LTC6401IUD-8#PBF [Linear]

LTC6401-8 - 2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LTC6401IUD-8#PBF
型号: LTC6401IUD-8#PBF
厂家: Linear    Linear
描述:

LTC6401-8 - 2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

放大器
文件: 总16页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6401-8  
2.2GHz Low Noise, Low  
Distortion Differential ADC  
Driver for DC-140MHz  
FEATURES  
DESCRIPTION  
The LTC®6401-8 is a high-speed differential amplifier tar-  
geted at processing signals from DC to 140MHz. The part  
has been specifically designed to drive 12-, 14- and 16-bit  
ADCs with low noise and low distortion, but can also be  
used as a general-purpose broadband gain block.  
2.2GHz –3dB Bandwidth  
Fixed Gain of 2.5V/V (8dB)  
–92dBc IMD3 at 70MHz (Equivalent OIP3 = 50dBm)  
–80.5dBc IMD3 at 140MHz (Equivalent OIP3 = 44dBm)  
1nV/√Hz Internal Op Amp Noise  
12.1dB Noise Figure  
The LTC6401-8 is easy to use, with minimal support cir-  
cuitry required. The output common mode voltage is set  
using an external pin, independent of the inputs, which  
eliminates the need for transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 8dB (2.5V/V).  
Differential Inputs and Outputs  
400Ω Input Impedance  
2.85V to 3.5V Supply Voltage  
45mA Supply Current (135mW)  
1V to 1.6V Output Common Mode, Adjustable  
DC- or AC-Coupled Operation  
Max Differential Output Swing 4.6V  
The LTC6401-8 saves space and power compared to al-  
ternative solutions using IF gain blocks and transformers.  
The LTC6401-8 is packaged in a compact 16-lead 3mm ×  
3mm QFN package and operates over the –40°C to 85°C  
temperature range.  
P-P  
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
APPLICATIONS  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Differential ADC Driver  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
IF Sampling Receivers  
SAW Filter Interfacing  
TYPICAL APPLICATION  
3.3V  
3.3V  
Equivalent Output IP3 vs Frequency  
60  
(NOTE 7)  
C2  
0.1μF  
C1  
1000pF  
C
F2  
33pF  
50  
40  
+
V
C3  
0.1μF  
R
R
S3  
S1  
15Ω  
10Ω  
V
+
DD  
+OUT  
AIN  
AIN  
V
+IN  
IN  
30  
20  
10  
0
R1  
59.0Ω  
L1  
24nH  
C
C4  
0.1μF  
F1  
LTC6401-8  
–OUT  
LTC2208  
R
15Ω  
R
33pF  
S2  
S4  
10Ω  
–IN  
V
V
CM  
OCM  
R2  
C
F3  
33pF  
COILCRAFT  
0603CS  
27.4Ω  
LTC2208  
130Msps  
V
1.25V  
16-Bit ADC  
64018 TA01a  
0
20 40 60 80 100 120 140 160 180 200  
C5  
0.1μF  
R3  
100Ω  
FREQUENCY (MHz)  
64018 TA01b  
64018f  
1
LTC6401-8  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage (V – V )......................................3.6V  
CC  
EE  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
(Note 3) ............................................... –40°C to 85°C  
Specified Temperature Range  
(Note 4) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
16 15 14 13  
+
V
1
2
3
4
12 V  
V
11 ENABLE  
+
OCM  
+
17  
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6401CUD-8#PBF  
LTC6401IUD-8#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
16-Lead (3mm × 3mm) Plastic QFN 0°C to 70°C  
16-Lead (3mm × 3mm) Plastic QFN –40°C to 85°C  
LTC6401CUD-8#TRPBF  
LTC6401IUD-8#TRPBF  
LCCY  
LCCY  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
LTC6400 AND LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
IN  
(DIFFERENTIAL)  
I
CC  
(mA)  
(Ω)  
LTC6401-8  
LTC6401-20  
LTC6401-26  
LTC6400-20  
LTC6400-26  
8
2.5  
10  
20  
10  
20  
400  
200  
50  
45  
20  
26  
20  
26  
50  
45  
200  
50  
90  
85  
In addition to the LTC6401 family of amplifiers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the  
same low noise performance. The LTC6400 shows higher linearity especially at input frequency above 140MHz at the expense of higher supply current.  
Please refer to the separate LTC6400 data sheets for complete details. Other gain versions from 8dB to 14dB will follow.  
64018f  
2
LTC6401-8  
DC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic  
G
Gain  
V
V
= 400mV Differential  
= 400mV Differential  
7.5  
8
8.5  
dB  
mdB/°C  
mV  
DIFF  
IN  
TC  
Gain Temperature Drift  
–0.5  
89  
GAIN  
IN  
V
V
V
Output Swing Low  
Each Output, V = 1.6V Differential  
170  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
Output Swing High  
Each Output, V = 1.6V Differential  
2.3  
2.42  
4.6  
V
IN  
Maximum Differential Output Swing  
Output Current Drive  
1dB Compressed  
V
P-P  
I
V
> 2V  
10  
–4  
mA  
mV  
μV/°C  
V
OUT  
P-P,DIFF  
V
Input Offset Voltage  
Differential  
Differential  
4
1
OS  
TCV  
Input Offset Voltage Drift  
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
Input Capacitance (+IN, –IN)  
Output Resistance (+OUT, OUT)  
Filtered Output Resistance (+OUTF, OUTF)  
3
OS  
VRMIN  
VRMAX  
I
I
1.6  
V
Ω
R
Differential  
340  
400  
1
460  
INDIFF  
INDIFF  
C
Differential, Includes Parasitic  
Differential  
pF  
Ω
R
R
18  
85  
25  
32  
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Ω
Differential  
100  
2.7  
55  
115  
C
Filtered Output Capacitance (+OUTF, OUTF) Differential, Includes Parasitic  
Common Mode Rejection Ratio Input Common Mode Voltage 1.1V~1.4V  
Output Common Mode Voltage Control  
pF  
CMRR  
36  
dB  
G
Common Mode Gain  
V
OCM  
= 1V to 1.6V  
1
V/V  
CM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
Common Mode Offset Voltage  
V
OCM  
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
TCV  
Common Mode Offset Voltage Drift  
5
OSCM  
IV  
V
Input Current  
OCM  
3.6  
OCM  
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
4
μA  
μA  
1.4  
Power Supply  
V
Operating Supply Range  
Supply Current  
2.85  
36  
3
3.5  
60  
3
V
mA  
mA  
dB  
S
I
I
ENABLE = 0.8V, Input and Output Floating  
ENABLE = 2.4V, Input and Output Floating  
45  
S
Shutdown Supply Current  
0.8  
73.5  
SHDN  
+
PSRR  
Power Supply Rejection Ratio  
(Differential Outputs)  
V = 2.85V to 3.5V  
50  
64018f  
3
LTC6401-8  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.5dBBW  
0.1dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.22  
0.43  
0.22  
12.2  
3400  
2.3  
MAX  
UNITS  
GHz  
GHz  
GHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
1/f Noise Corner  
SR  
Slew Rate  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V Step (Note 6)  
t
t
t
t
1% Settling Time  
Overdrive Recovery Time  
Turn-On Time  
= 2V (Note 6)  
P-P  
S1%  
OVDR  
ON  
= 1.9V (Note 6)  
18  
ns  
P-P  
Within 10% of Final Values  
79  
ns  
Turn-Off Time  
I
Falls to 10% of Nominal  
CC  
193  
14  
ns  
OFF  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended at  
OCM  
MHz  
VOCM  
OCM  
P-P  
Output (Note 6)  
10MHz Input Signal  
HD2,10M/HD3,10M Second/Third Order Harmonic Distortion V  
V
= 2V , R = 200Ω  
–109/–88  
–118/–100  
–88  
dBc  
dBc  
dBc  
dBc  
dBm  
OUT  
OUT  
OUT  
OUT  
OUT  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,10M  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
V
V
V
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–93  
P-P  
L
OIP3,10M  
Equivalent Third-Order Output Intercept  
Point (f1 = 9.5MHz f2 = 10.5MHz)  
= 2V Composite, No R (Note 7)  
50.7  
P-P  
L
P1dB,10M  
NF10M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.8  
12.1  
3.2  
8
dBm  
dB  
L
Noise Figure  
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD2,70M/HD3,70M Second/Third Order Harmonic Distortion V  
V
= 2V , R = 200Ω  
–91/–72  
–100/–87  
–83  
dBc  
dBc  
dBc  
dBc  
dBm  
OUT  
OUT  
OUT  
OUT  
OUT  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,70M  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
V
V
V
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–92  
P-P  
L
OIP3,70M  
Equivalent Third-Order Output Intercept  
Point (f1 = 69.5MHz f2 = 70.5MHz)  
= 2V Composite, No R (Note 7)  
50  
P-P  
L
P1dB,70M  
NF70M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.3  
12.2  
3.2  
dBm  
dB  
L
Noise Figure  
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,70M  
7.9  
ON,70M  
64018f  
4
LTC6401-8  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
140MHz Input Signal  
HD2,140M/  
HD3,140M  
Second/Third Order Harmonic Distortion V  
V
= 2V , R = 200Ω  
–78/–59  
–87/–70  
–71  
dBc  
dBc  
dBc  
dBc  
dBm  
OUT  
OUT  
OUT  
OUT  
OUT  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,140M  
Third-Order Intermodulation  
V
V
V
= 2V Composite, R = 200Ω  
P-P L  
(f1 = 139.5MHz f2 = 140.5MHz)  
= 2V Composite, No R  
–80  
P-P  
L
OIP3,140M  
Equivalent Third-Order Output Intercept  
Point (f1 = 139.5MHz f2 = 140.5MHz)  
= 2V Composite, No R (Note 7)  
44.2  
P-P  
L
P1dB,140M  
NF140M  
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
18.7  
12.3  
3.1  
dBm  
dB  
L
Noise Figure  
R = 375Ω (Note 5)  
L
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
dBc  
IN,140M  
ON,140M  
7.9  
IMD3,130M/150M Third-Order Intermodulation  
(f1 = 130MHz f2 = 150MHz) Measure at  
170MHz  
V
= 2V Composite, R = 375Ω  
–75  
–67  
OUT  
P-P  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LTC6401I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
Note 3: The LTC6401C and LTC6401I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 6: Measured using Test Circuit B. R = 87.5Ω per output.  
L
Note 7: Since the LTC6401-8 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6401-8 with amplifiers that require 50Ω output load, the LTC6401-8  
Note 4: The LTC6401C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
output voltage swing driving a given R is converted to OIP3 and P as  
if it were driving a 50Ω load. Using this modified convention, 2V is by  
P-P  
L 1dB  
definition equal to 10dBm, regardless of actual R .  
L
TYPICAL PERFORMANCE CHARACTERISTICS  
S21 Phase and Group Delay vs  
Frequency  
Frequency Response  
Gain 0.1dB Flatness  
14  
12  
10  
8
1.0  
0.8  
0
–50  
0.7  
0.6  
0.5  
0.4  
0.3  
TEST CIRCUIT B  
TEST CIRCUIT B  
TEST CIRCUIT B  
0.6  
0.4  
6
0.2  
4
0
–100  
–150  
–200  
2
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
–2  
–4  
–6  
PHASE  
GROUP DELAY  
10  
100  
1000  
3000  
10  
100  
1000  
3000  
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64018 G01  
64018 G02  
64018 G03  
64018f  
5
LTC6401-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input and Output Reflection and  
Reverse Isolation vs Frequency  
Input and Output Impedance vs  
Frequency  
PSRR and CMRR vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
TEST CIRCUIT B  
PHASE  
PSRR  
IMPEDANCE MAGNITUDE  
60  
Z
IN  
S11  
S22  
40  
CMRR  
Z
20  
OUT  
0
–20  
–40  
–60  
–80  
–100  
Z
IN  
S12  
Z
OUT  
0
10  
100  
1000  
3000  
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64018 G04  
64018 G05  
64018 G06  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
Large Signal Transient Response  
1.35  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
18  
16  
14  
12  
10  
5
4
3
2
1
0
R
= 87.5Ω PER OUTPUT  
R = 87.5Ω PER OUTPUT  
L
TEST CIRCUIT B  
L
TEST CIRCUIT B  
1.30  
1.25  
1.20  
1.15  
+OUT  
–OUT  
EN  
+OUT  
–OUT  
NOISE FIGURE  
0
2
4
6
8
10  
0
4
8
12  
16  
20  
10  
100  
1000  
TIME (ns)  
TIME (ns)  
FREQUENCY (MHz)  
64018 G08  
64018 G09  
64018 G07  
1% Settling Time for 2V  
Output Step  
Overdrive Recovery Response  
Harmonic Distortion vs Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
–40  
–50  
4
3
R
= 87.5Ω PER OUTPUT  
DIFFERENTIAL INPUT  
L
+IN  
TEST CIRCUIT B  
V
= 2V  
OUT P-P  
4
3
2
–60  
2
1
1
0
–70  
–IN  
0
–1  
–2  
–3  
–4  
–5  
–6  
R
= 87.5Ω PER OUTPUT  
L
–80  
+OUT  
–1  
–2  
–3  
–4  
–5  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
L
–100  
–110  
HD3 NO R  
HD3 200Ω R  
L
–OUT  
TEST CIRCUIT B  
25  
0
1
2
3
4
5
0
20 40 60 80 100 120 140 160 180 200  
0
50  
75  
100  
125  
TIME (ns)  
FREQUENCY (MHz)  
TIME (ns)  
64018 G11  
64018 G12  
64018 G10  
64018f  
6
LTC6401-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Harmonic Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
OUT P-P  
SINGLE-ENDED INPUT  
V
= 2V COMPOSITE  
V = 2V COMPOSITE  
V
= 2V  
OUT  
P-P  
OUT  
P-P  
–60  
–60  
–60  
200Ω R  
L
200Ω R  
–70  
–70  
–70  
L
–80  
–80  
–80  
NO R  
L
NO R  
L
–90  
–90  
–90  
HD2 NO R  
L
HD2 200Ω R  
L
–100  
–110  
–100  
–110  
–100  
–110  
HD3 NO R  
HD3 200Ω R  
L
L
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64018 G13  
64018 G14  
64018 G15  
Equivalent Output 1dB  
Compression Point vs Frequency  
Equivalent Output Third Order  
Intercept Point vs Frequency  
20  
19  
18  
17  
16  
15  
60  
50  
40  
30  
20  
10  
0
DIFFERENTIAL INPUT  
R
= 375Ω  
L
TEST CIRCUIT A (NOTE 7)  
NO R  
L
200Ω R  
L
DIFFERENTIAL INPUT  
(NOTE 7)  
0
20 40 60 80 100 120 140 160 180 200  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64018 G16  
64018 G17  
Turn-On Time  
Turn-Off Time  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
R
L
= 87.5Ω PER OUTPUT  
I
CC  
+OUT  
–OUT  
–OUT  
+OUT  
I
CC  
ENABLE  
ENABLE  
400  
R
= 87.5Ω PER OUTPUT  
L
–0.5  
–10  
–0.5  
–10  
–100  
0
100  
200  
300  
500  
–100  
0
100  
200  
TIME (ns)  
300  
400  
500  
TIME (ns)  
64018 G18  
64018 G19  
64018f  
7
LTC6401-8  
PIN FUNCTIONS  
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage. Bypass each pin with 1000pF and 0.1μF capaci-  
tors as close to the pins as possible.  
+
–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins  
have 50Ω series resistors and a 2.7pF shunt capacitor.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
EE  
V
(Pin 2): This pin sets the output common mode  
and draws very low standby current while the internal op  
OCM  
voltage. A 0.1μF external bypass capacitor is recom-  
amp has high output impedance.  
mended.  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
V (Pins 4, 9, 12, 17): Negative Power Supply. All four  
pins must be connected to same voltage/ground.  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
have series resistors, R  
12.5Ω.  
OUT  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
connected to same voltage/ground as pins 4, 9, 12.  
BLOCK DIAGRAM  
+
V
ENABLE  
V
V
12  
11  
10  
9
BIAS CONTROL  
R
F
R
R
OUT  
G
+IN  
13  
+OUT  
500Ω  
200Ω  
12.5Ω  
8
7
R
FILT  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
C
FILT  
R
FILT  
2.7pF  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
200Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
64018 BD  
1
2
3
4
+
+
V
V
V
V
OCM  
64018f  
8
LTC6401-8  
APPLICATIONS INFORMATION  
Circuit Operation  
Input Impedance and Matching  
The LTC6401-8 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
ThedifferentialinputimpedanceoftheLTC6401-8is400Ω.  
Usually the differential inputs need to be terminated to a  
lower value impedance, e.g. 50Ω, in order to provide an  
impedancematchforthesource.Severalchoicesareavail-  
able. One approach is to use a differential shunt resistor  
(Figure 1). Another approach is to employ a wideband  
transformer and shunt resistor (Figure 2). Both methods  
provide a wideband match. The termination resistor or  
the transformer must be placed close to the input pins in  
order to minimize the reflection due to input mismatch.  
Alternatively, one could apply a narrowband impedance  
match at the inputs of the LTC6401-8 for frequency selec-  
tion and/or noise reduction.  
• Operation from DC to 2.2GHz –3dB bandwidth  
• Fixed gain of 2.5V/V (8dB)  
• Differential input impedance 400Ω  
• Differential output impedance 25Ω  
• Differential impedance of output filter 100Ω  
TheLTC6401-8iscomposedofafullydifferentialamplifier  
with on chip feedback and output common mode voltage  
control circuitry. Differential gain and input impedance  
are set by 200Ω/500Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
LTC6401-8  
500Ω  
25Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
+
57.6Ω  
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpassltersareeasilyimplementedwithjust  
a couple of external components. Moreover, they offer  
single-ended 50Ω matching in wideband applications and  
no external resistor is needed.  
50Ω  
2.7pF  
15 –IN  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
200Ω  
12.5Ω  
16 –IN  
–OUT  
64018 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
The LTC6401-8 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.6V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
Using Shunt Resistor  
LTC6401-8  
500Ω  
25Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
14 +IN  
+OUT  
8
7
1:4  
isautomaticallybiasedapproximately250mVaboveV  
IN+  
IN–  
OUT–  
OCM  
+OUTF  
V
IN  
and thus no external circuitry is needed for bias. The  
+
402Ω  
50Ω  
2.7pF  
LTC6401-8 provides an output common mode voltage  
15 –IN  
–OUTF  
6
5
OUT+  
500Ω  
set by V , which allows driving ADC directly without  
OCM  
25Ω  
200Ω  
12.5Ω  
external components such as transformer or AC coupling  
capacitors. The input signal can be either single-ended  
or differential with only minor difference in distortion  
performance.  
16 –IN  
–OUT  
64018 F02  
MINI CIRCUITS  
TCM4-19  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a Balun  
64018f  
9
LTC6401-8  
APPLICATIONS INFORMATION  
LTC6401-8  
+OUT  
Referring to Figure 3, LTC6401-8 can be easily configured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matching network while the other input is connected to  
thesamematchingnetworkandasourceresistor.Because  
the return ratios of the two feedback paths are equal, the  
two outputs have the same gain and thus symmetrical  
swing. In general, the single-ended input impedance and  
500Ω  
1/2 R  
200Ω  
12.5Ω  
50Ω  
1/2 R  
L
S
13 +IN  
8
7
IN+  
IN–  
OUT–  
+OUTF  
V
IN  
14 +IN  
15 –IN  
V
OUT  
+
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
1/2 R  
200Ω  
12.5Ω  
1/2 R  
L
S
16 –IN  
–OUT  
64018 F04  
terminationresistorR aredeterminedbythecombination  
T
Figure 4. Calculate Differential Gain  
of R , R and R . For example, when R is 50Ω, it is found  
S
G
F
S
that the single-ended input impedance is 322Ω and R is  
T
and noise is obvious when constant noise figure circle  
and constant gain circle are plotted within the input Smith  
Chart,basedonwhichuserscanchoosetheoptimalsource  
impedance for a given gain and noise requirement.  
59Ω in order to match to a 50Ω source impedance.  
R
LTC6401-8  
S
0.1μF  
500Ω  
50Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
V
IN  
+
R
T
Output Impedance Match and Filter  
IN+  
IN–  
OUT–  
59.0Ω  
+OUTF  
14 +IN  
15 –IN  
0.1μF  
The LTC6401-8 can drive an ADC directly without external  
output impedance matching. Alternatively, the differential  
output impedance of 25Ω can be made larger, e.g. 50Ω,  
by series resistors or LC network.  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
0.1μF  
200Ω  
12.5Ω  
16 –IN  
–OUT  
64018 F03  
27.4Ω  
The internal low pass filter outputs at +OUTF/–OUTF  
have a –3dB bandwidth of 590MHz. External capacitors  
can reduce the lowpass filter bandwidth as shown in  
Figure 5. A bandpass filter is easily implemented with  
Figure 3. Input Termination for Single-Ended 50Ω Input  
Impedance  
The LTC6401-8 is unconditionally stable, i.e. differential  
stability factor Kf>1 and stability measure B1>0. However,  
the overall differential gain is affected by both source  
impedance and load impedance as shown in Figure 4:  
LTC6401-8  
500Ω  
200Ω  
12.5Ω  
50Ω  
13 +IN  
+OUT  
8
7
8pF  
FILTERED OUTPUT  
IN+  
IN–  
OUT–  
+OUTF  
14 +IN  
15 –IN  
12pF  
(87.5MHz)  
VOUT  
RL  
RS + 400 25+RL  
50Ω  
1000  
2.7pF  
AV =  
=
–OUTF  
6
5
OUT+  
500Ω  
V
8pF  
IN  
200Ω  
12.5Ω  
16 –IN  
–OUT  
The noise performance of the LTC6401-8 also depends  
uponthesourceimpedanceandtermination. Forexample,  
an input 1:4 transformer in Figure 2 improves SNR by  
adding 6dB gain at the inputs. A trade-off between gain  
64018 F05  
Figure 5. LTC6401-8 Internal Filter Topology Modified for Low  
Filter Bandwidth (Three External Capacitors)  
64018f  
10  
LTC6401-8  
APPLICATIONS INFORMATION  
1.25V  
only a few components as shown in Figure 6. Three  
39pF capacitors and a 16nH inductor create a bandpass  
filter with 165MHz center frequency, –3dB frequencies at  
138MHz and 200MHz.  
0.1μF  
0.1μF  
0.1μF  
V
OCM  
+OUT  
+OUTF  
4.99Ω  
V
+
CM  
IF IN  
59.0Ω  
+IN  
AIN  
LTC6401-8  
LTC2208  
–OUTF  
39pF  
–IN  
ENABLE  
–OUT  
AIN  
LTC6401-8  
12.5Ω  
4.99Ω  
500Ω  
200Ω  
10Ω  
4.99Ω  
27.4Ω  
LTC2208 130Msps  
16-Bit ADC  
13 +IN  
+OUT  
8
7
8dB GAIN  
64018 F07  
50Ω  
IN+  
IN–  
OUT–  
+OUTF  
14 +IN  
15 –IN  
Figure 7. Single-Ended Input to LTC6401-8 and LTC2208  
16nH  
LTC2208  
1.7pF  
39pF  
50Ω  
OUT+  
500Ω  
–OUTF  
6
5
LTC6401-8 with single-ended input driving the LTC2208,  
whichisa16-bit,130MspsADC.Twoexternal5Ωresistors  
help eliminate potential resonance associated with bond  
wires of either the ADC input or the driver output. V  
of the LTC6401-8 is connected to V of the LTC2208 at  
1.25V. Alternatively, an input single-ended signal can be  
converted to differential signal via a balun and fed to the  
input of the LTC6401-8.  
200Ω  
12.5Ω  
10Ω  
4.99Ω  
16 –IN  
–OUT  
64018 F06  
39pF  
OCM  
Figure 6. LTC6401-8 Modified 165MHz for Bandpass Filtering  
(Three External Capacitors, One External Inductor)  
CM  
Output Common Mode Adjustment  
The LTC6401-8’s output common mode voltage is set  
Figure 8 summarizes the IMD3 performance of the whole  
system as shown in Figure 7.  
by the V  
pin, which is a high impedance input. The  
OCM  
output common mode voltage is capable of tracking V  
OCM  
control is  
in a range from 1V to 1.6V. Bandwidth of V  
–40  
OCM  
SINGLE-ENDED INPUT  
typically 14MHz, which is dominated by a low pass filter  
connected to the V pin and is aimed to reduce com-  
F
= 122.8Msps  
S
–50  
–60  
DRIVER V  
= 2V COMPOSITE  
OUT  
P-P  
OCM  
mon mode noise generation at the outputs. The internal  
common mode feedback loop has a –3dB bandwidth  
around 400MHz, allowing fast rejection of any common  
–70  
–80  
mode output voltage disturbance. The V  
pin should  
OCM  
–90  
be tied to a DC bias voltage with a 0.1μF bypass capaci-  
tor. When interfacing with 3V A/D converters such as the  
–100  
–110  
LT22xx families, the V  
pin can be connected to the  
OCM  
V
pin of the ADC.  
0
20 40 60 80 100 120 140 160 180 200  
CM  
FREQUENCY (MHz)  
64018 F08  
Driving A/D Converters  
Figure 8. IMD3 for the Combination of LTC6401-8 and LTC2208  
TheLTC6401-8hasbeenspecificallydesignedtointerface  
directlywithhighspeedA/Dconverters.Figure7showsthe  
64018f  
11  
LTC6401-8  
APPLICATIONS INFORMATION  
Test Circuits  
Due to the fully-differential design of the LTC6401 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6401 family.  
The silkscreen is shown in Figure 9. This circuit includes  
input and output transformers (baluns) for single-ended-  
to-differential conversion and impedance transformation,  
allowing direct hook-up to a 2-port network analyzer.  
There are also series resistors at the output to present  
the LTC6401 with a 375Ω differential load, optimizing  
distortionperformance. Duetotheinputandoutputtrans-  
formers, the –3dB bandwidth is reduced from 2.2GHz to  
approximately 1.65GHz.  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
Figure 9. Top Silkscreen for DC987B. Test Circuit A  
64018f  
12  
LTC6401-8  
TYPICAL APPLICATIONS  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0Ω  
12  
11  
10  
+
9
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
+OUTF  
–OUTF  
–OUT  
R6  
0Ω  
R12  
0Ω  
T2  
TCM 4:19  
1:4  
R8  
(1)  
C2  
0.1μF  
C4  
R4  
(2)  
T1  
(2)  
6
4
1
2
3
3
2
1
4
6
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6401-8  
R5  
(1)  
R11  
(1)  
SL3  
(2)  
J5  
–OUT  
0dB  
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
V
V
0.1μF  
OCM  
1
2
3
4
V
CC  
V
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4:19  
1:4  
T4  
TCM 4:19  
1:4  
R17  
R18  
0Ω  
0Ω  
6
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
6
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
-E  
SL = SIGNAL LEVEL  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
2dB  
TP3  
GND  
LTC6401CUD-8 200Ω 200Ω MINI-CIRCUITS TCM4-19 (1:4) 6dB  
8dB  
64018 TA02  
64018f  
13  
LTC6401-8  
TYPICAL APPLICATIONS  
Test Circuit B, 4-Port Analysis  
+
V
1000pF  
0.1μF  
+
V
V
ENABLE  
V
12  
G
11  
10  
9
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
+IN  
13  
+OUT  
37.4Ω  
200Ω  
12.5Ω  
PORT 1  
(50Ω)  
PORT 3  
(50Ω)  
8
7
R
FILT  
50Ω  
0.1μF  
0.1μF  
+OUTF  
+IN  
–IN  
IN+  
IN–  
OUT–  
14  
15  
1/2  
AGILENT  
E5O71A  
1/2  
AGILENT  
E5O71A  
C
FILT  
2.7pF  
R
50Ω  
FILT  
133Ω  
–OUTF  
–OUT  
6
5
OUT+  
R
R
G
200Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
64018 TA03  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
64018f  
14  
LTC6401-8  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
64018f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6401-8  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-20  
LTC6400-26  
LTC6401-20  
LTC6401-26  
LT6402-6  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
1.6GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 26dB, 45mA Supply Current, IMD3 = –72dBc at 140MHz  
V
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6404-1  
LTC6406  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, Distortion < –80dBc at 25MHz  
V
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Distortion < –80dBc at 25MHz  
V
600MHz Low Noise Differential ADC Driver  
e = 1.5nV/√Hz, Rail-to-Rail Outputs  
n
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1814  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
LT1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1817  
LT1818/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
LT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
LT6204 Op Amps  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6232  
LT6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6235  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
64018f  
LT 1207 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6401IUD-8-PBF

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401IUD-8-TRPBF

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6403-1

200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6403CUD-1#PBF

LTC6403-1 - 200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifier/Driver; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6403CUD-1-PBF

200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6403CUD-1-TRPBF

200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6403HUD-1#PBF

LTC6403-1 - 200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifier/Driver; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6403IUD-1#PBF

LTC6403-1 - 200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifier/Driver; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6403IUD-1#TRPBF

LTC6403-1 - 200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifier/Driver; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6403IUD-1-PBF

200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6403IUD-1-TRPBF

200MHz, Low Noise, Low Power Fully Differential Input/Output Amplifi er/Driver
Linear

LTC6404

600MHz, Low Noise, High Precision Fully Differential Input/Output Amplifi er/Driver
Linear