LTC3878EGN#PBF [Linear]

LTC3878 - Fast, Wide Operating Range No RSENSE Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC3878EGN#PBF
型号: LTC3878EGN#PBF
厂家: Linear    Linear
描述:

LTC3878 - Fast, Wide Operating Range No RSENSE Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总26页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3878  
Fast,Wide Operating Range  
No R  
Step-Down  
SENSE  
DC/DC Controller  
DescripTion  
FeaTures  
Theꢀ LTC®3878ꢀ isꢀ aꢀ synchronousꢀ step-downꢀ switchingꢀ  
DC/DCꢀcontrollerꢀoptimizedꢀforꢀhighꢀswitchingꢀfrequencyꢀ  
andꢀfastꢀtransientꢀresponse.ꢀTheꢀconstantꢀon-timeꢀvalleyꢀ  
currentꢀmodeꢀarchitectureꢀallowsꢀforꢀaꢀwideꢀinputꢀrange,ꢀ  
includingverylowdutyfactoroperation.Noexternalsenseꢀ  
resistorꢀorꢀslopeꢀcompensationꢀisꢀrequired.ꢀTheꢀLTC3878ꢀ  
isꢀpinꢀcompatibleꢀwithꢀtheꢀLTC1778ꢀinꢀapplicationsꢀthatꢀdoꢀ  
n
ꢀ WideꢀV ꢀRange:ꢀ4Vꢀtoꢀ38Vꢀ  
IN  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
ꢀ ±±1ꢀ0.8VꢀVoltageꢀReference  
ExtremelyꢀFastꢀTransientꢀResponse  
t  
NoꢀR  
:ꢀ43nsꢀꢀ  
ON(MIN)  
™ꢀValleyꢀCurrentꢀModeꢀControl  
SENSE  
StableꢀwithꢀLowꢀESRꢀCeramicꢀC  
OUT  
SupportsꢀSmoothꢀStart-UpꢀIntoꢀPre-BiasedꢀOutput  
OptimizedꢀforꢀHighꢀStep-DownꢀRatios  
notꢀuseꢀEXTV whileꢀofferingꢀbetterꢀefficiency.ꢀConsultꢀ  
CCꢀ  
withꢀtheꢀfactoryꢀtoꢀverifyꢀcompatibility.  
PinCompatibleꢀwithꢀtheLTC±778ꢀ(NoꢀEXTV ꢀPin)  
CC  
ꢀ PowerꢀGoodꢀOutputꢀVoltageꢀMonitor  
ꢀ DualꢀN-ChannelꢀMOSFETꢀSynchronousꢀDrive  
ꢀ AdjustableꢀSwitchingꢀFrequency  
Operatingfrequencyissetbyanexternalresistorandꢀ  
compensatedꢀforꢀvariationsꢀinꢀV ꢀtoꢀofferꢀexcellentꢀlineꢀ  
IN  
stability.ꢀ Discontinuousꢀ modeꢀ operationꢀ providesꢀ highꢀ  
efficiencyꢀduringꢀlightꢀloadꢀconditions.ꢀAꢀforcedꢀcontinu-  
ousꢀcontrolꢀpinꢀallowsꢀtheꢀuserꢀtoꢀreduceꢀnoiseꢀandꢀRFꢀ  
interference.ꢀSafetyꢀfeaturesꢀincludeꢀoutputꢀovervoltageꢀ  
protectionꢀandꢀprogrammableꢀcurrentꢀlimitꢀwithꢀfoldback.ꢀ  
Soft-startcapabilityforsupplysequencingisaccomplishedꢀ  
throughꢀanꢀexternalꢀtimingꢀcapacitor.ꢀTheꢀcurrentꢀlimitꢀisꢀ  
userꢀprogrammable.  
ꢀ ProgrammableꢀCurrentꢀLimitꢀwithꢀFoldback  
ꢀ OutputꢀOvervoltageꢀProtection  
ꢀ Smallꢀ16-PinꢀNarrowꢀSSOPꢀPackage  
applicaTions  
n
ꢀ DistributedꢀPowerꢀSystems  
n
ꢀ EmbeddedꢀComputing  
n
ꢀ CommunicationsꢀInfrastructure  
TheꢀLTC3878ꢀallowsꢀoperationꢀfromꢀ4Vꢀtoꢀ38Vꢀatꢀtheꢀinputꢀ  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀofꢀLinearꢀ  
andꢀfromꢀ0.8Vꢀtoꢀ90%ꢀV ꢀatꢀtheꢀoutput.ꢀTheꢀLTC3878ꢀisꢀ  
IN  
TechnologyꢀCorporation.ꢀNoꢀR  
ꢀisꢀaꢀtrademarkꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀꢀ  
SENSE  
Allꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀꢀ  
availableꢀinꢀaꢀsmallꢀ16-pinꢀnarrowꢀSSOPꢀpackage.  
ProtectedꢀbyꢀU.S.ꢀPatents,ꢀincludingꢀ5481178,ꢀ6100678,ꢀ6580258,ꢀ5847554,ꢀ6304066.  
Typical applicaTion  
EfficiencyꢀvsꢀLoadꢀCurrent  
HighꢀEfficiencyꢀStep-DownꢀConverter  
100  
432k  
DISCONTINUOUS  
90  
0.1µF  
I
ON  
MODE  
V
IN  
80  
RUN/SS  
V
IN  
4.5V TO 28V  
220pF  
RJK0305  
0.56µH  
TG  
70  
10µF  
12.1k  
LTC3878  
CONTINUOUS  
60  
I
TH  
SW  
V
1.2V  
15A  
OUT  
MODE  
SGND BOOST  
FCB  
50  
0.22µF  
40  
30  
INTV  
CC  
330µF  
s2  
RJK0330  
BG  
4.7µF  
V
V
= 12V  
IN  
OUT  
20  
10  
0
= 1.2V  
PGND  
PGOOD  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
V
5.11k  
10k  
RNG  
V
FB  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (A)  
3878 G07  
3878 TA01a  
3878fa  
FCB,ꢀV ꢀVoltages.................... –0.3VꢀtoꢀINTV ꢀ+ꢀ0.3V  
                   
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ150°C  
                         
I ꢀVoltage  
              
................................................. –0.3Vꢀtoꢀ40V  
RUN/SS  
PGOOD  
1
2
3
4
5
6
7
8
LTC3878  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Noteꢀ±)  
TOP VIEW  
InputꢀSupplyꢀVoltageꢀ(V )......................... –0.3Vꢀtoꢀ40V  
ON  
IN  
16 BOOST  
15  
14  
13  
12  
11  
10  
9
TG  
BOOSTꢀVoltageꢀ.......................................... –0.3Vꢀtoꢀ46V  
V
RNG  
SW  
SWꢀVoltageꢀ................................................... –5Vꢀtoꢀ40V  
FCB  
PGND  
BG  
INTV ,ꢀ(BOOST-SW),ꢀRUN/SS,ꢀ  
CC  
I
TH  
PGOODꢀVoltages.......................................... –0.3Vꢀtoꢀ6V  
SGND  
INTV  
CC  
RNG  
CC  
I
ON  
V
IN  
V ,ꢀI ꢀVoltages....................................... –0.3Vꢀtoꢀ2.7V  
FB TH  
V
NC  
FB  
OperatingꢀTemperatureꢀRangeꢀ(Noteꢀ4).... –40°Cꢀtoꢀ85°C  
GN PACKAGE  
16-LEAD PLASTIC SSOP NARROW  
JunctionꢀTemperatureꢀ(Noteꢀ2)ꢀ............................. 125°C  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ110°C/W  
JA  
JMAX  
LeadꢀTemperatureꢀ(Soldering,ꢀ10ꢀsec)ꢀ.................. 300°C  
orDer inForMaTion  
LEADꢀFREEꢀFINISH  
LTC3878EGN#PBF  
LTC3878IGN#PBF  
TAPEꢀANDꢀREEL  
PARTꢀMARKING*  
3878  
PACKAGEꢀDESCRIPTION  
16-LeadꢀPlasticꢀSSOP  
16-LeadꢀPlasticꢀSSOP  
TEMPERATUREꢀRANGE  
–40°Cꢀtoꢀ85°Cꢀ(Noteꢀ4)  
–40°Cꢀtoꢀ85°Cꢀ(Noteꢀ4)  
LTC3878EGN#TRPBF  
LTC3878IGN#TRPBF  
3878  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
elecTrical characTerisTics Theꢀlꢀdenotesꢀtheꢀspecificationsꢀwhichꢀapplyꢀoverꢀtheꢀfullꢀoperatingꢀ  
temperatureꢀrange,ꢀotherwiseꢀspecificationsꢀareꢀatꢀTAꢀ=ꢀ25°C.ꢀVINꢀ=ꢀ±5Vꢀunlessꢀotherwiseꢀnoted.ꢀ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MainꢀControlꢀLoop  
InputꢀOperatingꢀVoltageꢀRange  
4
38  
V
I
InputꢀDCꢀSupplyꢀCurrentꢀ  
ꢀꢀꢀNormalꢀ  
ꢀꢀꢀShutdownꢀSupplyꢀCurrent  
µAꢀ  
µA  
Q
1500ꢀ  
18  
2000ꢀ  
35  
l
l
V
FeedbackꢀReferenceꢀVoltage  
FeedbackꢀVoltageꢀLineꢀRegulation  
FeedbackꢀVoltageꢀLoadꢀRegulation  
FeedbackꢀInputꢀCurrent  
ErrorꢀAmplifierꢀTransconductance  
FCBꢀThreshold  
I
ꢀ=ꢀ1.2Vꢀ(Noteꢀ3)  
0.792  
0.8  
0.002  
–0.05  
–5  
0.808  
V
%/V  
%
FBREF  
TH  
V ꢀ=ꢀ4Vꢀtoꢀ38V,ꢀI ꢀ=ꢀ1.2Vꢀ(Noteꢀ3)  
IN  
TH  
I
TH  
ꢀ=ꢀ0.5Vꢀtoꢀ1.9Vꢀ(Noteꢀ3)  
–0.3  
50  
I
FB  
V
ꢀ=ꢀ0.8V  
FB  
nA  
g
m(EA)  
I
TH  
ꢀ=ꢀ1.2Vꢀ(Noteꢀ3)  
1.4  
1.7  
2
mS  
V
V
FCB  
0.76  
0.8  
0.84  
1
FCBꢀPinꢀCurrent  
V
ꢀ=ꢀ0.8V  
FCB  
0
µA  
t
t
On-Time  
I
I
ꢀ=ꢀ30µAꢀ  
ꢀ=ꢀ15µA  
198ꢀ  
396  
233ꢀ  
466  
268ꢀ  
536  
nsꢀ  
ns  
ON  
ON  
ON  
MinimumꢀOn-Time  
I
ON  
ꢀ=ꢀ180µA  
43  
75  
ns  
ON(MIN)  
3878fa  
LTC3878  
elecTrical characTerisTics Theꢀlꢀdenotesꢀtheꢀspecificationsꢀwhichꢀapplyꢀoverꢀtheꢀfullꢀoperatingꢀ  
temperatureꢀrange,ꢀotherwiseꢀspecificationsꢀareꢀatꢀTAꢀ=ꢀ25°C.ꢀVINꢀ=ꢀ±5Vꢀunlessꢀotherwiseꢀnoted.ꢀ  
SYMBOL  
PARAMETER  
CONDITIONS  
ꢀ=ꢀ30µA  
MIN  
TYP  
MAX  
UNITS  
t
MinimumꢀOff-Time  
I
220  
300  
ns  
OFF(MIN)  
ON  
l
l
l
V
V
V
ValleyꢀCurrentꢀSenseꢀThresholdꢀ  
V
V
V
ꢀ=ꢀ1V,ꢀV ꢀ=ꢀ0.76Vꢀ  
108ꢀ  
74ꢀ  
133ꢀ  
93ꢀ  
165ꢀ  
119ꢀ  
224  
mVꢀ  
mVꢀ  
mV  
SENSE(MAX)  
SENSE(MIN)  
RUN/SS  
RNG  
RNG  
RNG  
FB  
V
ꢀ–ꢀV  
ꢀ=ꢀ0V,ꢀV ꢀ=ꢀ0.76Vꢀ  
PGND  
SW  
FB  
PeakꢀCurrentꢀ=ꢀValleyꢀ+ꢀRipple  
ꢀ=ꢀINTV ,ꢀV ꢀ=ꢀ0.76V  
152  
186  
CC FB  
MinimumꢀCurrentꢀSenseꢀThresholdꢀ  
V
RNG  
V
RNG  
V
RNG  
ꢀ=ꢀ1V,ꢀV ꢀ=ꢀ0.84Vꢀ  
–67ꢀ  
–47ꢀ  
–93  
mVꢀ  
mVꢀ  
mV  
FB  
V
ꢀ–ꢀV  
ꢀ=ꢀ0V,ꢀV ꢀ=ꢀ0.84Vꢀ  
FB  
PGND  
SW  
ForcedꢀContinuousꢀOperation  
RUN/SSꢀPinꢀOnꢀThreshold  
Soft-StartꢀChargingꢀCurrent  
ꢀ=ꢀINTV ,ꢀV ꢀ=ꢀ0.84V  
CC FB  
V
V
ꢀRising  
ꢀ=ꢀ0V  
1.4  
1.5  
–1.2  
3.3  
3.6  
2.5  
1.2  
2.5  
0.7  
20  
1.6  
V
µA  
V
RUN/SS  
RUN/SS  
l
l
INTV  
INTV  
INTV ꢀUndervoltageꢀLockout  
Falling  
3.9  
4
CC(UVLO)  
CC  
INTV ꢀUndervoltageꢀLockoutꢀRelease  
Rising  
V
CC(UVLOR)  
CC  
TGꢀDriverꢀPull-UpꢀOn-Resistance  
TGꢀDriverꢀPull-DownꢀOn-Resistance  
BGꢀDriverꢀPull-UpꢀOn-Resistance  
BGꢀDriverꢀPull-DownꢀOn-Resistance  
TGꢀRiseꢀTime  
TGꢀHigh  
TGꢀLow  
BGꢀHigh  
BGꢀLow  
Ω
Ω
Ω
Ω
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
ꢀ=ꢀ3300pFꢀ(Noteꢀ5)  
ns  
ns  
ns  
ns  
ns  
TGꢀFallꢀTime  
ꢀ=ꢀ3300pFꢀ(Noteꢀ5)  
20  
BGꢀRiseꢀTime  
ꢀ=ꢀ3300pFꢀ(Noteꢀ5)  
20  
BGꢀFallꢀTime  
ꢀ=ꢀ3300pFꢀ(Noteꢀ5)  
20  
TG/BGꢀt  
TG/BGꢀt  
TopꢀGateꢀOffꢀtoꢀBottomꢀGateꢀOnꢀDelayꢀ  
SynchronousꢀSwitch-OnꢀDelayꢀTime  
ꢀ=ꢀ3300pfꢀEachꢀDriverꢀ(Noteꢀ5)  
15  
1D  
2D  
BottomꢀGateꢀOffꢀtoꢀTopꢀGateꢀOnꢀDelayꢀ  
SynchronousꢀSwitch-OnꢀDelayꢀTime  
C
LOAD  
ꢀ=ꢀ3300pfꢀEachꢀDriverꢀ(Noteꢀ5)  
15  
ns  
InternalꢀV ꢀRegulator  
CC  
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ38V  
5.15  
5.3  
5.45  
2
V
CC  
IN  
InternalꢀV ꢀLoadꢀRegulation  
I
ꢀ=ꢀ0mAꢀtoꢀ20mA  
CC  
–0.1  
%
CC  
PGOODꢀOutput  
PGOODꢀUpperꢀThreshold  
PGOODꢀLowerꢀThreshold  
PGOODꢀHysteresis  
V
V
V
ꢀRising  
5.5  
7.5  
–7.5  
2
9.5  
–9.5  
3.5  
%
%
%
V
FB  
ꢀFalling  
FB  
–5.5  
ꢀReturning  
FB  
PGOODꢀLowꢀVoltage  
PGOODꢀTurn-OnꢀDelay  
I
ꢀ=ꢀ5mA  
0.15  
12  
0.4  
PGOOD  
µs  
Noteꢀ±:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
Noteꢀ4:ꢀTheꢀLTC3878Eꢀisꢀguaranteedꢀtoꢀmeetꢀspecificationsꢀfromꢀ  
0°Cꢀtoꢀ85°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀtemperatureꢀ  
rangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀcorrelationꢀwithꢀ  
statisticalꢀprocessꢀcontrols.ꢀTheꢀLTC3878Iꢀisꢀguaranteedꢀtoꢀmeetꢀ  
specificationsꢀoverꢀtheꢀfullꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀtemperatureꢀrange.  
Noteꢀ2:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperatureꢀT ꢀandꢀpowerꢀ  
J
A
dissipationꢀP ꢀasꢀfollows:  
Noteꢀ5:ꢀRiseꢀandꢀfallꢀtimeꢀareꢀmeasuredꢀusingꢀ10%ꢀandꢀ90%ꢀlevels.ꢀDelayꢀ  
D
timesꢀareꢀmeasuredꢀusingꢀ50%ꢀlevels.  
T ꢀ=ꢀT ꢀ+ꢀ(P ꢀ•ꢀ110°C/W)  
J A D  
Noteꢀ3:ꢀTheꢀLTC3878ꢀisꢀtestedꢀinꢀaꢀfeedbackꢀloopꢀthatꢀadjustsꢀV ꢀtoꢀ  
FB  
achieveꢀaꢀspecifiedꢀerrorꢀamplifierꢀoutputꢀvoltageꢀ(I ).  
TH  
3878fa  
LTC3878  
Typical perForMance characTerisTics  
TransientꢀResponseꢀFCMꢀ  
(ForcedꢀContinuousꢀMode)  
TransientꢀResponseꢀFCMꢀ  
PositiveꢀLoadꢀStep  
TransientꢀResponseꢀFCMꢀ  
NegativeꢀLoadꢀStep  
V
V
SW  
20V/DIV  
SW  
20V/DIV  
V
(AC)  
OUT  
V
(AC)  
OUT  
50mV/DIV  
V
(AC)  
OUT  
50mV/DIV  
50mV/DIV  
I
L
I
L
I
L
10A/DIV  
10A/DIV  
10A/DIV  
I
I
LOAD  
10A/DIV  
I
LOAD  
10A/DIV  
LOAD  
10A/DIV  
3878 G03  
3878 G01  
3878 G02  
5µs/DIV  
50µs/DIV  
5µs/DIV  
LOAD STEP 10A TO 0A  
LOAD STEP 0A TO 10A TO 0A  
LOAD STEP 0A TO 10A  
V
V
= 12V  
V
V
= 12V  
V
V
= 12V  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.2V  
= 1.2V  
= 1.2V  
FCB = 0V  
FCB = 0V  
FCB = 0V  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
TransientꢀResponseꢀDCMꢀ  
(DiscontinuousꢀMode)  
NormalꢀStart-Up,ꢀRUN/SSꢀ  
ReleaseꢀfromꢀZero  
Start-UpꢀVINꢀCycledꢀLowꢀandꢀHigh  
V
IN  
RUN/SS  
2V/DIV  
10V/DIV  
V
(AC)  
OUT  
RUN/SS  
5V/DIV  
50mV/DIV  
I
I
I
L
L
L
10A/DIV  
10A/DIV  
10A/DIV  
V
OUT  
V
I
OUT  
LOAD  
500mV/DIV  
1V/DIV  
10A/DIV  
3878 G04  
3878 G05  
3878 G06  
50µs/DIV  
LOAD STEP 1A TO 11A TO 1A  
50ms/DIV  
100ms/DIV  
V
V
= 12V  
V
V
= 12V  
IN  
OUT  
IN  
OUT  
= 1.2V  
= 1.2V  
FCB = 0V  
FCB = 0V  
V
V
= 12V  
IN  
OUT  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
= 1.2V  
FCB = INTV  
CC  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
EfficiencyꢀvsꢀLoadꢀCurrent  
EfficiencyꢀvsꢀInputꢀVoltage  
FrequencyꢀvsꢀInputꢀVoltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
420  
410  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
DISCONTINUOUS  
MODE  
15A  
15A CCM  
CONTINUOUS  
MODE  
1A DCM  
1A CCM  
0A  
V
V
= 12V  
IN  
OUT  
V
OUT  
= 1.2V  
= 1.2V  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
SW FREQ = 400kHz  
FIGURE 7 CIRCUIT  
V
= 1.2V  
OUT  
FIGURE 7 CIRCUIT  
0.01  
0.1  
1
10  
100  
4
12  
16  
(V)  
20 24  
28  
8
4
8
16  
(V)  
20  
24  
28  
12  
LOAD CURRENT (A)  
V
V
IN  
IN  
3878 G07  
3878 G09  
3878 G08  
3878fa  
LTC3878  
Typical perForMance characTerisTics  
FrequencyꢀvsꢀLoadꢀCurrent  
LoadꢀRegulationꢀFCM  
ITHꢀVoltageꢀvsꢀLoadꢀCurrent  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
410  
370  
330  
290  
250  
210  
170  
130  
90  
0
–0.02  
–0.04  
–0.06  
CONTINUOUS MODE  
V
V
= 15V  
IN  
OUT  
= 1.2V  
FIGURE 7 CIRCUIT  
DISCONTINUOUS MODE  
–0.08  
–0.10  
V
= 15V  
OUT  
IN  
V
= 1.2V  
–0.12  
–0.14  
–0.16  
FIGURE 7 CIRCUIT  
V
V
= 15V  
IN  
OUT  
CONTINUOUS MODE  
DISCONTINUOUS MODE  
= 1.2V  
50  
FIGURE 7 CIRCUIT  
10  
0
5
10  
LOAD CURRENT (A)  
15  
20  
25  
5
10  
0
2
4
6
8
10  
12  
14  
0
15  
I
(A)  
LOAD CURRENT (A)  
LOAD  
3878 G12  
3878 G10  
3878 G11  
CurrentꢀSenseꢀVoltageꢀ  
vsꢀITHꢀVoltage  
On-TimeꢀvsꢀIONꢀCurrent  
CurrentꢀLimitꢀFoldback  
300  
250  
200  
150  
100  
50  
10000  
1000  
100  
140  
120  
100  
V
= 1V  
FIGURE 7 CIRCUIT  
RNG  
FIGURE 7 CIRCUIT  
80  
60  
40  
20  
0
0
V
V
V
V
V
= 0.2V  
= 0.5V  
= 1.0V  
= 1.5V  
= 2.0V  
RNG  
RNG  
RNG  
RNG  
RNG  
–50  
–100  
10  
–150  
1
10  
CURRENT (µA)  
100  
0.2  
0.4  
(V)  
0.8  
0
0.6  
0
2
2.5  
0.5  
1
1.5  
I
I
VOLTAGE (V)  
V
ON  
TH  
FB  
3878 G14  
3878 G15  
3878 G13  
MaximumꢀVDSꢀCurrentꢀSenseꢀ  
ThresholdꢀvsꢀVRNGꢀVoltage  
MaximumꢀVDSꢀCurrentꢀSenseꢀ  
ThresholdꢀvsꢀRUN/SSꢀVoltage  
FeedbackꢀReferenceꢀVoltageꢀvsꢀ  
Temperature  
140  
120  
100  
80  
300  
250  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
200  
150  
100  
60  
40  
50  
0
20  
0
30 50  
TEMPERATURE (°C)  
–50  
–30  
–10  
10  
70  
90  
110  
2.5  
RUN/SS VOLTAGE (V)  
3.0  
1.5  
2.0  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VOLTAGE (V)  
V
RNG  
3878 G18  
3878 G17  
3878 G16  
3878fa  
LTC3878  
Typical perForMance characTerisTics  
ShutdownꢀCurrentꢀ  
vsꢀInputꢀVoltage  
ErrorꢀAmplifierꢀgmꢀvsꢀTemperature  
QuiescentꢀCurrentꢀvsꢀINTVCC  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
35  
30  
25  
20  
15  
10  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–50  
0
50  
100  
4.5  
5.0  
6.0  
4.0  
6.5  
7.0  
5
10  
15  
20  
25  
30  
35  
40  
5.5  
INTV (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
CC  
3878 G19  
3878 G21  
3878 G20  
INTVCCꢀLoadꢀRegulation  
INTVCCꢀDropout  
INTVCCꢀvsꢀINTVCCꢀILOAD  
6
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
0
V
= 12V  
V
= 4.5V  
IN  
V
IN  
= 12V  
IN  
–200  
5
4
INTV  
I
INTV  
LOAD  
RISING  
CC  
LOAD  
FALLING  
CC  
I
–400  
–600  
3
2
DO NOT EXCEED ≥50mA  
CONTINUOUS  
= 150mA,  
–800  
–1000  
–1200  
I
LIMIT  
INTV > 0.7V  
CC  
LIMIT  
1
0
I
= 22mA,  
INTV < 0.7V  
CC  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
50  
100  
(mA)  
LOAD  
150  
200  
INTV LOAD CURRENT (mA)  
INTV LOAD CURRENT (mA)  
I
CC  
CC  
3878 G22  
3878 G23  
3878 G24  
RUN/SSꢀPinꢀCurrentꢀvsꢀ  
Temperature  
Efficiency:ꢀLTC3878ꢀvsꢀLTC±778  
1.6  
94  
92  
V
V
= 15V  
IN  
OUT  
= 1.2V  
FCB = INTV  
CC  
LTC3878  
LTC1778  
1.4  
1.2  
1.0  
0.8  
90  
88  
86  
84  
82  
80  
1.6%  
Q
Q
= RJK0305DPB  
= RJK0330DPB  
T
B
L = PULSE PA0513.441NLT  
f
V
V
= 300kHz  
= 12V  
= 1.2V  
SW  
IN  
OUT  
5
10  
15  
25  
50  
0
TEMPERATURE (°C)  
0
20  
–50  
100  
LOAD CURRENT (A)  
3878 G25  
3878 G26  
3878fa  
LTC3878  
pin FuncTions  
RUN/SSꢀ (Pinꢀ ±):ꢀ Runꢀ Controlꢀ andꢀ Soft-Startꢀ Input.ꢀ Aꢀ V ꢀ(Pinꢀ8):ꢀErrorꢀAmplifierꢀFeedbackꢀInput.ꢀThisꢀpinꢀcon-  
FB  
capacitorꢀtoꢀgroundꢀonꢀthisꢀpinꢀsetsꢀtheꢀrampꢀtimeꢀtoꢀfullꢀ nectsꢀtheꢀerrorꢀamplifierꢀtoꢀanꢀexternalꢀresistiveꢀdividerꢀ  
outputcurrent(approximately3s/µF)whenRUN/SSisꢀ fromꢀV .ꢀ  
OUT  
open.Theswitchingoutputsaredisabledwhenbelow1.5V.ꢀ  
NCꢀ(Pinꢀ9):ꢀForꢀfactoryꢀuseꢀonly.ꢀCanꢀbeꢀconnectedꢀtoꢀanyꢀ  
voltageꢀequalꢀtoꢀorꢀlessꢀthanꢀINTV .  
Theꢀdeviceꢀisꢀinꢀmicropowerꢀshutdownꢀwhenꢀunderꢀ0.7V.ꢀ  
Ifꢀleftꢀopen,ꢀthereꢀisꢀanꢀinternalꢀ1.2µAꢀpull-upꢀcurrentꢀonꢀ  
CC  
V ꢀ(Pinꢀ±0):ꢀMainꢀInputꢀSupply.ꢀTheꢀsupplyꢀvoltageꢀcanꢀ  
RUN/SS.ꢀINTV ꢀisꢀenabledꢀwhenꢀRUN/SSꢀexceedsꢀ0.7V.  
IN  
CC  
rangeꢀfromꢀ4Vꢀtoꢀ38V.ꢀForꢀincreasedꢀnoiseꢀimmunityꢀde-  
PGOOD(Pinꢀ 2):ꢀ Powerꢀ Goodꢀ Output.ꢀ Thisꢀ open-drainꢀ  
logicꢀoutputꢀisꢀpulledꢀtoꢀgroundꢀwhenꢀtheꢀoutputꢀvoltageꢀisꢀ  
outsideꢀofꢀaꢀ 7.5%ꢀwindowꢀaroundꢀtheꢀregulationꢀpoint.  
coupleꢀthisꢀpinꢀtoꢀPGNDꢀwithꢀanꢀRCꢀfilter.  
INTV ꢀ (Pinꢀ ±±):ꢀ Internalꢀ 5.3Vꢀ Regulatorꢀ Output.ꢀ Theꢀ  
CC  
driverꢀandꢀcontrolꢀcircuitsꢀareꢀpoweredꢀfromꢀthisꢀvoltage.ꢀ  
DecoupleꢀthisꢀpinꢀtoꢀPGNDꢀwithꢀaꢀminimumꢀofꢀ1µF,ꢀ10Vꢀ  
X5RꢀorꢀX7Rꢀceramicꢀcapacitor.  
V
ꢀ(Pinꢀ3):ꢀV ꢀSenseꢀVoltageꢀRangeꢀInput.ꢀTheꢀmaxi-  
DS  
RNG  
mumallowedbottomMOSFETV ꢀsensevoltagebetweenꢀ  
DS  
RNG  
SWandPGNDisequalto(0.133)V .Thevoltageappliedꢀ  
BGꢀ(Pinꢀ±2):ꢀBottomꢀGateꢀDrive.ꢀThisꢀpinꢀdrivesꢀtheꢀgateꢀ  
toꢀV ꢀcanꢀbeꢀanyꢀvalueꢀbetweenꢀ0.2Vꢀandꢀ2V.ꢀIfꢀV ꢀisꢀ  
RNG  
RNG  
ofꢀtheꢀbottomꢀN-ChannelꢀpowerꢀMOSFETꢀbetweenꢀPGNDꢀ  
tiedꢀtoꢀSGND,ꢀtheꢀdeviceꢀoperatesꢀwithꢀaꢀmaximumꢀvalleyꢀ  
andꢀINTV .  
currentꢀsenseꢀthresholdꢀofꢀ93mVꢀtypical.ꢀIfꢀV ꢀisꢀtiedꢀ  
CC  
RNG  
toINTV ,thedeviceoperateswithamaximumvalleyꢀ  
CC  
PGNDꢀ(Pinꢀ±3):ꢀPowerꢀGround.ꢀConnectꢀthisꢀpinꢀasꢀcloseꢀ  
currentꢀsenseꢀthresholdꢀofꢀ186mVꢀtypical.  
asꢀpracticalꢀtoꢀtheꢀsourceꢀofꢀtheꢀbottomꢀN-channelꢀpowerꢀ  
MOSFET,ꢀtheꢀ(–)ꢀterminalꢀofꢀC  
ꢀandꢀtheꢀ(–)ꢀterminalꢀ  
FCBꢀ(Pinꢀ4):ꢀForcedꢀContinuousꢀInput.ꢀConnectꢀthisꢀpinꢀ  
INTVCC  
ofꢀC  
.
toINTV toenablediscontinuousmodeforlightloadꢀ  
VIN  
CC  
operation.ꢀConnectꢀthisꢀpinꢀtoꢀSGNDꢀtoꢀforceꢀcontinuousꢀ  
SW(Pin±4):SwitchNode.The(–)terminalofthebootstrapꢀ  
modeꢀoperationꢀinꢀallꢀconditions.  
capacitor,ꢀC ,ꢀconnectsꢀtoꢀthisꢀnode.ꢀThisꢀpinꢀswingsꢀfromꢀ  
B
aꢀdiodeꢀvoltageꢀbelowꢀgroundꢀupꢀtoꢀV .  
I ꢀ(Pinꢀ5):ꢀCurrentꢀControlꢀThresholdꢀandꢀErrorꢀAmplifierꢀ  
TH  
IN  
CompensationꢀPoint.ꢀTheꢀcurrentꢀcomparatorꢀthresholdꢀ  
increaseswiththiscontrolvoltage.Thevoltagerangesꢀ  
fromꢀ0Vꢀtoꢀ2.4V,ꢀwithꢀ0.8Vꢀcorrespondingꢀtoꢀzeroꢀsenseꢀ  
voltageꢀ(zeroꢀcurrent).  
TGꢀ(Pinꢀ±5):ꢀTopꢀGateꢀDrive.ꢀThisꢀpinꢀdrivesꢀtheꢀgateꢀofꢀtheꢀ  
topꢀN-channelꢀpowerꢀMOSFETꢀbetweenꢀSWꢀandꢀBOOST.  
BOOSTꢀ(Pinꢀ±6):ꢀBoostedꢀFloatingꢀDriverꢀSupply.ꢀTheꢀ(+)ꢀ  
terminalꢀofꢀtheꢀbootstrapꢀcapacitor,ꢀC ,ꢀconnectsꢀtoꢀthisꢀ  
B
SGND(Pin6):SignalGround.Allsmall-signalcomponentsꢀ  
shouldꢀbeꢀconnectedꢀtoꢀSGND.ꢀConnectꢀSGNDꢀtoꢀPGNDꢀ  
usingꢀaꢀsingleꢀPCBꢀtrace.  
node.Thisnodeswingsfrom(INTV V  
)toꢀ  
SCHOTTKY  
CC  
V ꢀ+ꢀ(INT ꢀ–ꢀV ).  
IN  
VCC  
SCHOTTKY  
I ꢀ(Pinꢀ7):ꢀOn-TimeꢀCurrentꢀInput.ꢀTieꢀaꢀresistorꢀfromꢀ  
ON  
V ꢀtoꢀthisꢀpinꢀtoꢀsetꢀtheꢀone-shotꢀtimerꢀcurrentꢀandꢀthusꢀ  
IN  
theꢀswitchingꢀfrequency.  
3878fa  
LTC3878  
FuncTional DiagraM  
R
ON  
V
IN  
FCB  
4
C
VIN  
I
ON  
V
IN  
7
10  
0.8V  
REF  
0.8V  
+
5.3V  
LDO  
OST  
0.7V  
F
t
=
(10pF)  
R
S
ON  
I
ON  
BOOST  
16  
Q
FCNT  
C
C
R
TG  
B
DSS  
20k  
15  
MT  
MB  
+
+
SW  
14  
I
I
REV  
CMP  
V
OUT  
SWITCH  
LOGIC  
C
OUT  
D
INTV  
CC  
B
RUN  
OV  
11  
BG  
1.4V  
0.7V  
INTVCC  
V
RNG  
3
12  
PGND  
13  
sV  
RNG  
3.3µA  
1
240k  
PGOOD  
2
NEG  
CLMP  
PG  
+
POS  
FCNT  
0.6V  
0.86V  
+
+
CLMP  
2.4V  
RUN  
OV  
UV  
+
+
R2  
R1  
1.16V  
160µA  
V
FB  
1.5V  
8
CURRENT  
LIMIT  
SOFT-START  
+
1.7mS  
SGND  
6
s4  
EA  
1.2µA  
+
0.74V  
+
–90mV  
0.8V  
3878 FD  
I
TH  
C
RUN/SS  
C
SS  
5
1
C1  
R
C
3878fa  
LTC3878  
operaTion  
LTC±778ꢀCompatibility  
currentꢀisꢀdetectedꢀandꢀpreventedꢀbyꢀtheꢀcurrentꢀreversalꢀ  
comparatorꢀ I ,ꢀ whichꢀ shutsꢀ offꢀ MB.ꢀ Bothꢀ switchesꢀ  
REVꢀ  
TheꢀLTC3878ꢀisꢀcompatibleꢀwithꢀtheꢀLTC1778ꢀinꢀapplica-  
remainꢀoffꢀwithꢀtheꢀoutputꢀcapacitorꢀsupplyingꢀtheꢀloadꢀ  
tionsꢀwhichꢀdoꢀnotꢀuseꢀtheꢀEXTV ꢀfunction.ꢀTheꢀLTC3878ꢀ  
CC  
currentꢀuntilꢀtheꢀEAꢀmovesꢀtheꢀI ꢀvoltageꢀaboveꢀtheꢀzeroꢀ  
TH  
offersꢀimprovedꢀgateꢀdriveꢀandꢀreducedꢀdeadꢀtime,ꢀwhichꢀ  
currentlevel(0.8V)toinitiateanotherswitchingcycle.ꢀ  
allowshigherefficiencythantheLTC1778.OntheLTC1778ꢀ  
WhenꢀtheꢀFCBꢀ(forcedꢀcontinuousꢀbar)ꢀpinꢀisꢀbelowꢀtheꢀ  
Pinꢀ9ꢀisꢀEXTV ,ꢀbutꢀonꢀtheꢀLTC3878ꢀitꢀisꢀaꢀnoꢀconnect.ꢀ  
CC  
internalFCBthresholdreference,V ,theregulatorisꢀ  
FCB  
Theꢀotherꢀnotableꢀdifferenceꢀisꢀthatꢀtheꢀshutdownꢀlatch-  
offꢀtimerꢀisꢀremoved.ꢀTheꢀLTC3878ꢀshouldꢀbeꢀaꢀdropꢀin,ꢀ  
pin-for-pinꢀreplacementꢀinꢀmostꢀapplicationsꢀthatꢀdoꢀnotꢀ  
forcedtooperateincontinuousmodebydisablingreversalꢀ  
comparator,ꢀI ,ꢀtherebyꢀallowingꢀtheꢀinductorꢀcurrentꢀtoꢀ  
REVꢀ  
becomeꢀnegative.  
useꢀEXTV .ꢀTheꢀLTC3878ꢀshouldꢀbeꢀtestedꢀandꢀverifiedꢀ  
CC  
inꢀeachꢀapplicationꢀwithoutꢀassumingꢀcompatibility.ꢀCon-  
tactꢀaꢀLinearꢀapplicationsꢀexpertꢀtoꢀanswerꢀanyꢀquestionsꢀ  
regardingꢀLTC3878/LTC1778ꢀcompatibility.  
Theꢀcontinuousꢀmodeꢀoperatingꢀfrequencyꢀcanꢀbeꢀdeter-  
minedbydividingthecalculateddutycycle,V /V ,ꢀ  
OUT IN  
byꢀ theꢀ fixedꢀ on-time.ꢀ Theꢀ OSTꢀ generatesꢀ anꢀ on-timeꢀ  
proportionalꢀ toꢀ theꢀ idealꢀ dutyꢀ cycle,ꢀ thusꢀ holdingꢀ theꢀ  
MainꢀControlꢀLoop  
frequencyapproximatelyconstantwithchangesinV .ꢀ  
IN  
Theꢀnominalꢀfrequencyꢀcanꢀbeꢀadjustedꢀwithꢀanꢀexternalꢀ  
TheꢀLTC3878ꢀisꢀaꢀvalleyꢀcurrentꢀmodeꢀcontrollerꢀICꢀforꢀ  
useꢀinꢀDC/DCꢀstep-downꢀconverters.ꢀInꢀnormalꢀcontinu-  
ousꢀoperation,ꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀonꢀforꢀaꢀfixedꢀ  
intervalꢀdeterminedꢀbyꢀaꢀone-shotꢀtimer,ꢀOST.ꢀWhenꢀtheꢀ  
topꢀMOSFETꢀisꢀturnedꢀoff,ꢀtheꢀbottomꢀMOSFETꢀisꢀturnedꢀ  
onuntilthecurrentcomparator,ICMP,trips,restartingꢀ  
theꢀone-shotꢀtimerꢀandꢀinitiatingꢀtheꢀnextꢀcycle.ꢀInductorꢀ  
valleycurrentismeasuredbysensingthevoltagebetweenꢀ  
theꢀPGNDꢀandꢀSWꢀpinsꢀusingꢀtheꢀbottomꢀMOSFETꢀon-  
resistance.ꢀTheꢀvoltageꢀonꢀtheꢀITHꢀpinꢀsetsꢀtheꢀcompara-  
torꢀthresholdꢀcorrespondingꢀtoꢀinductorꢀvalleyꢀcurrent.ꢀ  
TheꢀerrorꢀamplifierꢀEAꢀadjustsꢀthisꢀvoltageꢀbyꢀcomparingꢀ  
theꢀfeedbackꢀsignalꢀVFBꢀfromꢀtheꢀoutputꢀvoltageꢀtoꢀtheꢀ  
feedbackꢀreferenceꢀvoltageꢀVFBREF.ꢀIncreasingꢀtheꢀloadꢀ  
currentcausesadropinthefeedbackvoltagerelativeꢀ  
tothereference.TheEAsensesthefeedbackvoltageꢀ  
dropꢀandꢀadjustsꢀtheꢀITHꢀvoltageꢀhigherꢀuntilꢀtheꢀaverageꢀ  
inductorꢀcurrentꢀmatchesꢀtheꢀloadꢀcurrent.  
resistor,ꢀR .ꢀ  
ON  
Foldbackꢀcurrentꢀlimitingꢀisꢀprovidedꢀtoꢀprotectꢀagainstꢀ  
lowꢀimpedanceꢀshorts.ꢀIfꢀtheꢀcontrollerꢀisꢀinꢀcurrentꢀlimitꢀ  
andV ꢀdropstoless50%ofregulation,thecurrentlimitꢀ  
OUT  
set-pointꢀ“foldsꢀback”ꢀtoꢀprogressivelyꢀlowerꢀvalues.ꢀToꢀ  
recoverꢀfromꢀfoldbackꢀcurrentꢀlimit,ꢀtheꢀexcessiveꢀloadꢀorꢀ  
lowꢀimpedanceꢀshortꢀneedsꢀtoꢀbeꢀremoved.  
PullingꢀtheꢀRUN/SSꢀpinꢀlowꢀforcesꢀtheꢀcontrollerꢀintoꢀitsꢀ  
shutdownꢀstate,ꢀturningꢀoffꢀbothꢀMTꢀandꢀMB.ꢀReleasingꢀ  
theꢀpinꢀallowsꢀanꢀinternalꢀ1.2µAꢀcurrentꢀsourceꢀtoꢀchargeꢀ  
upꢀanꢀexternalꢀsoft-startꢀcapacitor,ꢀCSS.ꢀWhenꢀtheꢀRUN/  
SSꢀpinꢀisꢀlessꢀthanꢀ0.7V,ꢀtheꢀdeviceꢀisꢀinꢀtheꢀlowꢀpowerꢀ  
shutdownꢀconditionꢀwithꢀaꢀnominalꢀbiasꢀcurrentꢀofꢀ18µA.ꢀ  
WhenꢀRUN/SSꢀisꢀgreaterꢀthanꢀ0.7Vꢀandꢀlessꢀthanꢀ1.5V,ꢀ  
INTVCCꢀandꢀallꢀinternalꢀcircuitryꢀareꢀenabledꢀwhileꢀMTꢀandꢀ  
MBꢀareꢀforcedꢀoff.ꢀCurrent-limitedꢀsoft-startꢀbeginsꢀwhenꢀ  
RUN/SSꢀexceedsꢀ1.5V.ꢀNormalꢀoperationꢀatꢀfullꢀcurrentꢀ  
limitisachievedatapproximately3VonRUN/SS.Foldbackꢀ  
currentꢀlimitꢀisꢀdefeatedꢀduringꢀsoft-start.  
WithꢀDCꢀcurrentꢀloadsꢀlessꢀthanꢀ1/2ꢀofꢀtheꢀpeak-to-peakꢀ  
rippleꢀtheꢀinductorꢀcurrentꢀcanꢀdropꢀtoꢀzeroꢀorꢀbecomeꢀ  
negative.Indiscontinuousoperation,negativeinductorꢀ  
3878fa  
LTC3878  
applicaTions inForMaTion  
ThebasicLTC3878applicationcircuitꢀisꢀshownꢀonꢀtheꢀfirstꢀ  
pageꢀofꢀthisꢀdataꢀsheet.ꢀExternalꢀcomponentꢀselectionꢀisꢀ  
largelyꢀdeterminedꢀbyꢀmaximumꢀloadꢀcurrentꢀandꢀbeginsꢀ  
withꢀtheꢀselectionꢀofꢀsenseꢀresistanceꢀandꢀpowerꢀMOSFETꢀ  
switches.ꢀTheꢀLTC3878ꢀusesꢀtheꢀon-resistanceꢀofꢀtheꢀsyn-  
chronouspowerMOSFETtodeterminetheinductorcurrent.ꢀ  
Thedesiredripplecurrentandoperatingfrequencylargelyꢀ  
Theꢀgateꢀdriveꢀvoltagesꢀareꢀsetꢀbyꢀtheꢀ5.3VꢀINTV ꢀsupply.ꢀ  
CC  
Consequently,logic-levelthresholdMOSFETsmustbeusedꢀ  
inꢀLTC3878ꢀapplications.ꢀIfꢀtheꢀinputꢀvoltageꢀisꢀexpectedꢀ  
toꢀdropꢀbelowꢀ5V,ꢀthenꢀsub-logicꢀlevelꢀthresholdꢀMOSFETsꢀ  
shouldꢀbeꢀconsidered.  
UsingꢀtheꢀbottomꢀMOSFETꢀasꢀtheꢀcurrentꢀsenseꢀelementꢀ  
requiresꢀparticularꢀattentionꢀbeꢀpaidꢀtoꢀitsꢀon-resistance.ꢀ  
MOSFETꢀon-resistanceꢀisꢀtypicallyꢀspecifiedꢀwithꢀaꢀmaxi-  
determinestheinductorvalue.Finally,C ꢀisselectedforitsꢀ  
IN  
abilityꢀtoꢀhandleꢀtheꢀlargeꢀRMSꢀcurrentꢀintoꢀtheꢀconverter,ꢀ  
mumꢀvalueꢀR  
ꢀatꢀ25°C.ꢀInꢀthisꢀcaseꢀadditionalꢀ  
DS(ON)(MAX)  
andꢀC ꢀisꢀchosenꢀwithꢀlowꢀenoughꢀESRꢀtoꢀmeetꢀoutputꢀ  
OUT  
marginꢀisꢀrequiredꢀtoꢀaccommodateꢀtheꢀriseꢀinꢀMOSFETꢀ  
voltageꢀrippleꢀandꢀtransientꢀspecifications.  
on-resistanceꢀwithꢀtemperature.  
MaximumꢀV ꢀSenseꢀVoltageꢀandꢀV ꢀPin  
Max VDS Sense Voltage  
DS  
RNG  
RDS(ON)(MAX)  
=
IOUT ρT  
Inductorꢀ currentꢀ isꢀ measuredꢀ byꢀ sensingꢀ theꢀ bottomꢀ  
MOSFETꢀ V ꢀ voltageꢀ thatꢀ appearsꢀ betweenꢀ theꢀ PGNDꢀ  
DS  
Theꢀ ρ ꢀ termꢀ isꢀ aꢀ normalizationꢀ factorꢀ (unityꢀ atꢀ 25°C)ꢀ  
T
andꢀSWꢀpins.ꢀTheꢀmaximumꢀallowedꢀV ꢀsenseꢀvoltageꢀisꢀ  
DS  
accountingꢀforꢀtheꢀsignificantꢀvariationꢀinꢀon-resistanceꢀ  
withꢀtemperature,ꢀtypicallyꢀaboutꢀ0.4%/°C,ꢀasꢀshownꢀinꢀ  
Figureꢀ1.ꢀForꢀaꢀmaximumꢀjunctionꢀtemperatureꢀofꢀ100°Cꢀ  
setꢀbyꢀtheꢀvoltageꢀappliedꢀtoꢀtheꢀV ꢀpinꢀandꢀisꢀapproxi-  
RNG  
matelyꢀequalꢀtoꢀ(0.133)V .ꢀTheꢀcurrentꢀmodeꢀcontrolꢀ  
RNG  
loopꢀdoesꢀnotꢀallowꢀtheꢀinductorꢀcurrentꢀvalleysꢀtoꢀexceedꢀ  
usingꢀaꢀvalueꢀofꢀρ ꢀ=ꢀ1.3ꢀisꢀreasonable.  
T
(0.133)V .ꢀInꢀpractice,ꢀoneꢀshouldꢀallowꢀmargin,ꢀtoꢀac-  
RNG  
ThepowerdissipatedbythetopandbottomMOSFETsꢀ  
dependsꢀuponꢀtheirꢀrespectiveꢀdutyꢀcyclesꢀandꢀtheꢀloadꢀ  
current.WhentheLTC3878isoperatingincontinuousꢀ  
mode,ꢀtheꢀdutyꢀcyclesꢀforꢀtheꢀMOSFETsꢀare:  
countforvariationsintheLTC3878andexternalcomponentꢀ  
values.ꢀAꢀgoodꢀguideꢀforꢀsettingꢀV ꢀis:  
RNG  
ꢀ V ꢀ=ꢀ7.5ꢀ•ꢀ(MaximumꢀV ꢀSenseꢀVoltage)  
RNG  
DS  
AnexternalresistivedividerfromINTV canbeusedꢀ  
CC  
VOUT  
toꢀsetꢀtheꢀvoltageꢀonꢀtheꢀV ꢀpinꢀbetweenꢀ0.2Vꢀandꢀ2V,ꢀ  
RNG  
DTOP  
DBOT  
=
=
V
resultinginpeaksensevoltagesbetween26.6mVandꢀ  
IN  
266mV.ꢀTheꢀwideꢀpeakꢀvoltageꢀsenseꢀrangeꢀallowsꢀforꢀaꢀ  
V – VOUT  
IN  
varietyofapplicationsandMOSFETchoices.TheV ꢀpinꢀ  
RNG  
V
IN  
canꢀalsoꢀbeꢀtiedꢀtoꢀeitherꢀSGNDꢀorꢀINTV ꢀtoꢀforceꢀinternalꢀ  
CC  
defaults.ꢀWhenꢀV ꢀisꢀtiedꢀtoꢀSGND,ꢀtheꢀdeviceꢀoperatesꢀ  
RNG  
2.0  
1.5  
1.0  
0.5  
0
atavalleycurrentsensethresholdof93mVtypical.IfV  
RNG  
isꢀtiedꢀtoꢀINTV ,ꢀtheꢀdeviceꢀoperatesꢀatꢀaꢀvalleyꢀcurrentꢀ  
CC  
senseꢀthresholdꢀofꢀ186mVꢀtypical.  
PowerꢀMOSFETꢀSelection  
Theꢀ LTC3878ꢀ requiresꢀ twoꢀ externalꢀ N-channelꢀ powerꢀ  
MOSFETs,ꢀoneꢀforꢀtheꢀtopꢀ(main)ꢀswitchꢀandꢀoneꢀforꢀtheꢀ  
bottomꢀ(synchronous)ꢀswitch.ꢀImportantꢀparametersꢀforꢀ  
theꢀpowerꢀMOSFETsꢀareꢀtheꢀbreakdownꢀvoltageꢀV  
,ꢀ  
BR(DSS)  
50  
100  
–50  
150  
0
thresholdꢀ voltageꢀ V  
,ꢀ on-resistanceꢀ R  
,ꢀ re-  
GS(TH)  
DS(ON)  
JUNCTION TEMPERATURE (°C)  
versetransfercapacitanceC ꢀandmaximumcurrentꢀ  
RSS  
3878 F01  
I
.
DS(MAX)  
Figureꢀ±.ꢀRDS(ON)ꢀvsꢀTemperature  
3878fa  
ꢀ0  
LTC3878  
applicaTions inForMaTion  
TheꢀresultingꢀpowerꢀdissipationꢀinꢀtheꢀMOSFETsꢀatꢀmaxi-  
mumꢀoutputꢀcurrentꢀare:  
V
IN  
MILLER EFFECT  
V
V
GS  
PTOP =DTOP IOUT(MAX)2 ρτ(TOP) RDS(ON)(MAX)  
a
b
+
V
DS  
I
2 OUT(MAX)   
+
Q
IN  
V
+V  
C
GS  
(
)
IN  
MILLER  
2
C
= (Q – Q )/V  
B A DS  
MILLER  
3878 F02  
DRTGHIGH  
INTVCC VMILLER VMILLER  
PBOT =DBOT IOUT(MAX)2 ρτ(BOT) RDS(ON)(MAX)  
DRTGLOW  
+
f
OSC  
Figureꢀ2.ꢀGateꢀChargeꢀCharacteristic  
V
2
BothꢀMOSFETsꢀhaveꢀI Rꢀpowerꢀloss,ꢀandꢀtheꢀtopꢀMOSFETꢀ  
includesꢀanꢀadditionalꢀtermꢀforꢀtransitionꢀloss,ꢀwhichꢀareꢀ  
highestꢀatꢀhighꢀinputꢀvoltages.ꢀForꢀV ꢀ<ꢀ20V,ꢀtheꢀhighꢀcur-  
DR  
ꢀisꢀpull-upꢀdriverꢀresistanceꢀandꢀDR  
ꢀisꢀtheꢀ  
IN  
TGHIGH  
TGLOW  
rentꢀefficiencyꢀgenerallyꢀimprovesꢀwithꢀlargerꢀMOSFETs,ꢀ  
TGꢀdriverꢀpull-downꢀresistance.ꢀV  
ꢀisꢀtheꢀMillerꢀef-  
MILLER  
whileꢀforꢀV ꢀ>ꢀ20V,ꢀtheꢀtransitionꢀlossesꢀrapidlyꢀincreaseꢀ  
fectꢀV ꢀvoltageꢀandꢀisꢀtakenꢀgraphicallyꢀfromꢀtheꢀpowerꢀ  
MOSFETꢀdataꢀsheet.  
IN  
GS  
toꢀtheꢀpointꢀthatꢀtheꢀuseꢀofꢀaꢀhigherꢀR  
ꢀdeviceꢀwithꢀ  
DS(ON)  
lowerꢀ C  
ꢀ actuallyꢀ providesꢀ higherꢀ efficiency.ꢀ Theꢀ  
MILLER  
MOSFETinputcapacitanceisacombinationofseveralꢀ  
componentsbutcanbetakenfromthetypicalgatecharge”ꢀ  
curveꢀincludedꢀonꢀtheꢀmostꢀdataꢀsheetsꢀ(Figureꢀ2).ꢀTheꢀ  
curveisgeneratedbyforcingaconstantinputcurrentꢀ  
intoꢀtheꢀgateꢀofꢀaꢀcommonꢀsource,ꢀcurrentꢀsource,ꢀloadedꢀ  
stageꢀandꢀthenꢀplottingꢀtheꢀgateꢀversusꢀtime.ꢀTheꢀinitialꢀ  
slopeꢀisꢀtheꢀeffectꢀofꢀtheꢀgate-to-sourceꢀandꢀgate-to-drainꢀ  
capacitance.Theatportionofthecurveistheresultoftheꢀ  
Millermultiplicationeffectofthedrain-to-gatecapacitanceꢀ  
asꢀtheꢀdrainꢀdropsꢀtheꢀvoltageꢀacrossꢀtheꢀcurrentꢀsourceꢀ  
load.ꢀTheꢀupperꢀslopingꢀlineꢀisꢀdueꢀtoꢀtheꢀdrain-to-gateꢀ  
accumulationꢀcapacitanceꢀandꢀtheꢀgate-to-sourceꢀcapaci-  
tance.ꢀTheꢀMillerꢀchargeꢀ(theꢀincreaseꢀinꢀcoulombsꢀonꢀtheꢀ  
horizontalꢀaxisꢀfromꢀaꢀtoꢀbꢀwhileꢀtheꢀcurveꢀisꢀflat)ꢀisꢀspeci-  
synchronousꢀMOSFETꢀlossesꢀareꢀgreatestꢀatꢀhighꢀinputꢀ  
voltageꢀwhenꢀtheꢀtopꢀswitchꢀdutyꢀfactorꢀisꢀlowꢀorꢀduringꢀ  
aꢀshort-circuitꢀwhenꢀtheꢀsynchronousꢀswitchꢀisꢀonꢀcloseꢀ  
toꢀ100%ꢀofꢀtheꢀperiod.  
OperatingꢀFrequency  
Theꢀchoiceꢀofꢀoperatingꢀfrequencyꢀisꢀaꢀtradeoffꢀbetweenꢀ  
efficiencyandcomponentsize.Loweringtheoperatingfre-  
quencyimprovesefficiencybyreducingMOSFETswitchingꢀ  
lossesꢀbutꢀrequiresꢀlargerꢀinductanceꢀand/orꢀcapacitanceꢀ  
toꢀmaintainꢀlowꢀoutputꢀrippleꢀvoltage.ꢀConversely,ꢀraisingꢀ  
theꢀoperatingꢀfrequencyꢀdegradesꢀefficiencyꢀbutꢀreducesꢀ  
componentꢀsize.ꢀ  
fiedꢀfromꢀaꢀgivenꢀV ꢀdrainꢀvoltage,ꢀbutꢀcanꢀbeꢀadjustedꢀ  
DS  
TheꢀoperatingꢀfrequencyꢀofꢀLTC3878ꢀapplicationsꢀisꢀde-  
terminedꢀimplicitlyꢀbyꢀtheꢀone-shotꢀtimerꢀthatꢀcontrolsꢀtheꢀ  
forꢀdifferentꢀV ꢀvoltagesꢀbyꢀmultiplyingꢀbyꢀtheꢀratioꢀofꢀ  
DS  
theꢀapplicationꢀV ꢀtoꢀtheꢀcurveꢀspecifiedꢀV ꢀvalues.ꢀAꢀ  
DS  
DS  
on-time,ꢀt ,ꢀofꢀtheꢀtopꢀMOSFETꢀswitch.ꢀTheꢀon-timeꢀisꢀ  
ON  
wayꢀtoꢀestimateꢀtheꢀC  
ꢀtermꢀisꢀtoꢀtakeꢀtheꢀchangeꢀinꢀ  
MILLER  
setꢀbyꢀtheꢀcurrentꢀintoꢀtheꢀI ꢀpinꢀaccordingꢀto:  
ON  
gateꢀchargeꢀfromꢀpointsꢀaꢀandꢀbꢀorꢀtheꢀparameterꢀQ ꢀonꢀ  
GD  
0.7V  
IION  
amanufacturersdatasheetanddividebythespecifiedꢀ  
tON  
=
10pF  
(
)
V ꢀtestꢀvoltage,ꢀV  
.ꢀ  
DS  
DS(TEST)  
QGD  
VDS(TEST)  
TyingaresistorR ꢀfromV totheI ꢀpinyieldsanꢀ  
ON  
IN  
ON  
CMILLER  
=
on-timeinverselyproportionaltoV .Forastep-downꢀ  
IN  
converter,thisresultsinpseudoxedfrequencyoperationꢀ  
asꢀtheꢀinputꢀsupplyꢀvaries.  
C
ꢀisꢀtheꢀmostꢀimportantꢀselectionꢀcriteriaꢀforꢀdeter-  
MILLER  
miningꢀtheꢀtransitionꢀlossꢀtermꢀinꢀtheꢀtopꢀMOSFETꢀbutꢀisꢀ  
notꢀdirectlyꢀspecifiedꢀonꢀMOSFETꢀdataꢀsheets.  
VOUT  
fOP =  
[Hz]  
0.7V RON 10pF  
(
)
3878fa  
ꢀꢀ  
LTC3878  
applicaTions inForMaTion  
4
3
2
1
0
Figureꢀ3ꢀshowsꢀhowꢀR ꢀrelatesꢀtoꢀswitchingꢀfrequencyꢀ  
ON  
forꢀseveralꢀcommonꢀoutputꢀvoltages.ꢀ  
Whenꢀdesigningꢀforꢀpseudoꢀfixedꢀfrequency,ꢀthereꢀisꢀsys-  
DROPOUT  
REGION  
tematicꢀerrorꢀbecauseꢀtheꢀI ꢀpinꢀvoltageꢀisꢀapproximatelyꢀ  
ON  
0.7V,ꢀnotꢀzero.ꢀThisꢀcausesꢀtheꢀI ꢀcurrentꢀtoꢀbeꢀinverselyꢀ  
ON  
proportionalꢀtoꢀ(V ꢀ–ꢀ0.7V)ꢀandꢀnotꢀV .ꢀTheꢀI ꢀcurrentꢀ  
IN  
IN  
ON  
errorꢀincreasesꢀasꢀV ꢀdecreases.ꢀToꢀcorrectꢀthisꢀerror,ꢀanꢀ  
IN  
additionalꢀresistorꢀR ꢀcanꢀbeꢀconnectedꢀfromꢀtheꢀI ꢀ  
ON2  
ON  
pinꢀtoꢀtheꢀ5.3VꢀINTV ꢀsupply.  
CC  
0
0.25  
0.50  
0.75  
1
5.3V – 0.7V  
3878 F04  
RON2  
=
RON  
DUTY CYCLE (V /V  
)
OUT IN  
0.7V  
Figureꢀ4.ꢀMaximumꢀSwitchingꢀFrequencyꢀvsꢀDutyꢀCycle  
1000  
V
OUT  
= 12V  
Likewise,ꢀtheꢀmaximumꢀfrequencyꢀofꢀoperationꢀisꢀdeter-  
minedbythexedon-time,t ,andtheminimumoff-time,ꢀ  
ON  
V
= 1.5V  
t
.ꢀTheꢀfixedꢀon-timeꢀisꢀdeterminedꢀbyꢀdividingꢀtheꢀ  
OUT  
V
OFF(MIN)  
= 3.3V  
dutyꢀfactorꢀbyꢀtheꢀnominalꢀfrequencyꢀofꢀoperation:ꢀ  
OUT  
V
OUT  
= 5V  
1
fMAX  
=
[Hz]  
VOUT  
+ tOFF(MIN)  
V • fOP  
IN  
100  
100  
1000  
(kΩ)  
10000  
TheꢀLTC3878ꢀisꢀaꢀPFMꢀ(pulseꢀfrequencyꢀmode)ꢀregula-  
torwherepulsedensityismodulated,notpulsewidth.ꢀ  
Consequently,ꢀfrequencyꢀincreasesꢀwithꢀaꢀloadꢀstepꢀandꢀ  
decreasesꢀwithꢀaꢀloadꢀrelease.ꢀTheꢀsteady-stateꢀoperatingꢀ  
R
ON  
3878 F03  
Figureꢀ3.ꢀSwitchingꢀFrequencyꢀvsꢀRON  
frequency,ꢀf ,ꢀshouldꢀbeꢀsetꢀsufficientlyꢀbelowꢀf  
ꢀtoꢀ  
OPꢀ  
MAX  
MinimumꢀOff-TimeꢀandꢀDropoutꢀOperation  
Theminimumoff-time,t ,istheshortesttimeꢀ  
allowꢀforꢀdeviceꢀtolerancesꢀandꢀtransientꢀresponse.  
OFF(MIN)  
InductorꢀValueꢀCalculation  
requiredꢀforꢀtheꢀLTC3878ꢀtoꢀturnꢀonꢀtheꢀbottomꢀMOSFET,ꢀ  
tripꢀtheꢀcurrentꢀcomparatorꢀandꢀthenꢀturnꢀoffꢀtheꢀbottomꢀ  
MOSFET.Thistimeistypicallyabout220ns.Theminimumꢀ  
Givenꢀtheꢀdesiredꢀinputꢀandꢀoutputꢀvoltages,ꢀtheꢀinduc-  
torvalueandoperationfrequencydeterminetherippleꢀ  
current:  
off-timelimitimposesamaximumdutycycleoft /ꢀ  
ON  
(t ꢀ+ꢀt  
ON  
).ꢀIfꢀtheꢀmaximumꢀdutyꢀcycleꢀisꢀreached,ꢀ  
OFF(MIN)  
dueꢀtoꢀaꢀdroopingꢀinputꢀvoltageꢀforꢀexample,ꢀthenꢀtheꢀ  
outputꢀwillꢀdropꢀoutꢀofꢀregulation.ꢀTheꢀminimumꢀinputꢀ  
voltageꢀtoꢀavoidꢀdropoutꢀis:  
VOUT  
VOUT  
IL =  
1–  
f
•L  
V
OP  
IN  
Lowerꢀrippleꢀcurrentꢀreducesꢀcoreꢀlossesꢀinꢀtheꢀinductor,ꢀ  
ESRꢀlossesꢀinꢀtheꢀoutputꢀcapacitorsꢀandꢀoutputꢀvoltageꢀ  
ripple.ꢀ Highestꢀ efficiencyꢀ operationꢀ isꢀ obtainedꢀ atꢀ lowꢀ  
frequencyꢀwithꢀsmallꢀrippleꢀcurrent.ꢀHowever,ꢀachievingꢀ  
thisꢀrequiresꢀaꢀlargeꢀinductor.ꢀThereꢀisꢀaꢀtrade-offꢀbetweenꢀ  
componentꢀsize,ꢀefficiencyꢀandꢀoperatingꢀfrequency.  
tON + tOFF(MIN)  
V
IN(MIN) = VOUT  
tON  
Aꢀplotꢀofꢀmaximumꢀdutyꢀcycleꢀvs.ꢀfrequencyꢀisꢀshownꢀinꢀ  
Figureꢀ4.  
3878fa  
ꢀꢁ  
LTC3878  
applicaTions inForMaTion  
Aꢀreasonableꢀstartingꢀpointꢀisꢀtoꢀchooseꢀaꢀrippleꢀcurrentꢀ ThisꢀformulaꢀhasꢀaꢀmaximumꢀatꢀV ꢀ=ꢀ2V ,ꢀwhereꢀI  
IN  
OUT  
RMS  
thatꢀisꢀaboutꢀ40%ꢀofꢀI  
.ꢀTheꢀlargestꢀrippleꢀcurrentꢀ =ꢀI  
/2.ꢀThisꢀsimpleꢀworst-caseꢀconditionꢀisꢀcom-  
OUT(MAX)  
OUT(MAX)  
occursꢀatꢀtheꢀhighestꢀV .ꢀToꢀguaranteeꢀthatꢀrippleꢀcurrentꢀ monlyusedfordesignbecauseevensignificantdeviationsꢀ  
IN  
doesnotexceedaspecifiedmaximum,theinductanceꢀ doꢀnotꢀofferꢀmuchꢀrelief.ꢀNoteꢀthatꢀrippleꢀcurrentꢀratingsꢀ  
shouldꢀbeꢀchosenꢀaccordingꢀto:  
fromcapacitormanufacturersareoftenbasedononlyꢀ  
2000ꢀhoursꢀofꢀlife,ꢀwhichꢀmakesꢀitꢀadvisableꢀtoꢀde-rateꢀ  
theꢀcapacitor.  
   
   
VOUT  
OP I  
VOUT  
L =  
1–  
f
V
IL(MAX)   
IN(MAX)  
TheꢀselectionꢀofꢀC ꢀisꢀprimarilyꢀdeterminedꢀbyꢀtheꢀESRꢀ  
OUT  
requiredtominimizevoltagerippleandloadsteptransients.ꢀ  
OnceꢀtheꢀvalueꢀforꢀLꢀisꢀknown,ꢀtheꢀtypeꢀofꢀinductorꢀmustꢀ  
beꢀselected.ꢀHighꢀefficiencyꢀconvertersꢀgenerallyꢀcannotꢀ  
tolerateꢀtheꢀcoreꢀlossꢀofꢀlowꢀcostꢀpowderedꢀironꢀcores,ꢀ  
forcingꢀtheꢀuseꢀofꢀmoreꢀexpensiveꢀferriteꢀmaterialsꢀsuchꢀ  
asmolypermalloyorKoolMµcores.Avarietyofinductorsꢀ  
designedforhighcurrent,lowvoltageapplicationsareꢀ  
availablefrommanufacturerssuchasSumida,Panasonic,ꢀ  
Coiltronics,ꢀCoilcraft,ꢀToko,ꢀVishay,ꢀPulseꢀandꢀWurth.  
TheꢀV ꢀisꢀapproximatelyꢀboundedꢀby:  
OUT  
1
VOUT ≤ ∆IL ESR +  
8 • fOP C  
OUT   
SinceꢀI ꢀincreasesꢀwithꢀinputꢀvoltage,ꢀtheꢀoutputꢀrippleꢀ  
L
isꢀhighestꢀatꢀmaximumꢀinputꢀvoltage.ꢀTypically,ꢀonceꢀtheꢀ  
ESRꢀrequirementꢀisꢀsatisfied,ꢀtheꢀcapacitanceꢀisꢀadequateꢀ  
forꢀfilteringꢀandꢀhasꢀtheꢀnecessaryꢀRMSꢀcurrentꢀrating.  
InductorꢀCoreꢀSelection  
Multipleꢀcapacitorsꢀplacedꢀinꢀparallelꢀmayꢀbeꢀneededꢀtoꢀ  
meetꢀtheꢀESRꢀandꢀRMSꢀcurrentꢀhandlingꢀrequirements.ꢀ  
Dryꢀ tantalum,ꢀ specialtyꢀ polymer,ꢀ aluminumꢀ electrolyticꢀ  
andꢀceramicꢀcapacitorsꢀareꢀallꢀavailableꢀinꢀsurfaceꢀmountꢀ  
packages.ꢀ Specialtyꢀ polymerꢀ capacitorsꢀ offerꢀ veryꢀ lowꢀ  
ESRꢀbutꢀhaveꢀlowerꢀspecificꢀcapacitanceꢀthanꢀotherꢀtypes.ꢀ  
Tantalumꢀcapacitorsꢀhaveꢀtheꢀhighestꢀspecificꢀcapacitanceꢀ  
butꢀitꢀisꢀimportantꢀtoꢀonlyꢀuseꢀtypesꢀthatꢀhaveꢀbeenꢀsurgeꢀ  
testedforuseinswitchingpowersupplies.Aluminumꢀ  
electrolyticꢀ capacitorsꢀ haveꢀ significantlyꢀ higherꢀ ESR,ꢀ  
butꢀcanꢀbeꢀusedꢀinꢀcost-sensitiveꢀapplicationsꢀprovidingꢀ  
thatꢀconsiderationꢀisꢀgivenꢀtoꢀrippleꢀcurrentꢀratingsꢀandꢀ  
long-termreliability.Ceramiccapacitorshaveexcellentꢀ  
lowꢀESRꢀcharacteristicsꢀbutꢀcanꢀhaveꢀaꢀhighꢀvoltageꢀco-  
efficientꢀandꢀaudibleꢀpiezoelectricꢀeffects.ꢀTheꢀhighꢀQꢀofꢀ  
ceramicꢀcapacitorsꢀwithꢀtraceꢀinductanceꢀcanꢀalsoꢀleadꢀtoꢀ  
significantꢀringing.ꢀWhenꢀusedꢀasꢀinputꢀcapacitors,ꢀcareꢀ  
mustꢀbeꢀtakenꢀtoꢀensureꢀthatꢀringingꢀfromꢀinrushꢀcurrentsꢀ  
andꢀswitchingꢀdoesꢀnotꢀposeꢀanꢀovervoltageꢀhazardꢀtoꢀtheꢀ  
powerꢀswitchesꢀandꢀcontroller.ꢀToꢀdampenꢀinputꢀvoltageꢀ  
transients,ꢀaddꢀaꢀsmallꢀ5µFꢀtoꢀ40µFꢀaluminumꢀelectrolyticꢀ  
capacitorꢀwithꢀanꢀESRꢀinꢀtheꢀrangeꢀofꢀ0.5Ωꢀtoꢀ2Ω.ꢀHighꢀ  
performanceꢀthough-holeꢀcapacitorsꢀmayꢀalsoꢀbeꢀused,ꢀ  
Onceꢀtheꢀinductanceꢀvalueꢀisꢀdetermined,ꢀtheꢀtypeꢀofꢀin-  
ductorꢀmustꢀbeꢀselected.ꢀCoreꢀlossꢀisꢀindependentꢀofꢀcoreꢀ  
sizeꢀforꢀaꢀfixedꢀinductorꢀvalue,ꢀbutꢀitꢀisꢀveryꢀdependentꢀ  
oninductanceselected.Asinductanceincreases,coreꢀ  
lossesꢀ goꢀ down.ꢀ Unfortunately,ꢀ increasedꢀ inductanceꢀ  
requiresꢀmoreꢀturnsꢀofꢀwireꢀandꢀthereforeꢀcopperꢀlossesꢀ  
willꢀincrease.  
Ferriteꢀdesignsꢀhaveꢀveryꢀlowꢀcoreꢀlossꢀandꢀareꢀpreferredꢀ  
atꢀhighꢀswitchingꢀfrequencies,ꢀsoꢀdesignꢀgoalsꢀcanꢀcon-  
centrateꢀonꢀcopperꢀlossꢀandꢀpreventingꢀsaturation.ꢀFerriteꢀ  
coreꢀmaterialꢀsaturatesꢀ“hard,”ꢀwhichꢀmeansꢀthatꢀinduc-  
tanceꢀcollapsesꢀabruptlyꢀwhenꢀtheꢀpeakꢀdesignꢀcurrentꢀisꢀ  
exceeded.ꢀThisꢀresultsꢀinꢀanꢀabruptꢀincreaseꢀinꢀinductorꢀ  
rippleꢀcurrentꢀandꢀconsequentꢀoutputꢀvoltageꢀripple.ꢀDoꢀ  
notꢀallowꢀtheꢀcoreꢀtoꢀsaturate!  
C ꢀandꢀC ꢀSelection  
IN  
OUT  
TheꢀinputꢀcapacitanceꢀC ꢀisꢀrequiredꢀtoꢀfilterꢀtheꢀsquareꢀ  
IN  
wavecurrentatthedrainofthetopMOSFET.UsealowESRꢀ  
capacitorꢀsizedꢀtoꢀhandleꢀtheꢀmaximumꢀRMSꢀcurrent.  
VOUT  
V
VOUT  
IN  
IRMS IOUT(MAX)  
– 1  
butꢀanꢀadditionalꢀceramicꢀcapacitorꢀinꢀparallelꢀisꢀrecom  
mendedꢀtoꢀreduceꢀtheꢀeffectꢀofꢀleadꢀinductance.  
-
V
IN  
3878fa  
ꢀꢂ  
LTC3878  
applicaTions inForMaTion  
TopꢀMOSFETꢀDriverꢀSupplyꢀ(C ,ꢀD )  
DiscontinuousꢀModeꢀOperationꢀandꢀFCBꢀPin  
B
B
Anexternalbootstrapcapacitor,C ,connectedtotheBOOSTꢀ TheꢀFCBꢀ(forcedꢀcontinuousꢀbar)ꢀpinꢀdeterminesꢀwhetherꢀ  
B
pinsuppliesthegatedrivevoltageforthetopsideMOSFET.ꢀ theꢀLTC3878ꢀoperatesꢀinꢀforcedꢀcontinuousꢀmodeꢀorꢀal-  
ThisꢀcapacitorꢀisꢀchargedꢀthroughꢀdiodeꢀD ꢀfromꢀINTV ꢀ lowsdiscontinuousconductionmode.Tyingthispinaboveꢀ  
B
CC  
whenꢀtheꢀswitchꢀnodeꢀisꢀlow.ꢀWhenꢀtheꢀtopꢀMOSFETꢀturnsꢀ 0.8Vꢀenablesꢀdiscontinuousꢀoperation,ꢀwhereꢀtheꢀbottomꢀ  
on,ꢀtheꢀswitchꢀnodeꢀrisesꢀtoꢀV ꢀandꢀtheꢀBOOSTꢀpinꢀrisesꢀ MOSFETꢀ turnsꢀ offꢀ whenꢀ theꢀ inductorꢀ currentꢀ reversesꢀ  
IN  
toꢀapproximatelyꢀV ꢀ+ꢀINTV .ꢀTheꢀboostꢀcapacitorꢀneedsꢀ polarity.ꢀTheꢀloadꢀcurrentꢀatꢀwhichꢀcurrentꢀreversesꢀandꢀ  
IN  
CC  
toꢀstoreꢀapproximatelyꢀ100ꢀtimesꢀtheꢀgateꢀchargeꢀrequiredꢀ discontinuousoperationbeginsdependsontheamplitudeꢀ  
byꢀtheꢀtopꢀMOSFET.ꢀInꢀmostꢀapplicationsꢀ0.1µFꢀtoꢀ0.47µF,ꢀ ofꢀtheꢀinductorꢀrippleꢀcurrentꢀandꢀwillꢀvaryꢀwithꢀchangesꢀinꢀ  
X5RꢀorꢀX7Rꢀdielectricꢀcapacitorꢀisꢀadequate.ꢀ  
V .ꢀInꢀsteady-stateꢀoperation,ꢀdiscontinuousꢀconductionꢀ  
IN  
modeꢀoccursꢀforꢀDCꢀloadꢀcurrentsꢀlessꢀthanꢀ1/2ꢀtheꢀpeak-  
to-peakꢀrippleꢀcurrent.ꢀTyingꢀtheꢀFCBꢀpinꢀbelowꢀtheꢀ0.8Vꢀ  
thresholdforcescontinuousswitching,whereinductorꢀ  
currentꢀisꢀallowedꢀtoꢀreverseꢀatꢀlightꢀloadsꢀandꢀmaintainꢀ  
synchronousꢀswitching.  
ItꢀisꢀrecommendedꢀthatꢀtheꢀBOOSTꢀcapacitorꢀbeꢀnoꢀlargerꢀ  
thanꢀ10%ꢀofꢀtheꢀINTV ꢀcapacitorꢀC ,ꢀtoꢀensureꢀthatꢀ  
CC  
VCC  
theꢀC ꢀcanꢀsupplyꢀtheꢀupperꢀMOSFETꢀgateꢀchargeꢀandꢀ  
VCC  
BOOSTꢀcapacitorꢀunderꢀallꢀoperatingꢀconditions.ꢀVariableꢀ  
frequencyꢀinꢀresponseꢀtoꢀloadꢀstepsꢀoffersꢀsuperiorꢀtran-  
sientꢀperformanceꢀbutꢀrequiresꢀhigherꢀinstantaneousꢀgateꢀ Inꢀadditionꢀtoꢀprovidingꢀaꢀlogicꢀinputꢀtoꢀforceꢀcontinuousꢀ  
drive.Gatechargedemandsaregreatestinhighfrequencyꢀ operation,theFCBpinprovidesameanstomaintainaꢀ  
lowꢀdutyꢀfactorꢀapplicationsꢀunderꢀhighꢀdI/dtꢀloadꢀstepsꢀ flybackwindingoutputwhentheprimaryisoperatingꢀ  
andꢀatꢀstart-up.  
inꢀdiscontinuousꢀmode.ꢀTheꢀsecondaryꢀoutputꢀV  
ꢀisꢀ  
OUT2  
normallyꢀsetꢀasꢀshownꢀinꢀFigureꢀ6ꢀbyꢀtheꢀturnsꢀratioꢀNꢀ  
ofthetransformer.However,ifthecontrollergoesintoꢀ  
discontinuousmodeandhaltsswitchingduetoalightꢀ  
SettingꢀOutputꢀVoltage  
TheꢀLTC3878ꢀoutputꢀvoltageꢀisꢀsetꢀbyꢀanꢀexternalꢀfeed-  
backꢀresistiveꢀdividerꢀcarefullyꢀplacedꢀacrossꢀtheꢀoutput,ꢀ  
asshowninFigure5.Theregulatedoutputvoltageisꢀ  
determinedꢀby:  
primaryꢀloadꢀcurrent,ꢀthenꢀV  
ꢀwillꢀdroop.ꢀAnꢀexternalꢀ  
OUT2  
resistorꢀdividerꢀfromꢀV  
ꢀtoꢀtheꢀFCBꢀpinꢀsetsꢀaꢀminimumꢀ  
OUT2  
voltageꢀV  
ꢀbelowꢀwhichꢀcontinuousꢀoperationꢀisꢀ  
OUT2(MIN)  
forcedꢀuntilꢀV  
ꢀhasꢀrisenꢀaboveꢀitsꢀminimum.  
OUT2  
RB  
VOUT = 0.8V 1+  
R4  
R3  
R
A   
VOUT2(MIN) = 0.8V 1+  
Toimprovethetransientresponse,afeed-forwardca-  
pacitor,ꢀC ,ꢀmayꢀbeꢀused.ꢀGreatꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀ  
FFꢀ  
V
IN  
routeꢀtheꢀV ꢀlineꢀawayꢀfromꢀnoiseꢀsources,ꢀsuchꢀasꢀtheꢀ  
FB  
C
IN  
LTC3878  
inductorꢀorꢀtheꢀSWꢀline.  
1N4148  
V
IN  
V
OUT2  
Si4884  
Si4874  
TG  
SW  
BG  
V
OUT  
C
OUT2  
V
R4  
R3  
OUT  
R
C
FF  
LTC3878  
B
FCB  
C
OUT  
V
FB  
R
A
SGND PGND  
3878 F06  
3878 F05  
Figureꢀ5.ꢀSettingꢀOutputꢀVoltage  
Figureꢀ6.ꢀSecondaryꢀOutputꢀLoop  
3878fa  
ꢀꢃ  
LTC3878  
applicaTions inForMaTion  
FaultꢀConditions:ꢀCurrentꢀLimitꢀandꢀFoldback  
ApplicationsusinglargeMOSFETswithahighinputvoltageꢀ  
andꢀhighꢀfrequencyꢀofꢀoperationꢀmayꢀcauseꢀtheꢀLTC3878ꢀ  
toexceeditsmaximumjunctiontemperatureratingorꢀ  
RMSꢀcurrentꢀrating.ꢀInꢀcontinuousꢀmodeꢀoperation,ꢀthisꢀ  
Theꢀmaximumꢀinductorꢀcurrentꢀisꢀinherentlyꢀlimitedꢀinꢀaꢀ  
currentꢀmodeꢀcontrollerꢀbyꢀtheꢀmaximumꢀsenseꢀvoltage.ꢀ  
InꢀtheꢀLTC3878,ꢀtheꢀmaximumꢀsenseꢀvoltageꢀisꢀcontrolledꢀ  
currentꢀisꢀI  
ꢀ=ꢀf (Q  
+ꢀQ  
).ꢀTheꢀjunctionꢀ  
GATECHG  
OP g(TOP)ꢀ  
g(BOT)  
byꢀtheꢀvoltageꢀonꢀtheꢀV ꢀpin.ꢀWithꢀvalleyꢀcurrentꢀmodeꢀ  
RNG  
temperatureꢀcanꢀbeꢀestimatedꢀfromꢀtheꢀequationsꢀgivenꢀ  
inꢀNoteꢀ2ꢀofꢀtheꢀElectricalꢀCharacteristics.ꢀForꢀexample,ꢀ  
withꢀaꢀ30Vꢀinputꢀsupply,ꢀtheꢀLTC3878ꢀisꢀlimitedꢀtoꢀlessꢀ  
thanꢀ16.5mA:  
control,themaximumsensevoltageandthesensere-  
sistanceꢀdetermineꢀtheꢀmaximumꢀallowedꢀinductorꢀvalleyꢀ  
current.ꢀTheꢀcorrespondingꢀoutputꢀcurrentꢀlimitꢀis:  
VSNS(MAX)  
1
2
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(16.5mA)(30)(110°C/W)ꢀ=ꢀ125°C  
J
ILIMIT  
=
+ IL  
RDS(ON) ρT  
UsingtheINTV regulatortosupplyexternalloadsgreaterꢀ  
CC  
thanꢀ5mAꢀisꢀdiscouraged.ꢀINTV ꢀisꢀdesignedꢀtoꢀsupplyꢀ  
Theꢀcurrentꢀlimitꢀvalueꢀshouldꢀbeꢀcheckedꢀtoꢀensureꢀthatꢀ  
ꢀ >ꢀ I .ꢀ Theꢀ currentꢀ limitꢀ valueꢀ shouldꢀ  
CC  
theꢀLTC3878ꢀwithꢀminimalꢀexternalꢀloading.ꢀWhenꢀusingꢀ  
theꢀ regulatorꢀ toꢀ supplyꢀ largerꢀ externalꢀ loads,ꢀ carefullyꢀ  
considerꢀallꢀoperatingꢀloadꢀconditions.ꢀDuringꢀloadꢀstepsꢀ  
andsoft-start,transientcurrentrequirementssignificantlyꢀ  
I
LIMIT(MIN)  
OUT(MAX)  
beꢀgreaterꢀthanꢀtheꢀinductorꢀcurrentꢀrequiredꢀtoꢀproduceꢀ  
maximumꢀ outputꢀ powerꢀ atꢀ theꢀ worst-caseꢀ efficiency.ꢀ  
Worst-caseꢀefficiencyꢀtypicallyꢀoccursꢀatꢀtheꢀhighestꢀV ꢀ  
IN  
exceedtheRMSvalues.AdditionalloadingonINTV takesꢀ  
andꢀhighestꢀambientꢀtemperature.ꢀItꢀisꢀimportantꢀtoꢀcheckꢀ  
CC  
awayfromthedriveavailabletosourcegatechargeduringꢀ  
forꢀconsistencyꢀbetweenꢀtheꢀassumedꢀMOSFETꢀjunctionꢀ  
highꢀfrequencyꢀtransientꢀloadꢀsteps.  
temperaturesꢀandꢀtheꢀresultingꢀvalueꢀofꢀI  
theꢀMOSFETꢀswitches.  
ꢀwhichꢀheatsꢀ  
LIMIT  
Soft-StartꢀwithꢀtheꢀRUN/SSꢀPin  
Cautionshouldbeusedwhensettingthecurrentlimitbasedꢀ  
onꢀtheꢀR ꢀofꢀtheꢀMOSFETs.Theꢀmaximumꢀcurrentꢀ  
TheꢀRUN/SSꢀpinꢀbothꢀenablesꢀtheꢀLTC3878ꢀandꢀprovidesꢀaꢀ  
meansofprogrammablecurrentlimitedsoft-start.Pullingꢀ  
theꢀRUN/SSꢀpinꢀbelowꢀ0.7VꢀputsꢀtheꢀLTC3878ꢀintoꢀaꢀlowꢀ  
DS(ON)  
limitisdeterminedbytheminimumMOSFETon-resistance.ꢀ  
Datasheetstypicallyspecifynominalandmaximumvaluesꢀ  
quiescentꢀcurrentꢀshutdownꢀ(I ꢀ<ꢀ15µA).ꢀReleasingꢀtheꢀ  
Q
forꢀR  
ꢀbutꢀnotꢀaꢀminimum.ꢀAꢀreasonableꢀassumptionꢀ  
DS(ON)  
isꢀthatꢀtheꢀminimumꢀR  
pinꢀallowsꢀanꢀinternalꢀ1.2µAꢀcurrentꢀsourceꢀtoꢀchargeꢀupꢀ  
ꢀliesꢀtheꢀsameꢀamountꢀbelowꢀ  
DS(ON)  
theexternaltimingcapacitorC .IfRUN/SShasbeenꢀ  
SS  
thetypicalvalueasthemaximumliesaboveit.Consulttheꢀ  
MOSFETꢀmanufacturerꢀforꢀfurtherꢀguidelines.  
pulledꢀallꢀtheꢀwayꢀtoꢀground,ꢀthereꢀisꢀaꢀdelayꢀbeforeꢀstart-  
ing.ꢀThisꢀdelayꢀisꢀcreatedꢀbyꢀchargingꢀC ꢀfromꢀgroundꢀ  
SS  
Tofurtherꢀlimitꢀcurrentꢀinꢀtheꢀeventꢀofꢀaꢀshortꢀcircuitꢀtoꢀ  
ground,ꢀtheꢀLTC3878ꢀincludesꢀfoldbackꢀcurrentꢀlimiting.ꢀ  
Ifꢀtheꢀoutputꢀfallsꢀbyꢀmoreꢀthanꢀ50%,ꢀthenꢀtheꢀmaximumꢀ  
senseꢀvoltageꢀisꢀprogressivelyꢀloweredꢀtoꢀaboutꢀone-sixthꢀ  
ofꢀitsꢀfullꢀvalue.ꢀ  
toꢀ1.5Vꢀthroughꢀaꢀ1.2µAꢀcurrentꢀsource.  
1.5V  
1.2µA  
tDELAY  
=
CSS = 1.3s/µF C  
(
)
SS  
WhenꢀtheꢀvoltageꢀonꢀRUN/SSꢀreachesꢀ1.5V,ꢀtheꢀLTC3878ꢀ  
beginstoswitch.I ꢀisclampedtobenogreaterthanꢀ  
INTV ꢀRegulator  
TH  
CC  
RUN/SS0.6V,andthedevicebeginsswitchingwhenꢀ  
AnꢀinternalꢀP-channelꢀlowꢀdropoutꢀregulatorꢀproducesꢀtheꢀ  
5.3Vꢀsupplyꢀthatꢀpowersꢀtheꢀdriversꢀandꢀinternalꢀcircuitryꢀ  
I ꢀexceedsꢀ0.9V.ꢀAsꢀtheꢀRUN/SSꢀvoltageꢀrisesꢀtoꢀ3V,ꢀtheꢀ  
TH  
clampꢀonꢀI ꢀincreasesꢀuntilꢀitꢀreachesꢀtheꢀfull-scaleꢀ2.4Vꢀ  
TH  
withintheLTC3878.TheINTV pincansupplyupto50mAꢀ  
CC  
limitꢀafterꢀanꢀadditionalꢀdelayꢀofꢀ1.3s/µF.ꢀDuringꢀthisꢀtime,ꢀ  
RMSꢀandꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀwithꢀaꢀminimumꢀofꢀ  
1µFꢀlowꢀESRꢀtantalumꢀorꢀceramicꢀcapacitorꢀ(10V,ꢀX5Rꢀorꢀ  
X7R).Outputcapacitancegreaterthan10µFisdiscouraged.ꢀ  
Goodꢀbypassingꢀisꢀnecessaryꢀtoꢀsupplyꢀtheꢀhighꢀtransientꢀ  
currentsꢀrequiredꢀbyꢀtheꢀMOSFETꢀgateꢀdrivers.  
theꢀsoft-startꢀcurrentꢀlimitꢀisꢀsetꢀto:  
RUN/SS – 0.6V – 0.8V  
(
)
ILIMIT(SS) = ILIMIT  
2.4V – 0.8V  
3878fa  
ꢀꢄ  
LTC3878  
applicaTions inForMaTion  
RegulatorꢀoutputꢀcurrentꢀisꢀnegativeꢀwhenꢀI ꢀisꢀbetweenꢀ inputꢀvoltage,ꢀloadꢀcurrent,ꢀdriverꢀstrengthꢀandꢀMOSFETꢀ  
TH  
0Vand0.8VandpositivewhenI ꢀisbetween0.8Vandtheꢀ capacitance,ꢀamongꢀotherꢀfactors.ꢀTheꢀlossꢀisꢀsignificantꢀ  
TH  
maximumꢀfull-scaleꢀset-pointꢀofꢀ2.4V.ꢀInꢀnormalꢀoperatingꢀ atꢀinputꢀvoltagesꢀaboveꢀ20V.  
conditionstheRUN/SSpinwillcontinuetochargepositiveꢀ  
3.ꢀINTV ꢀcurrent.ꢀThisꢀisꢀtheꢀsumꢀofꢀtheꢀMOSFETꢀdriverꢀ  
CC  
untilꢀtheꢀvoltageꢀisꢀequalꢀtoꢀINTV .ꢀ  
CC  
andꢀcontrolꢀcurrents.  
INTV ꢀUndervoltageꢀLockout  
4.C ꢀloss.Theinputcapacitorhasthedifficultjoboflter-  
CC  
IN  
ingthelargeRMSinputcurrenttotheregulator.Itmusthaveꢀ  
WheneverINTV dropsbelowapproximately3.4V,theꢀ  
CC  
2
aꢀveryꢀlowꢀESRꢀtoꢀminimizeꢀtheꢀACꢀI Rꢀlossꢀandꢀsufficientꢀ  
deviceentersundervoltagelockout(UVLO).InaUVLOꢀ  
condition,ꢀtheꢀswitchingꢀoutputsꢀTGꢀandꢀBGꢀareꢀdisabled.ꢀ  
Atꢀtheꢀsameꢀtime,ꢀtheꢀRUN/SSꢀpinꢀisꢀpulledꢀdownꢀfromꢀ  
capacitanceꢀtoꢀpreventꢀtheꢀRMSꢀcurrentꢀfromꢀcausingꢀad-  
ditionalꢀupstreamꢀlossesꢀinꢀfusesꢀorꢀbatteries.  
INTV ꢀ toꢀ 0.8Vꢀ withꢀ aꢀ 3µAꢀ currentꢀ source.ꢀ Whenꢀ theꢀ Otherꢀlosses,ꢀwhichꢀincludeꢀtheꢀC ꢀESRꢀloss,ꢀbottomꢀ  
CC  
OUT  
INTV ꢀUVLOꢀconditionꢀisꢀremoved,ꢀRUN/SSꢀrampsꢀfromꢀ MOSFETreverserecoverylossandinductorcorelossꢀ  
CC  
0.8Vꢀandꢀbeginsꢀaꢀnormalꢀcurrentꢀlimitedꢀsoft-start.ꢀThisꢀ generallyꢀaccountꢀforꢀlessꢀthanꢀ2%ꢀadditionalꢀloss.  
featureꢀisꢀimportantꢀwhenꢀregulatorꢀstart-upꢀisꢀnotꢀiniti-  
Whenmakingadjustmentstoimproveefficiency,theinputꢀ  
atedꢀbyꢀapplyingꢀaꢀlogicꢀdriveꢀtoꢀRUN/SS.ꢀSoft-startꢀfromꢀ  
currentisthebestindicatorofchangesinefficiency.ꢀIfꢀyouꢀ  
INTV ꢀUVLOꢀreleaseꢀgreatlyꢀreducesꢀtheꢀpossibilityꢀforꢀ  
CC  
makeꢀaꢀchangeꢀandꢀtheꢀinputꢀcurrentꢀdecreases,ꢀthenꢀtheꢀ  
efficiencyhasincreased.Ifthereisnochangeininputꢀ  
currentꢀthereꢀisꢀnoꢀchangeꢀinꢀefficiency.  
start-upꢀoscillationsꢀcausedꢀbyꢀtheꢀregulatorꢀstartingꢀupꢀ  
atꢀINTV  
ꢀandꢀthenꢀshuttingꢀdownꢀatꢀINTV  
CC(UVLOR)  
dueꢀtoꢀinrushꢀcurrent.  
CC(UVLO)  
CheckingꢀTransientꢀResponse  
EfficiencyꢀConsiderations  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀ  
atꢀtheꢀloadꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀtakeꢀ  
severalꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀloadꢀcurrent.ꢀWhenꢀ  
Theꢀpercentꢀefficiencyꢀofꢀaꢀswitchingꢀregulatorꢀisꢀequalꢀtoꢀ  
theꢀoutputꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀ  
Itꢀisꢀoftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossesꢀtoꢀdetermineꢀ  
whatꢀisꢀlimitingꢀtheꢀefficiencyꢀandꢀwhichꢀchangeꢀwouldꢀ  
produceꢀtheꢀmostꢀimprovement.ꢀAlthoughꢀallꢀdissipativeꢀ  
elementsꢀinꢀtheꢀcircuitꢀproduceꢀlosses,ꢀfourꢀmainꢀsourcesꢀ  
accountꢀforꢀmostꢀofꢀtheꢀlossesꢀinꢀLTC3878ꢀcircuits.  
aꢀloadꢀstepꢀoccurs,ꢀV ꢀimmediatelyꢀshiftsꢀbyꢀanꢀamountꢀ  
OUT  
equalꢀtoꢀI  
ꢀ(ESR),ꢀwhereꢀESRꢀisꢀtheꢀeffectiveꢀseriesꢀ  
LOAD  
resistanceꢀofꢀC .ꢀI  
ꢀalsoꢀbeginsꢀtoꢀchargeꢀorꢀdis-  
OUT  
LOAD  
chargeC ,generatingafeedbackerrorsignalusedbytheꢀ  
OUT  
regulatorꢀtoꢀreturnꢀV ꢀtoꢀitsꢀsteady-stateꢀvalue.ꢀDuringꢀ  
OUT  
2
thisꢀrecoveryꢀtime,ꢀV ꢀcanꢀbeꢀmonitoredꢀforꢀovershootꢀ  
1.ꢀDCꢀI Rꢀlosses.ꢀTheseꢀariseꢀfromꢀtheꢀresistancesꢀofꢀtheꢀ  
OUT  
orꢀringingꢀthatꢀwouldꢀindicateꢀaꢀstabilityꢀproblem.ꢀTheꢀI ꢀ  
MOSFETs,inductorꢀandꢀPCꢀboardꢀtracesꢀandꢀcauseꢀtheꢀ  
efficiencyꢀtoꢀdropꢀatꢀhighꢀoutputꢀcurrents.ꢀInꢀcontinuousꢀ  
modetheaverageoutputcurrentowsthoughtheinductorꢀ  
L,ꢀbutꢀisꢀchoppedꢀbetweenꢀtheꢀtopꢀandꢀbottomꢀMOSFETs.ꢀ  
TH  
pinexternalcomponentsshownintheDesignExamplewillꢀ  
provideꢀadequateꢀcompensationꢀforꢀmostꢀapplications.ꢀ  
Aꢀroughꢀcompensationꢀcheckꢀcanꢀbeꢀmadeꢀbyꢀcalculatingꢀ  
IfthetwoMOSFETshaveapproximatelythesameR  
,ꢀ  
DS(ON)  
thegaincrossoverfrequency,f .g  
istheerrorꢀ  
GCO m(EA)  
thentheresistanceofoneMOSFETcansimplybysummedꢀ  
amplifierꢀtransconductance,ꢀR ꢀisꢀtheꢀcompensationꢀre-  
C
withꢀtheꢀresistancesꢀofꢀLꢀandꢀtheꢀboardꢀtracesꢀtoꢀobtainꢀ  
sistorꢀandꢀfeedbackꢀdividerꢀattenuationꢀisꢀassumedꢀtoꢀbeꢀ  
2
theDCI Rloss.Forexample,ifR  
L
=0.01Ωandꢀ  
DS(ON)  
0.8V/V .ꢀThisꢀequationꢀassumesꢀthatꢀnoꢀfeed-forwardꢀ  
OUT  
R ꢀ=ꢀ0.005Ω,ꢀtheꢀlossꢀwillꢀrangeꢀfromꢀ15mWꢀtoꢀ1.5Wꢀasꢀ  
theꢀoutputꢀcurrentꢀvariesꢀfromꢀ1Aꢀtoꢀ10A.  
compensationꢀisꢀusedꢀonꢀfeedbackꢀandꢀthatꢀC ꢀsetsꢀtheꢀ  
OUT  
dominantꢀoutputꢀpole.ꢀ  
2.ꢀTransitionꢀloss.ꢀThisꢀlossꢀarisesꢀfromꢀtheꢀbriefꢀamountꢀ  
ofꢀtimeꢀtheꢀtopꢀMOSFETꢀspendsꢀinꢀtheꢀsaturatedꢀregionꢀ  
duringꢀ switchꢀ nodeꢀ transitions.ꢀ Itꢀ dependsꢀ uponꢀ theꢀ  
ILIMIT  
1
0.8  
fGCO = gm(EA) RC •  
1.6 2 π COUT VOUT  
3878fa  
ꢀꢅ  
LTC3878  
applicaTions inForMaTion  
Asaruleofthumbthegaincrossoverfrequencyshouldbeꢀ Selectꢀtheꢀnearestꢀstandardꢀresistorꢀvalueꢀofꢀ432kꢀforꢀaꢀ  
lessꢀthanꢀ20%ꢀofꢀtheꢀswitchingꢀfrequency.ꢀForꢀaꢀdetailedꢀ nominalꢀoperatingꢀfrequencyꢀofꢀ396kHz.ꢀSetꢀtheꢀinductorꢀ  
explanationꢀofꢀswitchingꢀcontrolꢀloopꢀtheoryꢀseeꢀApplica-  
tionꢀNoteꢀ76.  
valueꢀtoꢀgiveꢀ35%ꢀrippleꢀcurrentꢀatꢀmaximumꢀV ꢀusingꢀ  
IN  
theꢀadjustedꢀoperatingꢀfrequency:  
1.2V  
1.2  
28  
HighꢀSwitchingꢀFrequencyꢀOperation  
L =  
1–  
= 0.55µH  
396kHz 0.3515A  
Specialꢀcareꢀshouldꢀbeꢀtakenꢀwhenꢀoperatingꢀatꢀswitchingꢀ  
frequenciesgreaterthan800kHz.Athighswitchingfrequen-  
ciesꢀthereꢀmayꢀbeꢀanꢀincreasedꢀsensitivityꢀtoꢀPCBꢀnoiseꢀ  
whichmayresultinoff-timevariationgreaterthannormal.ꢀ  
Thisꢀoff-timeꢀinstabilityꢀcanꢀbeꢀpreventedꢀinꢀseveralꢀways.ꢀ  
First,carefullyfollowtherecommendedlayouttechniques.ꢀ  
Second,ꢀuseꢀ2µFꢀorꢀmoreꢀofꢀX5RꢀorꢀX7Rꢀceramicꢀinputꢀ  
capacitanceꢀperꢀAmpsꢀofꢀloadꢀcurrent.ꢀThird,ꢀifꢀnecessary,ꢀ  
Selectꢀ0.56µHꢀwhichꢀisꢀtheꢀnearestꢀvalue.  
Theꢀresultingꢀmaximumꢀrippleꢀcurrentꢀis:  
1.2V  
396kHz 0.56µH  
1.2V  
28V  
IL =  
1–  
= 5.1A  
Chooseꢀ theꢀ synchronousꢀ bottomꢀ MOSFETꢀ switchꢀ andꢀ  
calculatetheV ꢀcurrentlimitset-point.Tocalculateꢀ  
increaseꢀtheꢀbottomꢀMOSFETꢀrippleꢀvoltageꢀtoꢀ30mV  
P-P  
ꢀtypicalꢀ  
RNG  
orꢀgreater.ꢀThisꢀrippleꢀvoltageꢀisꢀequalꢀtoꢀR  
DS(ON)  
V
andV ,theρτtermnormalizationfactor(unityꢀ  
RNG  
DS  
atꢀ25°Cꢀ•ꢀI  
.
P-Pꢀ  
atꢀ25°C)ꢀisꢀrequiredꢀtoꢀaccountꢀforꢀvariationꢀinꢀMOSFETꢀ  
on-resistancewithtemperature.ChoosinganRJK0330ꢀ  
DesignꢀExample  
Figureꢀ7ꢀisꢀaꢀpowerꢀsupplyꢀdesignꢀexampleꢀwithꢀtheꢀfol-  
lowingꢀspecifications:ꢀV ꢀ=ꢀ4.5Vꢀtoꢀ28Vꢀ(12Vꢀnominal),ꢀ  
(R  
ꢀ=ꢀ2.8mΩꢀ(nominal)ꢀ3.9mΩꢀ(maximum),ꢀV ꢀ=ꢀ  
4.5V,θ ꢀ=ꢀ40°C/W)ꢀyieldsꢀaꢀdrainꢀsourceꢀvoltageꢀof:  
DS(ON)  
GS  
JA  
IN  
ꢀ=ꢀ15Aꢀandꢀfꢀ=ꢀ400kHz.ꢀStartꢀ  
OUT(MAX)  
1
2
V
ꢀ=ꢀ1.2Vꢀ 5%,ꢀI  
V = I  
LIMIT  
I
(
3.9mΩ ρτ  
( )  
)
OUT  
DS  
RIPPLE  
byꢀcalculatingꢀtheꢀtimingꢀresistor,ꢀR :  
ON  
1.2V  
RON  
=
= 429k  
0.7V 400kHz 10pF  
V
IN  
4.5V TO 28V  
C
SS  
D
B
C
IN1  
+
C
IN2  
0.1µF  
CMDSH-3  
10µF  
50V  
s3  
100µF  
50V  
1
2
16  
15  
RUN/SS  
LTC3878  
PGOOD  
BOOST  
R1  
R2  
R
PG  
C
B
10.0k 80.6k  
100k  
0.22µF  
M1  
TG  
L1  
0.56µH  
RJK0305DPB  
V
OUT  
3
4
5
14  
13  
12  
V
SW  
PGND  
BG  
1.2V  
15A  
RNG  
C
C1  
R
220pF  
C
FCB  
C
OUT2  
C
OUT1  
12.1k  
+
M2  
47µF  
6.3V  
s2  
330µF  
2.5V  
s2  
I
TH  
RJK0330DPB  
C
VCC  
C
C2  
4.7µF  
33pF  
6
11  
SGND  
INV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
C
C
C
: UMK325BJ106MM s3  
10.0k  
IN1  
V
NC  
: SANYO 2R5TPE330M9 s2  
FB  
OUT1  
OUT2  
: MURATA GRM31CR60J476M s2  
R
R
ON  
FB2  
L1: VISHAY IHLP4040DZ-11 0.56µH  
5.11k 432k  
3878 F07  
Figureꢀ7.ꢀDesignꢀExample:ꢀ±.2V/±5Aꢀatꢀ400kHz  
3878fa  
ꢀꢆ  
LTC3878  
applicaTions inForMaTion  
V
ꢀsetsꢀcurrentꢀlimitꢀbyꢀfixingꢀtheꢀmaximumꢀpeakꢀV ꢀ  
SelectꢀC ꢀtoꢀgiveꢀanꢀRMSꢀcurrentꢀratingꢀgreaterꢀthanꢀ4Aꢀ  
RNG  
DS  
IN  
voltageꢀonꢀtheꢀbottomꢀMOSFETꢀswitch.ꢀAsꢀaꢀresult,ꢀtheꢀ  
averageꢀDCꢀcurrentꢀlimitꢀincludesꢀsignificantꢀtemperatureꢀ  
andꢀcomponentꢀvariability.ꢀDesignꢀtoꢀguaranteeꢀthatꢀtheꢀ  
averageDCcurrentlimitwillalwaysexceedtheratedoper-  
atingꢀoutputꢀcurrentꢀbyꢀassumingꢀworst-caseꢀcomponentꢀ  
toleranceꢀandꢀtemperature.ꢀ  
atꢀ85°C.ꢀTheꢀoutputꢀcapacitorꢀC  
ꢀisꢀchosenꢀforꢀaꢀlowꢀ  
OUT1  
ESRꢀofꢀ4.5mΩꢀtoꢀminimizeꢀoutputꢀvoltageꢀchangesꢀdueꢀtoꢀ  
inductorꢀrippleꢀcurrentꢀandꢀloadꢀsteps.ꢀTheꢀoutputꢀvoltageꢀ  
rippleꢀisꢀgivenꢀas:  
VOUT(RIPPLE) = ∆IL(MAX) ESR  
(
)
= 5.14.5m= 23mV  
Theworst-caseminimumINTV is5.15V.Thebottomꢀ  
CC  
MOSFETꢀworst-caseꢀR  
ꢀisꢀ3.9mΩꢀandꢀtheꢀjunctionꢀ  
DS(ON)  
However,ꢀ aꢀ 0Aꢀ toꢀ 10Aꢀ loadꢀ stepꢀ willꢀ causeꢀ anꢀ outputꢀ  
changeꢀofꢀupꢀto:  
temperatureꢀisꢀ80°Cꢀaboveꢀaꢀ70°Cꢀambientꢀwithꢀρ  
ꢀ=ꢀ  
150°C  
1.5.ꢀSetꢀT ꢀequalꢀtoꢀtheꢀminimumꢀspecificationꢀofꢀ15%ꢀ  
ON  
VOUT(STEP) = ∆ILOAD ESR  
(
)
lowꢀandꢀtheꢀinductorꢀ15%ꢀhigh.ꢀ  
=10A 4.5m= 45mV  
ByꢀsettingꢀI  
ꢀequalꢀtoꢀ15Aꢀweꢀgetꢀ79mVꢀforꢀpeakꢀV ꢀ  
LIMIT  
DS  
voltageꢀwhichꢀcorrespondsꢀtoꢀaꢀV ꢀequalꢀtoꢀ592mV:  
RNG  
Optionalꢀ2ꢀ×ꢀ47µFꢀceramicꢀoutputꢀcapacitorsꢀareꢀincludedꢀ  
toꢀminimizeꢀtheꢀeffectꢀofꢀESRꢀandꢀESLꢀinꢀtheꢀoutputꢀrippleꢀ  
andꢀtoꢀimproveꢀloadꢀstepꢀresponse.ꢀ  
1
2
0.85 3.9mΩ  
V = 15A – 5.1A •  
1.5  
DS  
5.15V  
1.15  
5.3V  
PCꢀBoardꢀLayoutꢀChecklist  
VRNG = 7.5VDS  
TheLTC3878PCboardlayoutcanbedesignedwithorꢀ  
withoutꢀaꢀgroundꢀplane.ꢀAꢀgroundꢀplaneꢀisꢀgenerallyꢀpre-  
ferredꢀbasedꢀonꢀperformanceꢀandꢀnoiseꢀconcerns.  
Verifyꢀ thatꢀ theꢀ calculatedꢀ nominalꢀ T ꢀ isꢀ lessꢀ thanꢀ theꢀ  
assumedꢀworst-caseꢀT ꢀinꢀtheꢀbottomꢀMOSFET:  
J
J
28V 1.2V  
Whenꢀusingꢀaꢀgroundꢀplane,ꢀuseꢀaꢀdedicatedꢀgroundꢀplaneꢀ  
layer.ꢀInꢀaddition,ꢀforꢀhighꢀcurrentꢀitꢀisꢀrecommendedꢀtoꢀ  
useꢀaꢀmultilayerꢀboardꢀtoꢀhelpꢀwithꢀheatꢀsinkingꢀpowerꢀ  
components.ꢀ  
2
PBOT  
=
15A 1.53.9m=1.25W  
(
)
28V  
TJ = 70°C+1.25W 40°C/W =120°C  
B
ecauseꢀ theꢀ topꢀ MOSFETꢀ isꢀ onꢀ forꢀ aꢀ shortꢀ time,ꢀ anꢀ  
lꢀ Theꢀgroundꢀplaneꢀlayerꢀshouldꢀhaveꢀnoꢀtracesꢀandꢀbeꢀ  
asꢀcloseꢀasꢀpossibleꢀtoꢀtheꢀroutingꢀlayerꢀconnectingꢀtheꢀ  
powerꢀMOSFET’s.  
RJK0305DPB(R  
=10mΩ(nominal)13mΩ(maxi-  
DS(ON)  
mum)ꢀ(C  
4.5V,V  
ꢀ=ꢀQ /10Vꢀ=ꢀ150pF,ꢀV  
ꢀ=ꢀ5V),ꢀV ꢀ=ꢀ  
MILLER  
MILLER  
GD  
BOOST GS  
=3V,θ =40°C/W)issufficient.Checkingitsꢀ  
JA  
lꢀ PlaceꢀLTC3878ꢀPinsꢀ9ꢀtoꢀ16ꢀfacingꢀtheꢀpowerꢀcompo-  
nents.ꢀKeepꢀcomponentsꢀconnectedꢀtoꢀPinꢀ1ꢀcloseꢀtoꢀ  
LTC3878ꢀ(noiseꢀsensitiveꢀcomponents).  
powerꢀdissipationꢀatꢀcurrentꢀlimitꢀwithꢀ=ꢀρ  
ꢀ=ꢀ1.4:  
100°C  
1.2V  
15A  
2
2   
2
PTOP  
=
15A 1.413m+ 28V  
(
)
(
)
28V  
150pF  
lꢀ PlaceꢀC ,ꢀC ,ꢀMOSFETs,ꢀD ꢀandꢀinductorꢀallꢀinꢀoneꢀ  
IN OUTꢀ  
B
2.51.2Ω  
5V 3V 3V  
compactꢀarea.ꢀItꢀmayꢀhelpꢀtoꢀhaveꢀsomeꢀcomponentsꢀ  
+
400kHz  
(
)
onꢀtheꢀbottomꢀsideꢀofꢀtheꢀboard.ꢀ  
= 0.18W+0.58W = 0.65W  
TJ = 70°C+0.76W 40°C/W =100°C  
lꢀ Useꢀanꢀimmediateꢀviaꢀtoꢀconnectꢀcomponentsꢀtoꢀtheꢀ  
groundplaneSGNDandPGNDofLTC3878.Useseveralꢀ  
largerꢀviasꢀforꢀpowerꢀcomponents.  
Theꢀ junctionꢀ temperaturesꢀ willꢀ beꢀ significantlyꢀ lessꢀ atꢀ  
nominalꢀ current,ꢀ butꢀ thisꢀ analysisꢀ showsꢀ thatꢀ carefulꢀ  
attentionꢀtoꢀheatꢀsinkingꢀwillꢀbeꢀnecessary.  
lꢀ Useꢀcompactꢀswitchꢀnodeꢀ(SW)ꢀplaneꢀtoꢀimproveꢀcool-  
ingꢀofꢀtheꢀMOSFETsꢀandꢀtoꢀkeepꢀEMIꢀdown.ꢀ  
3878fa  
ꢀꢇ  
LTC3878  
applicaTions inForMaTion  
lꢀ PlaceꢀM2ꢀasꢀcloseꢀtoꢀtheꢀcontrollerꢀasꢀpossible,ꢀkeepingꢀ  
lꢀ UseꢀplanesꢀforꢀV ꢀandꢀV ꢀtoꢀmaintainꢀgoodꢀvoltageꢀ  
IN  
OUT  
theꢀPGND,ꢀBGꢀandꢀSWꢀtracesꢀshort.  
filteringꢀandꢀtoꢀkeepꢀpowerꢀlossesꢀlow.ꢀ  
lꢀ KeepꢀtheꢀhighꢀdV/dTꢀSW,ꢀBOOSTꢀandꢀTGꢀnodesꢀawayꢀ  
lꢀ Floodallunusedareasonalllayerswithcopper.Floodingꢀ  
withꢀcopperꢀwillꢀreduceꢀtheꢀtemperatureꢀriseꢀofꢀpowerꢀ  
component.ꢀYouꢀcanꢀconnectꢀtheꢀcopperꢀareasꢀtoꢀanyꢀ  
fromꢀsensitiveꢀsmall-signalꢀnodes.ꢀ  
lꢀ Connectꢀ theꢀ inputꢀ capacitor(s),ꢀ C ,ꢀ closeꢀ toꢀ theꢀ  
IN  
DCꢀnet.ꢀ(V ,ꢀV ,ꢀGNDꢀorꢀtoꢀanyꢀotherꢀDCꢀrailꢀinꢀyourꢀ  
IN OUTꢀ  
powerMOSFETs.ThiscapacitorcarriestheMOSFETACꢀ  
system).  
current.ꢀ  
lꢀ PlacedecouplingcapacitorC nexttotheI ꢀandSGNDꢀ  
C2  
TH  
lꢀ ConnectꢀtheꢀINTV ꢀdecouplingꢀcapacitorꢀC ꢀcloselyꢀ  
CC  
VCC  
pinsꢀwithꢀshort,ꢀdirectꢀtraceꢀconnections.  
toꢀtheꢀINTV ꢀandꢀPGNDꢀpins.ꢀ  
CC  
Whenꢀlayingꢀoutꢀaꢀprintedꢀcircuitꢀboardꢀwithoutꢀaꢀgroundꢀ  
plane,usethefollowingchecklisttoensureproperoperationꢀ  
ofꢀtheꢀcontroller.ꢀTheseꢀitemsꢀareꢀillustratedꢀinꢀFigureꢀ7.  
lꢀ Connectꢀtheꢀtopꢀdriverꢀboostꢀcapacitor,ꢀC ,ꢀcloselyꢀtoꢀ  
B
theꢀBOOSTꢀandꢀSWꢀpins.  
lꢀ ConnectꢀtheꢀV ꢀpinꢀdecouplingꢀC ꢀcloselyꢀtoꢀtheꢀV ꢀ  
IN  
F
IN  
lꢀ Segregatethesignalandpowergrounds.Allsmall-signalꢀ  
componentsshouldreturntotheSGNDpinatonepoint.ꢀ  
SGNDꢀandꢀPGNDꢀshouldꢀbeꢀtiedꢀtogetherꢀunderneathꢀ  
theꢀICꢀandꢀthenꢀconnectꢀdirectlyꢀtoꢀtheꢀsourceꢀofꢀM2.ꢀ  
andꢀPGNDꢀpins.ꢀ  
C
C
B
SS  
L
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RUN/SS BOOST  
PGOOD  
TG  
SW  
D
B
V
+
RNG  
M1  
LTC3878  
FCB  
PGND  
C
C
IN  
C1  
V
IN  
R
C
M2  
I
BG  
TH  
C
VCC  
C
C2  
SGND  
INTV  
CC  
+
+
C
I
V
F
ON  
IN  
V
C
OUT  
OUT  
R1  
R2  
R
F
V
NC  
FB  
R
ON  
3878 F08  
BOLD LINES INDICATE HIGH CURRENT PATHS  
Figureꢀ8.ꢀLTC3878ꢀLayoutꢀDiagramꢀWithoutꢀGroundꢀPlane  
3878fa  
ꢀꢈ  
LTC3878  
Typical applicaTions  
4.5Vꢀtoꢀ±4VꢀInput,ꢀ±.2V/20AꢀOutputꢀatꢀ300kHz  
V
IN  
4.5V TO 14V  
C
SS  
D
B
C
IN1  
+
C
0.1µF  
IN2  
CMDSH-3  
10µF  
16V  
s2  
180µF  
16V  
1
2
16  
15  
RUN/SS  
BOOST  
TG  
R1  
R2  
R
PG  
C
B
LTC3878  
10.0k 57.6k  
100k  
0.22µF  
M1  
PGOOD  
L1  
0.44µH  
RJK0305DPB  
V
OUT  
3
4
14  
13  
V
RNG  
SW  
1.2V  
20A  
C
OUT1  
FCB  
PGND  
+
C
OUT2  
330µF  
2.5V  
s3  
C
C1  
330pF  
100µF  
6.3V  
s2  
R
C
18k  
5
6
12  
11  
M2  
I
TH  
BG  
RJK0330DPB  
C
VCC  
C
C2  
4.7µF  
100pF  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
C
C
C
: TDK C3225X5R1C106MT s2  
: SANYO 2R5TPE330M9 s3  
10.0k  
C
IN1  
OUT1  
OUT2  
R
F
F
V
NC  
FB  
0.1µF  
1Ω  
: MURATA GRM31CR60J107ME39 s2  
R
R
ON  
576k  
FB2  
L1: PULSE PA0513.441NLT  
5.11k  
3878 TA02  
4.5Vꢀtoꢀ24VꢀInput,ꢀ±.8V/±0AꢀOutputꢀatꢀ500kHz  
V
IN  
4.5V TO 24V  
C
SS  
D
B
+
C
56µF  
25V  
C
10µF  
25V  
IN2  
0.1µF  
IN1  
CMDSH-3  
1
16  
15  
RUN/SS  
BOOST  
TG  
R1  
R2  
R
PG  
C
B
LTC3878  
10.0k 95.3k  
100k  
0.22µF  
2
M1  
PGOOD  
L1  
0.8µH  
FDS8690  
V
OUT  
3
4
14  
13  
V
RNG  
SW  
1.8V  
10A  
FCB  
PGND  
C
C1  
1000pF  
R
C
C
OUT1  
330µF  
2.5V  
10k  
+
C
OUT2  
5
6
12  
11  
M2  
FDS8670  
I
TH  
BG  
100µF  
6.3V  
C
VCC  
C
C2  
4.7µF  
100pF  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
C
C
C
: TDK C3225X5R1E106MT  
: SANYO 2R5TPE330M9  
10.0k  
C
IN1  
OUT1  
OUT2  
R
F
F
V
NC  
FB  
0.1µF  
2.2Ω  
: MURATA GRM31CR60J107ME39  
R
R
ON  
FB2  
L1: SUMIDA CDEP105NP-0R8MC-50  
12.7k 511k  
3878 TA03  
3878fa  
ꢁ0  
LTC3878  
Typical applicaTions  
4.5Vꢀtoꢀ32VꢀInput,ꢀ±V/5AꢀOutputꢀatꢀ250kHz  
V
IN  
4.5V TO 32V  
C
SS  
D
B
+
C
22µF  
35V  
C
4.7µF  
50V  
IN2  
0.1µF  
IN1  
ZLLS1000  
1
2
16  
15  
RUN/SS  
BOOST  
TG  
R
C
PG  
B
LTC3878  
100k  
0.22µF  
M1  
PGOOD  
L1  
2.2µH  
BSC093N04LS  
V
OUT  
3
4
5
14  
13  
12  
V
SW  
PGND  
BG  
1V  
5A  
RNG  
R
C
FCB  
13k  
+
C
47µF  
6.3V  
C
OUT2  
M2  
OUT1  
330µF  
2.5V  
I
TH  
BSC093N04LS  
C
VCC  
C
C2  
C
4.7µF  
C1  
100pF  
1000pF  
6
11  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
C
C
C
: MURATA GRM32ER71H475K  
: SANYO 2R5TPE330M9  
10.0k  
C
IN1  
OUT1  
OUT2  
R
F
F
V
NC  
FB  
0.1µF  
2.2Ω  
: TDK C3216X5R0J476M  
R
R
ON  
FB2  
L1: WURTH 744311220  
2.55k 576k  
3878 TA04  
4.5Vꢀtoꢀ28VꢀInput,ꢀ2.5V/5AꢀOutputꢀatꢀ500kHz  
V
IN  
4.5V TO 28V  
C
SS  
D
B
+
C
C
4.7µF  
50V  
IN2  
0.1µF  
IN1  
CMDSH-3  
22µF  
1
2
16  
15  
RUN/SS  
BOOST  
TG  
35V  
R1  
R2  
R
PG  
C
B
LTC3878  
10.0k 80.6k  
100k  
0.22µF  
M1-1  
PGOOD  
L1  
2.2µH  
1/2 Si4816BDY  
V
OUT  
3
4
5
14  
13  
12  
V
RNG  
SW  
PGND  
BG  
2.5V  
5A  
C
C1  
R
1000pF  
C
FCB  
C
OUT  
8.2k  
M1-2  
1/2 Si4816BDY  
100µF  
I
TH  
C
6.3V  
VCC  
C
C2  
4.7µF  
s2  
100pF  
6
11  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
10.0k  
C
R
F
F
V
NC  
FB  
0.1µF  
C
C
: MURATA GRM32ER71H475K  
: MURATA GRM32ER60J107M  
2.2Ω  
IN1  
OUT  
R
R
ON  
715k  
FB2  
L1: WURTH 744311220  
21.5k  
3878 TA05  
3878fa  
ꢁꢀ  
LTC3878  
Typical applicaTions  
±3Vꢀtoꢀ32VꢀInput,ꢀ±2V/5AꢀOutputꢀatꢀ300kHz  
V
IN  
13V TO 32V  
C
SS  
D
B
+
+
C
22µF  
35V  
C
4.7µF  
50V  
IN2  
0.1µF  
IN1  
ZLLS1000  
1
2
16  
15  
RUN/SS  
BOOST  
TG  
R
C
PG  
B
LTC3878  
100k  
0.22µF  
M1  
PGOOD  
L1  
10µH  
BSC093N04LS  
V
OUT  
3
4
5
14  
13  
12  
V
SW  
PGND  
BG  
12V  
5A  
RNG  
R
C
FCB  
20k  
C
82µF  
16V  
OUT1  
M2  
I
TH  
BSC093N04LS  
C
VCC  
C
C2  
C
4.7µF  
C1  
100pF  
1000pF  
6
11  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
10.0k  
C
R
F
F
V
NC  
FB  
0.1µF  
2.2Ω  
C
C
: MURATA GRM32ER71H475K  
IN1  
R
R
ON  
FB2  
: SANYO 16SVPA82MAA  
OUT1  
140k 2.7M  
2.7M  
L1: IHLP5050FD01 10µH  
3878 TA06  
3878fa  
ꢁꢁ  
LTC3878  
Typical applicaTions  
Positive-to-NegativeꢀConverter,ꢀ–5V/5Aꢀatꢀ300kHz  
V
IN  
4.5V TO 20V  
C
SS  
D
B
+
+
C
82µF  
25V  
C
10µF  
25V  
IN2  
0.1µF  
IN1  
CMDSH-3  
V
I
IN OUT  
1
2
16  
15  
RUN/SS  
BOOST  
TG  
5V 5A  
12V 7.7A  
20V 9.1A  
C
B
LTC3878  
0.22µF  
M1  
PGOOD  
L1  
RJK0304DPB  
2.2µH  
3
4
5
14  
13  
12  
V
SW  
PGND  
BG  
RNG  
R
C
FCB  
C
C
OUT2  
OUT1  
+
15k  
M2  
120µF  
10µF  
10V  
s4  
I
TH  
RJK0304DPB  
6.3V  
C
VCC  
4.7µF  
C
C2  
C
s3  
C1  
100pF  
V
–5V  
5A  
OUT  
2200pF  
6
11  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
20.0k  
I
ON  
V
IN  
C
F
R
C
C
C
: TDK C3225X5R1E106MT  
F
IN1  
OUT1  
OUT2  
V
FB  
NC  
0.1µF  
2.2Ω  
: KEMET A700D127M006ATE015 s3  
: MURATA GRM31CR61A106KA01 s4  
R
R
ON  
FB2  
L1: IHLP5050EZ-01 2.2µH  
105k 2.4M  
3878 TA07  
3878fa  
ꢁꢂ  
LTC3878  
package DescripTion  
GNꢀPackage  
±6-LeadꢀPlasticꢀSSOPꢀ(Narrowꢀ.±50ꢀInch)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
s 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
3878fa  
ꢁꢃ  
LTC3878  
revision hisTory  
REV  
DATE  
07/10 Updatedꢀtitle  
UpdatedꢀFeatures  
DESCTRIPTION  
PAGEꢀNUMBER  
A
1
1
EditedꢀTypicalꢀApplication  
1
AddedꢀNoteꢀ4ꢀtoꢀOrderꢀInformationꢀsection  
AddedꢀlabelsꢀtoꢀG22ꢀandꢀG24ꢀinꢀTypicalꢀPerformanceꢀCharacteristics  
2
6
ModifiedꢀPinꢀ3ꢀV ꢀdescription  
7
RNG  
ModifiedꢀV ꢀdescription  
10  
RNG  
ModifiedꢀR ꢀequation  
DS(ON)  
10  
ModifiedꢀR ꢀdescriptionꢀinꢀApplicationsꢀInformation  
12  
ON  
EditedꢀFigureꢀ7  
17  
EditedꢀDesignꢀExampleꢀsection  
EditedꢀFigureꢀ8  
18  
19  
EditedꢀTypicalꢀApplications  
AddedꢀTypicalꢀApplication  
UpdatedꢀRelatedꢀParts  
20,ꢀ21,ꢀ22,ꢀ23  
26  
26  
3878fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢁꢄ  
LTC3878  
Typical applicaTion  
4.5Vꢀtoꢀ±4VꢀInput,ꢀ0.9V/25AꢀOutputꢀatꢀ300kHz  
V
IN  
4.5V TO 14V  
C
SS  
D
B
C
IN1  
+
C
IN2  
0.1µF  
CMDSH-3  
10µF  
16V  
s4  
180µF  
16V  
1
2
16  
RUN/SS  
PGOOD  
BOOST  
LTC3878  
R1  
R2  
R
PG  
C
B
10.0k 93.1k  
100k  
0.22µF  
15  
M1  
TG  
L1  
0.26µH  
SiR408DP  
V
OUT  
3
4
14  
13  
V
RNG  
SW  
0.9V  
25A  
FCB  
PGND  
C
C1  
680pF  
R
C
C
OUT2  
C
OUT1  
M2  
SiR892DP  
s2  
7.5k  
+
5
6
12  
11  
100µF  
6.3V  
s2  
330µF  
2.5V  
s3  
I
TH  
BG  
C
VCC  
C
C2  
4.7µF  
100pF  
SGND  
INTV  
CC  
7
8
10  
9
R
FB1  
I
V
IN  
ON  
20.0k  
C
R
F
C
C
C
: TDK C3225X5R1E106MT s4  
F
IN1  
V
NC  
FB  
0.1µF  
2.2Ω  
: SANYO 2R5TPE330M9 s3  
OUT1  
OUT2  
R
R
ON  
: MURATA GRM31CR60J107ME39 s2  
FB2  
2.49k 432k  
L1: PULSE PA0513.261NLT  
3878 TA08  
relaTeD parTs  
PARTꢀNUMBER  
DESCRIPTION  
COMMENTS  
LTC3879  
NoꢀR ꢀConstantꢀOn-TimeꢀSynchronousꢀStep-Downꢀꢀ  
VeryꢀFastꢀTransientꢀResponse,ꢀt  
ꢀ=ꢀ43ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
ON(MIN) IN  
SENSE  
DC/DCꢀController  
0.6Vꢀ≤ꢀV ꢀ≤ꢀ0.9V ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16  
OUT IN  
LTC3854  
SmallꢀFootprintꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ Fixedꢀ400kHzꢀOperatingꢀFrequencyꢀ4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
IN IN  
DC/DCꢀController  
0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀ2mmꢀ×ꢀ3mmꢀQFN-12  
OUT  
LTC3851Aꢀ  
LTC3851A-1  
NoꢀR ꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀꢀ  
SENSE  
IN  
DC/DCꢀController  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀꢀ  
IN  
OUT  
QFN-16,ꢀSSOP-16  
LTC3775  
HighꢀFrequencyꢀSynchronousꢀStep-DownꢀDC/DCꢀController FixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ1MHz,ꢀ4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
IN  
0.6Vꢀ≤ꢀV ꢀ≤ꢀ0.8V ,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16  
OUT  
IN  
LTC3850/LTC3850-1ꢀ Dualꢀ2-Phase,ꢀHighꢀEfficiencyꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ780kHz,ꢀꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ30V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V  
LTC3850-2  
DC/DCꢀControllers,ꢀR  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ  
SENSE  
IN  
OUT  
Tracking  
LTC3853  
TripleꢀOutput,ꢀMultiphaseꢀSynchronousꢀStep-DownꢀDC/DCꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀ  
Controller,ꢀR ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀTracking 4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀV ꢀUpꢀtoꢀ13.5V  
SENSE  
IN  
OUT  
LTC3857/LTC3857-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
4V≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀI ꢀ=ꢀ50µA,  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
IN  
OUT  
Q
LTC3868/LTC3868-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
4V≤ꢀV ꢀ≤ꢀ24V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ14V,ꢀI ꢀ=ꢀ170µA,  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
IN  
OUT  
Q
3878fa  
LT 0710 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢁꢅ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)ꢀ432-1900ꢀ ꢀFAX:ꢀ(408)ꢀ434-0507ꢀ ꢀwww.linear.com  

相关型号:

LTC3878IGN#PBF

LTC3878 - Fast, Wide Operating Range No RSENSE Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3879

Current Mode Synchronous Controller for Sub Milliohm DCR Sensing
Linear

LTC3880

550kHz, PolyPhase, High Efficiency, Synchronous Step-Down Switching Regulator
Linear

LTC3880

Octal Digital Power Supply Manager with EEPROM
Linear System

LTC3880

Dual 8A per Channel Low VIN DC/DC μModule Regulator
LINEAR_DIMENS

LTC3880-1

550kHz, PolyPhase, High Efficiency, Synchronous Step-Down Switching Regulator
Linear

LTC3880-1_15

Dual Output PolyPhase Step-Down DC/DC Controller with Digital Power System Management
Linear

LTC3880/

Dual, Fast, Accurate Step-Down DC/DC Controller with Dual Differential Output Sensing
Linear

LTC3880EUJ

3-Phase Step-Down DC/DC Controller with Power System Management
Linear

LTC3880EUJ#PBF

LTC3880 - Dual Output PolyPhase Step-Down DC/DC Controller with Digital Power System Management; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3880EUJ#TRPBF

LTC3880 - Dual Output PolyPhase Step-Down DC/DC Controller with Digital Power System Management; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3880EUJ-1#PBF

LTC3880 - Dual Output PolyPhase Step-Down DC/DC Controller with Digital Power System Management; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear