LTM4603HVIV-PBF [Linear]

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining; 6A , 28VIN DC / DC微型模块与PLL ,输出跟踪和裕
LTM4603HVIV-PBF
型号: LTM4603HVIV-PBF
厂家: Linear    Linear
描述:

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
6A , 28VIN DC / DC微型模块与PLL ,输出跟踪和裕

文件: 总24页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4603HV  
6A, 28V DC/DC µModule  
IN  
with PLL, Output Tracking  
and Margining  
U
DESCRIPTIO  
FEATURES  
TheLTM®4603HVisacomplete6Astep-downswitchmode  
DC/DC power supply with onboard switching controller,  
MOSFETs, inductor and all support components. The  
μModuleTM is housed in a small surface mount 15mm ×  
15mm × 2.8mm LGA package. Operating over an input  
voltage range of 4.5 to 28V, the LTM4603HV supports an  
outputvoltagerangeof0.6Vto5Vaswellasoutputvoltage  
tracking and margining. The high efficiency design deliv-  
ers 6A continuous current (8A peak). Only bulk input and  
output capacitors are needed to complete the design.  
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 28V  
6A DC Typical, 8A Peak Output Current  
0.6V to 5V Output Voltage  
Output Voltage Tracking and Margining  
Remote Sensing for Precision Regulation  
Typical Operating Frequency: 1MHz  
PLL Frequency Synchronization  
1.5% Regulation  
Current Foldback Protection (Disabled at Start-Up)  
Pin Compatible with the LTM4601/LTM4601HV/  
The low profile (2.8mm) and light weight (1.7g) package  
easily mounts on the unused space on the back side of  
PC boards for high density point of load regulation. The  
μModule can be synchronized with an external clock for  
reducing undesirable frequency harmonics and allows  
PolyPhase® operation for high load currents.  
LTM4603  
Ultrafast Transient Response  
Current Mode Control  
Up to 93% Efficiency at 5V , 3.3V  
IN  
OUT  
Programmable Soft-Start  
Output Overvoltage Protection  
A high switching frequency and adaptive on-time current  
mode architecture deliver a very fast transient response  
to line and load changes without sacrificing stability. An  
onboard remote sense amplifier can be used to accurately  
regulate an output voltage independent of load current.  
Pb-Free (e4) RoHS Compliant Package with Gold  
Finish Pads  
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) SurfaceUMount LGA Package  
APPLICATIO S  
, LT, LTC, LTM and PolyPhase are registered trademarks of Linear Technology  
Corporation. μModule is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Telecom and Networking Equipment  
Servers  
Industrial Equipment  
Point of Load Regulation  
U
TYPICAL APPLICATIO  
2.5V/6A with 4.5V to 28V Input μModule Regulator  
CLOCK SYNC  
Efficiency vs Load Current with 24VIN  
100  
V
IN  
4.5V TO 28V  
TRACK/SS CONTROL  
90  
80  
70  
60  
V
IN  
PLLIN TRACK/SS  
V
2.5V  
6A  
OUT  
PGOOD  
V
OUT  
100pF  
V
FB  
ON/OFF  
RUN  
COMP  
INTV  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
C
OUT  
LTM4603HV  
C
IN  
CC  
19.1k  
DRV  
DIFFV  
V
24V , 1.8V  
IN  
CC  
OUT  
+
OUT  
OUT  
OUT  
24V , 2.5V  
IN  
MPGM  
SGND PGND  
50  
40  
OSNS  
24V , 3.3V  
IN  
V
OSNS  
24V , 5V  
IN  
OUT  
392k  
f
SET  
0
1
2
3
4
5
6
7
5% MARGIN  
LOAD CURRENT (A)  
4603HV TA01a  
4603HV G03  
4603hvf  
1
LTM4603HV  
W W U W  
ABSOLUTE AXI U RATI GS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
INTV , DRV , V  
, V  
(V  
≤ 3.3V  
CC  
CC OUT_LCL OUT OUT  
with Remote Sense Amp) ............................ –0.3V to 6V  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD.......................................0.3V to INTV + 0.3V  
CC  
V
f
IN  
SET  
RUN ............................................................. –0.3V to 5V  
MARG0  
MARG1  
DRV  
V , COMP................................................ –0.3V to 2.7V  
FB  
CC  
V ............................................................. –0.3V to 28V  
IN  
V
FB  
+
PGND  
V
OSNS  
, V  
..................................0V to INTV – 1V  
OSNS CC  
PGOOD  
SGND  
+
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
V
OSNS  
DIFFV  
V
V
OUT  
V
OUT  
OUT_LCL  
OSNS  
LGA PACKAGE  
118-LEAD (15mm 15mm 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W θ DERIVED FROM 95mm × 76mm PCB WITH 4  
JMAX  
JA  
JC  
JA  
LAYERS, WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4603HVEV#PBF  
LTM4603HVIV#PBF  
PART MARKING*  
LTM4603HVV  
LTM4603HVV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
118-Lead (15mm × 15mm × 2.8mm) LGA –40°C to 85°C  
118-Lead (15mm × 15mm × 2.8mm) LGA –40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input DC Voltage  
Output Voltage  
4.5  
28  
V
IN(DC)  
V
C
= 10μF ×2, C  
= 2×, 100μF/X5R/  
OUT(DC)  
IN  
OUT  
Ceramic  
V
V
= 5V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.478  
1.5  
1.5  
1.522  
1.522  
V
V
IN  
IN  
OUT  
OUT  
= 12V, V  
= 1.5V, I  
= 0A  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V  
INRUSH(VIN)  
OUT  
OUT  
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
V
I
Input Supply Bias Current  
V
V
= 12V, V  
= 12V, V  
= 1.5V, No Switching  
= 1.5V, Switching  
3.8  
25  
mA  
mA  
Q(VIN,NOLOAD)  
IN  
IN  
OUT  
OUT  
Continuous  
V
V
= 5V, V  
= 5V, V  
= 1.5V, No Switching  
= 1.5V, Switching  
2.5  
43  
mA  
mA  
IN  
IN  
OUT  
OUT  
Continuous  
Shutdown, RUN = 0, V = 12V  
22  
μA  
IN  
4603hvf  
2
LTM4603HV  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 6A  
= 6A  
0.85  
1.78  
2.034  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
IN  
No Load  
4.7  
0
5
5.3  
6
V
CC  
Output Specifications  
I
Output Continuous Current Range  
(See Output Current Derating Curves  
for Different V , V  
V
= 12V, V  
= 1.5V  
OUT  
A
OUTDC  
IN  
and T )  
A
IN OUT  
ΔV  
ΔV  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
V
V
= 1.5V, I  
= 1.5V, I  
= 0A, V = 4.5V to 28V  
0.3  
%
%
OUT(LINE)  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
V
OUT  
OUT(LOAD)  
= 0A to 6A, V = 12V  
0.25  
IN  
V
OUT  
OUT(AC)  
V
I
= 0A, C  
= 2×, 100μF/X5R/Ceramic  
OUT  
V
IN  
V
IN  
= 12V, V  
= 1.5V  
= 1.5V  
10  
10  
mV  
mV  
OUT  
P-P  
P-P  
= 5V, V  
OUT  
f
Output Ripple Voltage Frequency  
I
= 3A, V = 12V, V = 1.5V  
OUT  
1000  
kHz  
S
OUT  
IN  
ΔV  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
V
= 2×, 100μF/X5R/Ceramic,  
OUT(START)  
OUT  
OUT  
= 1.5V, I  
= 12V  
= 5V  
= 0A  
OUT  
V
IN  
V
IN  
20  
20  
mV  
mV  
t
Turn-On Time, TRACK/SS = Open  
Peak Deviation for Dynamic Load  
C
V
= 2×, 100μF/X5R/Ceramic,  
START  
OUT  
OUT  
= 1.5V, I  
= 12V  
= 5V  
= 1A Resisitive Load  
OUT  
V
IN  
V
IN  
0.5  
0.7  
ms  
ms  
ΔV  
Load: 0% to 50% to 0% of Full Load,  
= 2 × 22μF/Ceramic, 470μF, 4V  
OUTLS  
C
OUT  
Sanyo POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 10% of Full Load  
SETTLE  
V
= 12V  
25  
μs  
IN  
Output Current Limit  
C
= 2×, 100μF/X5R/Ceramic  
OUTPK  
OUT  
V
IN  
V
IN  
= 12V, V  
= 1.5V  
8
8
A
A
OUT  
= 5V, V  
= 1.5V  
OUT  
Remote Sense Amp (Note 3)  
+
V
, V  
Common Mode Input Voltage Range  
V
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV  
Range  
Output Voltage Range  
Input Offset Voltage Magnitude  
Differential Gain  
= 12V, DIFFV  
Load = 100k  
INTV  
CC  
V
mV  
OUT  
IN  
OUT  
V
OS  
1.25  
AV  
1
3
V/V  
MHz  
V/μs  
kΩ  
GBP  
SR  
Gain Bandwidth Product  
Slew Rate  
2
+
R
Input Resistance  
V
OSNS  
to GND  
20  
100  
IN  
CMRR  
Common Mode Rejection Ratio  
dB  
4603hvf  
3
LTM4603HV  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Stage  
V
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.6  
0.606  
V
FB  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On Time  
1
1.5  
–1.5  
50  
1.9  
–2  
V
μA  
ns  
RUN  
I
t
t
V
= 0V  
–1  
SS/TRACK  
ON(MIN)  
OFF(MIN)  
SS/TRACK  
(Note 4)  
(Note 4)  
100  
400  
Minimum Off Time  
250  
50  
ns  
R
PLLIN Input Resistance  
kΩ  
mA  
PLLIN  
I
Current into DRV Pin  
V
OUT  
= 1.5V, I = 1A,  
OUT  
18  
25  
DRVCC  
CC  
Frequency = 1MHz, DRV = 5V  
CC  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
kΩ  
V
FBHI  
OUT_LCL  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1.5  
13  
–13  
3
%
%
%
V
FBH  
FB  
Falling  
–7  
FBL  
FB  
Returning  
FB(HYS)  
FB  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4603HVEV is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization  
and correlation with statistical process controls. The LTM4603HVIV is  
guaranteed over the –40°C to 85°C temperature range.  
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at die level only.  
4603hvf  
4
LTM4603HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 20 for all curves)  
Efficiency vs Load Current  
with 24VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
12V , 1.2V  
5V , 0.6V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
60  
50  
40  
12V , 1.5V  
IN  
5V , 1.2V  
IN  
12V , 1.8V  
IN  
24V , 1.8V  
5V , 1.5V  
IN  
IN  
OUT  
OUT  
OUT  
12V , 2.5V  
IN  
24V , 2.5V  
IN  
5V , 1.8V  
IN  
12V , 3.3V  
24V , 3.3V  
5V , 2.5V  
IN  
IN  
IN  
12V , 5V  
24V , 5V  
5V , 3.3V  
IN  
IN  
OUT  
IN  
OUT  
0
2
3
4
5
6
7
0
2
3
4
5
6
7
1
1
4
6
7
0
1
2
3
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4603HV G02  
4603HV G01  
4603HV G03  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4603HV G06  
4603HV G04  
4603HV G05  
25μs/DIV  
25μs/DIV  
25μs/DIV  
1.8V AT 3A/μs LOAD STEP  
1.2V AT 3A/μs LOAD STEP  
1.5V AT 3A/μs LOAD STEP  
C
: 1x 22μF, 6.3V CERAMIC  
C
: 1x 22μF, 6.3V CERAMIC  
C
: 1x 22μF, 6.3V CERAMIC  
OUT  
OUT  
OUT  
1x 330μF, 4V SANYO POSCAP  
1x 330μF, 4V SANYO POSCAP  
1x 330μF, 4V SANYO POSCAP  
2.5V Transient Response  
3.3V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
4603HV G08  
4603HV G07  
25μs/DIV  
25μs/DIV  
3.3V AT 3A/μs LOAD STEP  
2.5V AT 3A/μs LOAD STEP  
C
: 1x 22μF, 6.3V CERAMIC  
C
: 1x 22μF, 6.3V CERAMIC  
OUT  
OUT  
1x 330μF, 4V SANYO POSCAP  
1x 330μF, 4V SANYO POSCAP  
4603hvf  
5
LTM4603HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 20 for all curves)  
Start-Up, IOUT = 6A  
(Resistive Load)  
Short-Circuit Protection,  
OUT = 0A  
Start-Up, IOUT = 0A  
I
V
V
OUT  
0.5V/DIV  
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
0.5A/DIV  
IN  
I
IN  
2A/DIV  
0.5A/DIV  
4603HV G09  
4603HV G10  
4603HV G11  
1ms/DIV  
1ms/DIV  
100μs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
OUT  
OUT  
V
= 12V  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
V
= 1.5V  
= 1x 22μF, 6.3V CERAMIC  
1x 330μF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
= 1x 22μF, 6.3V CERAMIC  
1x 330μF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
C
= 1x 22μF, 6.3V CERAMIC  
1x 330μF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
Short-Circuit Protection,  
IOUT = 6A  
VIN to VOUT Step-Down Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
82.5k FROM V  
OUT  
TO f  
SET  
V
OUT  
5V OUTPUT WITH  
150k RESISTOR  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
5V OUTPUT WITH  
NO RESISTOR ADDED  
I
IN  
FROM f  
TO GND  
SET  
2A/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
4603 G12  
100μs/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
= 1.5V  
= 1x 22μF, 6.3V CERAMIC  
1x 330μF, 4V SANYO POSCAP  
0
4
8
12  
16  
20  
24  
28  
SOFT-START = 3.9nF  
INPUT VOLTAGE (V)  
4603HV G13  
4603hvf  
6
LTM4603HV  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
SGND with a 50k resistor. Apply a clock above 2V and  
IN  
tween these pins and PGND pins. Recommend placing  
below INTV . See Applications Information.  
CC  
input decoupling capacitance directly between V pins  
IN  
TRACK/SS (Pin A9): Output Voltage Tracking and Soft-  
Start Pin. When the module is configured as a master  
output, then a soft-start capacitor is placed on this pin  
to ground to control the master ramp rate. A soft-start  
capacitor can be used for soft-start turn on as a stand  
alone regulator. Slave operation is performed by putting  
a resistor divider from the master output to the ground,  
and connecting the center point of the divider to this pin.  
See Applications Information.  
and PGND pins.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins. Review the figure below.  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
V
OSNS  
(PinM12):(–)InputtotheRemoteSenseAmplifier.  
MPGM (Pin A12): Programmable Margining Input. A re-  
sistor from this pin to ground sets a current that is equal  
to 1.18V/R. This current multiplied by 10kΩ will equal a  
value in millivolts that is a percentage of the 0.6V refer-  
ence voltage. See Applications Information. To parallel  
LTM4603HVs, eachrequiresanindividualMPGMresistor.  
Do not tie MPGM pins together.  
This pin connects to the ground remote sense point. The  
remote sense amplifier is used for V  
≤3.3V.  
OUT  
+
V
(PinJ12):(+)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the output remote sense point. The  
remote sense amplifier is used for V ≤3.3V.  
OUT  
DIFFV  
(Pin K12): Output of the Remote Sense Ampli-  
OUT  
fier. This pin connects to the V  
pin.  
OUT_LCL  
f
(Pin B12): Frequency Set Internally to 1MHz. An  
SET  
external resistor can be placed from this pin to ground  
to increase frequency. This pin can be decoupled with a  
1000pF capacitor. See Applications Information for fre-  
quency adjustment.  
DRV (Pin E12): This pin normally connects to INTV  
CC  
CC  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure  
16. This improves efficiency at the higher input voltages  
by reducing power dissipation in the modules.  
V
(Pin F12): The Negative Input of the Error Ampli-  
FB  
fier. Internally, this pin is connected to V  
with a  
OUT_LCL  
60.4k precision resistor. Different output voltages can be  
programmed with an additional resistor between V and  
INTV (Pin A7): This pin is for additional decoupling of  
CC  
FB  
the 5V internal regulator.  
SGND pins. See Applications Information.  
PLLIN (Pin A8): External Clock Synchronization Input to  
the Phase Detector. This pin is internally terminated to  
TOP VIEW  
A
B
C
D
E
V
IN  
f
SET  
BANK 1  
MARG0  
MARG1  
DRV  
CC  
PGND  
BANK 2  
F
V
FB  
G
H
J
PGOOD  
SGND  
+
V
OSNS  
K
L
M
DIFFV  
V
OUT  
OUT  
BANK 3  
V
V
OUT_LCL  
OSNS  
1
2 3 4 5 6 7 8 9 10 11 12  
4603hvf  
7
LTM4603HV  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25μs power bad mask timer expires.  
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1.9V, will turn  
off the module. A programmable UVLO function can be  
accomplished with a resistor from V to this pin that has  
IN  
SGND (Pin H12): Signal Ground. This pin connects to  
PGND at output capacitor point.  
a 5.1V zener to ground. Maximum pin voltage is 5V.  
V
(Pin L12): V  
connects directly to this pin to  
OUT_LCL  
OUT  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
bypass the remote sense amplifier, or DIFFV  
connects  
OUT  
to this pin when remote sense amplifier is used.  
W
W
SI PLIFIED BLOCK DIAGRA  
V
1M  
OUT_LCL  
V
OUT  
>2V = ON  
<0.9V = OFF  
MAX = 5V  
RUN  
PGOOD  
COMP  
V
IN  
4.5V TO 28V  
+
5.1V  
ZENER  
1.5μF  
C
IN  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
V
2.5V  
6A  
OUT  
MARG1  
MARG0  
22μF  
V
FB  
50k 50k  
+
f
SET  
R
FB  
19.1k  
C
OUT  
33.2k  
PGND  
MPGM  
TRACK/SS  
PLLIN  
INTV  
CC  
10k  
C
SS  
10k  
V
V
OSNS  
50k  
+
+
10k  
INTV  
CC  
OSNS  
DRV  
4.7μF  
CC  
10k  
DIFFV  
OUT  
4603HV F01  
Figure 1. Simplified LTM4603HV Block Diagram  
4603hvf  
8
LTM4603HV  
U
W U  
DECOUPLI G REQUIRE E TS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 6A  
20  
μF  
IN  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
I
= 6A  
100  
200  
μF  
OUT  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
IN  
OUT  
U
OPERATIO  
Power Module Description  
and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4603HV is a standalone nonisolated switching  
mode DC/DC power supply. It can deliver up to 6A of DC  
output current with few external input and output capaci-  
tors.Thismoduleprovidespreciselyregulatedoutputvolt-  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
ageprogrammableviaoneexternalresistorfrom0.6V to  
DC  
5.0V over a 4.5V to 28V wide input voltage. The typical  
DC  
When DRV pin is connected to INTV an integrated  
CC  
CC  
application schematic is shown in Figure 20.  
5V linear regulator powers the internal gate drivers. If a  
The LTM4603HV has an integrated constant on-time  
current mode regulator, ultralow R  
5V external bias supply is applied on the DRV pin, then  
CC  
FETs with fast  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
DS(ON)  
switching speed and integrated Schottky diodes. The typi-  
cal switching frequency is 1MHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4603HV module has sufficient stability margins  
and good transient performance under a wide range of  
operating conditions and with a wide range of output  
capacitors, even all ceramic output capacitors.  
The LTM4603HV has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate remote sense voltage measurement. The  
MPGM pin, MARG0 pin and MARG1 pin are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrentconditionwhileV drops.Internalovervoltage  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits a 10%  
window around the regulation point. Furthermore, in an  
overvoltage condition, internal top FET Q1 is turned off  
FB  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used for  
power supply tracking and soft-start programming.  
4603hvf  
9
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTM4603HV application circuit is shown in  
Figure 20. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
where%V isthepercentageofV youwanttomargin,  
OUT  
OUT  
and V  
is the margin quantity in volts:  
OUT(MARGIN)  
VOUT  
1.18V  
10k  
RPGM  
=
0.6V VOUT(MARGIN)  
where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
down ratio that can be achieved for a given input voltage.  
These constraints are shown in the Typical Performance  
Characteristics curves labeled V to V  
Step-Down  
IN  
OUT  
Ratio.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
MARG0  
LOW  
MARG1  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
Output Voltage Programming and Margining  
HIGH  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
Input Capacitors  
internal feedback resistor connects V  
and V pins  
OUT  
FB  
LTM4603HV module should be connected to a low AC  
impedance DC source. Input capacitors are required to  
be placed adjacent to the module. In Figure 20, the 10μF  
ceramic input capacitors are selected for their ability to  
handle the large RMS current into the converter. An input  
bulkcapacitorof100μFisoptional.This100μFcapacitoris  
onlyneedediftheinputsourceimpedanceiscompromised  
by long inductive leads or traces.  
together. The V  
pin is connected between the 1M  
OUT_LCL  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
OUT_LCL  
pin is not connected to the output, or if the remote sense  
amplifier output is not connected to V . The output  
OUT_LCL  
voltage will default to 0.6V. Adding a resistor R  
the V pin to SGND pin programs the output voltage:  
from  
SET  
FB  
For a buck converter, the switching duty-cycle can be  
estimated as:  
60.4k +RSET  
VOUT = 0.6V  
RSET  
VOUT  
D=  
Table 1. Standard 1% Resistor Values  
V
IN  
R
SET  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
(kΩ)  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
V
OUT  
(V)  
IOUT(MAX)  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
ICIN(RMS)  
=
D 1D  
(
)
η%  
In the above equation, η% is the estimated efficiency of  
R
resistor on the MPGM pin programs the current.  
PGM  
Calculate V  
the power module. C can be a switcher-rated electrolytic  
IN  
:
OUT(MARGIN)  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitor. Note the capacitor ripple current rat-  
ings are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
%VOUT  
100  
VOUT(MARGIN)  
=
• VOUT  
4603hvf  
10  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
Output Capacitors  
The LTM4603HV is designed for low output voltage ripple.  
The bulk output capacitors defined as C are chosen  
OUT  
In Figure 20, the 10μF ceramic capacitors are together  
used as a high frequency input decoupling capacitor. In a  
typical 6A output application, two very low ESR, X5R or  
X7R, 10μF ceramic capacitors are recommended. These  
decoupling capacitors should be placed directly adjacent  
to the module input pins in the PCB layout to minimize  
the trace inductance and high frequency AC noise. Each  
10μF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor.Thetypicalcapacitanceis  
200μF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
MultiphaseoperationwithmultipleLTM4603HVdevicesin  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
fortheinputcapacitorripplecurrentrequirementasafunc-  
tion of the number of phases. The figure provides a ratio  
of RMS ripple current to DC load current as a function of  
duty cycle and the number of paralleled phases. Pick the  
corresponding duty cycle and the number of phases to  
arrive at the correct ripple current value. For example, the  
2-phase parallel LTM4603HV design provides 10A at 2.5V  
output from a 12V input. The duty cycle is DC = 2.5V/12V  
= 0.21. The 2-phase curve has a ratio of ~0.25 for a duty  
cycle of 0.21. This 0.25 ratio of RMS ripple current to a  
DC load current of 10A equals ~2.5A of input RMS ripple  
current for the external input capacitors.  
Multiphase operation with multiple LTM4603HV devices  
in parallel will lower the effective output ripple current  
due to the interleaving operation of the regulators. For  
example, each LTM4603HV’s inductor current of a 12V to  
2.5V multiphase design can be read from the “Inductor  
Ripple vs Duty Cycle” (Figure 3). The large ripple current  
at low duty cycle and high output voltage can be reduced  
by adding an external resistor from f to ground which  
SET  
increases the frequency. If we choose the duty cycle of  
DC = 2.5V/12V = 0.21, the inductor ripple current for 2.5V  
output at 21% duty cycle is ~2A in Figure 3.  
0.6  
4
2.5V OUTPUT  
5V OUTPUT  
0.5  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
3
2
1
0
1-PHASE  
0.4  
2-PHASE  
3-PHASE  
4-PHASE  
3.3V OUTPUT WITH  
82.5k ADDED FROM  
0.3  
6-PHASE  
V
OUT  
TO f  
SET  
0.2  
5V OUTPUT WITH  
150k ADDED FROM  
f
TO GND  
0.1  
SET  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
0
20  
40  
60  
)
80  
DUTY FACTOR (V /V  
)
DUTY CYCLE (V /V  
OUT IN  
OUT IN  
4603HV F02  
4603HV F03  
Figure 3. Inductor Ripple Current vs Duty Cycle  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Factor for One to Six Modules (Phases)  
4603hvf  
11  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4603HV F04  
O
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
Figure4providesaratioofpeak-to-peakoutputripplecur-  
Fault Conditions: Current Limit and Overcurrent  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation is  
chosen at a duty cycle of 21%, then 0.6 is the ratio. This  
0.6 ratio of output ripple current to inductor ripple of 2A  
equals 1.2A of effective output ripple current. Refer to Ap-  
plicationNote77foradetailedexplanationofoutputripple  
current reduction as a function of paralleled phases.  
Foldback  
The LTM4603HV has a current mode controller, which  
inherently limits the cycle-by-cycle inductor current not  
only in steady-state operation, but also in transient.  
Tofurtherlimitcurrentintheeventofanoverloadcondition,  
the LTM4603HV provides foldback current limiting. If the  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output voltage ripple can be calulated with  
the known effective output ripple current. The equation:  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5μA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
ΔV  
≈ (ΔI /(8 • f • m • C ) + ESR • ΔI ), where f  
OUT(P-P)  
L OUT L  
is frequency and m is the number of parallel phases. This  
calclation process can be easily fulfilled using the Linear  
Technology μModule design tool.  
4603hvf  
12  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Run Enable  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
CSS  
1.5µA  
tSOFTSTART = 0.8V • 0.6V – V  
(
)
OUT(MARGIN)  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
When the RUN pin falls below 1.5V, then the TRACK/SS  
pin is reset to allow for proper soft-start control when  
the regulator is enabled again. Current foldback and force  
continuous mode are disabled during the soft-start pro-  
cess. The soft-start function can also be used to control  
the output ramp up time, so that another regulator can  
be easily tracked to it.  
R1+R2  
VUVLO  
=
1.5V  
R2  
Power Good  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 5  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 6 shows the coincident output  
tracking characteristics.  
COMP Pin  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. A spice model will be provided for other control  
loop optimization.  
PLLIN  
MASTER  
OUTPUT  
Thepowermodulehasaphase-lockedloopcomprisedofan  
internal voltage controlled oscillator and a phase detector.  
This allows the internal top MOSFET turn-on to be locked  
R2  
60.4k  
TRACK CONTROL  
V
IN  
R1  
40.2k  
60.4k FROM  
TO V  
100k  
V
PLLIN TRACK/SS  
V
IN  
OUT  
FB  
MASTER OUTPUT  
SLAVE OUTPUT  
PGOOD  
V
OUT  
MPGM  
RUN  
COMP  
V
C
FB  
OUT  
MARG0  
MARG1  
V
OUT_LCL  
SLAVE OUTPUT  
LTM4603HV  
C
IN  
OUTPUT  
VOLTAGE  
INTV  
CC  
CC  
DRV  
DIFFV  
V
V
OUT  
+
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4603HV F05  
4603HV F06  
TIME  
Figure 6  
Figure 5  
4603hvf  
13  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
to the rising edge of the external clock. The frequency  
range is 30% around the operating frequency of 1MHz.  
A pulse detection circuit is used to detect a clock on the  
PLLIN pin to turn on the phase lock loop. The pulse width  
of the clock has to be at least 400ns and 2V in amplitude.  
During the start-up of the regulator, the phase-lock loop  
function is disabled.  
current sharing. This will balance the thermals on the  
design. The voltage feedback equation changes with the  
variable n as modules are paralleled:  
60.4k  
+RSET  
n
VOUT = 0.6V  
RSET  
n is the number of paralleled modules.  
INTV and DRV Connection  
CC  
CC  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
for driving the internal power MOSFETs. Therefore, if the  
system does not have a 5V power rail, the LTM4603HV  
can be directly powered by Vin. The gate driver current  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
Thermal Considerations and Output Current Derating  
CC  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 12, and Figures 13 to 16 for calculating an  
approximate θ for the module with various heat sinking  
JA  
methods. Thermal models are derived from several tem-  
peraturemeasurementsatthebenchandthermalmodeling  
analysis.ThermalApplicationNote103providesadetailed  
explanation of the analysis for the thermal models and the  
derating curves. Tables 3 and 4 provide a summary of the  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
The LTM4603HV also provides the external gate driver  
voltage pin DRV . If there is a 5V rail in the system, it is  
CC  
equivalent θ for the noted conditions. These equivalent  
JA  
recommended to connect DRV pin to the external 5V  
CC  
θ
JA  
parameters are correlated to the measured values,  
rail. This is especially true for higher input voltages. Do  
and are improved with air flow. The case temperature is  
maintained at 100°C or below for the derating curves.  
This allows for 4W maximum power dissipation in the  
total module with top and bottom heatsinking, and 2W  
power dissipation through the top of the module with an  
not apply more than 6V to the DRV pin. A 5V output can  
CC  
be used to power the DRV pin with an external circuit  
CC  
as shown in Figure 18.  
Parallel Operation of the Module  
approximate θ between 6°C/W to 9°C/W. This equates  
JC  
The LTM4603HV device is an inherently current mode  
controlled device. Parallel modules will have very good  
to a total of 124°C at the junction of the device.  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
6
5
24V LOSS  
12V LOSS  
2.5  
2.0  
1.5  
1.0  
0.5  
4
3
12V LOSS  
5V LOSS  
2
1
0
5V , 1.5V , 0LFM  
IN  
IN  
OUT  
OUT  
OUT  
5V , 1.5V , 200LFM  
5V , 1.5V , 400LFM  
IN  
0
4
OUTPUT CURRENT (A)  
6
7
4
OUTPUT CURRENT (A)  
6
7
75  
80  
85  
90  
95  
0
1
2
3
5
0
1
2
3
5
AMBIENT TEMPERATURE (°C)  
4603HV F07  
4603HV F08  
4603HV F09  
Figure 7. 1.5V Power Loss  
Figure 8. 3.3V Power Loss  
Figure 9. No Heat Sink  
4603hvf  
14  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
6
6
5
6
5
5
4
3
4
3
4
3
2
1
0
2
1
0
2
1
0
5V , 1.5V , 0LFM  
12V , 1.5V , 0LFM  
IN  
OUT  
IN  
OUT  
5V , 1.5V , 200LFM  
12V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
5V , 1.5V , 400LFM  
12V , 1.5V , 400LFM  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4603HV F10  
4603HV F12  
4603HV F11  
12V , 1.5V , 0LFM  
IN  
OUT  
12V , 1.5V , 200LFM  
IN  
OUT  
Figure 10. BGA Heat Sink  
Figure 12. BGA Heat Sink  
12V , 1.5V , 400LFM  
IN  
OUT  
Figure 11. No Heat Sink  
6
5
6
5
4
3
4
3
2
2
1
0
12V , 3.3V , 0LFM  
12V , 3.3V , 0LFM  
1
0
IN  
OUT  
IN  
IN  
OUT  
OUT  
OUT  
12V , 3.3V , 200LFM  
12V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
12V , 3.3V , 400LFM  
12V , 3.3V , 400LFM  
IN  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4603HV F13  
4603HV F14  
Figure 13. No Heat Sink  
Figure 14. BGA Heat Sink  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
24V , 3.3V , 0LFM  
IN  
OUT  
24V , 3.3V , 0LFM  
IN  
OUT  
24V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
24V , 3.3V , 200LFM  
IN OUT  
24V , 3.3V , 400LFM  
24V , 3.3V , 400LFM  
IN OUT  
60  
65  
70  
75  
80  
85  
60  
70  
75  
80  
85  
90  
65  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4603HV F15  
1635 G24  
Figure 15. No Heat Sink  
Figure 16. BGA Heat Sink  
4603hvf  
15  
LTM4603HV  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 20)  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK316BJ226ML-T501 (22μF, 6.3V)  
JMK325BJ476MM-T (47μF, 6.3V)  
C3225X5R0J476M (47μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE220MIL (220μF, 6.3V)  
2R5TPE330M9 (330μF, 2.5V)  
4TPE330MCL (330μF, 4V)  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
PEAK (mV)  
RECOVERY  
TIME (μs)  
LOAD STEP  
(A/μs)  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
(BULK)  
(CERAMIC)  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
1 × 22μF 6.3V  
1 × 47μF 6.3V  
2 × 47μF 6.3V  
4 × 47μF 6.3V  
4 × 47μF 6.3V  
4 × 47μF 6.3V  
(BULK)  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
(kΩ)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
2 × 10μF 35V 150μF 35V  
5
34  
22  
68  
40  
30  
26  
24  
18  
30  
26  
24  
18  
30  
30  
26  
26  
30  
30  
26  
26  
37  
30  
26  
26  
37  
30  
26  
26  
40  
34  
28  
12  
40  
34  
28  
18  
40  
32  
28  
14  
40  
32  
28  
22  
20  
20  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
20  
40  
5
32  
60  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
34  
68  
22  
40  
20  
39  
29.5  
35  
55  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
70  
5
25  
48  
5
24  
47.5  
68  
5
36  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
35  
70  
25  
48  
24  
45  
32.6  
38  
61.9  
76  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
5
29.5  
28  
57.5  
55  
5
5
43  
80  
330μF 4V  
330μF 2.5V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
5
38  
76  
28  
55  
27  
52  
36.4  
38  
70  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
78  
5
37.6  
39.5  
66  
74  
5
78.1  
119  
78  
5
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
7
38  
34.5  
35.8  
50  
66.3  
68.8  
98  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
42  
86  
7
47  
89  
7
50  
94  
7
75  
141  
86  
330μF 4V  
330μF 4V  
220μF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
42  
47  
88  
50  
94  
69  
131  
215  
217  
NONE  
110  
110  
5
NONE  
4603hvf  
16  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
0
15.2  
14  
Figures 9, 11  
Figure 7  
200  
400  
0
None  
Figures 9, 11  
5, 12  
Figure 7  
None  
12  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
5, 12, 20  
5, 12, 20  
5, 12, 20  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output  
DERATING CURVE  
Figures 13, 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figures 13, 15  
Figure 8  
200  
400  
0
None  
Figures 13, 15  
Figure 8  
None  
Figures 14, 16  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 14, 16  
Figure 8  
200  
400  
Figures 14, 16  
Figure 8  
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: 20069  
Phone: 603-635-2800  
4603hvf  
17  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Safety Considerations  
• Do not put vias directly on pads.  
The LTM4603HV modules do not provide isolation from  
• If vias are placed onto the pads, the the vias must be  
capped.  
V to V . There is no internal fuse. If required, a slow  
IN  
OUT  
blow fuse with a rating twice the maximum input current  
needstobeprovidedtoprotecteachunitfromcatastrophic  
failure.  
• Interstitialvia placementcan also beused if necessary.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
Layout Checklist/Example  
The high integration of LTM4603HV makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
Figure 17 gives a good example of the recommended  
layout.  
Frequency Adjustment  
The LTM4603HV is designed to typically operate at 1MHz  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
across most input conditions. The f pin is typically left  
SET  
IN  
OUT  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 1MHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V to  
3.3V, and produce excessive inductor ripple currents for  
lower duty cycle applications like 28V to 5V. The 5V and  
3.3V drop out curves are modified by adding an external  
PCB conduction loss and thermal stress.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
resistor on the f  
operations.  
pin to allow for wider input voltage  
SET  
V
IN  
C
C
IN  
IN  
GND  
SIGNAL  
GND  
C
C
OUT  
OUT  
V
OUT  
4603HV F17  
Figure 17. Recommended Layout  
4603hvf  
18  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Example for 5V Output  
Example for 3.3V Output  
LTM4603HV minimum on-time = 100ns;  
= ((3.3 • 10pF)/I  
LTM4603HV minimum on-time = 100ns;  
t
= ((4.8 • 10pf)/I  
)
t
)
fSET  
ON  
fSET  
ON  
LTM4603HV minimum off-time = 400ns;  
= t– t , where t = 1/Frequency  
LTM4603HV minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
t
t
OFF  
OFF  
ON  
ON  
Duty Cycle = t /t or V /V  
Duty Cycle (DC) = t /t or V /V  
ON OUT IN  
ON  
OUT IN  
Equations for setting frequency:  
= (V /(3 • R )), for 28V input operation, I  
Equations for setting frequency:  
= (V /(3 • R )), for 28V input operation, I  
I
=
I
=
fSET  
fSET  
IN  
fSET  
fSET  
fSET  
IN  
fSET  
281μA, t = ((4.8 • 10pF)/I ), t = 171ns, where the  
281μA, t = ((3.3 • 10pf)/I ), t = 117ns, where the  
ON  
fSET ON  
ON fSET ON  
internal R  
is 33.2k. Frequency = (V /(V • t )) =  
internal R is 33.2k. Frequency = (V /(V • t )) =  
fSET OUT IN ON  
fSET  
OUT IN ON  
(5V/(28 • 171ns)) ~ 1MHz. The inductor ripple current  
begins to get high at the higher input voltages due to a  
larger voltage across the inductor. This is shown in the  
“Inductor Ripple Current vs Duty Cycle” graph as ~4A at  
25%dutycycle.Theinductorripplecurrentcanbelowered  
at the higher input voltages by adding an external resistor  
(3.3V/(28 • 117ns)) ~ 1MHz. The minimum on-time and  
minimum-off time are within specification at 118ns and  
882ns. But the 4.5V minimum input for converting 3.3V  
outputwillnotmeettheminimumoff-timespecificationof  
400ns. t = 733ns, Frequency = 1MHz, t = 267ns.  
ON  
OFF  
Solution  
from f to ground to increase the switching frequency.  
SET  
A 3A ripple current is chosen, and the total peak current  
is equal to 1/2 of the 3A ripple current plus the output  
current. The 5V output current is limited to 5A, so total  
peak current is less than 6.5A. This is below the 8A peak  
Lower the switching frequency at lower input voltages to  
allow for higher duty cycles, and meet the 400ns mini-  
mum off-time at 4.5V input voltage. The off-time should  
be about 500ns with 100ns guard band. The duty cycle  
specified value. A 150k resistor is placed from f  
to  
SET  
for (3.3V/4.5) = ~73%. Frequency = (1 – DC)/t  
or  
OFF  
ground, and the parallel combination of 150k and 33.2k  
(10.73)/500ns=540kHz.Theswitchingfrequencyneeds  
tobeloweredto540kHzat4.5Vinput. t =DC/frequency,  
equates to 27.2k. The I  
calculation with 27.2k and  
fSET  
ON  
28V input voltage equals 343μA. This equates to a t of  
ON  
or 1.35μs. The f  
pin voltage compliance is 1/3 of V ,  
SET  
IN  
140ns. This will increase the switching frequency from  
1MHz to ~1.28MHz for the 28V to 5V conversion. The  
minimum on time is above 100ns at 28V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 10V for the 1.28MHz operation due to  
and the I  
current equates to 45μA with the internal  
fSET  
33.2k. The I  
current needs to be 24μA for 540kHz  
fSET  
operation. A resistor can be placed from V  
to f  
to  
OUT  
SET  
SET  
lower the effective I  
current out of the f pin to 24μA.  
fSET  
The f  
pin is 4.5V/3 =1.5V and V  
= 3.3V, therefore  
OUT  
SET  
an 82.5k resistor will source 21μA into the f node and  
SET  
the 400ns minimum off time. Equation: t = (V /V ) •  
ON  
OUT IN  
lower the I  
current to 24μA. This enables the 540kHz  
fSET  
(1/Frequency) equates to a 382ns on time, and a 400ns off  
operation and the 4.5V to 28V input operation for down  
converting to 3.3V output as shown in Figure 19. The  
frequency will scale from 540kHz to 1.27MHz over this  
input range. This provides for an effective output current  
of 5A over the input range.  
time. The “V to V Step-Down Ratio” curve reflects an  
IN  
OUT  
operatingrangeof10Vto28Vfor1.28MHzoperationwitha  
150kresistortoground(showninFigure18), andan8Vto  
16V operating range for f floating. These modifications  
SET  
are made to provide wider input voltage ranges for the 5V  
output designs while limiting the inductor ripple current,  
and maintaining the 400ns minimum off time.  
4603hvf  
19  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
5V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
MPGM  
RUN  
V
FB  
REFER TO  
TABLE 2  
MARG0  
MARG1  
V
OUT_LCL  
C3  
COMP  
INTV  
DRV  
+
LTM4603HV  
100μF  
CC  
6.3V  
5% MARGIN  
DIFFV  
SANYO POSCAP  
CC  
OUT  
+
R1  
392k  
1%  
V
V
OSNS  
C2  
OSNS  
10μF  
f
SGND PGND  
SET  
35V  
C1  
10μF  
R
R
SET  
8.25k  
fSET  
35V  
150k  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR 12V INPUT  
DUAL  
CMSSH-3C3  
4603HV F18  
Figure 18. 5V at 5A Design  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
PGOOD  
MPGM  
RUN  
V
FB  
C3  
MARG0  
MARG1  
V
OUT_LCL  
+
100μF  
COMP  
INTV  
DRV  
LTM4603HV  
6.3V  
CC  
CC  
SANYO POSCAP  
DIFFV  
OUT  
+
C2  
V
V
OSNS  
R1  
392k  
10μF  
35V  
OSNS  
R
f
fSET  
C1  
10μF  
35V  
SGND PGND  
SET  
R
SET  
82.5k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4603HV F19  
Figure 19. 3.3V at 5A Design  
4603hvf  
20  
LTM4603HV  
U
W U U  
APPLICATIO S I FOR ATIO  
CLOCK SYNC  
C5  
V
OUT  
0.01μF  
V
IN  
4.5V TO 28V  
REVIEW TEMPERATURE  
R2  
100k  
R4  
100k  
V
PLLIN TRACK/SS  
V
1.5V  
6A  
IN  
DERATING CURVE  
C3 100pF  
OUT  
PGOOD  
V
OUT  
+
C
C
PGOOD  
MPGM  
RUN  
COMP  
V
OUT1  
OUT2  
FB  
22μF  
470μF  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
6.3V  
6.3V  
ON/OFF  
LTM4603HV  
INTV  
DRV  
CC  
CC  
DIFFV  
V
OUT  
+
C
IN  
+
R1  
BULK  
OPT.  
OSNS  
392k  
V
OSNS  
C
IN  
TABLE 2  
f
10μF  
35V  
SGND PGND  
SET  
R
REFER TO  
TABLE 2  
SET  
100k*  
40.2k  
V
×2 CER  
IN  
4603 F18  
*100k NEEDED ONLY FOR  
20V INPUT  
5% MARGIN  
Figure 20. Typical 4.5V-28VIN, 1.5V at 6A Design  
V
OUT  
V
IN  
4.5V TO 28V  
0° PHASE  
PLLIN  
R3  
R4  
V
100k 100k  
IN  
C1  
V
2.5V  
12A  
OUT  
10μF  
35V  
×2  
PGOOD  
RUN  
COMP  
V
OUT  
C8  
C2  
100μF  
6.3V  
C4  
220μF  
6.3V  
V
FB  
V
OUT_LCL  
100pF  
R
SET  
9.53k  
INTV  
DIFFV  
CC  
OUT  
LTM4603HV  
+
DRV  
V
V
CC  
MPGM  
OSNS  
OSNS  
R2  
392k  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
SET  
LTC6908-1  
+
TRACK/SS  
V
OUT1  
GND OUT2  
SET MOD  
C3  
0.33μF  
SGND PGND  
C3  
0.1μF  
R9  
118k  
2-PHASE  
OSCILLATOR  
180° PHASE  
PLLIN  
R7  
100k  
V
IN  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
220μF  
6.3V  
C7  
100μF  
6.3V  
V
FB  
V
OUT_LCL  
C5  
INTV  
DIFFV  
LTM4603HV  
CC  
OUT  
10μF  
35V  
×2  
+
DRV  
V
V
CC  
OSNS  
MPGM  
OSNS  
R6  
392k  
f
MARG0  
MARG1  
SET  
TRACK/SS  
SGND PGND  
4603HV F21  
5% MARGIN  
Figure 21. 2-Phase, Parallel 2.5V at 12A Design  
4603hvf  
21  
LTM4603HV  
TYPICAL APPLICATIONS  
LTC6908-1  
0° PHASE  
+
V
OUT1  
GND OUT2  
SET MOD  
C8  
0.1μF  
R9  
118k  
2-PHASE  
OSCILLATOR  
3.3V  
3.3V  
V
IN  
5V TO 28V  
180° PHASE  
PLLIN  
R3  
R4  
R7  
R8  
V
V
IN  
PGOOD  
RUN  
LTM4603HV  
COMP  
PLLIN  
100k 100k  
IN  
100k 100k  
C1  
V
3.3V  
6A  
V
2.5V  
6A  
OUT1  
OUT2  
10μF  
35V  
×2  
PGOOD  
RUN  
V
V
OUT  
OUT  
V
FB  
C8  
C9  
C2  
100μF  
6.3V  
C4  
220μF  
6.3V  
C6  
100μF  
6.3V  
C7  
220μF  
6.3V  
V
FB  
22pF  
22pF  
LTM4603HV  
COMP  
C5  
R
R
SET2  
19.1k  
SET1  
13.3k  
V
V
OUT_LCL  
DIFFV  
OUT_LCL  
10μF  
35V  
×2  
INTV  
DRV  
DIFFV  
INTV  
DRV  
CC  
OUT  
+
CC  
OUT  
+
3.3V  
TRACK  
V
V
V
V
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R2  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
MARGIN  
CONTROL  
SET  
SET  
392k  
TRACK/SS  
TRACK/SS  
C3  
0.15μF  
R15  
19.1k  
SGND PGND  
SGND PGND  
4603HV F22  
Figure 22. 2-Phase, 3.3V and 2.5V at 6A with Tracking  
LTC6908-1  
+
0° PHASE  
V
OUT1  
GND OUT2  
SET MOD  
C8  
0.1μF  
R9  
182k  
2-PHASE  
OSCILLATOR  
1.8V  
1.8V  
V
IN  
4.5V TO 28V  
180° PHASE  
PLLIN  
R3  
R4  
R7  
R8  
V
V
IN  
PGOOD  
RUN  
LTM4603HV  
COMP  
PLLIN  
100k 100k  
IN  
100k 100k  
C1  
V
1.8V  
6A  
V
1.5V  
6A  
OUT1  
OUT2  
10μF  
35V  
×2  
PGOOD  
RUN  
V
V
OUT  
OUT  
V
FB  
C8  
C9  
C2  
100μF  
6.3V  
C4  
220μF  
6.3V  
C6  
C7  
V
FB  
100pF  
100pF  
100μF  
220μF  
LTM4603HV  
COMP  
6.3V  
6.3V  
C5  
R
R
SET2  
40.2k  
SET1  
30.1k  
V
V
OUT_LCL  
DIFFV  
OUT_LCL  
10μF  
35V  
×2  
INTV  
DRV  
DIFFV  
INTV  
DRV  
CC  
OUT  
+
CC  
OUT  
+
1.8V  
TRACK  
V
V
V
V
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R6  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
MARGIN  
CONTROL  
MARGIN  
CONTROL  
SET  
SET  
392k  
TRACK/SS  
TRACK/SS  
C3  
0.15μF  
R15  
40.2k  
SGND PGND  
SGND PGND  
4603HV F23  
Figure 23. 2-Phase, 1.8V and 1.5V at 6A with Tracking  
4603hvf  
22  
LTM4603HV  
U
PACKAGE DESCRIPTIO  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4603hvf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4603HV  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
Fast Transient Response  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC μModule  
with PLL, Output Tracking and Margining, LTM4603HV Pin Compatible  
Pin Compatible with the LTM4600  
LTM4602  
6A DC/DC μModule  
LTM4603  
6A DC/DC μModule with Tracking PLL/Margining  
Pin Compatible with the LTM4601  
4603hvf  
LT 0607 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4603HVV

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603IV#PBF

LTM4603 - 6A DC/DC &#181;Module (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4603IV#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,118PIN,PLASTIC, Switching Regulator or Controller
Linear

LTM4603IV-1#PBF

LTM4603 - 6A DC/DC &#181;Module (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4603IV-1#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,118PIN,PLASTIC, Switching Regulator or Controller
Linear

LTM4603IV-1-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603IV-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603V

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603V-1

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603_15

20V, 6A DC/DC Module Regulator with PLL, Output Tracking and Margining
Linear

LTM4604

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604A

Low Voltage, 4A DC/DC μModule with Tracking
Linear