LTC694IS8 [Linear]

Microprocessor Supervisory Circuits; 微处理器监控电路
LTC694IS8
型号: LTC694IS8
厂家: Linear    Linear
描述:

Microprocessor Supervisory Circuits
微处理器监控电路

电源电路 电源管理电路 微处理器 监控
文件: 总16页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC690/ LTC691  
LTC694/ LTC695  
Mic ro p ro c e sso r  
Sup e rviso ry Circ uits  
U
FEATURES  
DESCRIPTIO  
The LTC®690 family provides complete power supply  
monitoringandbatterycontrolfunctions formicroproces-  
sor reset, battery back-up, CMOS RAM write protection,  
power failure warning and watchdog timing. A precise  
internal voltage reference and comparator circuit monitor  
thepowersupplyline. Whenanout-of-tolerancecondition  
occurs,theresetoutputs areforcedtoactivestates andthe  
chipenableoutputunconditionallywrite-protects external  
memory. In addition, the RESET output is guaranteed to  
UL Recognized  
Guaranteed Reset Assertion at V = 1V  
1.5mA Maximum Supply Current  
Fast (35ns Max) Onboard Gating of RAM Chip  
Enable Signals  
File # E145770  
®
CC  
SO-8 and S16 Packaging  
4.65V Precision Voltage Monitor  
Power OK/Reset Time Delay: 50ms, 200ms  
or Adjustable  
Minimum External Component Count  
1µA Maximum Standby Current  
Voltage Monitor for Power-Fail  
or Low-Battery Warning  
Thermal Limiting  
Performance Specified Over Temperature  
Superior Upgrade for MAX690 Family  
remain logic low even with V as low as 1V.  
CC  
The LTC690 family powers the active CMOS RAMs with a  
charge pumped NMOS power switch to achieve low drop-  
out and low supply current. When primary power is lost,  
auxiliarypower,connectedtothebatteryinputpin,powers  
the RAMs in standby through an efficient PMOS switch.  
For an early warning of impending power failure, the  
LTC690 family provides an internal comparator with a  
user-definedthreshold. Aninternalwatchdogtimeris also  
available, which forces the reset pins to active states when  
thewatchdoginputis nottoggledpriortoapresettime-out  
period.  
U
APPLICATIO S  
Critical µP Power Monitoring  
Intelligent Instruments  
Battery-Powered Computers and Controllers  
Automotive Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
RESET Output Voltage vs  
Supply Voltage  
5
LT®1086-5  
T
= 25°C  
A
V
IN  
7.5V  
5V  
EXTERNAL PULL-UP = 10µA  
= 0V  
POWER TO  
CMOS RAM POWER  
µP  
V
IN  
V
OUT  
V
CC  
V
OUT  
V
BATT  
+
+
4
3
0.1µF  
0.1µF  
LTC690/LTC691  
LTC694/LTC695  
V
BATT  
100µF  
10µF  
ADJ  
µP  
SYSTEM  
3V  
µP RESET  
µP NMI  
RESET  
PFO  
51k  
10k  
2
1
0
I/O LINE  
PFI  
WDI  
GND  
690 TA01  
0.1µF  
100Ω  
MICROPROCESSOR RESET, BATTERY BACK-UP, POWER FAILURE  
WARNING AND WATCHDOG TIMING ARE ALL IN A SINGLE CHIP  
FOR MICROPROCESSOR SYSTEMS  
0
1
2
3
4
5
SUPPLY VOLTAGE (V)  
690 TA02  
1
LTC690/ LTC691  
LTC694/ LTC695  
W W W  
U
ABSOLUTE AXI U RATI GS (Notes 1 and 2)  
Terminal Voltage  
V .................................................... 0.3V to 6.0V  
VOUT Output Current ................. Short-Circuit Protected  
Power Dissipation............................................. 500mW  
Operating Temperature Range  
CC  
VBATT ................................................ 0.3V to 6.0V  
All Other Inputs .................. 0.3V to (VOUT + 0.3V)  
LTC690/91/94/95C............................... 0°C to 70°C  
LTC690/91/94/95I ........................... 40°C to 85°C  
LTC690M ...................................... 55°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................ 300°C  
Input Current  
V .............................................................. 200mA  
CC  
VBATT ............................................................ 50mA  
GND .............................................................. 20mA  
W
U
/O  
PACKAGE RDER I FOR ATIO  
(Note 3)  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
1
2
RESET  
RESET  
WDO  
NUMBER  
16  
15  
14  
13  
BATT  
BATT  
V
V
OUT  
OUT  
V
V
3
4
5
6
7
8
CC  
CC  
LTC691CN  
LTC691IN  
LTC695CN  
LTC695IN  
LTC691CSW  
LTC691ISW  
LTC695CSW  
LTC695ISW  
GND  
BATT ON  
LOW LINE  
OSC IN  
GND  
BATT ON  
LOW LINE  
OSC IN  
CE IN  
12  
CE OUT  
11 WDI  
PFO  
PFO  
PFI  
10  
9
OSC SEL  
PFI  
OSC SEL  
SW PACKAGE  
16-LEAD WIDE PLASTIC SO  
N PACKAGE  
16-LEAD PDIP  
T
JMAX = 110°C, θJA = 130°C/W Conditions: PCB mount on  
FR4 Material, Still Air at 25°C, Copper Trace  
TJMAX = 110°C, θJA = 130°C/W  
LTC690CS8  
LTC690IS8  
LTC694CS8  
LTC694IS8  
TOP VIEW  
TOP VIEW  
LTC690CN8  
LTC690IN8  
LTC690MJ8  
LTC694CN8  
LTC694IN8  
V
V
OUT  
1
2
1
2
3
4
V
8
7
6
5
V
BATT  
8
7
6
5
OUT  
BATT  
V
RESET  
WDI  
V
RESET  
WDI  
CC  
CC  
GND  
PFI  
3
4
GND  
PFI  
PFO  
PFO  
S8 PART  
MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
J8 PACKAGE N8 PACKAGE  
8-LEAD CERDIP 8-LEAD PDIP  
690 694  
690I 694I  
T
JMAX = 110°C, θJA = 180°C/W Conditions: PCB Mount on  
T
JMAX = 110°C, θJA = 100°C/W (J8)  
FR4 Material, Still Air AT 25°C, Copper Trace  
TJMAX = 110°C, θJA = 130°C/W (N8)  
U
PRODUCT SELECTIO GUIDE  
CONDITIONAL  
WATCHDOG  
TIMER  
BATTERY  
BACK-UP  
POWER-FAIL  
WARNING  
RAM WRITE  
PROTECT  
PUSH-BUTTON  
BATTERY  
BACK-UP  
PINS  
8
RESET  
RESET  
LTC690  
LTC691  
LTC694  
LTC695  
LTC699  
LTC1232  
LTC1235  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16  
8
X
X
16  
8
8
X
X
16  
X
X
X
X
2
LTC690/ LTC691  
LTC694/ LTC695  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITONS  
MIN  
TYP  
MAX  
UNITS  
Battery Back-Up Switching  
Operating Voltage Range  
V
V
BATT  
4.75  
2.00  
5.50  
4.25  
V
V
CC  
V
OUT  
Output Voltage  
I
= 1mA  
V
V
CC  
– 0.05  
– 0.10  
V
– 0.005  
V – 0.005  
CC  
V
V
OUT  
CC  
CC  
I
= 50mA  
V
– 0.50  
V – 0.250  
CC  
V
V
OUT  
CC  
V
OUT  
in Battery Back-Up Mode  
I
= 250µA, V < V  
V
BATT  
– 0.1  
V
– 0.02  
OUT  
CC  
BATT  
BATT  
Supply Current (Exclude I  
)
I
50mA  
0.6  
0.6  
1.5  
2.5  
mA  
mA  
OUT  
OUT  
Supply Current in Battery Back-Up Mode  
V
= 0V, V  
= 2.8V  
0.04  
0.04  
1
5
µA  
µA  
CC  
BATT  
Battery Standby Current (+ = Discharge, – = Charge)  
5.5 > V > V  
+ 0.2V  
0.1  
–1.0  
+0.02  
+0.10  
µA  
µA  
CC  
BATT  
Battery Switchover Threshold, V – V  
Power Up  
Power Down  
70  
50  
mV  
mV  
CC  
BATT  
Battery Switchover Hysteresis  
20  
mV  
V
BATT ON Output Voltage (Note 4)  
I
= 3.2mA  
0.4  
25  
SINK  
BATT ON Output Short-Circuit Current (Note 4)  
BATT ON = V  
Sink Current  
35  
1
m
OUT  
BATT ON = 0V Source Current  
0.5  
µA  
Reset and Watchdog Timer  
Reset Voltage Threshold  
4.5  
4.4  
4.65  
4.65  
40  
4.75  
4.75  
V
V
LTC690M  
Reset Threshold Hysteresis  
mV  
Reset Active Time (LTC690/91) (Note 5)  
OSC SEL HIGH, V = 5V  
40  
35  
50  
50  
60  
70  
ms  
ms  
CC  
Reset Active Time (LTC694/95) (Note 5)  
OSC SEL HIGH, V = 5V  
160  
140  
200  
200  
240  
280  
ms  
ms  
CC  
Watchdog Time-Out Period, Internal Oscillator  
Long Period, V = 5V  
1.2  
1.0  
1.6  
1.6  
2.00  
2.25  
sec  
sec  
CC  
Short Period, V = 5V  
80  
70  
100  
100  
120  
140  
ms  
ms  
CC  
Watchdog Time-Out Period, External Clock (Note 6)  
Long Period  
Short Period  
4032  
960  
4097  
1025  
Clock  
Cycles  
Reset Active Time PSRR  
1
1
ms/V  
ms/V  
ns  
Watchdog Time-Out Period PSRR, Internal OSC  
Minimum WDI Input Pulse Width  
V = 0.4V, V = 3.5V  
200  
IL  
IH  
RESET Output Voltage at V = 1V  
I
= 10µA, V = 1V  
4
200  
0.4  
mV  
CC  
SINK  
CC  
RESET and LOW LINE Output Voltage (Note 4)  
I
= 1.6mA, V = 4.25V  
V
V
SINK  
CC  
I
= 1µA, V = 5V  
3.5  
3.5  
SOURCE  
CC  
RESET and WDO Output Voltage (Note 4)  
I
= 1.6mA, V = 5V  
0.4  
V
V
SINK  
CC  
I
= 1µA, V = 4.25V  
CC  
SOURCE  
3
LTC690/ LTC691  
LTC694/ LTC695  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITONS  
MIN  
TYP  
3
MAX  
UNITS  
µA  
RESET, RESET, WDO, LOW LINE  
Output Short-Circuit Current (Note 4)  
Output Source Current  
Output Sink Current  
1
25  
25  
mA  
V
WDI Input Threshold  
Logic Low  
Logic High  
0.8  
50  
3.5  
WDI Input Current  
WDI = V  
4
–8  
µA  
OUT  
WDI = 0V  
50  
Power-Fail Detector  
PFI Input Threshold  
V
CC  
= 5V  
1.25  
1.3  
0.3  
1.35  
V
mV/V  
nA  
PFI Input Threshold PSRR  
PFI Input Current  
±0.01  
±25  
PFO Output Voltage (Note 4)  
I
= 3.2mA  
0.4  
V
SINK  
I
= 1µA  
3.5  
1
SOURCE  
PFO Short-Circuit Source Current (Note 4)  
PFI = HIGH, PFO = 0V  
PFI = LOW, PFO = V  
3
25  
2
25  
µA  
mA  
µs  
OUT  
PFI Comparator Response Time (Falling)  
V = –20mV, V = 15mV  
IN OD  
PFI Comparator Response Time (Rising) (Note 4)  
V = 20mV, V = 15mV  
with 10kPull-Up  
40  
8
µs  
IN  
OD  
Chip Enable Gating  
CE IN Threshold  
V
V
IH  
0.8  
0.4  
V
IL  
2.0  
CE IN Pull-Up Current (Note 7)  
CE OUT Output Voltage  
3
µA  
I
= 3.2mA  
V
SINK  
I
= 3.0mA  
V
OUT  
– 1.50  
SOURCE  
I
= 1µA, V = 0V  
V
OUT  
– 0.05  
SOURCE  
CC  
CE Propagation Delay  
V
CC  
= 5V, C = 20pF  
20  
20  
35  
45  
ns  
L
CE OUT Output Short-Circuit Current  
Output Source Current  
Output Sink Current  
30  
35  
mA  
Oscillator  
OSC IN Input Current (Note 7)  
OSC SEL Input Pull-Up Current (Note 7)  
OSC IN Frequency Range  
±2  
µA  
µA  
5
OSC SEL = 0V  
0
250  
kHz  
kHz  
OSC IN Frequency with External Capacitor  
OSC SEL = 0V, C  
= 47pF  
4
OSC  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of device may be impaired.  
reset active time of 140ms (200ms typically). The reset active time of the  
LTC691 and LTC695 can be adjusted (see Table 2 in Applications  
Information section).  
Note 2: All voltage values are with respect to GND.  
Note 6: The external clock feeding into the circuit passes through the  
oscillator before clocking the watchdog timer (See Block Diagram).  
Variation in the time-out period is caused by phase errors which occur  
when the oscillator divides the external clock by 64. The resulting variation  
in the time-out period is 64 clocks plus one clock of jitter.  
Note 3: For military temperature range parts or for the LTC692 and  
LTC693, consult the factory.  
Note 4: The output pins of BATT ON, LOW LINE, PFO, WDO, RESET and  
RESET have weak internal pull-ups of typically 3µA. However, external  
pull-up resistors may be used when higher speed is required.  
Note 7: The input pins of CE IN, OSC IN and OSC SEL have weak internal  
pullups which pull to the supply when the input pins are floating.  
Note 5: The LTC690 and LTC691 have minimum reset active time of 35ms  
(50ms typically) while the LTC694 and LTC695 have longer minimum  
4
LTC690/ LTC691  
LTC694/ LTC695  
W
BLOCK DIAGRA  
M2  
V
V
BATT  
OUT  
M1  
V
CC  
CHARGE  
PUMP  
BATT ON  
C2  
+
LOW LINE  
+
C1  
CE OUT  
1.3V  
GND  
CE IN  
PFI  
C3  
PFO  
+
RESET  
RESET  
OSC IN  
RESET PULSE  
GENERATOR  
OSC  
OSC SEL  
WATCHDOG  
TIMER  
WDO  
TRANSITION  
DETECTOR  
WDI  
690 BD  
U U  
U
PI FU CTIO S  
V : 5V Supply Input. The VCC pin should be bypassed  
CC  
GND: Ground pin.  
with a 0.1µF capacitor.  
BATT ON: Battery On Logic Output from Comparator C2.  
VOUT:Voltage Output for Backed Up Memory. Bypass with  
a capacitor of 0.1µF or greater. During normal operation,  
VOUT obtains power from VCC through an NMOS power  
switch,M1,whichcandeliverupto50mAandhas atypical  
BATT ON goes low when VOUT is internally connected to  
V .Theoutputtypicallysinks 35mAandcanprovidebase  
CC  
drive for an external PNP transistor to increase the output  
current above the 50mA rating of VOUT. BATT ON goes  
on resistance of 5. When V is lower than VBATT, VOUT high when VOUT is internally switched to V  
.
CC  
BATT  
is internally switched to VBATT. If VOUT and VBATT are not  
PFI: Power Failure Input. PFI is the noninverting input to  
the power-fail comparator, C3. The inverting input is  
internallyconnectedtoa1.3Vreference. Thepowerfailure  
used, connect VOUT to V .  
CC  
V
BATT:Back-UpBatteryInput.WhenV falls belowV  
,
CC  
BATT  
auxiliary power, connected to VBATT, is delivered to VOUT output remains high when PFI is above 1.3V and goes low  
through PMOS switch, M2. If back-up battery or auxiliary  
power is not used, VBATT should be connected to GND.  
when PFI is below 1.3V. Connect PFI to GND or VOUT when  
C3 is not used.  
5
LTC690/ LTC691  
LTC694/ LTC695  
U U  
U
PI FU CTIO S  
PFO: Power Failure Output from C3. PFO remains high  
when PFI is above 1.3V and goes low when PFI is below  
WDO: Watchdog Logic Output. When the watchdog input  
remains either high or low for longer than the watchdog  
time-outperiod,WDOgoes low.WDOis sethighwhenever  
thereis atransitionontheWDIpin, orLOWLINEgoes low.  
The watchdog timer can be disabled by floating WDI (see  
Figure 11).  
1.3V. When V is lower than VBATT, C3 is shut down and  
CC  
PFO is forced low.  
RESET: Logic Output for µP Reset Control. Whenever V  
CC  
falls below either the reset voltage threshold (4.65V,  
typically) or VBATT, RESET goes active low. After V  
CE IN: Logic input to the Chip Enable gating circuit. CE IN  
can be derived from microprocessors address line and/or  
decoder output. See Applications Information section and  
Figure 5 for additional information.  
CC  
returns to 5V, reset pulse generator forces RESET to  
remain active low for a minimum of 35ms for the LTC690  
/LTC691 (140ms for the LTC694/LTC695). When the  
watchdog timer is enabled but not serviced prior to a  
preset time-out period, reset pulse generator also forces  
RESET to active low for a minimum of 35ms for the  
LTC690/LTC691 (140ms for the LTC694/5) for every  
preset time-out period (see Figure 11). The reset active  
time is adjustable on the LTC691/LTC695. An external  
push-button reset can be used in connection with the  
RESET output. See Push-Button Reset in Applications  
Information section.  
CE OUT: Logic Output on the Chip Enable Gating Circuit.  
When V is above the reset voltage threshold, CE OUT is  
CC  
a buffered replica of CE IN. When V is below the reset  
CC  
voltage threshold CE OUT is forced high (see Figure 5).  
OSC SEL: Oscillator Selection Input. When OSC SEL is  
high or floating, the internal oscillator sets the reset active  
timeandwatchdogtime-outperiod. ForcingOSCSELlow,  
allows OSC IN be driven from an external clock signal or  
external capacitor be connected between OSC IN and  
GND.  
RESET: RESET is an active high logic ouput. It is the  
inverse of RESET.  
OSC IN: Oscillator Input. OSC IN can be driven by an  
externalclocksignalorexternalcapacitorcanbeconnected  
between OSC IN and GND when OSC SEL is forced low. In  
this configuration the nominal reset active time and  
watchdog time-out period are determined by the number  
ofclocks orsetbytheformula(seeApplications Information  
section). When OSC SEL is high or floating, the internal  
oscillator is enabled and the reset active time is fixed at  
50ms typical for the LTC691 and 200ms typical for the  
LTC695. OSC IN selects between the 1.6 seconds and  
100ms typical watchdog time-out periods. In both cases,  
thetime-outperiodimmediatelyafteraresetis 1.6seconds  
typical.  
LOW LINE: Logic Output from Comparator C1. LOW LINE  
indicates a low line condition at the V input. When V  
CC  
CC  
falls below the reset voltage threshold (4.65V typically),  
LOW LINE goes low. As soon as V rises above the reset  
CC  
voltage threshold, LOW LINE returns high (see Figure 1).  
LOW LINE goes low when V drops below VBATT (see  
CC  
Table 1).  
WDI: Watchdog Input, WDI, is a three level input. Driving  
WDI either high or low for longer than the watchdog time-  
outperiod,forces bothRESETandWDOlow.FloatingWDI  
disables the watchdog timer. The timer resets itself with  
each transition of the watchdog input (see Figure 11).  
6
LTC690/ LTC691  
LTC694/ LTC695  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Power Failure Input Threshold  
vs Temperature  
VOUT vs IOUT  
VOUT vs IOUT  
2.80  
2.78  
2.76  
2.74  
2.72  
1.308  
1.306  
5.00  
V
= 5V  
= 2.8V  
V
= 0V  
= 2.8V  
V
CC  
= 5V  
CC  
CC  
V
V
BATT  
BATT  
T
= 25°  
C
T = 25°C  
A
A
4.95  
4.90  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
SLOPE = 125Ω  
SLOPE = 5Ω  
4.85  
4.80  
4.75  
0
100  
200  
300  
400  
500  
50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
0
10  
20  
30  
40  
50  
LOAD CURRENT (µA)  
LOAD CURRENT (mA)  
690 G02  
690 G03  
690 G01  
Reset Active Time  
vs Temperature LTC690-1  
Reset Active Time  
vs Temperature LTC694-5  
Reset Voltage Threshold  
vs Temperature  
4.66  
58  
56  
54  
52  
232  
224  
216  
208  
V
= 5V  
V
= 5V  
CC  
CC  
4.65  
4.64  
4.63  
4.62  
50  
48  
46  
200  
192  
184  
4.61  
4.60  
50  
TEMPERATURE (°C)  
100 125  
50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
50 –25  
0
25  
75  
50  
25  
75  
–25  
0
690 G06  
690 G04  
690 G05  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator Response  
Time with Pull-Up Resistor  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 5V  
= 25°C  
V
= 5V  
V
T
= 5V  
= 25°C  
CC  
CC  
CC  
A
T
T
= 25  
˚C  
A
A
V
+
PFI  
PFO  
V
30pF  
+
PFO  
1.3V  
PFI  
5V  
10k  
30pF  
1.3V  
V
+
PFI  
PFO  
30pF  
1.3V  
1.305V  
1.285V  
1.315V  
1.295V  
1.315V  
1.295V  
V
= 20mV STEP  
V
= 20mV STEP  
V
= 20mV STEP  
6
10  
PFI  
PFI  
PFI  
0
1
2
3
4
5
7
8
6
0
60  
140  
0
14  
12 16 18  
120  
160 180  
20 40  
80 100  
2
4
8
TIME (µs)  
TIME (µs)  
TIME (µs)  
690 G07  
690 G08  
690 G09  
7
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Microprocessor Reset  
the reset voltage threshold, LOW LINE goes low. LOW  
LINE returns high as soon as VCC rises above the reset  
voltage threshold.  
The LTC690 family uses a bandgap voltage reference and  
a precision voltage comparator C1 to monitor the 5V  
supply input on V (see Block Diagram). When V falls  
below the reset voltage threshold, the RESET output is  
forced to active low state. The reset voltage threshold  
CC  
CC  
Battery Switchover  
The battery switchover circuit compares V to the V  
input, and connects VOUT to whichever is higher. When  
CC  
BATT  
accounts for a 5% variation on V , so the RESET output  
CC  
becomes active low when VCC falls below 4.75V (4.65V  
typical). On power-up, the RESET signal is held active low  
for a minimum of 35ms for the LTC690/LTC691 (140ms  
for the LTC694/LTC695) after reset voltage threshold is  
reached to allow the power supply and microprocessor to  
stabilize.Theresetactivetimeis adjustableontheLTC691/  
LTC695. On power-down, the RESET signal remains ac-  
V
CC rises to 70mV above VBATT, the battery switchover  
comparator, C2, connects VOUT to V through a charge  
pumped NMOS power switch, M1. When V falls to  
50mV above VBATT, C2 connects VOUT to VBATT through a  
PMOS switch, M2. C2 has typically 20mV of hysteresis to  
prevent spurious switching when V remains nearly  
CC  
CC  
CC  
equal to VBATT. The response time of C2 is approximately  
20µs.  
tive low even with V as low as 1V. This capability helps  
CC  
hold the microprocessor in stable shutdown condition.  
Figure 1 shows the timing diagram of the RESET signal.  
Duringnormaloperation,theLTC690familyuses acharge  
pumped NMOS power switch to achieve low dropout and  
low supply current. This power switch can deliver up to  
The precision voltage comparator, C1, typically has 40mV  
of hysteresis which ensures that glitches at V pin do not  
CC  
50mA to VOUT from V and has a typical on resistance of  
CC  
activate the RESET output. Response time is typically  
10µs.Tohelppreventmistriggeringduetotransientloads,  
5. The VOUT pin should be bypassed with a capacitor of  
0.1µF or greater to ensure stability. Use of a larger bypass  
capacitor is advantageous for supplying current to heavy  
transient loads.  
V pinshouldbebypassedwitha0.1µFcapacitorwiththe  
CC  
leads trimmed as short as possible.  
The LTC691 and LTC695 have two additional outputs:  
RESET and LOW LINE. RESET is an active high output and  
is the inverse of RESET. LOW LINE is the output of the  
precision voltage comparator C1. When VCC falls below  
When operating currents larger than 50mA are required  
from VOUT, or a lower dropout (VCC-VOUT voltage differen-  
tial) is desired, the LTC691 and LTC695 should be used.  
These products provide BATT ON output to drive the base  
V2  
V2  
V1  
V1  
V1 = RESET VOLTAGE THRESHOLD  
V
CC  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
RESET  
t
1
t
1
t
= RESET ACTIVE TIME  
1
LOW LINE  
690 F01  
Figure 1. Reset Active Time  
8
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
ofexternalPNPtransistor(Figure2). Ifhighercurrents are  
needed with the LTC690 and LTC694, a high current  
size double layer capacitors, can be used for short term  
memory back-up instead of a battery. The charging resis-  
tor for both capacitors and rechargeable batteries should  
be connected to VOUT since this eliminates the discharge  
Schottky diode can be connected from the V pin to the  
CC  
VOUT pin to supply the extra current.  
path that exists when the resistor is connected to V  
(Figure 3).  
CC  
ANY PNP POWER TRANSISTOR  
V
– V  
BATT  
R
OUT  
5
I =  
BATT ON  
3
1
2
5V  
0.1µF  
V
OUT  
V
CC  
R
LTC691  
LTC695  
0.1µF  
5V  
0.1µF  
V
V
CC  
OUT  
V
BATT  
0.1µF  
LTC690  
LTC691  
LTC694  
LTC695  
GND  
4
3V  
690 F02  
V
BATT  
GND  
3V  
Figure 2. Using BATT ON to Drive External PNP Transistor  
690 F03  
The LTC690 family is protected for safe area operation  
with short-circuit limit. Output current is limited to ap-  
proximately 200mA. If the device is overloaded for long  
period of time, thermal shutdown turns the power switch  
off until the device cools down. The threshhold tempera-  
ture for thermal shutdown is approximately 155°C with  
about 10°C of hysteresis which prevents the device from  
oscillating in and out of shutdown.  
Figure 3. Charging External Battery Through V  
OUT  
Replacing the Back-Up Battery  
When changing the back-up battery with system power  
on, spurious resets can occur while battery is removed  
due to battery standby current. Although battery standby  
current is only a tiny leakage current, it can still charge up  
the stray capacitance on the VBATT pin. The oscillation  
cycle is as follows: When VBATT reaches within 50mV of  
V , the LTC690 switches to battery back-up. VOUT pulls  
BATT low and the device goes back to normal operation.  
The leakage current then charges up the VBATT pin again  
and the cycle repeats.  
The PNP switch used in competitive devices was not  
chosen for the internal power switch because it injects  
unwanted current into the substrate. This current is col-  
lected by the VBATT pin in competitive devices and adds to  
the charging current of the battery which can damage  
lithiumbatteries.TheLTC690familyuses achargepumped  
NMOS power switch to eliminate unwanted charging  
current while achieving low dropout and low supply cur-  
rent. Since no current goes to the substrate, the current  
collected by VBATT pin is strictly junction leakage.  
CC  
V
If spurious resets during battery replacement pose no  
problems, then no action is required. Otherwise, a resistor  
fromVBATT toGNDwillholdthepinlowwhilechangingthe  
battery. For example, the battery standby current is 1µA  
maximum over temperature and the external resistor  
A 125PMOS switch connects the VBATT input to VOUT in  
battery back-up mode. The switch is designed for very low  
dropoutvoltage(input-to-outputdifferential). This feature  
is advantageous for low current applications such as  
batteryback-upinCMOSRAMandotherlowpowerCMOS  
circuitry. The supply current in battery back-up mode is  
1µA maximum.  
required to hold VBATT below V is:  
CC  
V – 50mV  
CC  
R ≤  
1µA  
With VCC = 4.5V, a 4.3M resistor will work. With a 3V  
battery, this resistorwilldrawonly0.7µAfromthebattery,  
which is negligible in most cases.  
The operating voltage at the VBATT pin ranges from 2.0V to  
4.25V. Highvaluecapacitors, suchas electrolyticorfarad-  
9
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Ifbatteryconnections aremadethroughlongwires, a10Ω  
to 100series resistor and a 0.1µF capacitor are recom-  
OUT is an alternative signal to drive the CE, CS, or Write  
input of battery-backed up CMOS RAM. CE OUT can also  
be used to drive the Store or Write input of an EEPROM,  
EAROM or NOVRAM to achieve similar protection. Figure  
5 shows the timing diagram of CE IN and CE OUT.  
mended to prevent any overshoot beyond V due to the  
CC  
lead inductance (Figure 4).  
10Ω  
V
BATT  
CE IN can be derived from the microprocessors address  
decoder output. Figure 6 shows a typical nonvolatile  
CMOS RAM application.  
LTC690  
LTC691  
LTC694  
LTC695  
0.1µF  
4.3M  
GND  
Memory protection can also be achieved with the LTC690  
and LTC694 by using RESET as shown in Figure 7.  
690 F04  
Figure 4. 10/0.1µF Combination Eliminates Inductive  
Overshoot and Prevents Spurious Resets During Battery  
Replacement  
Table 1. Input and Output Status in Battery Back-Up Mode  
SIGNAL  
STATUS  
C2 monitors V for active switchover.  
V
CC  
CC  
V
V
is connected to V  
through an internal PMOS switch.  
OUT  
OUT  
BATT  
Table1shows thestateofeachpinduringbatteryback-up.  
When the battery switchover section is not used, connect  
V
BATT  
The supply current is 1µA maximum.  
BATT ON Logic high. The open-circuit output voltage is equal to V  
.
OUT  
VBATT to GND and VOUT to VCC.  
PFI  
Power failure input is ignored.  
Logic low  
PFO  
Memory Protection  
RESET  
RESET  
Logic low  
The LTC691 and LTC695 include memory protection  
circuitry that ensures the integrity of the data in memory  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
LOW LINE Logic low  
by preventing write operations when V is at invalid level.  
Two additional pins, CE IN and CE OUT, control the Chip  
WDI  
Watchdog input is ignored.  
Logic high. The open-circuit output voltage is equal to V  
CC  
WDO  
.
.
OUT  
Enable or Write inputs of CMOS RAM. When V is 5V, CE  
CE IN  
CE OUT  
OSC IN  
Chip Enable Input is ignored.  
CC  
Logic high. The open-circuit output voltage is equal to V  
OUT follows CE IN with a typical propagation delay of  
OUT  
OSC IN is ignored.  
20ns. When V falls below the reset voltage threshold or  
CC  
OSC SEL OSC SEL is ignored.  
VBATT, CE OUT is forced high, independent of CE IN. CE  
V2  
V
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
CC  
V1  
CE IN  
V
= V  
BATT  
OUT  
CE OUT  
V
= V  
OUT  
BATT  
690 F05  
Figure 5. Timing Diagram for CE IN and CE OUT  
10  
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Power-Fail Warning  
5V  
V
V
V
CC  
CC  
OUT  
+
0.1µF  
0.1µF  
LTC691  
LTC695  
62512  
RAM  
10µF  
The LTC690 family generates a Power Failure Output  
(PFO) for early warning of failure in the microprocessor's  
power supply. This is accomplished by comparing the  
Power Failure Input (PFI) with an internal 1.3V reference.  
PFO goes low when the voltage at the PFI pin is less than  
1.3V. Typically PFI is driven by an external voltage divider  
(R1 and R2 in Figures 8 and 9) which senses either an  
unregulatedDCinputoraregulated5Voutput.Thevoltage  
divider ratio can be chosen such that the voltage at the PFI  
pin falls below 1.3V several milliseconds before the 5V  
supply falls below the maximum reset voltage threshold  
4.75V. PFO is normally used to interrupt the microproces-  
sor to execute shutdown procedure between PFO and  
RESET or RESET.  
CE OUT  
CS  
20ns PROPAGATION DELAY  
FROM DECODER  
GND  
V
BATT  
CE IN  
RESET  
3V  
GND  
RESET  
TO µP  
690 F06  
Figure 6. A Typical Nonvolatile CMOS RAM Application  
5V  
0.1µF  
V
V
V
CC  
OUT  
CC  
+
0.1µF  
62128  
RAM  
10µF  
LTC690  
LTC694  
CS  
CS1  
CS2  
V
RESET  
GND  
BATT  
3V  
GND  
The power-fail comparator, C3, does not have hysteresis.  
Hysteresis can be added however, by connecting a resis-  
tor between the PFO output and the noninverting PFI input  
pin as shown in Figures 8 and 9. The upper and lower trip  
points in the comparator are established as follows:  
690 F07  
Figure 7. Write Protect for RAM with LTC690 or LTC694  
LT1086-5  
V
7.5V  
IN  
5V  
V
V
OUT  
IN  
V
CC  
When PFO output is low, R3 sinks current from the  
summing junction at the PFI pin.  
+
+
0.1µF  
ADJ  
10µF  
100µF  
LTC690/LTC691  
LTC694/LTC695  
R4  
10k  
R3  
300k  
R1  
51k  
PFO  
R1 R1  
GND  
PFI  
V =1.3V 1+  
+
H
R2 R3  
R2  
10k  
690 F08  
TO µP  
WhenPFOoutputis high,theseries combinationofR3and  
R4 source current into the PFI summing junction.  
Figure 8. Monitoring Unregulated DC Supply  
with the LTC690's Power-Fail Comparator  
R1 (5V 1.3V)R1  
V =1.3V 1+  
L
R2 1.3V(R3 +R4)  
LT1086-5  
5V  
V
6.5V  
IN  
V
V
V
OUT  
IN  
CC  
+
+
R1  
R3  
R4  
10k  
0.1µF  
R1  
27k  
ADJ  
10µF  
10µF  
Assuming R4 << R3,V  
= 5V  
LTC690/LTC691  
LTC694/LTC695  
HYSTERESIS  
R3  
2.7M  
PFO  
Example 1: The circuit in Figure 8 demonstrates the use of  
the power-fail comparator to monitor the unregulated  
power supply input. Assuming the the rate of decay of the  
GND  
PFI  
R2  
8.2k  
1690 F09  
TO µP  
R5  
3.3k  
supplyinputV is 100mV/ms andthetotaltimetoexecute  
IN  
a shutdown procedure is 8ms. Also the noise of V is  
IN  
200mV. With these assumptions in mind, we can reason-  
ably set V = 7.5V which 1.25V greater than the sum of  
maximum reset voltage threshold and the dropout voltage  
L
Figure 9. Monitoring Regulated DC Supply  
with the LTC690's Power-Fail Comparator  
11  
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
5V  
of LT1086-5 (4.75V + 1.5V) and VHYSTERESIS = 850mV.  
V
R1  
CC  
V
BATT  
V
= 5V = 850V  
LOW-BATTERY SIGNAL  
TO µP I/O PIN  
HYSTERESIS  
PFO  
R3  
R1  
1M  
LTC691  
LTC695  
PFI  
R3 5.88 R1  
R2  
1M  
3V  
CE IN  
I/O PIN  
Choose R3 = 300k and R1 = 51k. Also select R4 = 10k  
which is much smaller than R3.  
CE OUT  
GND  
R
L
690 F10  
20K  
51k (5V 1.3V)51k  
7.5V =1.3V 1+  
OPTIONAL TEST LOAD  
R2  
1.3V(310k)  
Figure 10. Back-Up Battery Monitor with Optional Test Load  
R2 = 9.7k, Choose nearest 5% resistor 10k and recalcu-  
late V ,  
L
Watchdog Timer  
51k (5V – 1.3V)51k  
V = 1.3V 1+  
= 7.32V  
The LTC690 family provides a watchdog timer function to  
monitor the activity of the microprocessor. If the micro-  
processor does not toggle the Watchdog Input (WDI)  
within a seleced time-out period, RESET is forced to active  
low for a minimum of 35ms for the LTC690/LTC691  
(140ms for the LTC694/LTC695). The reset active time is  
adjustable on the LTC691/LTC695. Since many systems  
can not service the watchdog timer immediately after a  
reset, the LTC691 and LTC695 have longer time-out  
period (1.0 second minimum) right after a reset is issued.  
The normal time-out period (70ms minimum) becomes  
effective following the first transition of WDI after RESET  
is inactive. The watchdog time-out period is fixed at 1.0  
second minimum on the LTC690 and LTC694. Figure 11  
shows the timing diagram of watchdog time-out period  
and reset active time. The watchdog time-out period is  
restartedas soonas RESETis inactive.Wheneitherahigh-  
to-low or low-to-high transition occurs at the WDI pin  
prior to time-out, the watchdog time is reset and begins to  
timeoutagain. Toensurethewatchdogtimedoes nottime  
out, either a high-to-low or low-to-high transition on the  
WDI pin must occur at or less than the minimum time-out  
period. If the input to the WDI pin remains either high or  
low, reset pulses will be issued every 1.6 seconds typi-  
cally.Thewatchdogtimecanbedeactivatedbyfloatingthe  
L
10k  
1.3V(310k)  
51k 51k  
V = 1.3V 1+  
+
= 8.151V  
H
10k 300k  
(7.32V – 6.25V)  
100mV/ms  
= 10.7ms  
VHYSTERESIS = 8.151V – 7.32V = 831mV  
The 10.7ms allows enough time to execute shutdown  
procedure for microprocessor and 831mV of hysteresis  
would prevent PFO from going low due to the noise of V .  
IN  
Example 2: The circuit in Figure 9 can be used to measure  
the regulated 5V supply to provide early warning of power  
failure. Because of variations in the PFI threshold, this  
circuit requires adjustment to ensure the PFI comparator  
trips beforetheresetthresholdis reached. AdjustR5such  
thatthePFOoutputgoes lowwhentheV supplyreaches  
CC  
the desired level (e.g., 4.85V).  
Monitoring the Status of the Battery  
C3 can also monitor the status of the memory back-up  
battery (Figure 10). If desired, the CE OUT can be used to  
applyatestloadtothebattery.SinceCEOUTis forcedhigh  
in battery back-up mode, the test load will not be applied  
to the battery while it is in use, even if the microprocessor  
is not powered.  
WDI pin. The timer is also disabled when V falls below  
CC  
the reset voltage threshold or V  
.
BATT  
12  
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The LTC691 and LTC695 provide an additional output  
(Watchdog Output, WDO) which goes low if the watchdog  
timer is allowed to time out and remains low until set high  
by the next transition on the WDI pin. WDO is also set high  
GNDwhenOSCSELis forcedlow. Intheseconfigurations,  
the nominal reset active time and watchdog time-out  
period are determined by the number of clocks or set by  
the formula in Table 2. When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 35ms minimum for the LTC691 and 140ms  
minimum for the LTC695. OSC IN selectes between the 1  
second and 70ms minimum normal watchdog time-out  
periods. In both cases, the time-out period immediately  
after a reset is at least 1 second.  
when V falls below the reset voltage threshold or V  
.
CC  
BATT  
TheLTC691andLTC695havetwoadditonalpins OSCSEL  
and OSC IN, which allow reset active time and watchdog  
time-out period to be adjusted per Table 2. Several con-  
figurations are shown in Figure 12.  
OSC IN can be driven by an external clock signal or an  
external capacitor can be connected between OSC IN and  
V
= 5V  
CC  
WDI  
t
t
t
= RESET ACTIVE TIME  
1
2
3
= NORMAL WATCHDOG TIME-OUT PERIOD  
= WATCHDOG TIME-OUT PERIOD IMMEDIATELY  
AFTER A RESET  
WDO  
t
t
3
2
RESET  
t
t
1
1
690 F11  
Figure 11. Watchdog Time-Out Period and Reset Active Time  
EXTERNAL OSCILLATOR  
EXTERNAL CLOCK  
3
8
7
8
3
4
V
OSC SEL  
5V  
5V  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
7
4
GND  
OSC IN  
GND  
OSC IN  
INTERNAL OSCILLATOR  
1.6 SECOND WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
3
8
3
8
7
FLOATING  
OR HIGH  
FLOATING  
OR HIGH  
5V  
5V  
V
OSC SEL  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
4
7
FLOATING  
OR HIGH  
4
GND  
OSC IN  
GND  
OSC IN  
690 F12  
Figure 12. Oscillator Configurations  
13  
LTC690/ LTC691  
LTC694/ LTC695  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Table 2. LTC691 and LTC695 Reset Active Time and Watchdog Time-Out Selections  
WATCHDOG TIME-OUT PERIOD  
RESET ACTIVE TIME  
IMMEDIATELY  
AFTER RESET  
(Long Period)  
NORMAL  
(Short Period)  
OSC SEL  
OSC IN  
LTC691  
LTC695  
Low  
Low  
External Clock Input  
External Capacitor*  
1024 clks  
400ms  
70pF  
4096 clks  
512 clks  
200ms  
70pF  
2048 clks  
800ms  
70pF  
1.6 sec  
• C  
• C  
• C  
• C  
70pF  
Floating or High  
Floating or High  
Low  
Floating or High  
100ms  
1.6 sec  
1.6 sec  
1.6 sec  
50ms  
50ms  
200ms  
200ms  
184,000  
C(pF) • 1025  
*The nominal internal frequency is 10.24kHz. The nominal oscillator frequency with external capacitor is f  
(Hz) =  
OSC  
Push-Button Reset  
TheLTC690familydoes notprovidealogicinputfordirect  
V
5V  
RESET  
RESET  
CC  
connection to a pushbutton. However, a push-button in  
series witha100resistorconnectedtotheRESEToutput  
pin (Figure 13) provides an alternative for manual reset.  
Connecting a 0.1µF capacitor to the RESET pin debounces  
the push-button input.  
100Ω  
0.1µF  
MPU  
(e.g. 6805)  
LTC690/LTC691  
LTC694/LTC695  
690 F13  
GND  
The 100resistor in series with the push-button is  
required to prevent the ringing, due to the capacitance and  
lead inductance, from pulling the RESET pins of the MPU  
and LTC69X below ground.  
Figure 13. The External Push-Button Reset  
V
5V  
RESET  
LTC1235  
RESET  
CC  
If a dedicated pushbutton reset input is desired, the  
LTC1235 is a good choice (Figure 14). It has all the  
functions of the LTC695 and provides push-button reset  
as anextrafeature.Its push-buttonis internallydebounced  
and invokes the normal 200ms reset sequence. This  
eliminates the need for the 100resistor and 0.1µF  
capacitor. It also provides a more consistent reset pulse.  
MPU  
(e.g. 6805)  
PBRST  
GND  
690 F14  
Figure 14. The External Push-Button Reset with the LTC1235  
14  
LTC690/ LTC691  
LTC694/ LTC695  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
J8 Package 8-Lead CERDIP (Narrow 0.300, Hermetic) (LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
0.005  
(5.080) (0.127)  
0.200  
0.300 BSC  
CORNER LEADS OPTION  
(4 PLCS)  
(0.762 BSC)  
MIN  
MAX  
6
5
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
0.025  
0.220 – 0.310  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
(0.635)  
RAD TYP  
(5.588 – 7.874)  
0.008 – 0.018  
0° – 15°  
0.045 – 0.068  
(0.203 – 0.457)  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
J8 1197  
1
2
3
4
0.045 – 0.068  
0.125  
(1.143 – 1.727)  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
0.125  
(0.229 – 0.381)  
0.020  
(3.175)  
MIN  
+0.035  
–0.015  
(0.508)  
MIN  
1
2
4
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
–0.381  
8.255  
(
)
(0.457 ± 0.076)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
N Package 16-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
15  
13  
11  
16  
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
0.009 – 0.015  
(1.651)  
TYP  
(0.229 – 0.381)  
+0.035  
–0.015  
2
1
3
4
6
8
5
7
0.325  
0.125  
0.018 ± 0.003  
0.100 ± 0.010  
(2.540 ± 0.254)  
N16 1197  
+0.889  
–0.381  
(3.175)  
MIN  
(0.457 ± 0.076)  
8.255  
(
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
15  
LTC690/ LTC691  
LTC694/ LTC695  
U
O
TYPICAL APPLICATI S  
Capacitor Back-Up with 74HC4016 Switch  
Write Protect for Additional RAMs  
5V  
V
V
CC  
V
OUT  
CC  
5V  
+
V
V
CC  
0.1µF  
62512  
RAM A  
OUT  
LTC691  
LTC695  
0.1µF  
10µF  
0.1µF  
0.1µF  
10 11 12 14  
LTC691  
LTC695  
CS  
CE OUT  
R1  
10k  
20ns PROPAGATION  
DELAY  
V
BATT  
2
1
LOW LINE  
V
74HC4016  
7
CE IN  
CS A  
BATT  
3V  
LOW LINE  
R2  
30k  
13  
100µF  
GND  
+
GND  
V
CC  
0.1µF  
0.1µF  
62128  
RAM B  
LTC690 TA03  
CS B  
CS1  
CS2  
V
CC  
62128  
RAM C  
CS1  
CS C  
CS2  
OPTIONAL CONNECTION FOR  
ADDITIONAL RAMs  
690 TA04  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.291 – 0.299**  
(7.391 – 7.595)  
0.398 – 0.413*  
(10.109 – 10.490)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
9
16  
13  
11  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.004 – 0.012  
(0.102 – 0.305)  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
2
3
5
7
8
1
4
6
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
4.725V, 3.118V, 1V Thresholds (±0.75%)  
Meets PCI t Timing Specifications  
LTC1326  
Micropower Precision Triple Supply Monitor  
Micropower Triple Supply Monitor for PCI Applications  
LTC1536  
FAIL  
690fc LT/TP 0399 2K REV C • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1992  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC694IS8#PBF

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8#TR

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8#TRPBF

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC694IS8-3.3#PBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TR

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TRPBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694IS8PBF

Microprocessor Supervisory Circuits
Linear

LTC694_15

Microprocessor Supervisory Circuits
Linear

LTC695

Microprocessor Supervisory Circuits
Linear

LTC695-3.3

3.3V Microprocessor Supervisory Circuits
Linear