buck, buck-boost, and  
boost modes without discontinuity in inductor current or  
loop characteristics. The switch topology is shown in the  
application circuit in Figure 4.  
Table 9. Buck-Boost Command Register Settings  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
SCR1[6]  
OVEN[3]  
SCR2[3]  
0*  
1
Continuous Mode  
Burst Mode Operation  
0*  
1
Disable  
Enable  
0*  
1
Wait for Output Below 300mV Before Enable  
Enable Immediately  
Operating Modes  
* Denotes Default Power-On Value  
2
Table 9 shows the I C command registers used to control  
When the input voltage is significantly greater than the  
output voltage, the buck-boost converter operates in  
buck mode. Switch D turns on continuously and switch C  
remains off. Switches A and B are pulse width modulated  
to produce the required duty cycle to support the output  
theoperatingmodesoftheLTC3589buck-boostconverter.  
When command register SCR1 bit 6 is LOW, the LTC3589  
buck-boost switching regulator operates in a fixed fre-  
quency pulse width modulation mode using voltage mode  
feedbackcontrol.Aproprietaryswitchingalgorithmallows  
3589fb  
24  
LTC3589  
OPERATION  
regulationvoltage.Astheinputvoltagedecreases,switchA  
remains on for a larger portion of the switching cycle.  
When the duty cycle reaches approximately 85%, the  
switch pair AC begins turning on for a small fraction of the  
switching period. As the input voltage decreases further,  
the AC switch pair remains on for longer durations and  
the duration of the BD phase decreases proportionately.  
As the input voltage drops below the output voltage, the  
AC phase will eventually increase to the point that there is  
no longer any BD phase. At this point, switch A remains  
on continuously while switches CD operate as a boost  
converter to regulate the desired output voltage.  
During soft-start the buck-boost converter is forced into  
continuous mode operation regardless of the state of the  
SCR1 command register.  
Current Limit Operation  
TheLTC3589buck-boostregulatorhascurrentlimitcircuits  
to limit forward current through the A switch and reverse  
current through the D switch. The primary forward cur-  
rent limit circuit injects a small fraction of the inductor  
current into the feedback node whenever the inductor  
current exceeds 2.7A (typical). Forcing the current into  
the feedback node in the high gain feedback circuit has  
the effect of lowering the output voltage until the aver-  
age current in switch A is equal to the current limit. The  
average limit uses the error amplifier in its active linear  
state so once the fault condition is removed the recovery  
is smooth with little overshoot.  
The buck-boost is set to Burst Mode operation by writing  
a 1 to command register SCR1 bit 6. Using Burst Mode  
operation at light loads improves efficiency and reduces  
standby current at zero loads. In Burst Mode operation,  
the inductor is charged with bursts of fixed peak amplitude  
current pulses. The current pulses are repeated as often  
as necessary to maintain the target output voltage. The  
maximumoutputcurrentthatcanbesuppliedinBurstMode  
operation is dependent upon the input and output voltage.  
A hard short on the output of the buck-boost will cause the  
inductor current to exceed the 2.7A average current limit.  
A second current limit turns off switch A in the event peak  
inductor current reaches 3A (typical). The instantaneous  
forwardcurrentlimitprovidesextraprotectionintheevent  
of a sudden hard short.  
Typically I  
in Burst Mode operation is equal to:  
OUT(MAX)  
0.28 V  
IN (A)  
OUT+ VIN  
IOUT(MAX)  
=
The reverse current comparator on the D switch moni-  
tors the current entering the BB_OUT pin. When this  
current exceeds 1A (typical) switch D will turn off for the  
remainder of the switching cycle. This feature protects  
the buck-boost converter from excessive reverse current  
if the buck-boost output is held above the regulation point  
by an external source.  
V
If the buck-boost load exceeds the maximum Burst Mode  
current capability then the output rail will lose regula-  
tion and the power good comparator will indicate a fault  
condition.  
When the LTC3589 buck-boost is not enabled, a 2.5k pull-  
down resistor is connected between BB_OUT and ground.  
Inductor Selection  
Inductorselectioncriteriaforthebuck-boostaresimilarto  
those given for the step-down switching regulators. The  
buck-boost converter is designed to work with inductors  
in the range of 1µH to 3.3µH. For most applications use a  
1.5µHinductor.ChooseaninductorwithaDCcurrentrating  
atleast two times largerthan the maximumload current to  
Soft-Start  
The buck-boost converter has an internal voltage mode  
soft-start circuit that ramps the buck-boosts error amp  
reference from 0V to 800mV at a rate of 2V/ms. During  
soft-start, the converter is regulating to the ramping  
reference and will respond to output load transients.  
3589fb  
25  
LTC3589  
OPERATION  
Table 10. Inductors for Buck-Boost Switching Regulator  
PART  
NUMBER  
VALUE  
(µH)  
MAX DC  
CURRENT (A)  
MANUFACTURERS  
DCR (Ω)  
SIZE (mm) W × L × H  
Coilcraft  
XPL4020-152ML  
XPL4020-222ML  
XPL4020-332ML  
LPS6225-332ML  
LPS6225-472ML  
1.5  
2.2  
3.3  
3.3  
4.7  
0.036  
0.060  
0.085  
0.055  
0.065  
3.60  
2.60  
2.40  
3.50  
3.00  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
4.2 × 4.2 × 2.0  
6.0 × 6.0 × 2.0  
6.0 × 6.0 × 2.0  
Cooper  
SD14-1R5-R  
SD14-2R0-R  
SD14-2R5-R  
SD14-3R2-R  
SD25-3R3-R  
1.5  
2.0  
2.5  
3.2  
3.3  
0.039  
0.045  
0.060  
0.066  
0.038  
2.91  
2.56  
2.29  
2.00  
2.21  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
5.2 × 5.2 × 1.45  
4.8 × 4.8 × 2.5  
Sumida  
TDK  
CDRH5D16NP-3R3N  
CDRH5D16NP-4R7N  
3.3  
4.7  
0.045  
0.064  
2.60  
2.05  
5.6 × 5.6 × 1.8  
5.6 × 5.6 × 1.8  
VLF5014ST-2R2N2R3  
VLCF5020T-2R7N2R2-1  
VLCF5020T-3R3N2R0-1  
2.2  
2.7  
3.3  
0.073  
0.083  
0.096  
2.3  
2.2  
2
4.8 × 4.6 × 1.4  
5.0 × 5.0 × 2.0  
5.0 × 5.0 × 2.0  
TOKO  
Tokin  
Wurth  
1124BS-1R8N  
1124BS-3R3N  
1.8  
3.3  
0.056  
0.074  
2.70  
2.10  
4.5 × 4.7 × 1.8  
4.5 × 4.7 × 1.8  
H-DI-0520-3R3  
H-DI-0630-3R8  
3.3  
3.8  
0.062  
0.040  
2.00  
2.00  
5.3 × 5.3 × 2.0  
6.3 × 6.3 × 3.0  
744052002  
7440420027  
744053003  
7440530047  
2.5  
2.7  
3.0  
4.7  
0.030  
0.047  
0.024  
0.030  
2.4  
2.2  
2.8  
2.4  
5.8 × 5.8 × 1.8  
4.8 × 4.8 × 1.8  
5.8 × 5.8 × 2.8  
5.8 × 5.8 × 2.8  
ing regulator output. For good transient response and  
stability the output capacitor should retain at least 10µF of  
capacitance over operating temperature and bias voltage.  
Place at least 4.7µF decoupling capacitance as close as  
ensure that the inductor does not saturate during normal  
operation. If output short-circuit is a possible condition,  
the inductor should be rated to handle the maximum peak  
current specified for the buck-boost converter. Table 9  
shows several inductors that work well with the LTC3589  
buck-boost regulator.  
possible to PV pin. Refer to Table 11 for recommended  
IN4  
ceramic capacitor manufacturers.  
Table 11. Ceramic Capacitor Manufacturers  
Capacitor Selection  
AVX  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.tdk.com  
Low ESR ceramic capacitors should be used at both the  
output and input supply of the buck-boost switching  
regulator. Only X5R or X7R ceramic capacitors should  
be used because they retain their capacitance over wider  
voltage and temperature ranges than other ceramic types.  
A 22µF capacitor is sufficient for the buck-boost switch-  
Murata  
Taiyo Yuden  
Vishay Siliconix  
TDK  
3589fb  
26  
LTC3589  
OPERATION  
SLEWING DAC REFERENCE OPERATION  
Setting and Slewing the DAC Outputs  
The 5-bit word in dynamic target voltage command reg-  
isters B1DTV1, B2DTV1, B3DTV1, and L2DTV1 programs  
reference voltage V1. The 5-bit word in command regis-  
ters B1DTV2, B2DTV2, B3DTV2, and L2DTV2 programs  
reference voltage V2. A resistor divider network on the  
output and feedback pins of the regulators set their  
output voltage.  
Controlling the DAC References  
The three LTC3589 step-down switching regulators and  
linear regulator LDO2 have programmable DAC reference  
inputs.EachDACisprogrammablefrom0.3625Vto0.75V  
in 12.5mV steps:  
R1  
R2  
VOUT = 1+  
(0.3625+BxDTVx 0.0125)(V)  
A 0 or 1 to the odd bits of voltage change control register  
VCCRselectsDACoutputvoltagesV1orV2,respectively.A  
slew of the DAC is initiated by writing a 1 to an even bit of  
register VCCR. The DAC output will slew to either voltage,  
V1 or V2, as selected by the odd bits of register VCCR.  
The DAC references may be commanded to independently  
slew between two voltages at one of four selectable slew  
rates. Table 12 summarizes the command registers used  
to control slewing DAC operation.  
2
Slew begins when the I C STOP condition is detected. At  
the end of the slewing operation the GO bits in command  
register VCCR are cleared.  
Table 12. Slewing DAC Command Register Control Summary  
COMMAND  
FUNCTION  
The slew rate for each regulator is set in the ramp rate  
controlregisterVRRCR.EachDAChasindependentoutput  
voltageregisters,voltageregisterselect,andslewrateand  
start controls. The regulators do not have to be enabled  
to change the DAC outputs.  
REGISTER[BIT]  
VCCR[0], VCCR[2],  
VCCR[4], VCCR[6]  
Voltage Change Control Register  
G0 / Slew  
Write a 1 to Initiate a Slew to the Voltage  
Selected in VCCR[1], VCCR[3], VCCR[5],  
VCCR[7] Respectively.  
TheVSTBpinisusedtosettheDACcontrolledoutputrails  
to a low power standby condition. When VSTB is driven  
HIGH, all four of the DAC references will immediately slew  
to V2. To use VSTB to set the rails to standby voltage,  
select V1 for normal rail voltages and V2 for standby rail  
voltages. Drive VSTB high to immediately slew all the  
DAC outputs to V2. When VSTB is driven LOW, the DAC  
outputs will slew to V1.  
Bits are Reset to 0 at the End of the Slew  
Operation.  
VCCR[1], VCCR[3],  
VCCR[5], VCCR[7]  
Voltage Change Control Register  
Dynamic Target Select  
Write a 0 to Select Voltage V1 Stored in  
Registers B1DTV1[4-0], B2DTV1[4-0],  
B3DTV1[4-0], L2DTV1[4-0].  
Write a 1 to Select Voltage V2 in  
Registers B1DTV2[4-0], B2DTV2[4-0],  
B3DTV2[4-0], L2DTV2[4-0].  
B1DTV1[4-0], B2DTV1[4-0], Dynamic Target Voltage 1  
B3DTV1[4-0], L2DTV1[4-0]  
Thedefaultpower-upvalueofallthedynamictargetvoltage  
registers is 11001 corresponding to a DAC output volt-  
age of 0.675V. The DTV registers may be reprogrammed  
prior to initiating a power-up sequence or at any time for  
dynamic slewing.  
Five Bits Corresponding to V1 Output  
from Each DAC.  
PGOOD Mask  
B1DTV1[5], B2DTV1[5],  
B3DTV1[5], L2DTV1[5]  
Write a 1 to Continue Normal PGOOD  
Operation When Slewing.  
Write a 0 to Force PGOOD to Pull Low  
During Slew.  
When a step-down switching regulator output is slewing  
downitsmodeisautomaticallyswitchedtoforcedcontinu-  
ous to enable the regulator to sink current. When LDO2 is  
slewing down, a 2.5k pull-down is connected to its output.  
B1DTV2[4-0], B2DTV2[4-0], Dynamic Target Voltage 2  
B3DTV2[4-0], L2DTV2[4-0]  
Five Bits Corresponding to V2 Output  
from Each DAC.  
VRRCR[1-0], VRRCR[3-2], Voltage Ramp Rate Control  
VRRCR[5-4], VRRCR[7-6]  
Two Bits That Set the DAC Output Slew  
Rate for Step-Down Switching Regulator  
and LDO2.  
3589fb  
27  
LTC3589  
OPERATION  
Table 13 shows command register and feedback divider  
settingstoenableslewingstep-downswitchingregulator1  
between 1.2V and 1V in 70µs. The voltage ramp rate  
control register bits VRRCR[1:0] are set to 01 which  
selects a ramp rate of 1.75mV/µs at the DAC output.  
The slew rate at the regulator output is a function of the  
feedback resistor divider gain. In this example, the slew  
is equal to 1.75 • (1 + 301/499) = 2.8mV/µs. Therefore, a  
slew of 200mV will take 70µs. To initiate a change from  
1.2V to 1V write 11 to voltage change control register bits  
VCCR[1:0]. VCCR[1] selects target register B1DTV2 to  
set the regulator reference input to 0.625V. VCCR[0] set  
to 1 initiates the dynamic slew to go to the new voltage.  
To slew back to 1.2V write 01 to command register bits  
VCCR[1:0].  
until PWR_ON is activated by the PWR_ON pin. When the  
controller enters the PUP state the open-drain WAKE pin  
releases HIGH. The WAKE pin is typically used to enable  
the first regulator in a start-up sequence. The pushbutton  
state will stay in PUP for five seconds before transition-  
ing to the power-on (PON) state. Before leaving PUP, the  
PWR_ON pin must be brought HIGH by the application  
to indicate that the system rails are correct. If PWR_ON  
is not active at the end of five seconds the pushbutton  
controllerwillcontinuedirectlythroughPONtothepower-  
down (PDN) state and pull the WAKE pin down. Three  
events will cause the pushbutton to leave the PON state:  
1) lowering the PWR_ON pin, 2) forcing a hard reset by  
holding the ON pin LOW for five seconds, and 3) a fault  
condition is detected. Fault conditions are low V , device  
IN  
over temperature, or extended undervoltage of one of the  
regulatoroutputs. Allregulatorenables, theONinput, and  
PWR_ON signals are inhibited for one second while in  
the PDN state. After one second in PDN the pushbutton  
controller returns to POFF.  
Table 13. Dynamic Slewing Example for Step-Down Switching  
Regulator 1  
COMMAND  
REGISTER  
V
=1.2V  
V
=1V  
OUT  
OUT  
VRRCR[1:0]  
VCCR[1]  
Dynamic Slew Rate  
Select DTV  
01  
0
01  
1
B1DTV1[4:0]  
B1DTV2[4:0]  
11111  
10101  
11111  
10101  
Resistor Divider Shown  
in Figure 3  
PUP  
PB400ms OR  
PWR_ON  
R1 = 301kΩ  
5 SEC  
R2 = 499kΩ  
POFF  
PON  
PUSHBUTTON OPERATION  
State Event Diagram  
FAULT OR  
PWR_ON  
1 SEC  
POR  
PDN  
3589 F05  
Figure 5 shows the LTC3589 pushbutton state diagram.  
Upon first power application to V an internal power-on  
Figure 5. Pushbutton Controller State Diagram  
IN  
reset circuit puts the pushbutton into power-down (PDN)  
state and initiates a one second timer. Status pin RSTO is  
pulled LOW until one second is timed out and the always-  
alive LDO1 has indicated power good status. After the  
one second interval the pushbutton circuit will transition  
to the power-off (POFF) state. The pushbutton will not  
leave the POFF state and enter the power-up state (PUP)  
until ON is held LOW for at least 400ms (PB400ms) or  
PBSTAT Operation  
PBSTAT goes LOW 50ms after the initial pushbutton ap-  
plication (ON LOW) and will stay LOW for a minimum of  
50ms. PBSTAT will go HIGH coincident with ON going  
HIGH unless ON goes HIGH before the 50ms minimum  
on-time.  
3589fb  
28  
LTC3589  
OPERATION  
Power-Up Using the Pushbutton  
pull low, all enabled regulators are disabled and the OVEN  
command register is reset to 0x00.  
When in the POFF state, the LTC3589 is in complete  
shutdown except the always active LDO1 and regulators  
enabled with the keep-alive control bits. Pull the ON pin to  
ground with a pushbutton for 400ms to begin a power-up  
sequence with the WAKE pin tied to an enable pin. Drive  
PWR_ON high within five seconds to signal the LTC3589  
to remain in the power-on state.  
ON(PB)  
PBSTAT  
50ms  
WAKE  
5 SEC  
50ms  
µC/µP CONTROL  
PWR_ON  
3589 F08  
Figure 8. Power-Up and Down Using PWR_ON Pin  
ON(PB)  
PBSTAT  
Hard Reset Using the Pushbutton  
400ms  
WAKE  
<5 SEC  
When the ON pin is pulled LOW for five seconds, a hard  
µC/µP CONTROL  
PWR_ON  
reset is initiated. At the end of five seconds, WAKE is  
3589 F06  
2
pulled LOW, the I C command registers are reset to POR  
Figure 6. Power-Up Using the Pushbutton  
states, enable pin states are ignored, and the one second  
power-downtimerisstarted.Duringthepower-downtime,  
the enables continue to be ignored to allow the regulator  
outputs to discharge. The RSTO pin is pulled LOW for  
the power-down time to indicate a pushbutton hard reset  
occurred. If the PWR_ON pin is LOW at the end of the one  
secondpower-downtime,theLTC3589willremaininsleep  
mode. If PWR_ON is HIGH at the end of one second and  
there are no fault conditions, the LTC3589 will power-up  
in the same way shown in Figure 8.  
Power-Down Using the Pushbutton  
The pushbutton power-down operation is performed by  
thesystemmicroprocessorbymonitoringthePBSTATpin.  
OnceinthePONstate,thesystemcontrollerisresponsible  
for deciding what action to take with a pushbutton event.  
WhentheONpinisheldLOWfora50msdebounceperiod,  
thePBSTATpinispulledLOW.Thesystemcontrollershould  
monitor the PBSTAT pin to determine the pushbutton has  
been pushed. If the controller decides that a power-down  
is desired, then it should drive the PWR_ON pin LOW.  
ON(PB)  
50ms  
PBSTAT  
<5 SEC  
ON(PB)  
WAKE  
5 SEC  
50ms  
PBSTAT  
µC/µP CONTROL  
PWR_ON  
1 SEC  
WAKE  
PWR_ON  
RSTO  
50ms  
3589 F09  
µC/µP CONTROL  
Figure 9. Hard Reset Using the Pushbutton  
3589 F07  
Figure 7. Power Down Using Pushbutton  
Hard Reset Due to a Fault Condition  
Power-Up and Down Using PWR_ON Pin  
A hard reset due to V undervoltage, extended undervolt-  
IN  
age of an output rail, or an overtemperature condition  
An alternate power-up method is to drive the PWR_ON pin  
to a HIGH state. After a delay of 50ms from the PWR_ON  
signal, the WAKE pin will pull HIGH to drive regulator en-  
able pins. When PWR_ON is HIGH for five seconds, the  
sequence controller will enter the PON state. To power  
down, drive the PWR_ON pin LOW. 50ms later WAKE will  
initiates a hard shutdown of the LTC3589. When the fault  
2
occurs, wake is pulled LOW, the I C command registers  
are reset to POR states, enable pin inputs are ignored, and  
the one second power-down timer is started. During the  
power-down time, the enables continue to be ignored to  
3589fb  
29  
LTC3589  
OPERATION  
allow the regulator outputs to discharge. If the PWR_ON  
pinisLOWattheendofthepower-downtime,theLTC3589  
will remain in sleep mode with just the always-active LDO  
operating.IfPWR_ONisHIGHattheendofonesecondand  
the fault condition has cleared, the LTC3589 will power-up  
in the same way shown in Figure 8. Neither IRQ nor the  
statusregistersareclearedbythefaultinducedshutdown.  
brings up the WAKE pin that is tied to EN1 and EN3 to  
enablestep-downswitchingregulators1and3.Theoutput  
of regulator 1 is tied to EN2 and EN4 that enables step-  
down switching regulator 2 and the buck-boost switching  
regulator4.Theoutputofstep-downswitchingregulator2  
is tied to EN_LDO2 and EN_LDO3 to enable LDO2, LDO3  
and LDO4. Within five seconds of WAKE going HIGH, the  
microprocessor or microcontroller must drive PWR_ON  
HIGH to tell LTC3589 that rails are good and to stay in the  
power-on state.  
FAULT  
ON(PB)  
PBSTAT  
Figure 12 shows the start-up timing for the application  
shown in Figure 11. There is a 200µs (typical) delay  
between the enable pin and the internal enable signal to  
each regulator.  
<1 SEC  
WAKE  
µC/µP CONTROL  
PWR_ON  
IRQ  
WAKE  
V1  
CLIRQ  
1.2V  
1V  
200µs  
0.5V  
3589 F10  
Figure 10. Hard Reset Due to a Fault Condition  
ENABLE AND POWER-ON SEQUENCING  
Enable Input Pin Operation  
V3  
1.8V  
200µs  
0.5V  
3.3V  
V2  
V4  
1.2V  
1.8V  
200µs  
LDO2  
LDO3  
LDO4  
The regulator enable input pins facilitate pin-strapping an  
output rail to the enable pin of the next regulator in the  
desired sequence. The regulator enable inputs normally  
havea0.8V(typical)inputthreshold.Ifanyenableisdriven  
HIGH, the remaining enable input thresholds switch to a  
more accurate 500mV (typical) threshold.  
2.8V  
3589 F12  
Figure 12. Pin-Strap Sequencing Timing  
2
Depending on settings in I C system control register 2  
(SCR2), a regulator’s output must discharge to less than  
300mV before it will respond to its enable. The output  
dischargefeatureistoguaranteeproperstart-upsequenc-  
ing. This feature and the 2.5k pull-down resistors may be  
overridden by bit settings in command register SCR2.  
Figure 11 shows an application circuit for a typical pin-  
strapped start-up sequence. Holding ON LOW for 400ms  
LTC3589  
EN1  
WAKE  
SW1  
Keep-Alive Operation  
EN2  
1V TO 1.2V  
1.8V  
EN3  
SW2  
For systems which require an active supply rail when in  
system standby, any of the three LTC3589 step-down  
switching regulators or LDO2 may be kept alive regard-  
less of the status of PWR_ON and WAKE. Writing a 1 to  
a regulator’s keep-alive bit in its dynamic target voltage  
register will keep a regulator alive when the LTC3589 is  
in standby mode. A regulator with its keep-alive bit set  
EN4  
SW3  
0.8V TO 1V  
3.3V  
EN_LDO2  
EN_LDO34  
ON  
BB_OUT  
LDO2  
LDO3  
LDO4  
1.2V  
1.8V  
PWR_ON  
PWR_ON  
2.8V  
3589 F11  
Figure 11. Pin-Strap Start-Up Sequence Application Circuit  
will stay enabled until the bit is reset writing the bit LOW,  
3589fb  
30  
LTC3589  
OPERATION  
resetting the LTC3589 with a pushbutton hard reset, or  
a fault condition (UVLO, PGOOD, timeout or thermal  
shutdown) occurs. PGOOD and fault status are reported  
in the IRQSTAT and PGSTAT registers and on the IRQ and  
PGOOD pins for keep-alive regulators when PWR_ON and  
WAKE are LOW.  
Figure 13 shows a initial power-up for the RSTO pin. If  
IN  
of the 1 second start-up time, the IRQ pin will be pulled  
LOW and an undervoltage bit will be set in the IRQSTAT  
status register.  
V
is not above its undervoltage thresholds at the end  
2.7V  
V
IN  
Software Control Mode  
>25µs  
14ms  
LDO1  
Once a power-up sequence is completed each regulator  
may be enabled and disabled individually by the system  
as needed for power mode requirements. Setting the out-  
put voltage enable command register bit OVEN[7] HIGH  
disconnects each regulator from its enable pin so control  
is solely through the OVEN command register. To enter  
software control mode, set command bit OVEN[7] HIGH  
and the desired enable bits in OVEN[6:0] HIGH. Any of the  
regulators enabled in OVEN[6:0] will stay on regardless  
of the state of their enable pins when OVEN[7] is HIGH.  
Setting the regulator enable bits and the software control  
1 SEC  
INITIAL POWER-UP  
RSTO  
LDO1 UNDERVOLTAGE  
3589 F13  
Figure 13. Initial Power-Up and LDO1 Undervoltage RSTO Timing  
PGOOD Pin and PGSTAT Status Register Function  
Each LTC3589 regulator has an internal power good out-  
put that is active whenever the regulators feedback pin is  
closer than 7% (typical) from its input reference voltage.  
If any of the internal power good signals indicate a low  
voltage for longer than 25µs (typical), the PGOOD pin is  
pulled LOW and the appropriate bit in the PGSTAT status  
register (Table 14) is set.  
2
bit in OVEN[7] may occur on the same I C start-stop  
sequence. A normal shutdown using PWR_ON resets  
all eight bits of the OVEN register to 0x00 to ensure all  
regulators are shut off.  
Table 14. PGSTAT Read-Only Register Bit Definitions  
PGSTAT[BIT] VALUE SETTING  
FAULT DETECTION, SHUTDOWN, AND REPORTING  
LDO1_STBY Output Low  
LDO1_STBY Output Good  
0
1
2
3
4
5
6
7
0
1
TheLTC3589monitorsV ,outputrailvoltagesandinternal  
IN  
die temperature. A warning condition is indicated when  
Step-Down Switching Regulator 1 Output Low  
Step-Down Switching Regulator 1 Output Good  
0
1
V
is less than 2.9V and when internal die temperature  
IN  
approaches the thermal shutdown temperature. A fault  
Step-Down Switching Regulator 2 Output Low  
Step-Down Switching Regulator 2 Output Good  
0
1
condition occurs when V is less than 2.6V, any regulator  
IN  
output is 8% low for 14ms, or the internal die temperature  
is HIGH. Warning and fault states are reported via the IRQ,  
PGOOD, and RTSO pins. Specific fault states are read via  
Step-Down Switching Regulator 3 Output Low  
Step-Down Switching Regulator 3 Output Good  
0
1
Buck-Boost Regulator 4 Output Low  
Buck-Boost Regulator 4 Output Good  
0
1
2
the I C serial port status registers IRQSTAT and PGSTAT.  
LDO2 Output Low  
LDO2 Output Good  
0
1
RSTO Pin Function  
LDO3 Output Low  
LDO3 Output Good  
The RSTO (reset output) pin is an open-drain output for  
use as a power-on reset signal. It is pulled LOW at initial  
power until LDO1 is within 8% of its target and the initial  
onesecondstart-uptimerisfinished.RSTOremainsHIGH  
during normal operation and will be pulled low if LDO1  
loses regulation for more than 25µs or a pushbutton hard  
reset is initiated. RSTO is released high 14ms after LDO1  
returns to regulation.  
0
1
LDO4 Output Low  
LDO4 Output Good  
0
1
3589fb  
31  
LTC3589  
OPERATION  
Figure 14 shows the PGOOD pin and PGSTAT status reg-  
ister timing. When no regulator is enabled, the PGOOD  
pin is pulled LOW and PGSTAT bits are LOW. PGOOD and  
the PGSTAT bits are HIGH 250µs after the last enabled  
regulator is within 7% of its target.  
V drops below 2.55V, the fault condition initiates a hard  
shutdown reset. Figure 15 shows undervoltage warning  
and fault detection levels.  
IN  
FAULT  
WARNING  
WAKE HIGH AFTER 1sec  
IF PWR_ON HIGH  
V
IN  
UNDERVOLTAGE  
1sec  
WAKE  
2.55V 2.65V 2.9V  
3V  
V
IN  
3589 F15  
ENx  
25µs  
25µs  
DISABLED IF  
WAKE LOW  
200µs  
Figure 15. UV Detection Hard Reset and Warning Levels  
V
OUTx  
250µs  
AnundervoltagewarningsetsregisterbitIRQSTAT[4]and  
pulls the IRQ pin LOW.  
250µs  
250µs  
14ms  
PGOOD  
IRQ  
To minimize standby quiescent current the UVLO and  
thermal sensor circuits are disabled when all the regula-  
tors are off.  
EXTENDED  
UNDERVOLTAGE  
(FAULT)  
UNDERVOLTAGE  
DISABLE  
ENABLE  
3589 F14  
Figure 14. PGOOD Pin and PGSTAT Status Register Timing  
Thermal Shutdown Fault and Warning  
Similar to the V undervoltage detection circuits the over-  
IN  
If any enabled regulator output falls more than 7% low  
for longer than 25µs PGOOD is pulled LOW and a cor-  
responding status bit in the PGSTAT register is set to 0.  
The PGOOD pin and PGSTAT status bit remain LOW for  
as long as the low voltage condition persists plus 250µs.  
temperature detection circuits check for warning and fault  
levels. Anovertemperaturefaultwillinitiateafaultinduced  
shutdown. An overtemperature warning sets register bit  
IRQSTAT[6] and pulls the IRQ pin LOW.  
An extended low output rail causing the PGOOD pin to  
be LOW for longer than 14ms defines a PGOOD timeout  
fault condition that triggers a hard reset if not masked in  
IRQ Pin and IRQSTAT Status Register Function  
The IRQ pin and IRQSTAT status register report PGOOD  
timeout fault, V undervoltage warning and fault, and  
2
IN  
I C register bit SCR2[7]. When SCR2[7] is HIGH, PGOOD  
high temperature warning and fault. Table 15 shows the  
remains in normal operation.  
meaning of the IRQSTAT read-only status register bits.  
During a dynamic voltage slew, PGOOD is pulled LOW  
unless bit 5 in the dynamic target voltage register for  
each regulator is set HIGH. The status register PGSTAT  
is unaffected by a dynamic voltage slew.  
Table 15. IRQSTAT Read-Only Register Bit Definitions  
IRQSTAT[BIT] VALUE SETTING  
PGOOD Timeout Fault (PGOOD Low >  
14ms)  
3
1
V
V
Undervoltage Warning (V < 2.9V)  
4
5
6
7
1
1
1
1
IN  
IN  
IN  
Undervoltage Detection  
Undervoltage Fault (V < 2.6V)  
IN  
The LTC3589 undervoltage (UV) detection circuit will out-  
put a fault condition, locking out regulator operation, until  
Thermal Limit Warning (T > 130°C)  
J
Thermal Limit Fault (T > 150°C)  
J
V reaches 2.7V. Once V is above 2.7V the LTC3589 will  
IN  
IN  
operate normally until V drops to 2.55V (typical). When  
IN  
3589fb  
32  
LTC3589  
OPERATION  
Figure 16 shows the timing of the IRQ and IRQSTAT status  
registerfollowingawarning(V <2.9Vorhightemperature  
Fault Induced Shutdown  
IN  
Any of the three fault conditions will initiate a hard reset  
shutdown triggering the following events: 1) A bit corre-  
sponding to the fault is set in status register IRQSTAT, 2)  
IRQ and WAKE pins are pulled LOW, 3) enable pin inputs  
are ignored and the regulators are disabled, 4) all enable  
bits and software control mode bit in the output voltage  
enable OVEN command register are cleared, and 5) the  
pushbutton controller is sent to the PDN state for one  
second and then to POFF. Re-enabling of regulators is  
inhibited until both the fault condition and the one second  
time out have passed to allow regulator outputs sufficient  
time to discharge. When one second timeout and the fault  
condition are both passed, if PWR_ON is HIGH, WAKE will  
come up and the LTC3589 will respond to any enable pins  
that are also HIGH.  
warning) event. When a warning occurs, IRQ is latched  
LOWandbitIRQSTAT[4]orIRQSTAT[5]isset.IRQremains  
low and the IRQSTAT status bits remain active until the  
2
I C CLIRQ command is given and the warning condition  
has passed.  
TSD OR UV  
WARNING  
IRQ  
IRQSTAT  
CLIRQ  
3589 F16  
Figure 16. IRQ and IRQSTAT Status Register Warning Timing  
2
I C OPERATION  
Figure 17 shows the timing of the IRQ pin and IRQSTAT  
status register following a fault induced hard shutdown  
event. When a fault occurs, IRQ is latched LOW and bit  
IRQSTAT[3], IRQSTAT[5], or IRQSTAT[7] is set. IRQ re-  
mains LOW until the CLIRQ command is issued. When the  
CLIRQ command has been issued, the IRQSTAT status bit  
remains set for the one second enable inhibit time or as  
long as the fault condition persists, whichever is longer.  
2
I C Interface  
The LTC3589 communicates with a bus master using the  
standard I C 2-wire interface. The two bus lines, SDA and  
2
SCL, must be HIGH when the bus is not in use. External  
pull-up resistors or current sources, such as the LTC1694  
SMBus accelerator, are required on these lines. The  
LTC3589 is both a slave receiver and slave transmitter. The  
2
I C control signals, SDA and SCL are scaled internally to  
TSD, UV,  
OR PGOOD FAULT  
the DV supply. DV should be connected to the same  
DD  
DD  
power supply as the bus pull-up resistors.  
IRQ  
1 SEC  
1 SEC  
2
The I C port has an undervoltage lockout on the DV  
DD  
IRQSTAT  
CLIRQ  
2
pin. When DV is below approximately 1V, the I C serial  
DD  
port is reset to power-on states and registers are set to  
3589 F17  
default values.  
Figure 17. IRQ and IRQSTAT Status Register Fault Timing  
3589fb  
33  
LTC3589  
OPERATION  
I C Bus Speed  
2
2
I C Byte Format  
2
The I C port operates at speeds up to 400kHz. It has  
Each byte sent to or received from the LTC3589 must  
be 8 bits long followed by an extra clock cycle for the  
acknowledge bit. The data should be sent to the LTC3589  
most significant bit (MSB) first.  
built-in timing delays to ensure correct operation when  
addressed from an I C compliant master device. It also  
containsinputfiltersdesignedtosuppressglitchesshould  
the bus become corrupted.  
2
2
I C Acknowledge  
2
I C START and STOP Conditions  
The acknowledge signal is used for handshaking between  
the master and the slave. When the LTC3589 is written to,  
it acknowledges its write address and subsequent register  
address and data bytes. When reading from the LTC3589,  
it acknowledges its read address and 8-bit status byte.  
A bus master signals the beginning of communications  
by transmitting a START condition. A START condition is  
generated by transitioning SDA from HIGH to LOW while  
SCL is HIGH. The master may transmit either the slave  
write or the slave read address. Once data is written to the  
LTC3589, the master may transmit a STOP condition that  
commands the LTC3589 to act upon its new command  
set. A STOP condition is sent by the master by transition-  
ing SDA from LOW to HIGH while SCL is HIGH. The bus  
An acknowledge pulse (active LOW) generated by the  
LTC3589 lets the master know that the latest byte of  
information was transferred. The master generates the  
clock cycle and releases the SDA line (HIGH) during the  
acknowledgeclockcycle.TheLTC3589pullsdowntheSDA  
line during the write acknowledge clock pulse so that it is  
a stable LOW during the HIGH period of this clock pulse.  
2
it then free for communication with another I C device.  
SDA  
t
t
t
HD, STA  
BUF  
t
SU, STO  
SU, DAT  
t
t
t
LOW  
HD, STA  
HD, DAT  
3589 F18  
SCL  
t
t
HIGH  
t
HD, STA  
SP  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
t
r
t
f
Figure 18. LTC3589 I2C Timing  
ADDRESS  
SUB ADDRESS  
S7 S6 S5 S4 S3 S2 S1 S0  
DATA  
SUB ADDRESS  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0  
0
1
1
0
1
0
0
WR  
D7 D6 D5 D4 D3 D2 D1 D0  
S7 S6 S5 S4 S3 S2 S1 S0  
START  
SDA  
STOP  
0
1
1
2
1
3
0
4
0
6
0
7
0
8
1
5
ACK  
9
ACK  
9
ACK  
9
ACK  
9
ACK  
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
3589 F19  
Figure 19. LTC3589 I2C Serial Port Multiple Write Pattern  
3589fb  
34  
LTC3589  
OPERATION  
I C Slave Address  
2
address and data pairs into the holding latches. Address-  
ing the LTC3589 is not required for each sub address and  
data pair. If desired a REPEAT-START condition may be  
The LTC3589 responds to factory programmed read and  
write addresses. The write address is 0x68. The read ad-  
dress is 0x69. The least significant bit of the address byte,  
known as the read/write bit, is 0 when writing data to the  
LTC3589 and 1 when reading from it.  
2
initiated by the master where another device on the I C  
bus is addressed. The LTC3589 remembers the valid data  
2
it has received. Once all the devices on the I C have been  
addressed and sent valid data and a global STOP has been  
sent, the LTC3589 will update its command latches with  
the data it has received.  
2
I C Sub-Addressed Writing  
TheLTC3589has14commandregistersforcontrolinputs.  
2
2
They are accessed by the I C port via a sub-addressed  
I C Sub-Addressed Reading  
writing system.  
2
2
The LTC3589 I C interface supports random address  
EachwritecycleoftheLTC3589consistsofaseriesofthree  
or more bytes beginning with the LTC3589 write address.  
The second byte is the sub address of the command reg-  
ister being written to. The sub address is a pointer to the  
register where the data in the third byte will be stored. The  
third byte is the data to be written to the just-received sub  
address. Continue alternating sub address and data bytes  
to write multiple registers in a single START sequence.  
reading of the I C command and status registers. Before  
reading a register, the registers sub address must be  
written. Send a START condition followed by the LTC3589  
write address followed by the sub address of the register  
to be read. The sub address is now stored as a pointer  
to the register. Send a REPEAT-START condition followed  
by the LTC3589 read address. Following the acknowledg-  
ment of its read address the LTC3589 returns one bit of  
information for each of the next 8 clock cycles. A STOP  
condition is not required for the read operation. The read  
sub address is stored until a new sub address is written.  
2
I C Bus Write Operation  
The master initiates communication with the LTC3589  
with a START condition and the LTC3589’s write address.  
If the address matches that of the LTC3589, the LTC3589  
returns an acknowledge pulse. The master should then  
deliver thesub address. AgaintheLTC3589 acknowledges  
and the cycle is repeated for the data byte. The data byte  
is transferred to an internal holding latch upon the return  
of its acknowledge by the LTC3589. Continue writing sub  
Verify the data written to the internal data hold latches  
prior to committing date to the command registers by  
reading back the data before sending a STOP condition.  
ContinuouslypollaregisterbyrepeatedlysendingaSTART  
condition followed by the LTC3589 read address, and then  
clocking the data out after the read address acknowledge.  
ADDRESS  
SUB ADDRESS  
ADDRESS  
DATA  
0
1
1
0
1
0
0
WR  
S7 S6 S5 S4 S3 S2 S1 S0  
0
1
1
0
1
0
0
RD  
R7 R6 R5 R4 R3 R2 R1 R0  
START  
START  
ACK  
STOP  
0
SDA  
SCL  
1
2
1
3
0
4
1
5
0
6
0
7
0
8
ACK  
9
0
1
2
1
3
0
4
1
5
0
6
0
7
1
8
ACK  
9
ACK  
9
1
1
2
3
4
5
6
7
8
9
1
1
2
3
4
5
6
7
8
3589 F20  
Figure 20. LTC3589 I2C Serial Port Read Pattern  
3589fb  
35  
LTC3589  
OPERATION  
I C Command and Status Registers  
2
clearedwhentheLTC3589acknowledgesthesubaddress.  
Data written to the CLIRQ command register is ignored.  
2
Table 16 and Table 17 show the LTC3589 I C command  
and status registers. System control register (SCR1) sets  
the operating modes of the switching regulators. Each  
step-down switching regulator has pulse-skipping, Burst  
Mode operation, or forced continuous operation. The  
buck-boost switching regulator can be put in continuous  
or Burst Mode operation.  
There are eight command registers that are used to store  
the 5-bit dynamic target voltage input to the feedback  
reference slewing DACs – B1DTV1, B1DTV2, B2DTV1,  
B2DTV2, B3DTV1, B3DTV2, L2DTV1 and L2DTV2. The  
registers ending with V2 use bits 4 through 0 to store  
the V2 feedback reference voltage for the regulators. The  
regulators input reference voltage is set to V2 by setting  
the reference select bits HIGH in VCCR and writing to the  
go bits in VCCR. The V2 voltage is also selected whenever  
the VSTB pin is driven HIGH. The registers ending with  
V1 use bits 4 through 0 to store the V1 feedback voltage  
reference for the regulators. The regulators input refer-  
ence voltage is set to V1 voltage by setting the reference  
select bits LOW in command register VCCR. Whenever  
a new dynamic target voltage is set, either by changing  
the 5-bit value or by changing the reference select bits in  
VCCR, the go bits in VCCR must be written to initiate the  
dynamic voltage slew. When bit 5 in B1DTV1, B2DTV1,  
B3DTV1, and L2DTV1 is LOW the PGOOD pin pulls LOW  
during a dynamic voltage slew. Bits 7 and 6 in B1DTV1  
set the switch DV/DT rate for all the step-down switch-  
ing regulators. Bit 5 in registers B1DTV2, B2DTV2 and  
B3DTV2 selects the switching frequency of step-down  
switching regulators 1, 2 and 3. Writing the bit LOW sets  
the switching frequency to 2.25MHz. Writing the bit HIGH  
sets the switching frequency to 1.125MHz.  
The output voltage enable (OVEN) command register  
controls the individual enables of each regulator. When  
OVEN[7] is set to a logic LOW value, bits OVEN[6-0] are  
ORed with their respective enable pins. When OVEN[7]  
is HIGH, the input pins EN1, EN2, EN3, EN4, EN_LDO2,  
and EN_LDO34, are ignored and the LTC3589 regulators  
respond only to the OVEN register. When the regulators  
are configured in a hard wired power-up sequence, setting  
OVEN[7] allows software control of individual regulators.  
When the PWR_ON pin is pulled LOW all bits in the OVEN  
register are reset to POR state of 0x00.  
Systemcontrolregister2(SCR2)controlstheoperationof  
the regulator start-up and regulator power good (PGOOD)  
hardshutdownoperation. SetcommandregisterSCR2[7]  
to inhibit a hard shutdown of the regulators in the event  
of an extended low output rail voltage. The low output  
voltage event is still reported via the IRQ pin and IRQSTAT  
status register. Set the bits in SCR2[6-0] LOW to force a  
regulator to ignore its enable until its output has fallen to  
less than 300mV (typical). If set HIGH, the regulator will  
enable without waiting for its output to discharge and will  
not engage the 2.5k discharge resistor.  
The dynamic slew rates of the four feedback reference  
DACs are independently set using bits in voltage ramp  
rate command register (VRRCR). The rate shown is the  
slew of the DAC output as it slews up or down to its target  
value. The slew rate of the output voltage is scaled by the  
gain of the resistor divider network that sets the regulator  
output voltage. For example, a regulator set to an output  
voltage of 1.2V when the dynamic target voltage reference  
is 0.75V has a gain of 1.6. Slewing the regulator output  
from 1.2V to 1V requires slewing the DAC output down  
125mV from 750mV to 625mV. With a VRRCR slew rate  
setting of 01 the slew time of the regulator output is 71µs.  
LDO2andstep-downswitchingregulators1to3eachhave  
a pair of control bits in the voltage change control register  
VCCR. The reference select bit selects which of two 5-bit  
words are used as inputs to the regulators feedback refer-  
ence DAC inputs. The slew go bit initiates a DAC slew to  
the voltage selected by the reference select bit. When the  
slew is complete, the slew go bits are reset LOW.  
Accessing the CLIRQ command register will clear the IRQ  
pin and will let the IRQ pin to release HIGH. The pin is  
3589fb  
36  
LTC3589  
OPERATION  
Table 16. LTC3589 Command Register Table  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x07 SCR1  
Buck-Boost  
Mode:  
Step-Down Switching  
Regulator 3 Mode :  
Step-Down Switching  
Regulator 2 Mode :  
Step-Down Switching  
Regulator 1 Mode :  
0000 0000  
0 =  
0 0 = Pulse-Skipping  
0 1 = Burst  
0 0 = Pulse-Skipping  
0 1 = Burst  
0 0 = Pulse-Skipping  
0 1 = Burst  
Continuous  
1 = Burst  
Mode  
1 0 = Forced Continuous  
1 0 = Forced Continuous  
1 0 = Forced Continuous  
0x10 OVEN  
Software  
Control Mode:  
EN_LDO4  
EN_LDO3  
EN_LDO2  
EN4  
EN3  
EN2  
EN1  
0000 0000  
0 = Enable  
with Pin  
or OVEN  
Register  
1 = Enable/  
Disable  
with OVEN  
Register Only  
0x12 SCR2  
Mask  
LDO4  
Start-Up:  
LDO3  
Start-Up:  
LDO2  
Start-Up:  
Buck-Boost  
Start-Up:  
Step-Down  
Switching  
Regulator 3  
Start-Up:  
Step-Down  
Switching  
Regulator 2  
Start-Up:  
Step-Down 0000 0000  
Switching  
PGOOD  
Hard  
Regulator 1  
Shutdown:  
Start-Up:  
0 = Wait  
0 = Wait  
0 = Wait  
0 = Wait  
0 = Allow  
PGOOD  
Timeout  
Hard  
0 = Wait for  
Output <  
0 = Wait  
0 = Wait  
for Output  
< 300mV  
for Output  
< 300mV  
for Output  
< 300mV  
for output  
< 300mV  
for Output  
for Output  
< 300mV  
300mV Before < 300mV  
Before Enable Before Enable Before Enable Before Enable  
Enable  
Before Enable Before  
Shutdown.  
Enable  
1 = Don’t Wait 1 = Don’t Wait 1 = Don’t Wait 1 = Don’t  
1 = Don’t Wait  
and Disable  
Discharge  
Resistor.  
and Disable  
Discharge  
Resistor.  
and Disable  
Discharge  
Resistor.  
Wait and  
Disable  
Discharge  
Resistor.  
1 = Inhibit  
PGOOD  
Hard  
1 = Don’t Wait and Disable 1 = Don’t  
and Disable  
Discharge  
Resistor.  
Discharge  
Resistor.  
Wait and  
Disable  
Discharge  
Resistor.  
Shutdown.  
0x20 VCCR  
LDO2  
Reference  
Select:  
Start LDO2  
Slew:  
Step-Down  
Switching  
Regulator 3  
Reference  
Select:  
Start  
Step-Down  
Start  
Step-Down  
Switching  
Regulator 1  
Reference  
Select:  
Start  
0000 0000  
Step-Down Switching  
Step-Down  
Switching  
Regulator 2  
Slew:  
Step-Down  
Switching  
Regulator 1  
Slew:  
Switching  
Regulator 2  
Regulator 3 Reference  
Slew:  
Select:  
0 =  
0 = Went  
1 = GO  
0 =  
0 = Went  
1= GO  
0 =  
0 = Went  
1= GO  
0 =  
0 = Went  
1= GO  
L2DTV1[4-0]  
B3DTV1[4-0]  
B2DTV1[4-0]  
B1DTV1[4-0]  
1 =  
1 =  
1 =  
1 =  
L2DTV2[4-0]  
B3DTV2[4-0]2  
B2DTV2[4-0]  
B1DTV2[4-0]2  
0x21 CLIRQ  
0x23 B1DTV1 Step-Down Switching  
Regulator Switch DV/DT  
Control:  
PGOOD  
Mask:  
Step-Down Switching Regulator 1 Feedback Reference Input (V1)  
0001 1001  
0 = PGOOD  
Low When  
Slewing  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
00 = 1ns  
01 = 2ns  
10 = 4ns  
11 = 8ns  
1 = PGOOD  
Not Forced  
Low When  
Slewing.  
3589fb  
37  
LTC3589  
OPERATION  
Table 16. LTC3589 Command Register Table  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x24 B1DTV2 Keep-Alive  
Mode:  
Phase  
Step-Down  
Switching  
Regulator 1  
Clock Rate  
Step-Down Switching Regulator 1 Feedback Reference Input (V2)  
0001 1001  
Select:  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
0 = Normal  
Shutdown  
0 = Clock  
Phase 1  
0 = 2.25MHz  
1 = 1.12MHz  
1 = Keep-Alive 1 = Clock  
Phase 2  
0x25 VRRCR LDO2 Dynamic Reference  
Slew Rate:  
Step-Down Switching  
Regulator 3 Dynamic  
Reference Slew Rate:  
Step-Down Switching  
Regulator 2 Dynamic  
Reference Slew Rate:  
Step-Down Switching  
Regulator 1 Dynamic  
Reference Slew Rate:  
1111 1111  
0001 1001  
00 = 0.88mV/µs  
01 = 1.75mV/µs  
10 = 3.5mV/µs  
11 = 7mV/µs  
00 = 0.88mV/µs  
01 = 1.75mV/µs  
10 = 3.5mV/µs  
11 = 7mV/µs  
00 = 0.88mV/µs  
01 = 1.75mV/µs  
10 = 3.5mV/µs  
11 = 7mV/µs  
00 = 0.88mV/µs  
01 = 1.75mV/µs  
10 = 3.5mV/µs  
11 = 7mV/µs  
0x26 B2DTV1 Unused  
PGOOD  
Mask:  
Step-Down Switching Regulator 2 Feedback Reference Input (V1)  
0 = PGOOD  
Low When  
Slewing  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
1 = PGOOD  
Not Forced  
Low When  
Slewing.  
0x27 B2DTV2 Keep-Alive  
Mode:  
Phase  
Step-Down  
Switching  
Regulator 2  
Clock Rate  
Step-Down Switching Regulator 2 Feedback Reference Input (V2)  
0001 1001  
0001 1001  
Select:  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
0 = Normal  
Shutdown  
0 = Clock  
Phase 1  
0 = 2.25MHz  
1 = 1.125MHz  
1 = Keep-Alive 1 = Clock  
Phase 2  
0x29 B3DTV1 Unused  
PGOOD  
Mask:  
Step-Down Switching Regulator 3 Feedback Reference Input (V1)  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
0 = PGOOD  
Low When  
Slewing  
1 = PGOOD  
Not Forced  
Low When  
Slewing.  
0x2A B3DTV2 Keep-Alive  
Mode:  
Phase  
Step-Down  
Switching  
Regulator 3  
Clock Rate  
Step-Down Switching Regulator 3 Feedback Reference Input (V2)  
0001 1001  
Select:  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
0 = Normal  
Shutdown  
0 = Clock  
Phase 1  
0 = 2.25MHz  
1 = 1.125MHz  
1 = Keep-Alive 1 = Clock  
Phase 2  
3589fb  
38  
LTC3589  
OPERATION  
Table 16. LTC3589 Command Register Table  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x32 L2DTV1 Keep-Alive  
Mode:  
Unused  
PGOOD  
Mask:  
LDO 2 Feedback Reference Input (V1)  
0001 1001  
0 = Normal  
Shutdown  
0 = PGOOD  
Low When  
Slewing  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
1 = Keep-Alive  
1 = PGOOD  
Not Changed  
When  
Slewing.  
0x33 L2DTV2 LDO4 Control LDO4 Output Voltage:  
MODE:  
LDO 2 Feedback Reference Input (V2)  
0001 1001  
00 = 2.8V  
00000 = 362.5mV  
11001 = 675mV  
11111 = 750mV  
12.5mV Step Size  
0 = LDO4  
01 = 2.5V  
Enable with  
10 = 1.8V  
EN_LDO34  
11 = 3.3V  
1 = LDO4  
Enable with  
OVEN[6]  
Table 17. LTC3589 Read-Only Status Register Table  
REG NAME  
B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
0x02 IRQSTAT Thermal  
Limit Hard  
Near Thermal Undervoltage Near  
PGOOD  
Unused  
Unused  
Unused  
Limit  
Hard  
Undervoltage  
Limit  
Timeout Hard  
Shutdown  
Occurred  
Shutdown  
Shutdown  
Occurred  
Occurred  
0x13 PGSTAT LDO4 Status: LDO3 Status: LDO2 Status: Buck_Boost  
Status:  
Step-Down  
Switching  
Regulator 3  
Status:  
Step-Down  
Switching  
Regulator 2  
Status:  
Step-Down  
Switching  
Regulator 1  
Status:  
LDO1 Status:  
0 = V  
1 = V  
Low 0 = V  
1 = V  
Low 0 = V  
1 = V  
Low 0 = V  
Good 1 = V  
Low  
0 = V  
1 = V  
Low 0 = V  
Low 0 = V  
Low 0 = V  
Low  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Good  
1 = V  
Good 1 = V  
Good 1 = V  
Good  
OUT  
Good  
OUT  
Good  
OUT  
OUT  
OUT  
Good  
OUT  
OUT  
OUT  
THERMAL CONSIDERATIONS AND BOARD LAYOUT  
Printed Circuit Board Power Dissipation  
To ensure the junction temperature of the LTC3589 die  
does not exceed the maximum rated limit and to prevent  
overtemperature faults, the power output of the LTC3589  
must be managed by the application. The total power  
dissipation in the LTC3589 is approximated by summing  
the power dissipation in each of the switching regulators  
and the LDO regulators.  
In order to ensure optimal performance and the ability  
to deliver maximum output power to any regulator, it is  
critical that the exposed ground pad on the backside of  
the LTC3589 package be soldered to a ground plane on  
the board. The exposed pad is the only GND connection  
The power dissipation in a switching regulator is esti-  
mated by:  
2
fortheLTC3589. Correctlysolderedtoa2500mm ground  
plane on a double sided 1oz copper board the LTC3589  
100 – Eff  
has a thermal resistance (θ ) of approximately 34°C/W.  
JA  
PD(SWX) = (VOUTX IOUTX)•  
100  
Failuretomakegoodthermalcontactbetweentheexposed  
pad on the backside of the package and an adequately  
sized ground plane will result in thermal resistances far  
greater than 34°C/W.  
Where V  
is the programmed output voltage, I  
OUTX  
OUTX  
is the load current and Eff is the % efficiency that can  
3589fb  
39  
LTC3589  
OPERATION  
be measured or looked up in an efficiency table for the  
programmed output voltage.  
Printed Circuit Board Layout  
When laying out the printed circuit board, the following  
checklist should be followed to ensure proper operation  
of the LTC3589:  
The power dissipated by an LDO regulator is estimated by:  
PD(LDOX) = (VIN(LDOX) – V LDOX)ILDOX  
1. Connect the exposed pad of the package (Pin 41)  
directly to a large ground plane to minimize thermal  
and electrical impedance.  
WhereV  
istheprogrammedoutputvoltage,V  
IN(LDOX)  
LDOX  
is the LDO supply voltage, and I  
is the output load  
LDOX  
current. If one of the switching regulator outputs is used  
as an LDO supply voltage, remember to include the LDO  
supply current in the switching regulator load current for  
calculating power loss.  
2. The switching regulator input supply traces and their  
decoupling capacitors should be as short as possible.  
Connect the GND side of the capacitors directly to the  
ground plane of the board. The decoupling capacitors  
provide the AC current to the internal power MOSFETs  
andtheirdrivers. Itisimportanttominimizeinductance  
from the capacitors to the LTC3589 pins.  
Anexampleusingtheequationsabovewiththeparameters  
in Table 18 shows an application that is at the maximum  
junction temperature of 125°C at an ambient temperature  
of 85°C. LDO2, LDO3, and LDO4 are powered by step-  
downswitchingregulator2andthebuck-boostswitching  
regulator. The total load on those two switching regula-  
tors is the sum of the application load and the LDO load.  
This example is with the LDO regulators at one half rated  
current and the switching regulators at three quarters  
rated current.  
3. Minimize the switching power traces connecting SW1,  
SW2, SW3, and buck-boost switch pins SW4AB and  
SW4CD to the inductors to reduce radiated EMI and  
parasitic coupling. Keep sensitive nodes such as the  
feedback pins away from or shielded from the large  
voltage swings on the switching nodes.  
4. Minimize the length of the connection between the  
step-downswitchingregulatorinductorsandtheoutput  
capacitors. Connect the GND side of the output capaci-  
tors directly to the thermal ground plane of the board.  
Table 18. TJ Calculation Example  
OUTPUT  
V
V
APP LOAD TOTAL  
LOAD  
EFF  
POWER  
DISS  
IN  
OUT  
LDO1_VSTB 3.8V 1.2V  
10mA  
100mA  
100mA  
100mA  
1.2A  
10mA  
100mA  
100mA  
100mA  
1.2A  
30mW  
60mW  
5. Minimize the length of the connection between the  
buck-boost regulator output (BB_OUT) and the output  
capacitor. Connect the GND side ofthe output capacitor  
directly to the thermal ground plane of the board.  
LDO2  
LDO3  
LDO4  
1.8V 1.2V  
3.3V 1.8V  
3.3V 2.5V  
3.8V 1.2V  
3.8V 1.8V  
3.8V 1.25V  
3.8V 3.3V  
150mW  
80mW  
V
V
V
V
80%  
90%  
85%  
90%  
290mW  
140mW  
140mW  
300mW  
OUT1  
OUT2  
OUT3  
OUT4  
0.65A  
0.75A  
0.70A  
0.75A  
0.75A  
0.90A  
TOTAL POWER 1180mW  
INTERNAL JUNCTION TEMPERATURE AT 85°C AMBIENT 125°C  
3589fb  
40  
LTC3589  
APPLICATIONS INFORMATION  
The LTC3589 is optimized to support several families  
of advanced portable applications processors including  
the Marvell PXA3xx and PXA168 Xscale processors, the  
Freescale i.MX family including the new i.MX51, the TI  
OMAP processors utilizing their Smart reflex, and many  
additional ARM processors.  
The LTC3589 RSTO signal is used to drive the Monahans  
hard reset signal nRESET and is based on the state of  
the always-active regulator output LDO1_STBY and by a  
pushbutton hard reset request. The release of the RSTO  
output is delayed a minimum of 10ms as required or as  
long as 1s when the LTC3589 is reset using its pushbut-  
ton controller.  
PXA3XX Monahans Processor Support  
PXA16X Armada Processor Support  
The PXA3XX processors are hard-coded to communicate  
with a PMIC at specific command register addresses in  
order to power up the processor supply rails from the  
LTC3589 includes spare register bits that can be accessed  
by the processor for setting and recalling hibernate and  
resume operation.  
2
low power state. The LTC3589 I C device address and  
command register addresses map to PXA3xx command  
register sub-address requirements. The LTC3589 write  
address is 0x68. The key command register addresses  
for PXA3xx support are the Output Voltage Enable (OVEN)  
register at address 0x10. VCC_APPS/A_EN is mapped  
to OVEN bit 0 (enable step-down switching regulator 1).  
VCC_SRAM/S_EN is mapped to OVEN bit 2 (enable step-  
down switching regulator 3). The voltage change control  
register (VCCR) at command register address 0x20 con-  
trols the dynamic voltage select and go bits required to  
command a voltage change and slew when coming out  
of low voltage standby or sleep modes into run mode.  
The dynamic target voltage (xxDTV[1,2]) registers map  
to the mandatory command register addresses. The full  
register map for the LTC3589 shown in Table 15 and Table  
The keep-alive function allow a step-down switching  
regulator to maintain system memory during a hibernate  
shutdown state of the Armada processor.  
i.MX Processor Support  
The LTC3589 has hardware features specifically designed  
for the latest i.MX family of processors from Freescale  
Semiconductor. The i.MX51 controls the VSTB input pin  
of the LTC3589 to command transitions between the run  
modecorevoltageandthelowerlevelstandbyvoltage.The  
run and standby voltage levels are initially programmed  
2
in I C command registers xxBTV1 and xxBTV2. When the  
VSTB pin is asserted high all four dynamically controlled  
output supply rails will slew to the xxBTV2 set point. When  
xxBTV1 and xxBTV2 are set at the same value, as they are  
by default, then no slewing occurs. This allows the single  
VSTB pin to control any combination of the four DAC  
controlled regulators to slew between two programmed  
output voltages. When VSTB is de-asserted back to a zero  
value the regulators slew back up to the xxBTV1 set point.  
2
16 supports Monahans, hard-coded I C commands for  
start-of-day operation, voltage-change sequence, supply  
enable, and return-to-D0 state sequence.  
The LTC3589 does not specifically reference the Mona-  
hans SYS_EN and PWR_EN enable pins but supports  
these signals with individual enable input pins EN[1-4]  
and EN_LDO[2,34] that should be hard-wired to SYS_EN  
or PWR_EN as required for proper system-level power  
sequencing.  
Earlieri.MXfamilyprocessorssuchasthei.MX31included  
two VSTB pins used for controlling the regulator outputs  
foralowvoltagestandbymode,nominalvoltagerunmode,  
and a higher voltage overdrive mode. The LTC3589 can  
be used with these processors using the VSTB input pin  
3589fb  
41  
LTC3589  
APPLICATIONS INFORMATION  
OMAP3 and DaVinci Processor Support  
to select between run and standby voltages and using  
minimal software overhead to set the overdrive voltage  
TheOMAP3familyofARMprocessorshassimilarrequire-  
mentstotheprocessorsdescribedabove.TheLTC3589I C  
2
in I C command registers.  
2
control can fully accommodate the smart reflex dynamic  
voltage control with proper embedded software drivers  
tailored to the LTC3589 register mapping. The LTC3589  
demo board demonstrates configuring and dynamically  
The default DAC reference value in all xxBTVx registers  
is 0x19. This accommodates i.MX processors and others  
requiring an overdrive voltage. The value can be increased  
up to 0x1F for overdrive or supply margining above the  
2
2
slewingandsequencingtheoutputsusingI Ccontrol.The  
nominal run voltage. Once programmed into the I C com-  
same provisions can be incorporated into embedded soft-  
ware drivers for the OMAP3 or any other target processor.  
mand registers xxBTVx two voltage outputs are selected  
by the VSTB pin. All voltage levels and changes are fully  
2
controllable using the I C serial port.  
3589fb  
42  
LTC3589  
TYPICAL APPLICATION  
V
IN  
10µF  
FREESCALE  
10µF  
1µH  
37  
IN  
i.MX51  
6
V
PV  
IN1  
NVCC_SRTC_PDW  
V
CORE  
0.647V TO 1.34V  
1.6A  
7
SW1  
V
CC(CORE)  
V
RTC  
FASTR_ANA  
FASTR_DIG  
604K  
768K  
10pF  
22µF  
22µF  
36  
35  
1.2V  
LDO1_STDBY  
LDO1_FB  
39  
24  
25  
33  
25mA  
BUCK1_FB  
511k  
1µF  
10µF  
PV  
IN2  
V
SRAM  
/DDR  
1.8V  
1A  
NVCC_EMI_DRAM  
NVCC_CNTL_EMI  
NVCC_PER2,3,4,6,8,9  
NVCC_EMI(NAND+EMI)  
1.5µH  
1.02M  
SW2  
LTC3589  
715K  
422K  
10pF  
22µF  
BUCK2_FB  
18.2k  
V
9.09k  
SRAM  
10µF  
10k  
V
27  
26  
34  
SOC  
PV  
IN3  
V
10  
SOC  
10k  
EN1  
EN2  
0.676V to 1.4V  
1A  
11  
13  
14  
9
18  
20  
1.5µH  
SW3  
VDDGP  
WAKE  
EN3  
EN4  
EN_LDO2  
EN_LDO34  
PWR_ON  
9.09k  
681K  
787K  
10pF  
22µF  
22µF  
V
CORE  
BUCK3_FB  
10k  
PWR_ON  
10µF  
15  
16  
V
IO  
3.3V  
1.2A  
PV  
IN4  
VDDA33  
VDD_FUSE  
NVCC__EMI  
NVCC_PER13,14  
BB_OUT  
21  
1M  
4.7pF  
ON  
40  
BB_FB  
316k  
12  
19  
SW4AB  
SW4CD  
2.7µH  
V
1µF  
VDDA  
VDD_DIG_PLL_A&B  
VDD_TVDIG  
MEMORY  
1
2
0.647V TO 1.34V  
250mA  
V
IN_LDO2  
LDO2  
V
ANALOG  
1.8V  
604k  
VDD_AVA_PLL_A&B  
NVCC_IPU  
38  
250mA  
1µF  
LDO2_FB  
768k  
1µF  
5
3
VDD_TVSUPPLY  
AHVDDRGB  
V
IN_LDO34  
LDO3  
NVCC_DAC  
1µF  
NVCC_TV_BACK  
NVCC_USBPHY  
NVCC_OSC  
V
AUX  
2.8V  
4
250mA  
LDO4  
1µF  
4.7k  
4.7k  
32  
31  
30  
28  
23  
22  
29  
17  
8
DV  
DD  
PWR_ON  
GPIO  
SDA  
SCL  
VSTB  
I2C2_SDA  
I2C2_SCL  
PMIC_VSTBY_REQ  
GPIO  
WAKE  
PBSTAT  
PGOOD  
IRQ  
GPIO  
PMIC_RDY  
GPIO1/IRQ  
POR_B  
RST0  
GND  
GND  
41  
3589 TA02  
3589fb  
43  
LTC3589  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 ±0.05  
6.50 ±0.05  
5.10 ±0.05  
4.42 ±0.05  
4.50 ±0.05  
(4 SIDES)  
4.42 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 ± 0.05  
R = 0.115  
TYP  
6.00 ± 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 × 45°  
CHAMFER  
4.42 ±0.10  
4.50 REF  
(4-SIDES)  
4.42 ±0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3589fb  
44  
LTC3589  
REVISION HISTORY  
REV  
DATE DESCRIPTION  
PAGE NUMBER  
A
9/10  
Removed 0V from LDO4 on Block Diagram  
15  
3
B
12/10 Updated Part Marking in Order Information section  
3589fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
45  
LTC3589  
TYPICAL APPLICATION  
Integrated Power IC for Mobile µProcessor System with USB/Automotive Battery Charger  
C7  
0.47µF  
3.3V, 25mA  
10µF  
10µF  
10µF  
P
10µF  
10µF  
2
L2  
10µH  
V
IN  
22µF  
4
37  
6
24  
VIN2  
27  
15  
VIN4  
SW1  
V
BOOST  
SW  
IN  
HVBUCK  
3
8
R2  
C6  
68nF  
V
P
P
VIN3  
P
C1  
4.7µF  
IN  
VIN1  
1µH  
150k  
5
V
7
B1  
36  
35  
R11  
499k  
C4  
22µF  
LT3480  
LDO1_STDBY  
1.2V  
RUN/SS  
1.6A  
22µF  
10  
1µF  
1M  
10pF 604k  
768k  
R
T
FB  
GND BD SYNC  
39  
R6  
40.2k  
R12  
100k  
LDO1_FB  
BUCK1_FB  
PG  
V
C
7
9
11  
1
6
316K  
68k  
1.5µH  
1.5µH  
8
V
B2  
C2  
10µF  
0805  
M4  
25  
33  
RSTO  
EN1  
1.8V  
1A  
SW2  
L1  
3.3µH  
10  
11  
13  
14  
9
LTC3589  
10pF 715k  
422k  
V
B1  
EN2  
C5  
20 18  
19  
14  
22µF  
BUCK2_FB  
13  
10µF  
V
V
EN3  
USB  
V
V
WALL ACPR SW  
C
L2  
BUS  
0805  
EN4  
B3  
B2  
V
V
EN_LDO2  
EN_LDO34  
WAKE  
PWR_ON  
PGOOD  
IRQ  
OVGATE  
2
1
12  
V
B3  
26  
34  
OVGATE  
OVSENS  
D0–D2  
V
18  
23  
20  
29  
17  
OUT  
1.2V  
1A  
SW3  
BB  
10  
11  
68k  
IDGATE  
BAT  
M5  
10pF 681k  
787k  
15-17  
TO µC  
TO µC  
22µF  
BUCK3_FB  
8
4
LTC4098  
68k  
CHRG  
68k  
NTCBIAS  
R7  
V
BB  
100k  
16  
5
32  
31  
30  
3.3V  
1A  
BB_OUT  
NTC  
V
DV  
DD  
BB  
CLPROG PROG GND BATSENS  
4.7k  
4.7k  
SDA  
SCL  
R8  
100k  
4.7pF 1M  
316k  
3
7
9, 21  
6
T
C3  
0.1µF  
0603  
40  
12  
22µF  
R9  
R10  
1k  
+
BB_FB  
Li-Ion  
2.94k  
28  
22  
21  
SW4AB  
TO µP  
VSTB  
PBSTAT  
ON  
68k  
2.7µH  
M1  
M2  
19  
1
ZXMP10A18G  
ZXMP10A18G  
SW4CD  
HVIN  
V
B2  
VIN_LDO2  
AUTOMOTIVE,  
FIREWIRE,  
ETC.  
V
L2  
1.2V  
D1  
2
LDO2  
MMBZ524-  
0BLT1G  
10V  
R5  
250mA  
10k  
1µF  
V
604k  
768k  
38  
5
LDO2_FB  
R1  
1k  
R3  
33k  
VIN_LDO34  
V
BB  
M3  
L3  
3
4
ZXMN10A08E6  
R4  
10k  
1.8V  
250mA  
LDO3  
1µF  
1µF  
V
L4  
LDO4  
2.8V  
250mA  
GND  
41  
3589 TA03  
RELATED PARTS  
PART  
NUMBER  
DESCRIPTION  
COMMENTS  
LTC3101  
1.8V to USB, Multioutput DC/DC Seamless Transition Between Multiple Input Power Sources, V Range: 1.8V to 5.5V, Buck-Boost Converter  
IN  
Converter with Low Loss USB  
Power Controller  
V
Range: 1.5V to 5.25V, 3.3V  
at 800mA for V ≥ 3V, Dual 350mA Buck Regulators, V : 0.6V to  
OUT  
OUT IN OUT  
V , 38μA Quiescent Current in Burst Mode Operation, 24-Lead 4mm × 4mm × 0.75mm QFN Package  
IN  
LTC3556  
Switching USB Power Manager  
Complete Multifunction PMIC: Switching Power Manager, 1A Buck-Boost + 2 Buck Regulators + LDO,  
PMIC with Li-Ion/Polymer Charger 4mm × 5mm QFN-28 Package  
LTC3577/ Highly Integrated Portable/  
LTC3577-1/ Navigation PMIC  
LTC3577-3/  
Complete Multifunction PMIC: Linear Power Manager and Three Buck Regulators, 10-LED Boost Reg,  
4mm × 7mm QFN-44 Package, -1 and -4 Versions Have 4.1V V  
Processors  
, -3 Version for SiRF Atlas IV  
FLOAT  
LTC3577-4  
LTC3586/ Switching USB Power Manager  
Complete Multifunction PMIC: Switching Power Manager, 1A Buck-Boost + 2 Bucks + Boost + LDO,  
LTC3586-1 PMIC with Li-Ion/Polymer Charger 4mm × 6mm QFN-38 Package, -1 Version Has 4.1V V  
.
FLOAT  
3589fb  
LT 1210 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
46  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3589_12

8-Output Regulator with Sequencing and I2C
Linear System

LTC3589_15

8-Output Regulator with Sequencing and I2C
Linear

LTC3600

15V, 1.5A Synchronous Rail-to-Rail Single Resistor
Linear

LTC3600

Quad 17V, 1.25A Parallelable Synchronous Step-Down Regulator with Ultralow Quiescent Current
ADI

LTC3600EDD#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3600IDD#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3600IMSE#PBF

LTC3600 - 15V, 1.5A Synchronous Rail-to-Rail Single Resistor Step-Down Regulator; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3601

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601

Dual Channel 3A, 15V Monolithic Synchronous Step-Down Regulator
Linear System

LTC3601

Quad 17V, 1.25A Parallelable Synchronous Step-Down Regulator with Ultralow Quiescent Current
ADI

LTC3601EMSE

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear

LTC3601EMSEPBF

1.5A, 15V Monolithic Synchronous Step-Down Regulator
Linear