LTM4603HVIV#PBF [Linear]

LTM4603HV - 6A, 28VIN DC/DC µModule (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40°C to 85°C;
LTM4603HVIV#PBF
型号: LTM4603HVIV#PBF
厂家: Linear    Linear
描述:

LTM4603HV - 6A, 28VIN DC/DC µModule (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40°C to 85°C

开关
文件: 总26页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4603HV  
6A, 28V DC/DC µModule  
IN  
with PLL, Output Tracking  
and Margining  
DescripTion  
FeaTures  
TheLTM®4603HVisacomplete6Astep-downswitchmode  
DC/DC power supply with onboard switching controller,  
MOSFETs, inductor and all support components. The  
µModuleTM is housed in a small surface mount 15mm ×  
15mm × 2.82mm LGA package. Operating over an input  
voltage range of 4.5 to 28V, the LTM4603HV supports  
an output voltage range of 0.6V to 5V as well as output  
voltagetrackingandmargining.Thehighefficiencydesign  
delivers 6A continuous current (8A peak). Only bulk input  
and output capacitors are needed to complete the design.  
n
Complete Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 28V  
n
6A DC Typical, 8A Peak Output Current  
n
0.6V to 5V Output Voltage  
n
Output Voltage Tracking and Margining  
n
Remote Sensing for Precision Regulation  
n
Typical Operating Frequency: 1MHz  
n
PLL Frequency Synchronization  
n
1.5% Regulation  
n
Current Foldback Protection (Disabled at Start-Up)  
n
Pin Compatible with the LTM4601/LTM4601HV/  
The low profile (2.82mm) and light weight (1.7g) package  
easily mounts on the unused space on the back side of  
PC boards for high density point of load regulation. The  
µModule can be synchronized with an external clock for  
reducing undesirable frequency harmonics and allows  
PolyPhase® operation for high load currents.  
LTM4603  
n
Ultrafast Transient Response  
n
Current Mode Control  
n
Up to 93% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
n
Programmable Soft-Start  
Output Overvoltage Protection  
A high switching frequency and adaptive on-time current  
mode architecture deliver a very fast transient response  
to line and load changes without sacrificing stability. An  
onboard remote sense amplifier can be used to accurately  
regulate an output voltage independent of load current.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered  
trademarks and LTpowerCAD is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210.  
RoHS Compliant Package with Gold Finish Pads (e4)  
Small Footprint, Low Profile (15mm × 15mm ×  
2.82mm) Surface Mount LGA Package  
applicaTions  
n
Telecom and Networking Equipment  
n
Servers  
n
Industrial Equipment  
Point of Load Regulation  
n
Typical applicaTion  
2.5V/6A with 4.5V to 28V Input µModule Regulator  
Efficiency vs Load Current with 24VIN  
100  
CLOCK SYNC  
TRACK/SS CONTROL  
V
IN  
4.5V TO 28V  
90  
80  
70  
60  
V
PLLIN TRACK/SS  
V
2.5V  
6A  
IN  
OUT  
PGOOD  
V
OUT  
100pF  
V
FB  
ON/OFF  
RUN  
COMP  
INTV  
DRV  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
C
OUT  
LTM4603HV  
C
IN  
CC  
R
SET  
19.1k  
DIFFV  
CC  
MPGM  
OUT  
+
V
V
24V , 1.8V  
IN  
OSNS  
OUT  
OUT  
OUT  
24V , 2.5V  
IN  
50  
40  
OSNS  
R1  
392k  
24V , 3.3V  
IN  
f
SGND PGND  
SET  
24V , 5V  
IN  
OUT  
5% MARGIN  
0
1
2
3
4
5
6
7
4603HV TA01a  
LOAD CURRENT (A)  
4603HV TA01b  
4603hvfa  
1
For more information www.linear.com/LTM4603HV  
LTM4603HV  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
INTV , DRV , V  
, V  
(V  
≤ 3.3V  
CC  
CC OUT_LCL OUT OUT  
with Remote Sense Amp)............................. –0.3V to 6V  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD, f  
..............................–0.3V to INTV + 0.3V  
SET  
CC  
V
f
IN  
SET  
MARG0  
MARG1  
DRV  
RUN ............................................................. –0.3V to 5V  
V , COMP................................................ –0.3V to 2.7V  
FB  
CC  
V ............................................................. –0.3V to 28V  
V
IN  
OSNS  
FB  
PGND  
+
PGOOD  
V
, V  
..........................–0.3V to INTV + 0.3V  
OSNS CC  
SGND  
+
Operating Temperature Range (Note 2)....–40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range .................. –55°C to 125°C  
V
OSNS  
DIFFV  
V
V
OUT  
V
OUT  
OUT_LCL  
OSNS  
LGA PACKAGE  
118-LEAD (15mm × 15mm × 2.82mm)  
T
JMAX  
= 125°C, θ = 15°C/W, θ = 6°C/W θ DERIVED FROM 95mm × 76mm PCB WITH 4  
JA  
JC  
JA  
LAYERS, WEIGHT = 1.7g  
orDer inForMaTion  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
PAD OR BALL FINISH  
DEVICE  
FINISH CODE  
LTM4603HVEV#PBF  
LTM4603HVIV#PBF  
Au (RoHS)  
LTM4603HVV  
e4  
LGA  
3
–40°C to 85°C  
•ꢀ Consult Marketing for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
•ꢀ Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures: www.linear.com/umodule/pcbassembly  
•ꢀ LGA and BGA Package and Tray Drawings: www.linear.com/packaging  
•ꢀ Terminal Finish Part Marking: www.linear.com/leadfree  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration,  
RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
Output Voltage  
4.5  
28  
V
IN(DC)  
C
= 10µF ×2, C  
= 2× 100µF X5R Ceramic  
OUT(DC)  
IN  
OUT  
l
l
V
V
= 5V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.478  
1.5  
1.5  
1.522  
1.522  
V
V
IN  
IN  
OUT  
OUT  
= 12V, V  
= 1.5V, I  
= 0A  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
OUT  
I
= 0A. V  
= 1.5V  
OUT  
INRUSH(VIN)  
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
V
4603hvfa  
2
For more information www.linear.com/LTM4603HV  
LTM4603HV  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration,  
RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
V
= 12V, No Switching  
3.8  
25  
mA  
mA  
mA  
mA  
µA  
Q(VIN,NOLOAD)  
IN  
IN  
IN  
IN  
= 12V, V  
= 1.5V, Switching Continuous  
OUT  
= 5V, No Switching  
= 5V, V = 1.5V, Switching Continuous  
2.5  
43  
OUT  
Shutdown, RUN = 0, V = 12V  
22  
IN  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 6A  
= 6A  
0.92  
1.83  
2.12  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
No Load  
4.7  
0
5
5.3  
V
CC  
IN  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 5)  
OUT  
6
A
OUTDC  
IN  
l
l
ΔV  
= 1.5V, I  
= 0A, V = 4.5V to 28V  
0.3  
%
OUT(LINE)  
OUT  
OUT  
IN  
V
OUT  
OUT(LOAD)  
ΔV  
Load Regulation Accuracy  
Output Ripple Voltage  
V
= 1.5V, I  
= 0A to 6A, V = 12V with  
0.25  
%
OUT  
OUT  
IN  
Remote Sense Amp (Note 5)  
V
OUT  
OUT(AC)  
V
I
= 0A, C  
= 2× 100µF X5R Ceramic  
OUT  
OUT  
V
= 12V, V  
= 1.5V  
10  
10  
mV  
mV  
IN  
IN  
OUT  
P-P  
P-P  
V
= 5V, V  
= 1.5V  
OUT  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
I
= 3A, V = 12V, V  
= 1.5V  
1000  
kHz  
S
OUT  
IN  
OUT  
ΔV  
C
V
= 200µF  
OUT(START)  
OUT  
OUT  
V
= 1.5V, I  
= 0A, TRACK/SS = 10nF  
OUT  
= 12V  
= 5V  
20  
20  
mV  
mV  
IN  
IN  
V
t
Turn-On Time  
C
V
= 200µF, TRACK/SS = Open  
OUT  
START  
= 1.5V, I  
= 1A Resistive Load  
OUT  
OUT  
V
= 12V  
= 5V  
0.5  
0.5  
ms  
ms  
IN  
IN  
V
ΔV  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 2× 22µF Ceramic, 470µF 4V Sanyo  
OUTLS  
C
OUT  
POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 10% of Full Load  
SETTLE  
V
= 12V  
25  
µs  
IN  
Output Current Limit  
C
= 2× 100µF X5R Ceramic  
OUTPK  
OUT  
V
= 12V, V  
= 1.5V  
8
8
A
A
IN  
IN  
OUT  
= 1.5V  
OUT  
V
= 5V, V  
Remote Sense Amp (Note 3)  
+
V
, V  
Common Mode Input Voltage Range  
V
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV Range  
Output Voltage Range  
Input Offset Voltage Magnitude  
Differential Gain  
= 12V, DIFFV  
Load = 100k  
INTV – 1  
V
mV  
OUT  
IN  
OUT  
CC  
V
OS  
1.25  
AV  
1
3
V/V  
MHz  
V/µs  
kW  
GBP  
SR  
Gain Bandwidth Product  
Slew Rate  
2
+
R
Input Resistance  
V
to GND  
20  
100  
IN  
OSNS  
CMRR  
Common Mode Rejection Ratio  
dB  
4603hvfa  
3
For more information www.linear.com/LTM4603HV  
LTM4603HV  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration,  
RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Stage  
l
V
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.6  
0.606  
V
FB  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On Time  
1
1.5  
–1.5  
50  
1.9  
–2  
V
µA  
ns  
ns  
kW  
mA  
kW  
V
RUN  
I
t
t
V
= 0V  
TRACK/SS  
–1  
TRACK/SS  
ON(MIN)  
OFF(MIN)  
(Note 4)  
(Note 4)  
100  
400  
Minimum Off Time  
250  
50  
R
PLLIN Input Resistance  
PLLIN  
I
Current into DRV Pin  
V
= 1.5V, I  
= 1A, DRV = 5V  
18  
25  
DRVCC  
CC  
OUT  
OUT  
CC  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
FBHI  
OUT_LCL  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
7
10  
–10  
1.5  
13  
–13  
3
%
%
%
V
FBH  
FB  
–7  
FBL  
FB  
Returning (Note 4)  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4603HV is tested under pulsed load conditions such  
that T ≈ T . The LTM4603HVEV is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization  
and correlation with statistical process controls. The LTM4603HVIV is  
guaranteed over the –40°C to 85°C operating temperature range.  
J
A
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at die level only.  
Note 5: See output current derating curves for different V , V  
and T .  
IN OUT  
A
4603hvfa  
4
For more information www.linear.com/LTM4603HV  
LTM4603HV  
Typical perForMance characTerisTics  
(See Figure 20 for all curves)  
Efficiency vs Load Current  
with 24VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
12V , 1.2V  
5V , 0.6V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
60  
50  
40  
12V , 1.5V  
IN  
5V , 1.2V  
IN  
24V , 1.8V  
IN  
12V , 1.8V  
IN  
5V , 1.5V  
IN  
OUT  
OUT  
OUT  
24V , 2.5V  
IN  
12V , 2.5V  
IN  
5V , 1.8V  
IN  
24V , 3.3V  
IN  
12V , 3.3V  
5V , 2.5V  
IN  
IN  
24V , 5V  
OUT  
12V , 5V  
5V , 3.3V  
IN  
IN  
IN  
OUT  
4
6
7
0
1
2
3
5
0
2
3
4
5
6
7
4
7
1
0
2
3
5
6
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4603HV G03  
4603HV G01  
4603HV G02  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4603HV G05  
4603HV G04  
4603HV G06  
25µs/DIV  
25µs/DIV  
25µs/DIV  
1.5V AT 3A/µs LOAD STEP  
1.2V AT 3A/µs LOAD STEP  
1.8V AT 3A/µs LOAD STEP  
C
: 1x 22µF, 6.3V CERAMIC  
C
: 1x 22µF, 6.3V CERAMIC  
C
: 1x 22µF, 6.3V CERAMIC  
OUT  
OUT  
OUT  
1x 330µF, 4V SANYO POSCAP  
1x 330µF, 4V SANYO POSCAP  
1x 330µF, 4V SANYO POSCAP  
2.5V Transient Response  
3.3V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
OUT  
50mV/DIV  
OUT  
50mV/DIV  
4603HV G07  
4603HV G08  
25µs/DIV  
25µs/DIV  
2.5V AT 3A/µs LOAD STEP  
3.3V AT 3A/µs LOAD STEP  
C
: 1x 22µF, 6.3V CERAMIC  
C
: 1x 22µF, 6.3V CERAMIC  
OUT  
OUT  
1x 330µF, 4V SANYO POSCAP  
1x 330µF, 4V SANYO POSCAP  
4603hvfa  
5
For more information www.linear.com/LTM4603HV  
LTM4603HV  
Typical perForMance characTerisTics (See Figure 20 for all curves)  
Start-Up, IOUT = 6A  
(Resistive Load)  
Short-Circuit Protection,  
IOUT = 0A  
Start-Up, IOUT = 0A  
V
V
V
OUT  
0.5V/DIV  
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
0.5A/DIV  
IN  
I
IN  
2A/DIV  
0.5A/DIV  
4603HV G09  
4603HV G10  
4603HV G11  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
1ms/DIV  
100µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
= 1.5V  
= 1x 22µF, 6.3V CERAMIC  
= 1x 22µF, 6.3V CERAMIC  
= 1x 22µF, 6.3V CERAMIC  
1x 330µF, 4V SANYO POSCAP  
1x 330µF, 4V SANYO POSCAP  
1x 330µF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
SOFT-START = 3.9nF  
SOFT-START = 3.9nF  
Short-Circuit Protection,  
OUT = 6A  
I
VIN to VOUT Step-Down Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
82.5k FROM V  
OUT  
TO f  
SET  
V
OUT  
5V OUTPUT WITH  
150k RESISTOR  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
5V OUTPUT WITH  
NO RESISTOR ADDED  
FROM f  
TO GND  
I
IN  
SET  
2A/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
4603 G12  
100µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
= 1.5V  
= 1x 22µF, 6.3V CERAMIC  
1x 330µF, 4V SANYO POSCAP  
0
4
8
12  
16  
20  
24  
28  
SOFT-START = 3.9nF  
INPUT VOLTAGE (V)  
4603HV G13  
4603hvfa  
6
For more information www.linear.com/LTM4603HV  
LTM4603HV  
pin FuncTions (See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
INTV (Pin A7): This pin is for additional decoupling of  
IN  
CC  
tween these pins and PGND pins. Recommend placing  
the 5V internal regulator.  
input decoupling capacitance directly between V pins  
IN  
PLLIN (Pin A8): External Clock Synchronization Input  
to the Phase Detector. This pin is internally terminated  
to SGND with a 50k resistor. Apply a clock with a high  
and PGND pins.  
V
OUT  
(Bank 3): Power Output Pins. Apply output load  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins. See Figure 17.  
level above 2V and below INTV . See the Applications  
CC  
Information section.  
TRACK/SS (Pin A9): Output Voltage Tracking and Soft-  
Start Pin. When the module is configured as a master  
output, then a soft-start capacitor is placed on this pin  
to ground to control the master ramp rate. A soft-start  
capacitor can be used for soft-start turn on as a stand  
alone regulator. Slave operation is performed by putting  
a resistor divider from the master output to ground, and  
connecting the center point of the divider to this pin. See  
the Applications Information section.  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
V
OSNS  
(Pin M12): (–) Input to the Remote Sense Ampli-  
fier. This pin connects to the ground remote sense point.  
The remote sense amplifier is used for V  
to INTV if not used.  
≤3.3V. Tie  
OUT  
CC  
+
V
(Pin J12): (+) Input to the Remote Sense Ampli-  
OSNS  
fier. This pin connects to the output remote sense point.  
The remote sense amplifier is used for V  
to ground if not used.  
MPGM (Pin A12): Programmable Margining Input. A re-  
sistor from this pin to ground sets a current that is equal  
to 1.18V/R. This current multiplied by 10kΩ will equal a  
value in millivolts that is a percentage of the 0.6V refer-  
ence voltage. See the Applications Information section. To  
parallel LTM4603HVs, each requires an individual MPGM  
resistor. Do not tie MPGM pins together.  
≤3.3V. Tie  
OUT  
DIFFV (PinK12):OutputoftheRemoteSenseAmplifier.  
OUT  
This pin connects to the V  
remote sense amplifier is not used.  
pin. Leave floating if  
OUT_LCL  
DRV (Pin E12): This pin normally connects to INTV  
CC  
CC  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure  
18. This improves efficiency at the higher input voltages  
by reducing power dissipation in the module.  
f
(Pin B12): Frequency Set Internally to 1MHz. An  
SET  
external resistor can be placed from this pin to ground  
to increase frequency. See the Applications Information  
section for frequency adjustment.  
TOP VIEW  
V
IN  
f
SET  
MARG0  
MARG1  
DRV  
CC  
V
FB  
PGND  
PGOOD  
SGND  
+
V
OSNS  
DIFFV  
V
OUT  
V
OUT  
OUT_LCL  
V
OSNS  
LGA PACKAGE  
118-LEAD (15mm × 15mm × 2.82mm)  
4603hvfa  
7
For more information www.linear.com/LTM4603HV  
LTM4603HV  
pin FuncTions (See Package Description for Pin Assignment)  
V
(Pin F12): The Negative Input of the Error Amplifier.  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
FB  
Internally, this pin is connected to V  
with a 60.4k  
OUT_LCL  
precision resistor. Different output voltages can be pro-  
grammed with an additional resistor between V and  
FB  
SGND pins. See the Applications Information section.  
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See the Applications Information section.  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25µs power bad mask timer expires.  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1V, will turn  
off the module. A programmable UVLO function can be  
accomplished by connecting to a resistor divider from  
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See the Applications Information section.  
V to ground. See Figure 1. This pin has a 5.1V Zener to  
IN  
ground. Maximum pin voltage is 5V. Limit current into  
the RUN pin to less than 1mA.  
SGND (Pin H12): Signal Ground. This pin connects to  
PGND at output capacitor point.  
V
(Pin L12): V  
connects directly to this pin to  
OUT  
OUT_LCL  
bypass the remote sense amplifier, or DIFFV  
connects  
OUT  
to this pin when remote sense amplifier is used.  
4603hvfa  
8
For more information www.linear.com/LTM4603HV  
LTM4603HV  
block DiagraM  
V
1M  
OUT_LCL  
V
IN  
V
OUT  
>1.9V = ON  
<1V = OFF  
MAX = 5V  
R1  
R2  
RUN  
PGOOD  
COMP  
UVLO  
FUNCTION  
V
IN  
4.5V TO 28V  
+
5.1V  
ZENER  
1.5µF  
C
IN  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
V
2.5V  
6A  
OUT  
MARG1  
MARG0  
22µF  
V
FB  
50k 50k  
+
f
SET  
R
SET  
C
OUT  
19.1k  
33.2k  
2.2Ω  
INTV  
PGND  
MPGM  
TRACK/SS  
PLLIN  
CC  
10k  
C
SS  
+
10k  
V
V
OSNS  
OSNS  
+
50k  
10k  
4.7µF  
INTV  
DRV  
CC  
10k  
CC  
DIFFV  
OUT  
4603HV F01  
Figure 1. Simplified LTM4603HV Block Diagram  
TA = 25°C. Use Figure 1 configuration.  
CONDITIONS  
Decoupling requireMenTs  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
I
= 6A  
20  
µF  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
IN  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 6A  
100  
200  
µF  
OUT  
IN  
OUT  
4603hvfa  
9
For more information www.linear.com/LTM4603HV  
LTM4603HV  
operaTion  
Power Module Description  
in an overvoltage condition, internal top FET Q1 is turned  
off and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4603HV is a standalone nonisolated switching  
mode DC/DC power supply. It can deliver up to 6A of DC  
output current with few external input and output capaci-  
tors.Thismoduleprovidespreciselyregulatedoutputvolt-  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
ageprogrammableviaoneexternalresistorfrom0.6V to  
DC  
5.0V over a 4.5V to 28V wide input voltage. The typical  
DC  
application schematic is shown in Figure 20.  
When DRV pin is connected to INTV an integrated  
CC  
CC  
The LTM4603HV has an integrated constant on-time  
current mode regulator, ultralow R  
5V linear regulator powers the internal gate drivers. If a  
FETs with fast  
5V external bias supply is applied on the DRV pin, then  
DS(ON)  
CC  
switching speed and integrated Schottky diodes. The typi-  
cal switching frequency is 1MHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4603HV module has sufficient stability margins  
and good transient performance under a wide range of  
operating conditions and with a wide range of output  
capacitors, even all ceramic output capacitors.  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
The LTM4603HV has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate output voltage sensing at the load. The  
MPGM pin, MARG0 pin and MARG1 pin are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrent condition while V drops. Internal overvolt-  
FB  
age and undervoltage comparators pull the open-drain  
PGOOD output low if the output feedback voltage exits a  
10% window around the regulation point. Furthermore,  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used  
for power supply tracking and soft-start programming.  
4603hvfa  
10  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
The typical LTM4603HV application circuit is shown in  
Figure 20. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
where %V  
is the percentage of V  
OUT(MARGIN)  
you want to  
OUT  
margin, and V  
OUT  
is the margin quantity in volts:  
VOUT  
1.18V  
RPGM  
=
10k  
0.6V VOUT(MARGIN)  
where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
V to V  
Step-Down Ratios  
OUT  
IN  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
The margining voltage, V  
, will be added or  
OUT(MARGIN)  
down ratio that can be achieved for a given input voltage.  
subtractedfromthenominaloutputvoltageasdetermined  
by the state of the MARG0 and MARG1 pins. See the truth  
table below:  
These constraints are shown in the Typical Performance  
Characteristics curves labeled V to V  
Step-Down  
OUT  
IN  
Ratio.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
MARG1  
LOW  
MARG0  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
LOW  
HIGH  
LOW  
Output Voltage Programming and Margining  
HIGH  
HIGH  
HIGH  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
Input Capacitors  
internal feedback resistor connects V  
together. The V  
and V pins  
OUT  
FB  
pin is connected between the 1M  
LTM4603HV module should be connected to a low AC  
impedance DC source. Input capacitors are required to  
be placed adjacent to the module. In Figure 20, the 10µF  
ceramic input capacitors are selected for their ability to  
handle the large RMS current into the converter. An input  
bulkcapacitorof100µFisoptional.This100µFcapacitoris  
onlyneedediftheinputsourceimpedanceiscompromised  
by long inductive leads or traces.  
OUT_LCL  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
OUT_LCL  
pin is not connected to the output, or if the remote sense  
amplifier output is not connected to V  
. The output  
OUT_LCL  
voltage will default to 0.6V. Adding a resistor R  
from  
SET  
the V pin to SGND pin programs the output voltage:  
FB  
60.4k+RSET  
VOUT = 0.6V  
For a buck converter, the switching duty-cycle can be  
estimated as:  
RSET  
Table 1. RSET Standard 1% Resistor Values vs VOUT  
VOUT  
D =  
R
SET  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
V
IN  
(kW)  
V
OUT  
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
(V)  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
η%  
R
resistor on the MPGM pin programs the current.  
PGM  
In the above equation, η% is the estimated efficiency of  
Calculate V  
:
OUT(MARGIN)  
the power module. C can be a switcher-rated electrolytic  
IN  
aluminum capacitor, OS-CON capacitor or high value ce-  
ramic capacitor. Note the capacitor ripple current ratings  
%VOUT  
100  
VOUT(MARGIN)  
=
VOUT  
4603hvfa  
11  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
DC load current of 10A equals ~2.5A of input RMS ripple  
current for the external input capacitors.  
Output Capacitors  
TheLTM4603HVisdesignedforlowoutputripplevoltage.  
The bulk output capacitors defined as C  
are chosen  
In Figure 20, the 10µF ceramic capacitors are together  
used as a high frequency input decoupling capacitor. In  
a typical 6A output application, two very low ESR, X5R or  
X7R, 10µF ceramic capacitors are recommended. These  
decoupling capacitors should be placed directly adjacent  
to the module input pins in the PCB layout to minimize  
the trace inductance and high frequency AC noise. Each  
10µF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
OUT  
with low enough effective series resistance (ESR) to meet  
theoutputripplevoltageandtransientrequirements. C  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor.Thetypicalcapacitanceis  
200µF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikes is required. Table 2 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 3A/µs transient.  
The table optimizes total equivalent ESR and total bulk  
capacitance to maximize transient performance.  
MultiphaseoperationwithmultipleLTM4603HVdevicesin  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
fortheinputcapacitorripplecurrentrequirementasafunc-  
tion of the number of phases. The figure provides a ratio  
of RMS ripple current to DC load current as a function of  
duty cycle and the number of paralleled phases. Pick the  
corresponding duty cycle and the number of phases to  
arrive at the correct ripple current value. For example, the  
2-phase parallel LTM4603HV design provides 10A at 2.5V  
output from a 12V input. The duty cycle is DC = 2.5V/12V  
= 0.21. The 2-phase curve has a ratio of ~0.25 for a duty  
cycle of 0.21. This 0.25 ratio of RMS ripple current to a  
Multiphase operation with multiple LTM4603HV devices  
in parallel will lower the effective output ripple current  
due to the interleaving operation of the regulators. For  
example, each LTM4603HV’s inductor current in a 12V  
to 2.5V multiphase design can be read from the Inductor  
Ripple Current vs Duty Cycle graph (Figure 3). The large  
ripple current at low duty cycle and high output voltage  
can be reduced by adding an external resistor from f to  
SET  
ground which increases the frequency. If we choose the  
duty cycle of DC = 2.5V/12V = 0.21, the inductor ripple  
currentfor2.5Voutputat21%dutycycleis~2AinFigure3.  
4
0.6  
2.5V OUTPUT  
5V OUTPUT  
0.5  
3
2
1
0
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
1-PHASE  
0.4  
2-PHASE  
3-PHASE  
4-PHASE  
0.3  
3.3V OUTPUT WITH  
82.5k ADDED FROM  
6-PHASE  
V
TO f  
OUT  
SET  
0.2  
5V OUTPUT WITH  
150k ADDED FROM  
f
TO GND  
0.1  
SET  
0
0
0.2  
DUTY CYCLE (V /V )  
OUT IN  
0.4  
0.6  
0.8  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4603HV F02  
4603HV F03  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Cycle for One to Six Modules (Phases)  
Figure 3. Inductor Ripple Current vs Duty Cycle  
4603hvfa  
12  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4603HV F04  
O
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
Figure 4 providesa ratio of peak-to-peak output ripple cur-  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation is  
chosen at a duty cycle of 21%, then 0.6 is the ratio. This  
0.6 ratio of output ripple current to inductor ripple of 2A  
equals 1.2A of effective output ripple current. Refer to  
Application Note 77 for a detailed explanation of output  
ripple currentreductionas a functionofparalleled phases.  
The LTM4603HV has a current mode controller, which  
inherently limits the cycle-by-cycle inductor current not  
only in steady-state operation, but also in response to  
transients.  
To furtherlimitcurrentintheeventofanoverloadcondition,  
the LTM4603HV provides foldback current limiting. If the  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
The output ripple voltage has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output ripple voltage can be calculated with  
the known effective output ripple current. The equation:  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5µA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
ΔV  
≈ (ΔI /(8ꢀ•ꢀfꢀ•ꢀmꢀ•ꢀC ) + ESRꢀ•ꢀΔI ), where f  
OUT(P-P)  
L OUT L  
is frequency and m is the number of parallel phases. This  
calculation process can be easily accomplished by using  
LTpowerCAD™.  
4603hvfa  
13  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
Run Enable  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V Zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
CSS  
tSOFTSTART = 0.8 0.6V± V  
(
)
1.5µA  
OUT(MARGIN)  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
When the RUN pin falls below 1.5V, then the TRACK/SS  
pin is reset to allow for proper soft-start control when the  
regulator is enabled again. Current foldback and forced  
continuous mode are disabled during the soft-start pro-  
cess. The soft-start function can also be used to control  
the output ramp up time, so that another regulator can  
be easily tracked to it.  
R1+R2  
VUVLO  
=
1.5V  
R2  
See the Simplified Block Diagram (Figure 1).  
Power Good  
Output Voltage Tracking  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 5  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 6 shows the coincident output  
tracking characteristics.  
COMP Pin  
This pin is the external compensation pin. The module has  
already been internally compensated for most output volt-  
ages.Table2isprovidedformostapplicationrequirements.  
LTpowerCAD is available for control loop optimization.  
PLLIN  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
MASTER  
OUTPUT  
R2  
60.4k  
TRACK CONTROL  
V
IN  
R1  
40.2k  
60.4k FROM  
TO V  
100k  
V
IN  
PLLIN TRACK/SS  
MASTER OUTPUT  
V
OUT  
FB  
SLAVE OUTPUT  
PGOOD  
V
OUT  
MPGM  
RUN  
COMP  
V
C
OUT  
FB  
MARG0  
MARG1  
V
OUT_LCL  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
LTM4603HV  
C
IN  
INTV  
CC  
CC  
DRV  
DIFFV  
V
V
OUT  
+
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4603HV F06  
4603HV F05  
TIME  
Figure 6. Coincident Output Tracking Characteristics  
Figure 5. Coincident Tracking Schematic  
4603hvfa  
14  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
to be locked to the rising edge of the external clock. The  
frequency range is 30% around the operating frequency  
of 1MHz. A pulse detection circuit is used to detect a clock  
on the PLLIN pin to turn on the phase-locked loop. The  
pulse width of the clock has to be at least 400ns and the  
amplitudeatleast2V. ThePLLINpinmustbedrivenfroma  
lowimpedancesourcesuchasalogicgatelocatedcloseto  
the pin. During start-up of the regulator, the phase-locked  
loop function is disabled.  
Parallel Operation of the Module  
The LTM4603HV device is an inherently current mode  
controlled device. Parallel modules will have very good  
current sharing. This will balance the thermals on the  
design. The voltage feedback equation changes with the  
variable n as modules are paralleled:  
60.4k  
+RSET  
n
VOUT = 0.6V  
RSET  
INTV and DRV Connection  
CC  
CC  
n is the number of paralleled modules.  
Thermal Considerations and Output Current Derating  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
for driving the internal power MOSFETs. Therefore, if the  
system does not have a 5V power rail, the LTM4603HV  
can be directly powered by Vin. The gate driver current  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
CC  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 12, and Figures 13 to 16 for calculating an  
approximate θ for the module with various heat sinking  
JA  
methods. Thermal models are derived from several tem-  
peraturemeasurementsatthebenchandthermalmodeling  
analysis.ThermalApplicationNote103providesadetailed  
explanation of the analysis for the thermal models and the  
derating curves. Tables 3 and 4 provide a summary of the  
P
= 20mAꢀ•ꢀ(V – 5V)  
IN  
LDO_LOSS  
The LTM4603HV also provides the external gate driver  
voltage pin DRV . If there is a 5V rail in the system, it is  
CC  
recommended to connect DRV pin to the external 5V  
CC  
rail. This is especially true for higher input voltages. Do  
equivalent θ for the noted conditions. These equivalent  
JA  
not apply more than 6V to the DRV pin. A 5V output can  
θ
parameters are correlated to the measured values,  
JA  
CC  
be used to power the DRV pin with an external circuit  
and are improved with air flow. The case temperature is  
maintained at 100°C or below for the derating curves.  
CC  
as shown in Figure 18.  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
6
5
24V LOSS  
12V LOSS  
2.5  
2.0  
1.5  
1.0  
0.5  
4
3
12V LOSS  
5V LOSS  
2
1
0
5V , 1.5V , 0LFM  
IN  
OUT  
5V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
5V , 1.5V , 400LFM  
0
4
OUTPUT CURRENT (A)  
6
7
0
1
2
3
5
4
OUTPUT CURRENT (A)  
6
7
0
1
2
3
5
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (C)  
4603HV F07  
4603HV F08  
4603HV F09  
Figure 7. 1.5V Power Loss  
Figure 8. 3.3V Power Loss  
Figure 9. No Heat Sink  
4603hvfa  
15  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
6
6
5
6
5
5
4
3
4
3
4
3
2
1
0
2
1
0
2
1
0
12V , 1.5V , 0LFM  
5V , 1.5V , 0LFM  
IN  
OUT  
IN  
OUT  
12V , 1.5V , 0LFM  
IN  
OUT  
12V , 1.5V , 200LFM  
5V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
12V , 1.5V , 200LFM  
IN  
OUT  
12V , 1.5V , 400LFM  
5V , 1.5V , 400LFM  
12V , 1.5V , 400LFM  
IN OUT  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (C)  
AMBIENT TEMPERATURE (C)  
AMBIENT TEMPERATURE (C)  
4603HV F11  
4603HV F12  
4603HV F10  
Figure 10. BGA Heat Sink  
Figure 11. No Heat Sink  
Figure 12. BGA Heat Sink  
6
5
6
5
4
3
4
3
2
2
1
12V , 3.3V , 0LFM  
12V , 3.3V , 0LFM  
IN OUT  
1
0
IN  
OUT  
12V , 3.3V , 200LFM  
12V , 3.3V , 200LFM  
IN OUT  
IN  
IN  
OUT  
OUT  
12V , 3.3V , 400LFM  
12V , 3.3V , 400LFM  
IN OUT  
0
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (C)  
AMBIENT TEMPERATURE (C)  
4603HV F13  
4603HV F14  
Figure 13. No Heat Sink  
Figure 14. BGA Heat Sink  
6
5
6
5
4
3
2
1
0
4
3
2
1
0
24V , 3.3V , 0LFM  
24V , 3.3V , 0LFM  
IN  
OUT  
IN  
IN  
OUT  
OUT  
OUT  
24V , 3.3V , 200LFM  
24V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
24V , 3.3V , 400LFM  
24V , 3.3V , 400LFM  
IN  
60  
65  
70  
75  
80  
85  
60  
70  
75  
80  
85  
90  
65  
AMBIENT TEMPERATURE (C)  
AMBIENT TEMPERATURE (C)  
4603HV F15  
1635 G24  
Figure 15. No Heat Sink  
Figure 16. BGA Heat Sink  
4603hvfa  
16  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 20)  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK316BJ226ML-T501 (22µF, 6.3V)  
JMK325BJ476MM-T (47µF, 6.3V)  
C3225X5R0J476M (47µF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE220MIL (220µF, 6.3V)  
2R5TPE330M9 (330µF, 2.5V)  
4TPE330MCL (330µF, 4V)  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
PEAK (mV)  
RECOVERY  
TIME (µs)  
LOAD STEP  
(A/µs)  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
(BULK)  
(CERAMIC)  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
(BULK)  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
(kW)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
2 × 10µF 35V 150µF 35V  
5
34  
22  
68  
40  
30  
26  
24  
18  
30  
26  
24  
18  
30  
30  
26  
26  
30  
30  
26  
26  
37  
30  
26  
26  
37  
30  
26  
26  
40  
34  
28  
12  
40  
34  
28  
18  
40  
32  
28  
14  
40  
32  
28  
22  
20  
20  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
20  
40  
5
32  
60  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
34  
68  
22  
40  
20  
39  
29.5  
35  
55  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
70  
5
25  
48  
5
24  
47.5  
68  
5
36  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
35  
70  
25  
48  
24  
45  
32.6  
38  
61.9  
76  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
5
29.5  
28  
57.5  
55  
5
5
43  
80  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
38  
76  
28  
55  
27  
52  
36.4  
38  
70  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
78  
5
37.6  
39.5  
66  
74  
5
78.1  
119  
78  
5
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
7
38  
34.5  
35.8  
50  
66.3  
68.8  
98  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
42  
86  
7
47  
89  
7
50  
94  
7
75  
141  
86  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
42  
47  
88  
50  
94  
69  
131  
215  
217  
NONE  
110  
110  
5
NONE  
4603hvfa  
17  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
0
15.2  
14  
Figure 7  
200  
400  
0
None  
5, 12  
Figure 7  
None  
12  
5, 12, 20  
5, 12, 20  
5, 12, 20  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output  
DERATING CURVE  
Figures 13, 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figures 13, 15  
Figure 8  
200  
400  
0
None  
Figures 13, 15  
Figure 8  
None  
Figures 14, 16  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 14, 16  
Figure 8  
200  
400  
Figures 14, 16  
Figure 8  
Heat Sink Manufacturer  
Aavid Thermalloy  
Part No: 375424B00034G  
Phone: 603-224-9988  
4603hvfa  
18  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
This allows for 4W maximum power dissipation in the  
total module with top and bottom heat sinking, and 2W  
power dissipation through the top of the module with an  
•ꢀ To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
approximate θ between 6°C/W to 9°C/W. This equates  
JC  
•ꢀ Do not put vias directly on pads.  
to a total of 124°C at the junction of the device.  
•ꢀ If vias are placed onto the pads, the the vias must be  
Safety Considerations  
capped.  
TheLTM4603HVmodulesdonotprovidegalvanicisolation  
•ꢀ Interstitialvia placement can also beused ifnecessary.  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
•ꢀ Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure.  
Figure17givesagoodexampleoftherecommendedlayout.  
Layout Checklist/Example  
Frequency Adjustment  
The high integration of LTM4603HV makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
The LTM4603HV is designed to typically operate at 1MHz  
across most input conditions. The f  
pin is typically  
SET  
left open. The switching frequency has been optimized  
for maintaining constant output ripple noise over most  
operating ranges. The 1MHz switching frequency and the  
400nsminimumoff-timecanlimitoperationathigherduty  
•ꢀ Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
cycles like 5V to 3.3V , and produce excessive induc-  
IN  
OUT  
•ꢀ Place high frequency ceramic input and output capaci-  
tor ripple currents for lower duty cycle applications like  
tors next to the V , PGND and V  
pins to minimize  
28V to 5V . The 5V  
and 3.3V  
drop out curves  
IN  
OUT  
IN  
OUT  
OUT  
OUT  
high frequency noise.  
are modified by adding an external resistor on the f pin  
SET  
to allow for wider input voltage operation.  
•ꢀ Place a dedicated power ground layer underneath the  
unit.  
V
IN  
C
IN  
C
IN  
GND  
SIGNAL  
GND  
C
C
OUT  
OUT  
V
OUT  
4603HV F17  
Figure 17. Recommended Layout  
4603hvfa  
19  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
applicaTions inForMaTion  
Example for 5V Output  
Example for 3.3V Output  
LTM4603HV minimum on-time = 100ns  
LTM4603HV minimum on-time = 100ns  
t
= ((V ꢀ•ꢀ10pf)/I ), for V  
> 4.8V use 4.8V  
t
= ((3.3Vꢀ•ꢀ10pF)/I  
)
ON  
OUT  
fSET  
OUT  
ON  
fSET  
LTM4603HV minimum off-time = 400ns  
= t– t , where t = 1/Frequency  
LTM4603HV minimum off-time = 400ns  
t = t – t , where t = 1/Frequency  
OFF  
t
OFF  
ON  
ON  
Duty Cycle = t /t or V /V  
Duty Cycle (DC) = t /t or V /V  
ON OUT IN  
ON  
OUT IN  
Equations for setting frequency:  
= (V /(3ꢀ•ꢀR )), for 28V input operation, I  
Equations for setting frequency:  
= (V /(3ꢀ•ꢀR )), for 28V input operation, I  
I
=
I
=
fSET  
fSET  
IN  
fSET  
fSET  
fSET  
IN  
fSET  
281µA, t = ((4.8Vꢀ•ꢀ10pF)/I  
), t = 171ns, where  
281µA, t = ((3.3Vꢀ•ꢀ10pf)/I ), t = 117ns, where the  
ON  
fSET ON  
ON fSET ON  
the internal R  
is 33.2k. Frequency = (V /(V ꢀ•ꢀt ))  
internal R is 33.2k. Frequency = (V /(V ꢀ•ꢀt )) =  
fSET OUT IN ON  
fSET  
OUT IN ON  
= (5V/(28Vꢀ•ꢀ171ns)) ~ 1MHz. The inductor ripple cur-  
rent begins to get high at the higher input voltages due  
to a larger voltage across the inductor. This is shown in  
the Inductor Ripple Current vs Duty Cycle graph as over  
4A at 18% duty cycle. The inductor ripple current can be  
lowered at the higher input voltages by adding an external  
(3.3V/(28Vꢀ•ꢀ117ns)) ~ 1MHz. The minimum on-time and  
minimum off-time are within specification at 117ns and  
883ns. But the 4.5V minimum input for converting 3.3V  
output will not meet the minimum off-time specification  
of 400ns. t = 733ns, Frequency = 1MHz, t = 267ns.  
ON  
OFF  
Solution  
resistor from f  
to ground to increase the switching  
SET  
frequency. A 3A ripple current is chosen, and the total  
peak current is equal to 1/2 of the 3A ripple current plus  
the output current. The 5V output current is limited to 5A,  
so total peak current is less than 6.5A. This is below the  
8A peak specified value. A 150k resistor is placed from  
Lower the switching frequency at lower input voltages to  
allowforhigherdutycycles,andmeetthe400nsminimum  
off-timeat4.5Vinputvoltage.Theoff-timeshouldbeabout  
500ns with 100ns guard band included. The duty cycle  
for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/t  
or  
OFF  
f
to ground, and the parallel combination of 150k and  
SET  
(1 – 0.73)/500ns = 540kHz. The switching frequency  
needs to be lowered to 540kHz at 4.5V input. t = DC/  
33.2k equates to 27.2k. The I  
and 28V input voltage equals 343µA. This equates to a t  
calculation with 27.2k  
fSET  
ON  
ON  
frequency, or 1.35µs. The f  
pin voltage compliance  
SET  
of 140ns. This will increase the switching frequency from  
1MHz to ~1.28MHz for the 28V to 5V conversion. The  
minimum on time is above 100ns at 28V input. Since the  
switching frequency is approximately constant over input  
and output conditions, then the lower input voltage range  
is limited to 10V for the 1.28MHz operation due to the  
is 1/3 of V , and the I  
current equates to 45µA with  
IN  
fSET  
the internal 33.2k. The I  
current needs to be 24µA for  
fSET  
540kHz operation. A resistor can be placed from V  
to  
OUT  
f
to lower the effective I  
current out of the f pin  
SET  
fSET SET  
to 24µA. The f  
pin is 4.5V/3 =1.5V and V  
= 3.3V,  
SET  
OUT  
therefore an 82.5k resistor will source 21µA into the f  
SET  
400ns minimum off-time. Equation: t = (V /V )ꢀ•ꢀ(1/  
ON  
OUT IN  
node and lower the I  
current to 24µA. This enables the  
fSET  
Frequency) equates to a 382ns on time, and a 400ns off-  
540kHz operation and the 4.5V to 28V input operation for  
down converting to 3.3V output as shown in Figure 19.  
Thefrequencywillscalefrom540kHzto1.27MHzoverthis  
input range. This provides for an effective output current  
of 5A over the input range.  
time. The V to V Step-Down Ratio curve reflects an  
IN  
OUT  
operatingrangeof10Vto28Vfor1.28MHzoperationwitha  
150kresistortoground(showninFigure18), andan8Vto  
16V operating range for f floating. These modifications  
SET  
are made to provide wider input voltage ranges for the 5V  
output designs while limiting the inductor ripple current,  
and maintaining the 400ns minimum off-time.  
4603hvfa  
20  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
Typical applicaTions  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
5V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
MPGM  
RUN  
V
FB  
REFER TO  
MARG0  
MARG1  
V
OUT_LCL  
TABLE 2  
C3  
100µF  
6.3V  
COMP  
INTV  
DRV  
+
LTM4603HV  
CC  
5% MARGIN  
DIFFV  
SANYO POSCAP  
CC  
OUT  
+
R1  
392k  
1%  
V
V
OSNS  
C2  
OSNS  
10μF  
f
SGND PGND  
SET  
35V  
C1  
10µF  
35V  
R
R
SET  
INTV  
fSET  
CC  
8.25k  
150k  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR 12V INPUT  
DUAL  
CMSSH-3C3  
4603HV F18  
Figure 18. 5V at 5A Design  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
PGOOD  
MPGM  
RUN  
V
FB  
C3  
100µF  
6.3V  
MARG0  
MARG1  
V
OUT_LCL  
+
COMP  
INTV  
DRV  
LTM4603HV  
CC  
CC  
SANYO POSCAP  
DIFFV  
OUT  
+
C2  
V
V
OSNS  
R1  
392k  
10µF  
35V  
OSNS  
R
f
fSET  
C1  
10µF  
35V  
SGND PGND  
SET  
R
SET  
82.5k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4603HV F19  
Figure 19. 3.3V at 5A Design  
4603hvfa  
21  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
Typical applicaTions  
CLOCK SYNC  
C5  
V
OUT  
0.01µF  
V
IN  
4.5V TO 28V  
REVIEW TEMPERATURE  
R2  
100k  
R4  
V
PLLIN TRACK/SS  
V
1.5V  
6A  
IN  
DERATING CURVE  
C3 100pF  
100k  
OUT  
PGOOD  
V
OUT  
+
C
22µF  
6.3V  
C
OUT2  
470µF  
6.3V  
PGOOD  
MPGM  
RUN  
V
OUT1  
FB  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
ON/OFF  
COMP  
INTV  
DRV  
LTM4603HV  
CC  
CC  
DIFFV  
V
OUT  
+
C
IN  
+
R1  
392k  
BULK  
OPT.  
OSNS  
V
OSNS  
C
IN  
TABLE 2  
f
10µF  
SGND PGND  
SET  
R
REFER TO  
TABLE 2  
SET  
35V  
×2 CER  
100k*  
40.2k  
V
IN  
4603 F18  
*100k NEEDED ONLY FOR  
20V INPUT  
5% MARGIN  
Figure 20. Typical 4.5V-28VIN, 1.5V at 6A Design  
V
OUT  
V
IN  
4.5V TO 28V  
0 PHASE  
PLLIN  
R3  
R4  
V
100k 100k  
IN  
C1  
V
2.5V  
12A  
OUT  
10µF  
35V  
×2  
PGOOD  
RUN  
COMP  
V
OUT  
C8  
C2  
100µF  
6.3V  
C4  
220µF  
6.3V  
V
FB  
V
OUT_LCL  
100pF  
R
SET  
9.53k  
INTV  
DIFFV  
CC  
OUT  
LTM4603HV  
+
DRV  
V
V
CC  
MPGM  
OSNS  
OSNS  
R2  
392k  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
SET  
LTC6908-1  
+
TRACK/SS  
V
OUT1  
GND OUT2  
SET MOD  
C3  
0.33µF  
SGND PGND  
C3  
0.1µF  
R9  
118k  
2-PHASE  
OSCILLATOR  
180 PHASE  
PLLIN  
R7  
100k  
V
IN  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
220µF  
6.3V  
C7  
100µF  
6.3V  
V
FB  
V
OUT_LCL  
C5  
INTV  
DIFFV  
LTM4603HV  
CC  
OUT  
10µF  
35V  
×2  
+
DRV  
V
V
CC  
OSNS  
MPGM  
OSNS  
R6  
392k  
f
MARG0  
MARG1  
SET  
TRACK/SS  
SGND PGND  
4603HV F21  
5% MARGIN  
Figure 21. 2-Phase, Parallel 2.5V at 12A Design  
4603hvfa  
22  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
Typical applicaTions  
LTC6908-1  
0 PHASE  
+
V
OUT1  
GND OUT2  
SET MOD  
C8  
0.1µF  
R9  
118k  
2-PHASE  
OSCILLATOR  
3.3V  
3.3V  
V
IN  
5V TO 28V  
180 PHASE  
PLLIN  
R3  
R4  
R7  
R8  
V
V
IN  
PGOOD  
RUN  
LTM4603HV  
COMP  
PLLIN  
100k 100k  
IN  
100k 100k  
C1  
V
3.3V  
6A  
V
2.5V  
6A  
OUT1  
OUT2  
10µF  
35V  
×2  
PGOOD  
RUN  
V
OUT  
V
OUT  
V
FB  
C8  
C9  
C2  
100µF  
6.3V  
C4  
220µF  
6.3V  
C6  
100µF  
6.3V  
C7  
220µF  
6.3V  
V
FB  
22pF  
22pF  
LTM4603HV  
COMP  
C5  
R
R
SET2  
19.1k  
SET1  
13.3k  
V
V
OUT_LCL  
DIFFV  
OUT_LCL  
10µF  
35V  
×2  
INTV  
DRV  
DIFFV  
INTV  
DRV  
CC  
OUT  
+
CC  
OUT  
+
3.3V  
TRACK  
V
V
V
V
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R2  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
MARGIN  
CONTROL  
SET  
SET  
392k  
TRACK/SS  
TRACK/SS  
C3  
0.15µF  
R15  
19.1k  
SGND PGND  
SGND PGND  
4603HV F22  
Figure 22. 2-Phase, 3.3V and 2.5V at 6A with Tracking  
LTC6908-1  
+
0 PHASE  
V
OUT1  
GND OUT2  
SET MOD  
C8  
0.1µF  
R9  
182k  
2-PHASE  
OSCILLATOR  
1.8V  
1.8V  
V
IN  
4.5V TO 28V  
180 PHASE  
PLLIN  
R3  
R4  
R7  
R8  
V
V
IN  
PGOOD  
RUN  
LTM4603HV  
COMP  
PLLIN  
100k 100k  
IN  
100k 100k  
C1  
V
1.8V  
6A  
V
1.5V  
6A  
OUT1  
OUT2  
10µF  
35V  
×2  
PGOOD  
RUN  
V
OUT  
V
OUT  
V
FB  
C8  
C9  
C2  
100µF  
6.3V  
C4  
220µF  
6.3V  
C6  
C7  
V
FB  
100pF  
100pF  
100µF  
220µF  
LTM4603HV  
COMP  
6.3V  
6.3V  
C5  
R
R
SET2  
40.2k  
SET1  
30.1k  
V
V
OUT_LCL  
DIFFV  
OUT_LCL  
10µF  
35V  
×2  
INTV  
DRV  
DIFFV  
INTV  
DRV  
CC  
OUT  
+
CC  
OUT  
+
1.8V  
TRACK  
V
V
V
V
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R6  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
MARGIN  
CONTROL  
SET  
SET  
392k  
TRACK/SS  
TRACK/SS  
C3  
0.15µF  
R15  
40.2k  
SGND PGND  
SGND PGND  
4603HV F23  
Figure 23. 2-Phase, 1.8V and 1.5V at 6A with Tracking  
4603hvfa  
23  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4603hvfa  
24  
For more information www.linear.com/LTM4603HV  
LTM4603HV  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
6/14  
Updated Absolute Maximum Ratings.  
Updated the Order Information table.  
Updated the Electrical Characteristics table.  
Updated the Pin Functions information.  
Updated the Output Voltage Programming and Margining section.  
Updated the PLLIN section.  
2
2
2-4  
7-8  
11  
15  
20  
21  
Updated the Applications Information section.  
Updated Figure 18.  
4603hvfa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTM4603HV  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC µModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Opto-Coupler Required; 3.3V, 12A Output; Simple Design  
Fast Transient Response  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC µModule  
with PLL, Output Tracking and Margining, LTM4603HV Pin Compatible  
Pin Compatible with the LTM4600  
LTM4602  
6A DC/DC µModule  
LTM4603  
6A DC/DC µModule with Tracking PLL/Margining  
Pin Compatible with the LTM4601  
4603hvfa  
LT 0614 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4603HV  
l
l
LINEAR TECHNOLOGY CORPORATION 2007  

相关型号:

LTM4603HVIV-PBF

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603HVV

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603IV#PBF

LTM4603 - 6A DC/DC &#181;Module (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4603IV#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,118PIN,PLASTIC, Switching Regulator or Controller
Linear

LTM4603IV-1#PBF

LTM4603 - 6A DC/DC &#181;Module (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4603IV-1#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,118PIN,PLASTIC, Switching Regulator or Controller
Linear

LTM4603IV-1-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603IV-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603V

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603V-1

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603_15

20V, 6A DC/DC Module Regulator with PLL, Output Tracking and Margining
Linear

LTM4604

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear