LTM4603_15 [Linear]

20V, 6A DC/DC Module Regulator with PLL, Output Tracking and Margining;
LTM4603_15
型号: LTM4603_15
厂家: Linear    Linear
描述:

20V, 6A DC/DC Module Regulator with PLL, Output Tracking and Margining

文件: 总26页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4603/LTM4603-1  
20V, 6A DC/DC µModule  
Regulator with PLL, Output  
Tracking and Margining  
Features  
Description  
n
Complete Switch Mode Power Supply  
The LTM®4603 is a complete 6A step-down switch mode  
DC/DC µModule® regulator with onboard switching con-  
troller, MOSFETs, inductor and all support components.  
The device is housed in a small surface mount 15mm ×  
15mm × 2.82mm LGA package. Operating over an input  
voltage range of 4.5V to 20V, the LTM4603 supports an  
output voltage range of 0.6V to 5V as well as output volt-  
age tracking and margining. The high efficiency design  
delivers 6A continuous current (8A peak). Only bulk input  
and output capacitors are needed to complete the design.  
n
Wide Input Voltage Range: 4.5V to 20V  
n
6A DC Typical, 8A Peak Output Current  
n
0.6V to 5V Output Voltage  
Output Voltage Tracking and Margining  
n
n
Remote Sensing for Precision Regulation (LTM4603  
Only)  
n
Typical Operating Frequency: 1MHz  
n
PLL Frequency Synchronization  
n
1.5% Regulation  
n
Current Foldback Protection (Disabled at Start-Up)  
The low profile (2.82mm) and light weight (1.7g) package  
easily mounts on the unused space on the back side of  
PC boards for high density point of load regulation. The  
µModule regulator can be synchronized with an external  
clock for reducing undesirable frequency harmonics and  
allows PolyPhase® operation for high load currents.  
n
Pin Compatible with the LTM4601  
n
Pb-Free (e4) RoHS Compliant Package with Gold  
Finish Pads  
n
Ultrafast Transient Response  
n
Current Mode Control  
n
Up to 93% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
A high switching frequency and adaptive on-time current  
mode architecture deliver a very fast transient response  
to line and load changes without sacrificing stability. An  
onboard remote sense amplifier can be used to accurately  
regulate an output voltage independent of load current.  
The onboard remote sense amplifier is not available in the  
LTM4603-1. TheLTM4603/LTM4603-1arepincompatible  
with the 12A LTM4601/LTM4601-1.  
Programmable Soft-Start  
Output Overvoltage Protection  
Small Footprint, Low Profile (15mm × 15mm ×  
2.82mm) Surface Mount LGA Package  
applications  
n
Telecom and Networking Equipment  
n
Servers  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered  
trademarks and LTpowerCAD is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Industrial Equipment  
Point of Load Regulation  
n
typical application  
Efficiency vs Load Current with 12VIN  
1.5V/6A Power Supply with 4.5V to 20V Input  
100  
95  
90  
85  
80  
75  
70  
65  
CLOCK SYNC  
TRACK/SS CONTROL  
V
IN  
4.5V TO 20V  
V
IN  
PLLIN TRACK/SS  
V
1.5V  
6A  
OUT  
PGOOD  
V
OUT  
100pF  
V
FB  
ON/OFF  
RUN  
COMP  
INTV  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
12V , 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
C
OUT  
LTM4603  
60  
55  
50  
45  
40  
C
IN  
12V , 1.5V  
IN  
CC  
12V , 1.8V  
IN  
40.2k  
DRV  
DIFFV  
CC  
OUT  
+
12V , 2.5V  
IN  
MPGM  
SGND PGND  
V
V
OSNS  
12V , 3.3V  
IN  
12V , 5V  
IN  
OSNS  
OUT  
392k  
f
SET  
0
2
3
4
5
6
7
1
5% MARGIN  
LOAD CURRENT (A)  
4603 TA01a  
4603 TA01b  
4603fb  
1
LTM4603/LTM4603-1  
absolute MaxiMuM ratings  
pin conFiguration  
(Note 1)  
INTV , DRV , V  
, V (V ≤ 3.3V  
TOP VIEW  
CC  
CC OUT_LCL OUT OUT  
with Remote Sense Amp)............................. –0.3V to 6V  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD, f  
..............................–0.3V to INTV + 0.3V  
SET  
CC  
V
f
IN  
SET  
RUN ............................................................. –0.3V to 5V  
MARG0  
MARG1  
DRV  
V , COMP................................................ –0.3V to 2.7V  
FB  
CC  
V ............................................................. –0.3V to 20V  
IN  
OSNS  
V
FB  
+
PGND  
V
, V  
..........................–0.3V to INTV + 0.3V  
OSNS CC  
PGOOD  
SGND  
+
Operating Temperature Range (Note 2)....–40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range .................. –55°C to 125°C  
V
/NC2*  
OSNS  
DIFFV /NC3*  
OUT  
V
V
V
OUT  
OUT_LCL  
/NC1*  
OSNS  
LGA PACKAGE  
118-LEAD (15mm × 15mm × 2.82mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W  
JA JC  
JMAX  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS, WEIGHT = 1.7g  
*LTM4603-1 ONLY  
orDer inForMation  
LEAD FREE FINISH  
LTM4603EV#PBF  
LTM4603IV#PBF  
LTM4603EV-1#PBF  
LTM4603IV-1#PBF  
TRAY  
PART MARKING*  
LTM4603V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LTM4603EV#PBF  
LTM4603IV#PBF  
LTM4603EV-1#PBF  
LTM4603IV-1#PBF  
118-Lead (15mm × 15mm × 2.82mm) LGA  
118-Lead (15mm × 15mm × 2.82mm) LGA  
118-Lead (15mm × 15mm × 2.82mm) LGA  
118-Lead (15mm × 15mm × 2.82mm) LGA  
LTM4603V  
–40°C to 85°C  
LTM4603V-1  
LTM4603V-1  
–40°C to 85°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
See Note 2.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
The l denotes the specifications which apply over the –40°C to 85°C  
electrical characteristics  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page)  
configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Input DC Voltage  
Output Voltage  
4.5  
20  
V
IN(DC)  
V
C
= 10µF ×2, C  
= 2× 100µF X5R Ceramic  
OUT(DC)  
IN  
OUT  
l
l
1.478  
1.478  
1.5  
1.5  
1.522  
1.522  
V
V
V
V
= 5V, V  
= 1.5V, I  
= 0A  
OUT  
IN  
OUT  
= 12V, V  
= 1.5V, I  
= 0A  
OUT  
IN  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Start-Up  
I
I
= 0A  
3.2  
4
V
IN(UVLO)  
OUT  
OUT  
I
= 0A. V  
= 1.5V  
OUT  
INRUSH(VIN)  
V
= 5V  
= 12V  
0.6  
0.7  
A
A
IN  
IN  
V
4603fb  
2
LTM4603/LTM4603-1  
The l denotes the specifications which apply over the –40°C to 85°C  
electrical characteristics  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page)  
configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
V
= 12V, No Switching  
3.8  
25  
mA  
mA  
Q(VIN,NOLOAD)  
IN  
IN  
IN  
IN  
= 12V, V  
= 1.5V, Switching Continuous  
OUT  
= 5V, No Switching  
= 5V, V = 1.5V, Switching Continuous  
2.5  
43  
mA  
mA  
OUT  
Shutdown, RUN = 0, V = 12V  
IN  
22  
µA  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 6A  
= 6A  
0.92  
1.83  
2.12  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
IN  
No Load  
4.7  
0
5
5.3  
V
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 5)  
OUT  
6
A
OUTDC  
IN  
l
∆V  
OUT(LINE)  
= 1.5V, I  
= 0A, V = 4.5V to 20V  
0.3  
%
OUT  
OUT  
IN  
V
OUT  
∆V  
Load Regulation Accuracy  
Output Ripple Voltage  
V
I
= 1.5V, I  
IN  
IN  
= 0A to 6A (Note 5)  
OUT(LOAD)  
OUT  
OUT  
V
= 12V, with Remote Sense Amp  
= 12V, LTM4603-1  
l
l
0.25  
0.5  
%
%
V
OUT  
V
V
= 0A, C  
= 2× 100µF X5R Ceramic  
= 1.5V  
OUT  
OUT(AC)  
OUT  
OUT  
10  
10  
mV  
mV  
V
IN  
= 12V, V  
= 5V, V  
P-P  
P-P  
IN  
V
= 1.5V  
OUT  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
I
= 3A, V = 12V, V = 1.5V  
OUT  
1000  
kHz  
S
OUT  
IN  
C
= 200µF, V  
= 1.5V, I  
= 0A,  
OUT  
ΔV  
OUT  
OUT  
OUT(START)  
TRACK/SS = 10nF  
V
IN  
V
IN  
= 12V  
= 5V  
20  
20  
mV  
mV  
t
Turn-On Time  
C
= 200µF, V  
= 1.5V, TRACK/SS = Open,  
START  
OUT  
OUT  
OUT  
I
= 1A Resistive Load  
V
IN  
V
IN  
= 12V  
= 5V  
0.5  
0.5  
ms  
ms  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 2 × 22µF Ceramic, 470µF 4V  
ΔV  
OUTLS  
C
OUT  
Sanyo POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50% to 10% of Full Load  
SETTLE  
V
= 12V  
25  
µs  
IN  
Output Current Limit  
C
= 2× 100µF X5R Ceramic  
OUTPK  
OUT  
8
8
A
A
V
V
= 12V, V  
= 1.5V  
IN  
IN  
OUT  
= 5V, V  
= 1.5V  
OUT  
Remote Sense Amp (LTM4603 Only, Not Supported in the LTM4603-1) (Note 3)  
+
V
, V  
Common Mode Input Voltage Range  
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV Range  
Output Voltage Range  
Input Offset Voltage Magnitude  
Differential Gain  
V
= 12V, DIFFV  
Load = 100k  
INTV – 1  
V
mV  
OUT  
IN  
OUT  
CC  
V
OS  
1.25  
AV  
1
3
2
V/V  
GBP  
SR  
Gain Bandwidth Product  
Slew Rate  
MHz  
V/µs  
4603fb  
3
LTM4603/LTM4603-1  
The l denotes the specifications which apply over the –40°C to 85°C  
electrical characteristics  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page)  
configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
kW  
+
R
Input Resistance  
V
to GND  
IN  
OSNS  
CMRR  
Common Mode Rejection Ratio  
100  
dB  
Control Stage  
l
V
FB  
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V  
= 1.5V  
0.594  
0.6  
0.606  
V
OUT  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On Time  
1
1.5  
–1.5  
50  
1.9  
–2  
V
µA  
ns  
ns  
kW  
mA  
kW  
V
RUN  
I
t
t
V
= 0V  
TRACK/SS  
–1  
TRACK/SS  
ON(MIN)  
OFF(MIN)  
(Note 4)  
(Note 4)  
100  
400  
Minimum Off Time  
250  
50  
R
PLLIN Input Resistance  
PLLIN  
I
Current into DRV Pin  
V
= 1.5V, I  
= 1A, DRV = 5V  
20  
27  
DRVCC  
CC  
OUT  
OUT  
CC  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
FBHI  
OUT_LCL  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
7
10  
–10  
1.5  
13  
–13  
3
%
%
%
V
ΔV  
FB  
FBH  
–7  
ΔV  
FBL  
FB  
Returning (Note 4)  
ΔV  
FB(HYS)  
FB  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at wafer sort only.  
Note 5: See output current derating curves for different V , V  
and T .  
IN OUT  
A
Note 2: The LTM4603/LTM4603-1 is tested under pulsed load conditions  
such that T ≈ T . The LTM4603E/LTM4603E-1 are guaranteed to meet  
J
A
performance specifications from 0°C to 85°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM4603I/LTM4603I-1 are guaranteed over the –40°C to 85°C operating  
temperature range.  
4603fb  
4
LTM4603/LTM4603-1  
(See Figure 18 for all curves)  
typical perForMance characteristics  
Efficiency vs Load Current  
with 20VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
12V , 1.2V  
60  
55  
50  
45  
40  
5V , 0.6V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
12V , 1.5V  
IN  
20V , 1.5V  
IN  
5V , 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
12V , 1.8V  
IN  
20V , 1.8V  
IN  
5V , 1.5V  
IN  
12V , 2.5V  
IN  
20V , 2.5V  
IN  
5V , 1.8V  
IN  
12V , 3.3V  
20V , 3.3V  
5V , 2.5V  
IN  
IN  
IN  
12V , 5V  
20V , 5V  
5V , 3.3V  
IN  
IN  
OUT  
IN  
OUT  
0
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
2
3
4
5
6
7
1
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4603 G01  
4603 G02  
4603 G03  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4603 G05  
4603 G04  
4603 G06  
25µs/DIV  
25µs/DIV  
25µs/DIV  
1.5V AT 3A/µs LOAD STEP  
1.2V AT 3A/µs LOAD STEP  
1.8V AT 3A/µs LOAD STEP  
C
: 1× 22µF, 6.3V CERAMIC  
C
: 1× 22µF, 6.3V CERAMIC  
C
: 1× 22µF, 6.3V CERAMIC  
OUT  
OUT  
OUT  
1× 330µF, 4V SANYO POSCAP  
1× 330µF, 4V SANYO POSCAP  
1× 330µF, 4V SANYO POSCAP  
2.5V Transient Response  
3.3V Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
4603 G08  
4603 G07  
25µs/DIV  
25µs/DIV  
3.3V AT 3A/µs LOAD STEP  
2.5V AT 3A/µs LOAD STEP  
C
: 1× 22µF, 6.3V CERAMIC  
C
: 1× 22µF, 6.3V CERAMIC  
OUT  
OUT  
1× 330µF, 4V SANYO POSCAP  
1× 330µF, 4V SANYO POSCAP  
4603fb  
5
LTM4603/LTM4603-1  
typical perForMance characteristics  
Start-Up, IOUT = 6A  
(See Figure 18 for all curves)  
Short-Circuit Protection,  
IOUT = 0A  
Start-Up, IOUT = 0A  
(Resistive Load)  
V
V
V
OUT  
0.5V/DIV  
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
IN  
I
0.5A/DIV  
IN  
I
IN  
2A/DIV  
0.5A/DIV  
4603 G10  
4603 G09  
4603 G11  
1ms/DIV  
1ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
100µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
= 1.5V  
= 1× 22µF, 6.3V CERAMIC  
= 1× 22µF, 6.3V CERAMIC  
= 1× 22µF, 6.3V CERAMIC  
1× 330µF, 4V SANYO POSCAP  
1× 330µF, 4V SANYO POSCAP  
1× 330µF, 4V SANYO POSCAP  
SOFT-START = 3.9nF  
SOFT-START = 3.9nF  
SOFT-START = 3.9nF  
Short-Circuit Protection,  
OUT = 6A  
I
VIN to VOUT Step-Down Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
82.5k FROM V  
OUT  
TO f  
SET  
V
OUT  
5V OUTPUT WITH  
150k RESISTOR  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
5V OUTPUT WITH  
NO RESISTOR ADDED  
FROM f TO GND  
I
IN  
SET  
2A/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
4603 G12  
100µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
IN  
= 1.5V  
= 1× 22µF, 6.3V CERAMIC  
1× 330µF, 4V SANYO POSCAP  
0
2
4
6
8
10 12 14 16 18 20  
SOFT-START = 3.9nF  
INPUT VOLTAGE (V)  
4603 G13  
4603fb  
6
LTM4603/LTM4603-1  
(See Package Description for Pin Assignment)  
pin Functions  
V (Bank 1): Power Input Pins. Apply input voltage be-  
DRV (Pin E12): This pin normally connects to INTV  
CC CC  
IN  
tween these pins and PGND pins. Recommend placing  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure  
16. This improves efficiency at the higher input voltages  
by reducing power dissipation in the module.  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins. See Figure 15.  
INTV (Pin A7): This pin is for additional decoupling of  
CC  
the 5V internal regulator.  
PGND (Bank 2): Power ground pins for both input and  
PLLIN (Pin A8): External Clock Synchronization Input  
to the Phase Detector. This pin is internally terminated  
to SGND with a 50k resistor. Apply a clock with a high  
output returns.  
V
(Pin M12): (–) Input to the Remote Sense Ampli-  
OSNS  
level above 2V and below INTV . See the Applications  
CC  
fier. This pin connects to the ground remote sense point.  
Information section.  
The remote sense amplifier is used for V ≤ 3.3V. Tie  
OUT  
to INTV if not used.  
TRACK/SS (Pin A9): Output Voltage Tracking and Soft-  
Start Pin. When the module is configured as a master  
output, then a soft-start capacitor is placed on this pin  
to ground to control the master ramp rate. A soft-start  
capacitor can be used for soft-start turn on as a stand  
alone regulator. Slave operation is performed by putting  
a resistor divider from the master output to ground, and  
connecting the center point of the divider to this pin. See  
the Applications Information section.  
CC  
NC1(PinM12):NointernalconnectionontheLTM4603-1.  
+
V
(Pin J12): (+) Input to the Remote Sense Ampli-  
OSNS  
fier. This pin connects to the output remote sense point.  
The remote sense amplifier is used for V  
to ground if not used.  
≤ 3.3V. Tie  
OUT  
NC2 (Pin J12): No internal connection on the LTM4603-1.  
DIFFV (Pin K12): Output of the Remote Sense Ampli-  
OUT  
MPGM (Pin A12): Programmable Margining Input. A re-  
sistor from this pin to ground sets a current that is equal  
to 1.18V/R. This current multiplied by 10kW will equal a  
value in millivolts that is a percentage of the 0.6V refer-  
ence voltage. See Applications Information. To parallel  
LTM4603s, each requires an individual MPGM resistor.  
Do not tie MPGM pins together.  
fier. This pin connects to the V  
if remote sense amplifier is not used.  
pin. Leave floating  
OUT_LCL  
NC3 (Pin K12): No internal connection on the LTM4603-1.  
TOP VIEW  
A
B
C
D
E
V
IN  
f
SET  
BANK 1  
MARG0  
MARG1  
DRV  
CC  
PGND  
BANK 2  
F
V
FB  
G
H
J
PGOOD  
SGND  
+
V
(NC2, LTM4603-1)  
(NC3, LTM4603-1)  
OSNS  
K
L
M
DIFFV  
V
OUT  
OUT  
BANK 3  
V
V
OUT_LCL  
(NC1, LTM4603-1)  
OSNS  
1
2 3 4 5 6 7 8 9 10 11 12  
4603fb  
7
LTM4603/LTM4603-1  
(See Package Description for Pin Assignment)  
pin Functions  
f
(Pin B12): Frequency Set Internally to 1MHz. An  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
SET  
external resistor can be placed from this pin to ground  
to increase frequency. See the Applications Information  
section for frequency adjustment.  
V
(Pin F12): The Negative Input of the Error Ampli-  
FB  
fier. Internally, this pin is connected to V  
with a  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25µs power bad mask timer expires.  
OUT_LCL  
60.4k precision resistor. Different output voltages can be  
programmed with an additional resistor between V and  
FB  
SGND pins. See the Applications Information section.  
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin it will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See the Applications Information section.  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1V, will turn  
off the module. A programmable UVLO function can be  
accomplished by connecting to a resistor divider from  
V to ground. See Figure 1. This pin has a 5.1V Zener to  
IN  
ground. Maximum pin voltage is 5V. Limit current into the  
RUN pin to less than 1mA.  
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin it will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See the Applications Information section.  
V
(Pin L12): V  
connects directly to this pin to  
OUT  
OUT_LCL  
bypass the remote sense amplifier, or DIFFV  
connects  
OUT  
to this pin when the remote sense amplifier is used.  
V
V
can be connected to V  
is internally connected to V  
on the LTM4603-1.  
OUT_LCL  
OUT_LCL  
OUT  
OUT  
SGND (Pin H12): Signal Ground. This pin connects to  
PGND at output capacitor point.  
through 50W in  
the LTM4603-1.  
4603fb  
8
LTM4603/LTM4603-1  
siMpliFieD block DiagraM  
V
OUT_LCL  
V
IN  
V
OUT  
1M  
>1.9V = ON  
<1V = OFF  
MAX = 5V  
(50Ω, LTM4603-1)  
R1  
R2  
RUN  
PGOOD  
COMP  
UVLO  
FUNCTION  
V
IN  
4.5V TO 20V  
+
5.1V  
ZENER  
1.5µF  
C
IN  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
1µH  
V
1.5V  
6A  
OUT  
MARG1  
MARG0  
22µF  
V
FB  
50k 50k  
+
f
SET  
R
SET  
C
OUT  
40.2k  
33.2k  
PGND  
MPGM  
TRACK/SS  
PLLIN  
INTV  
CC  
10k  
C
NOT INCLUDED  
10k  
SS  
V
V
OSNS  
+
IN THE LTM4603-1  
+
50k  
10k  
4.7µF  
OSNS  
V
V
= NC1  
= NC2  
OUT  
OSNS  
OSNS  
+
INTV  
DRV  
CC  
CC  
DIFFV  
= NC3  
10k  
DIFFV  
OUT  
4603 F01  
Figure 1. Simplified LTM4603/LTM4603-1 Block Diagram  
T = 25°C, VIN = 12V. Use Figure 1 configuration.  
Decoupling requireMents  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
IN  
I
= 6A  
20  
µF  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 20V, V = 1.5V)  
I
= 6A  
100  
200  
µF  
OUT  
IN  
OUT  
4603fb  
9
LTM4603/LTM4603-1  
operation  
Power Module Description  
off and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4603 is a standalone nonisolated switching mode  
DC/DC power supply. It can deliver up to 6A of DC output  
current with few external input and output capacitors.  
This module provides precisely regulated output voltage  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output ripple voltage.  
programmable via one external resistor from 0.6V to  
DC  
5.0V over a 4.5V to 20V wide input voltage. The typical  
DC  
When DRV pin is connected to INTV an integrated  
CC  
CC  
application schematic is shown in Figure 18.  
5V linear regulator powers the internal gate drivers. If a  
The LTM4603 has an integrated constant on-time current  
mode regulator, ultralow R  
5V external bias supply is applied on the DRV pin, then  
CC  
FETs with fast switching  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the high end of the input voltage range.  
DS(ON)  
speedandintegratedSchottkydiodes.Thetypicalswitching  
frequency is 1MHz at full load. With current mode control  
and internal feedback loop compensation, the LTM4603  
modulehassufficientstabilitymarginsandgoodtransient  
performance under a wide range of operating conditions  
andwithawiderangeofoutputcapacitors,evenallceramic  
output capacitors.  
The LTM4603 has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate output voltage measurement at the load.  
The MPGM pin, MARG0 pin and MARG1 pin are used to  
supportvoltagemargining,wherethepercentageofmargin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrent condition while V drops. Internal overvolt-  
age and undervoltage comparators pull the open-drain  
PGOOD output low if the output feedback voltage exits a  
10% window around the regulation point. Furthermore,  
in an overvoltage condition, internal top FET Q1 is turned  
FB  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used  
for power supply tracking and soft-start programming.  
4603fb  
10  
LTM4603/LTM4603-1  
applications inForMation  
The typical LTM4603 application circuit is shown in Fig-  
ure 18. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable2forspecificexternalcapacitorrequirements  
for a particular application.  
where %V  
is the percentage of V  
OUT(MARGIN)  
you want to  
OUT  
margin, and V  
OUT  
is the margin quantity in volts:  
VOUT  
1.18V  
RPGM  
=
10k  
0.6V VOUT(MARGIN)  
where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
The margining voltage, V  
, will be added or  
OUT(MARGIN)  
down ratio that can be achieved for a given input voltage.  
subtractedfromthenominaloutputvoltageasdetermined  
by the state of the MARG0 and MARG1 pins. See the truth  
table below:  
These constraints are shown in the Typical Performance  
Characteristics curves labeled V to V  
Step-Down  
OUT  
IN  
Ratio.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
MARG1  
LOW  
MARG0  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
LOW  
HIGH  
LOW  
Output Voltage Programming and Margining  
HIGH  
HIGH  
HIGH  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
Input Capacitors  
internal feedback resistor connects V  
together. The V  
and V pins  
OUT  
FB  
pin is connected between the 1M  
LTM4603 module should beconnected to alowACimped-  
anceDCsource. Inputcapacitorsarerequiredtobeplaced  
adjacenttothemodule.InFigure18,the1Fceramicinput  
capacitors are selected for their ability to handle the large  
RMS current into the converter. An input bulk capacitor  
of 100µF is optional. This 100µF capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads or traces.  
OUT_LCL  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
OUT_LCL  
pin is not connected to the output, or if the remote sense  
amplifier output is not connected to V  
. In these  
OUT_LCL  
cases, the output voltage will default to 0.6V. Adding a  
resistor R from the V pin to SGND pin programs  
SET  
FB  
the output voltage:  
For a buck converter, the switching duty-cycle can be  
estimated as:  
60.4k + RSET  
VOUT = 0.6  
RSET  
VOUT  
D =  
Table 1. RSET Standard 1% Resistor Values vs VOUT  
VIN  
R
SET  
(kW)  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
V
OUT  
(V)  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
η%  
In the above equation, η% is the estimated efficiency of  
R
resistor on the MPGM pin programs the current.  
PGM  
Calculate V  
the power module. C can be a switcher-rated electrolytic  
IN  
:
OUT(MARGIN)  
aluminum capacitor, OS-CON capacitor or high value ce-  
ramic capacitor. Note the capacitor ripple current ratings  
are often based on temperature and hours of life. This  
%VOUT  
100  
VOUT(MARGIN)  
=
VOUT  
makes it advisable to properly derate the input capacitor,  
4603fb  
11  
LTM4603/LTM4603-1  
applications inForMation  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
Output Capacitors  
The LTM4603 is designed for low output ripple voltage.  
The bulk output capacitors defined as C  
are chosen  
OUT  
In Figure 18, the 10µF ceramic capacitors are together  
used as a high frequency input decoupling capacitor. In a  
typical 6A output application, two very low ESR, X5R or  
X7R, 10µF ceramic capacitors are recommended. These  
decoupling capacitors should be placed directly adjacent  
to the module input pins in the PCB layout to minimize  
the trace inductance and high frequency AC noise. Each  
10µF ceramic is typically good for 2A to 3A of RMS ripple  
current. Refer to your ceramics capacitor catalog for the  
RMS current ratings.  
with low enough effective series resistance (ESR) to meet  
theoutputripplevoltageandtransientrequirements. C  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor. Thetypicalcapacitanceis  
200µF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spikes is required. Table 2 shows a matrix of different  
output voltages and output capacitors to minimize the  
voltage droop and overshoot during a 2.5A/µs transient.  
The table optimizes total equivalent ESR and total bulk  
capacitance to maximize transient performance.  
Multiphase operation with multiple LTM4603 devices in  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
for the input capacitor ripple current reduction as a func-  
tion of the number of phases. The figure provides a ratio  
of RMS ripple current to DC load current as a function of  
duty cycle and the number of paralleled phases. Pick the  
corresponding duty cycle and the number of phases to  
arrive at the correct ripple current value. For example, the  
2-phase parallel LTM4603 design provides 10A at 2.5V  
output from a 12V input. The duty cycle is DC = 2.5V/12V  
= 0.21. The 2-phase curve has a ratio of ~0.25 for a duty  
cycle of 0.21. This 0.25 ratio of RMS ripple current to a  
DC load current of 10A equals ~2.5A of input RMS ripple  
current for the external input capacitors.  
Multiphase operation with multiple LTM4603 devices in  
parallel will lower the effective output ripple current due to  
the interleaving operation of the regulators. For example,  
each LTM4603’s inductor current in a 12V to 2.5V multi-  
phasedesigncanbereadfromtheInductorRippleCurrent  
vs Duty Cycle graph (Figure 3). The large ripple current  
at low duty cycle and high output voltage can be reduced  
by adding an external resistor from f to ground which  
SET  
increases the frequency. If we choose the duty cycle of  
DC = 2.5V/12V = 0.21, the inductor ripple current for 2.5V  
output at 21% duty cycle is ~3A in Figure 3.  
0.6  
5
2.5V OUTPUT  
0.5  
5V OUTPUT  
4
1.8V OUTPUT  
1.5V OUTPUT  
1-PHASE  
0.4  
2-PHASE  
3
1.2V OUTPUT  
3-PHASE  
4-PHASE  
6-PHASE  
0.3  
0.2  
0.1  
0
3.3V OUTPUT WITH  
82.5k ADDED FROM  
2
V
TO f  
OUT  
SET  
5V OUTPUT WITH  
150k ADDED FROM  
1
0
f
TO GND  
SET  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
0
0.2  
0.4  
0.6  
)
0.8  
DUTY CYCLE (V /V  
)
DUTY CYCLE (V /V  
OUT IN  
OUT IN  
4603 F02  
4603 F03  
Figure 3. Inductor Ripple Current vs Duty Cycle  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Cycle for One to Six Modules (Phases)  
4603fb  
12  
LTM4603/LTM4603-1  
applications inForMation  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4603 F04  
O
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI  
Figure 4 provides a ratio of peak-to-peak output ripple cur-  
Fault Conditions: Current Limit and Overcurrent  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation  
is chosen at a duty cycle of 21%, then 0.6 is the ratio.  
This 0.6 ratio of output ripple current to inductor ripple  
of 3A equals 8A of effective output ripple current. Refer  
to Application Note 77 for a detailed explanation of output  
ripple current reductionas afunctionofparalleled phases.  
Foldback  
The LTM4603 has a current mode controller which inher-  
ently limitsthe cycle-by-cycle inductorcurrent, not only in  
steady-state operation but also in response to transients.  
To further limit current in the event of an overload condi-  
tion,theLTM4603providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
The output ripple voltage has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output ripple voltage can be calculated with  
the known effective output ripple current. The equation:  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5µA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltage reference plus or minus any margin delta. This will  
ΔV  
≈ (ΔI /(8 • f • m • C ) + ESR • ΔI ), where  
OUT(P-P)  
L OUT L  
f is frequency and m is the number of parallel phases.  
This calculation process can be easily accomplished by  
LTpowerCAD™.  
4603fb  
13  
LTM4603/LTM4603-1  
applications inForMation  
MASTER  
OUTPUT  
control the ramp of the internal reference and the output  
voltage. The total soft-start time can be calculated as:  
R
T
60.4k  
TRACK CONTROL  
CSS  
V
IN  
tSOFTSTART = 0.8 0.6V ± V  
(
)
OUT(MARGIN)  
R
B
1.5µA  
40.2k  
100k  
V
PLLIN TRACK/SS  
IN  
SLAVE OUTPUT  
PGOOD  
V
OUT  
When the RUN pin falls below 1.5V, then the TRACK/SS  
pin is reset to allow for proper soft-start control when the  
regulator is enabled again. Current foldback and forced  
continuous mode are disabled during the soft-start pro-  
cess. The soft-start function can also be used to control  
the output ramp up time, so that another regulator can  
be easily tracked to it.  
MPGM  
RUN  
COMP  
V
C
OUT  
FB  
MARG0  
MARG1  
V
OUT_LCL  
LTM4603  
C
IN  
INTV  
CC  
CC  
DRV  
DIFFV  
OUT  
+
V
V
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4603 F05  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. Figure 5 shows an ex-  
ample of coincident tracking where the master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider.  
The master output must be greater than the slave output  
for the tracking to work. Figure 6 shows the coincident  
output tracking characteristics.  
Figure 5. Coincident Tracking Schematic  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK/SS pin. The TRACK/SS pin has a control range  
from 0V to 0.6V. The master’s TRACK/SS pin slew rate  
is directly equal to the master’s output slew rate in volts/  
time. The equation:  
4603 F06  
TIME  
Figure 6. Coincident Output Tracking Characteristics  
Inratiometrictracking, adifferentslewratemaybedesired  
MR  
SR  
60.4k = RT  
for the slave regulator. R can be solved for when SR is  
T
slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach its final value before the master output.  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in volts/time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
is equal to 60.4k. R is derived from equation:  
TB  
For example, MR = 1.5V/ms, and SR = 1.2V/ms. Then R  
T
B
= 75k. Solve for R to equal 51.1k.  
B
0.6V  
VFB  
60.4k RFB(Slave)  
Forapplicationsthatdonotrequiretrackingorsequencing,  
RB  
=
VFB  
VTRACK  
RTB  
simply tie the TRACK/SS pin to INTV to let RUN control  
CC  
+
the turn on/off. When the RUN pin is below its threshold  
or V is below the undervoltage lockout threshold, then  
IN  
where V is the feedback voltage reference of the regula-  
FB  
TRACK  
TRACK/SS is pulled low.  
tor, and V  
is 0.6V.  
4603fb  
14  
LTM4603/LTM4603-1  
applications inForMation  
Run Enable  
the system does not have a 5V power rail, the LTM4603  
can be directly powered by Vin. The gate driver current  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V Zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
TheLTM4603alsoprovidestheexternalgatedrivervoltage  
pin DRV . If there is a 5V rail in the system, it is recom-  
CC  
mended to connect the DRV pin to the external 5V rail.  
CC  
R1+ R2  
This is especially true for higher input voltages. Do not  
VUVLO  
=
1.5V  
R2  
apply more than 6V to the DRV pin. A 5V output can be  
CC  
used to power the DRV pin with an external circuit as  
CC  
See the Simplified Block Diagram (Figure 1).  
shown in Figure 16.  
Power Good  
Parallel Operation of the Module  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
The LTM4603 device is an inherently current mode con-  
trolleddevice.Parallelmoduleswillhaveverygoodcurrent  
sharing. This will balance the thermals on the design. The  
voltage feedback equation changes with the variable n as  
modules are paralleled:  
COMP Pin  
60.4k  
This pin is the external compensation pin. The module has  
already been internally compensated for most output volt-  
ages.Table2isprovidedformostapplicationrequirements.  
LTpowerCAD is available for control loop optimization.  
+ R  
FB  
n
V
= 0.6V  
OUT  
R
FB  
or equivalently,  
60.4k  
PLLIN  
n
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of an external clock. The  
frequency range is 30% around the operating frequency  
of 1MHz. A pulse detection circuit is used to detect a clock  
on the PLLIN pin to turn on the phase-locked loop. The  
pulse width of the clock has to be at least 400ns and the  
amplitude at least 2V. The PLLIN pin must be driven from a  
lowimpedancesourcesuchasalogicgatelocatedcloseto  
the pin. During start-up of the regulator, the phase-locked  
loop function is disabled.  
RFB  
=
VOUT  
1  
0.6V  
where n is the number of paralleled modules.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 12, and Figures 13 to 14 for calculating an  
approximate θ for the module with various heat sinking  
JA  
methods. Thermal models are derived from several tem-  
peraturemeasurementsatthebenchandthermalmodeling  
analysis.ThermalApplicationNote103providesadetailed  
explanation of the analysis for the thermal models and the  
derating curves. Tables 3 and 4 provide a summary of the  
INTV and DRV Connection  
CC  
CC  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
CC  
equivalent θ for the noted conditions. These equivalent  
JA  
for driving the internal power MOSFETs. Therefore, if  
θ
parameters are correlated to the measured values,  
JA  
4603fb  
15  
LTM4603/LTM4603-1  
applications inForMation  
3.5  
3.5  
6
5
3.0  
3.0  
20V  
20V  
IN  
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
2.5  
2.0  
1.5  
1.0  
0.5  
12V  
4
3
IN  
12V  
IN  
5V  
IN  
2
1
0
5V , 1.5V , 0LFM  
IN  
OUT  
5V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
5V , 1.5V , 400LFM  
0
0
4
6
7
0
1
2
3
5
4
6
7
0
1
2
3
5
75  
80  
85  
90  
95  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
AMBIENT TEMPERATURE (°C)  
4603 F08  
4603 F07  
4603 F09  
Figure 7. 1.5V Power Loss  
Figure 8. 3.3V Power Loss  
Figure 9. No Heat Sink 5VIN  
6
5
6
5
6
5
4
3
4
3
4
3
2
1
0
2
1
0
2
1
0
12V , 1.5V , 0LFM  
5V , 1.5V , 0LFM  
IN  
OUT  
IN  
OUT  
12V , 1.5V , 200LFM  
5V , 1.5V , 200LFM  
IN  
IN  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
12V , 1.5V , 400LFM  
5V , 1.5V , 400LFM  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4603 F12  
4603 F11  
4603 F10  
12V , 1.5V , 0LFM  
IN  
OUT  
12V , 1.5V , 200LFM  
IN  
OUT  
Figure 10. BGA Heat Sink 5VIN  
Figure 12. BGA Heat Sink 12VIN  
12V , 1.5V , 400LFM  
IN  
OUT  
Figure 11. No Heat Sink 12VIN  
6
5
6
5
4
3
4
3
2
2
1
0
12V , 3.3V , 0LFM  
12V , 3.3V , 0LFM  
1
0
IN  
OUT  
IN  
IN  
OUT  
OUT  
OUT  
12V , 3.3V , 200LFM  
12V , 3.3V , 200LFM  
IN  
IN  
OUT  
OUT  
12V , 3.3V , 400LFM  
12V , 3.3V , 400LFM  
IN  
70  
75  
80  
85  
90  
95  
70  
75  
80  
85  
90  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4603 F13  
4603 F14  
Figure 14. 12VIN, 3.3VOUT BGA Heat Sink  
Figure 13. 12VIN, 3.3VOUT No Heat Sink  
4603fb  
16  
LTM4603/LTM4603-1  
applications inForMation  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 18)  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK316BJ226ML-T501 (22µF, 6.3V)  
JMK325BJ476MM-T (47µF, 6.3V)  
C3225X5R0J476M (47µF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE220MIL (220µF, 6.3V)  
2R5TPE330M9 (330µF, 2.5V)  
4TPE330MCL (330µF, 4V)  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
PEAK (mV)  
RECOVERY  
TIME (µs)  
LOAD STEP  
(A/µs)  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
(BULK)  
(CERAMIC)  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
1 × 22µF 6.3V  
1 × 47µF 6.3V  
2 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
4 × 47µF 6.3V  
(BULK)  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
(kW)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
5
34  
22  
68  
40  
30  
26  
24  
18  
30  
26  
24  
18  
30  
30  
26  
26  
30  
30  
26  
26  
37  
30  
26  
26  
37  
30  
26  
26  
40  
34  
28  
12  
40  
34  
28  
18  
40  
32  
28  
14  
40  
32  
28  
22  
20  
20  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
20  
40  
5
32  
60  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
2 × 10µF 25V 150µF 35V  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
34  
68  
22  
40  
20  
39  
29.5  
35  
55  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
70  
5
25  
48  
5
24  
47.5  
68  
5
36  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
35  
70  
25  
48  
24  
45  
32.6  
38  
61.9  
76  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
5
29.5  
28  
57.5  
55  
5
5
43  
80  
330µF 4V  
330µF 2.5V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
5
38  
76  
28  
55  
27  
52  
36.4  
38  
70  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
78  
5
37.6  
39.5  
66  
74  
5
78.1  
119  
78  
5
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
7
38  
34.5  
35.8  
50  
66.3  
68.8  
98  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
42  
86  
7
47  
89  
7
50  
94  
7
75  
141  
86  
330µF 4V  
330µF 4V  
220µF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
42  
47  
88  
50  
94  
69  
131  
215  
217  
NONE  
110  
110  
5
NONE  
4603fb  
17  
LTM4603/LTM4603-1  
applications inForMation  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
15.2  
14  
Figure 7  
200  
400  
0
None  
Figure 7  
None  
12  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output  
DERATING CURVE  
Figure 13  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
IN  
JA  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 13  
12  
12  
12  
12  
12  
Figure 8  
200  
400  
0
None  
Figure 13  
Figure 8  
None  
Figure 14  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 14  
Figure 8  
200  
400  
Figure 14  
Figure 8  
Heat Sink Manufacturer  
Aavid Thermalloy  
Part No: 375424B00034G  
Phone: 603-224-9988  
4603fb  
18  
LTM4603/LTM4603-1  
applications inForMation  
and are improved with air flow. The case temperature is  
maintained at 100°C or below for the derating curves.  
This allows for 4W maximum power dissipation in the  
total module with top and bottom heat sinking, and 2W  
power dissipation through the top of the module with an  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
• Do not put vias directly on pads.  
• If vias are placed onto the pads, the the vias must be  
approximate θ between 6°C/W to 9°C/W. This equates  
JC  
capped.  
to a total of 124°C at the junction of the device.  
• Interstitialvia placement can also beusedifnecessary.  
Safety Considerations  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
The LTM4603 modules do not provide isolation from V  
IN  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
Figure15givesagoodexampleoftherecommendedlayout.  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
Frequency Adjustment  
Layout Checklist/Example  
The LTM4603 is designed to typically operate at 1MHz  
The high integration of LTM4603 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
across most input conditions. The f  
pin is typically  
SET  
left open. The switching frequency has been optimized  
for maintaining constant output ripple noise over most  
operating ranges. The 1MHz switching frequency and  
the 400ns minimum off time can limit operation at higher  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
duty cycles like 5V to 3.3V , and produce excessive  
IN  
OUT  
PCB conduction loss and thermal stress.  
inductor ripple currents for lower duty cycle applications  
• Place high frequency ceramic input and output capaci-  
such as 20V to 5V . The 5V and 3.3V drop  
IN  
OUT  
OUT  
OUT  
tors next to the V , PGND and V  
pins to minimize  
out curves are modified by adding an external resistor on  
IN  
OUT  
high frequency noise.  
the f pin to allow for lower input voltage operation, or  
SET  
higher input voltage operation.  
• Place a dedicated power ground layer underneath the  
unit.  
V
IN  
C
C
IN  
IN  
GND  
SIGNAL  
GND  
C
C
OUT  
OUT  
V
OUT  
4603 F15  
Figure 15. Recommended Layout  
4603fb  
19  
LTM4603/LTM4603-1  
applications inForMation  
Example for 5V Output  
Example for 3.3V Output  
LTM4603 minimum on-time = 100ns  
LTM4603 minimum on-time = 100ns  
t
= [(V  
• 10pF)/I  
], for V  
> 4.8V use 4.8V  
t
= [(V  
• 10pF)/I  
]
ON  
OUT  
fSET  
OUT  
ON  
OUT  
fSET  
LTM4603 minimum off-time = 400ns  
= t – t , where t = 1/Frequency  
LTM4603 minimum off-time = 400ns  
t = t – t , where t = 1/Frequency  
OFF  
t
OFF  
ON  
ON  
Duty Cycle = t /t or V /V  
Duty Cycle (DC) = t /t or V /V  
ON OUT IN  
ON  
OUT IN  
Equations for setting frequency:  
=(V /(3•R )),for20Voperation,I  
Equations for setting frequency:  
I
=201µA,t  
I
t
= [V /(3 • R  
)], for 20V operation, I  
fSET ON  
= 201µA,  
fSET  
fSET  
IN  
fSET  
fSET  
ON  
fSET  
IN  
fSET  
=[(4.810pF)/I ], t =239ns, wheretheinternalR  
= [(3.3 • 10pF)/I  
], t = 164ns, where the internal  
fSET ON  
fSET  
ON  
is33.2k.Frequency=(V /(V • t ))=(5V/(20239ns))  
R
is 33.2k. Frequency = [V /(V • t )] = [3.3V/  
OUT IN ON  
fSET OUT IN ON  
~ 1MHz. The inductor ripple current begins to get high at  
the higherinputvoltagesduetoa largervoltageacross the  
inductor. This is noted in the Inductor Ripple Current vs  
Duty Cycle graph at ~5A at 25% duty cycle. The inductor  
ripplecurrentcanbeloweredatthehigherinputvoltagesby  
(20•164ns)]~1MHz.Theminimumon-timeandminimum  
off-time are within specification at 164ns and 836ns.  
However, the4.5Vinputto3.3Voutputcircuitwillnotmeet  
theminimumoff-timespecificationof400ns(t =733ns,  
ON  
Frequency = 1MHz, t = 267ns).  
OFF  
addinganexternalresistorfromf togroundtoincrease  
SET  
Solution  
theswitchingfrequency.A3Aripplecurrentischosen,and  
thetotalpeakcurrentisequalto1/2ofthe3Aripplecurrent  
plus the output current. The 5V output current is limited  
to 5A, so total peak current is less than 6.5A. This is below  
the 7A peak specified value. A 150k resistor is placed from  
Lower the switching frequency at lower input voltages to  
allowforhigherdutycycles,andmeetthe400nsminimum  
off-timeat4.5Vinputvoltage.Theoff-timeshouldbeabout  
500ns with 100ns guard band included. The duty cycle  
f
to ground, and the parallel combination of 150k and  
SET  
for (3.3V/4.5V) = ~73%. Frequency = (1 – DC)/t , or  
OFF  
33.2k equates to 27.2k. The I  
calculation with 27.2k  
fSET  
(10.73)/500ns=540kHz.Theswitchingfrequencyneeds  
and 20V input voltage equals 245µA. This equates to a t  
ON  
tobeloweredto540kHzat4.5Vinput. t =DC/frequency,  
ON  
of 196ns. This will increase the switching frequency from  
1MHz to ~1.28MHz for the 20V to 5V conversion. The  
minimum on time is above 100ns at 20V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 10V for the 1.28MHz operation due to  
or 1.35µs. The f pin voltage is 1/3 of V , and the I  
SET  
IN  
fSET  
fSET  
current equates to 45µA with the internal 33.2k. The I  
current needs to be 24µA for 540kHz operation. A resistor  
can be placed from V to f to lower the effective I  
OUT  
SET  
fSET  
current out of the f pin to 24µA. The f pin is 4.5V/3  
SET  
SET  
=1.5V and V  
= 3.3V, therefore 82.5k will source 21µA  
node and lower the I  
OUT  
the 400ns minimum off time. Equation: t = (V /V )  
ON  
OUT IN  
into the f  
current to 24µA.  
SET  
fSET  
• (1/Frequency) equates to a 382ns on time, and a 400ns  
This enables the 540kHz operation and the 4.5V to 20V  
input operation for down converting to 3.3V output. The  
frequency will scale from 540kHz to 1.2MHz over this  
input range. This provides for an effective output current  
of 5A over the input range.  
off time. The V to V Step-Down Ratio curve reflects  
IN  
OUT  
an operating range of 10V to 20V for 1.28MHz operation  
with a 150k resistor to ground, and an 8V to 16V operation  
for f floating. These modifications are made to provide  
SET  
wider input voltage ranges for the 5V output designs while  
limiting the inductor ripple current, and maintaining the  
400ns minimum off time.  
4603fb  
20  
LTM4603/LTM4603-1  
applications inForMation  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 20V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
5V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C3  
C6 100pF  
+
100µF  
6.3V  
MPGM  
RUN  
V
FB  
REFER TO  
MARG0  
MARG1  
V
OUT_LCL  
SANYO POSCAP TABLE 2  
COMP  
INTV  
DRV  
LTM4603  
CC  
CC  
5% MARGIN  
DIFFV  
V
OUT  
R1  
392k  
1%  
INTV  
CC  
OSNS  
C2  
10µF  
25V  
V
+
OSNS  
f
SGND PGND  
SET  
C1  
10µF  
25V  
R
R
SET  
8.25k  
fSET  
150k  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR ≥12V INPUT  
DUAL  
CMSSH-3C3  
4603 F16  
Figure 16. 5V at 5A Design Without Differential Amplifier  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 20V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6 100pF  
PGOOD  
MPGM  
RUN  
V
FB  
C3  
MARG0  
MARG1  
V
OUT_LCL  
+
100µF  
COMP  
INTV  
DRV  
LTM4603  
6.3V  
CC  
CC  
SANYO POSCAP  
DIFFV  
OUT  
+
C2  
V
V
OSNS  
R1  
392k  
10µF  
25V  
OSNS  
R
f
fSET  
C1  
10µF  
25V  
SGND PGND  
SET  
R
SET  
82.5k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4603 F17  
Figure 17. 3.3V at 5A Design  
4603fb  
21  
LTM4603/LTM4603-1  
applications inForMation  
CLOCK SYNC  
C5  
V
OUT  
0.01µF  
V
IN  
4.5V TO 20V  
REVIEW TEMPERATURE  
R2  
100k  
R4  
V
PLLIN TRACK/SS  
V
1.5V  
6A  
IN  
DERATING CURVE  
C3 100pF  
100k  
OUT  
PGOOD  
V
OUT  
+
C
22µF  
6.3V  
C
OUT2  
470µF  
6.3V  
PGOOD  
MPGM  
RUN  
V
OUT1  
FB  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
ON/OFF  
COMP  
INTV  
DRV  
LTM4603  
CC  
CC  
DIFFV  
V
OUT  
+
C
IN  
+
R1  
392k  
BULK  
O PT.  
OSNS  
V
OSNS  
C
IN  
TABLE 2  
f
10µF  
SGND PGND  
SET  
R
SET  
40.2k  
REFER TO  
TABLE 2  
25V  
×2 CER  
4603 F18  
5% MARGIN  
Figure 18. Typical 4.5V to 20VIN, 1.5V at 6A Design  
CLOCK SYNC 0° PHASE  
2.5V  
R10  
60.4k  
1.2V  
R9  
60.4k  
4.5V TO 16V  
R1  
R2  
V
PLLIN TRACK/SS  
IN  
1.2V AT 6A  
100k 100k  
C10  
10µF  
25V  
C1  
10µF  
25V  
PGOOD  
V
OUT  
C6 100pF  
C4  
22µF  
6.3V  
MPGM  
RUN  
V
FB  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
COMP  
INTV  
DRV  
LTM4603  
+
C5  
470µF  
6.3V  
CC  
CC  
C12  
0.1µF  
DIFFV  
OUT  
+
V
V
OSNS  
LTC6908-1  
+
OSNS  
1
2
3
4
5
6
V
OUT1  
R5  
392k  
f
SGND PGND  
SET  
R7  
60.4k  
R11  
118k  
GND OUT2  
SET MOD  
2-PHASE  
CLOCK SYNC 180° PHASE  
2.5V  
R4  
OSCILLATOR  
C3  
0.01µF  
4.5V TO 16V  
R3  
V
PLLIN TRACK/SS  
IN  
2.5V AT 6A  
100k 100k  
C11*  
100µF  
25V  
C2  
10µF  
25V  
+
PGOOD  
V
OUT  
C6 100pF  
C7  
22µF  
6.3V  
MPGM  
RUN  
V
FB  
MARG0  
MARG1  
MARGIN  
CONTROL  
COMP  
LTM4603  
+
C8  
470µF  
6.3V  
INTV  
V
OUT_LCL  
CC  
CC  
DRV  
DIFFV  
OUT  
+
V
V
OSNS  
OSNS  
R6  
392k  
f
SGND PGND  
SET  
R8  
19.1k  
4603 F19  
*C11 OPTIONAL TO REDUCE LC RINGING.  
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTIONS  
Figure 19. 2-Phase, 2.5V and 1.2V at 6A with Coincident Tracking  
4603fb  
22  
LTM4603/LTM4603-1  
typical application  
4603fb  
23  
LTM4603/LTM4603-1  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4603fb  
24  
LTM4603/LTM4603-1  
revision history (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
8/11  
Updated Note 2 test parameters.  
Updated the usage of Remote Sense Amplifier pins.  
4
7
Updated the f pin description.  
8
SET  
Updated the Simplified Block Diagram.  
Added additional information for the tracking applications.  
Updated the Frequency Adjustment section and equations.  
Updated the example circuits.  
9
14  
19, 20  
22, 23  
26  
Added a package photo.  
Updated the Related Parts information.  
26  
4603fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTM4603/LTM4603-1  
typical application  
3.3V at 5A, LTM4603-1 (No Remote Sense Amplifier)  
TRACK/SS  
CONTROL  
V
IN  
4.5V TO 20V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
5A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C6  
100pF  
PGOOD  
MPGM  
RUN  
V
+
C3  
100µF  
6.3V  
FB  
MARG0  
MARG1  
COMP  
INTV  
DRV  
LTM4603-1  
V
CC  
CC  
OUT_LCL  
NC3  
R
R1  
392k  
R
fSET  
SET  
C2  
NC2  
NC1  
82.5k  
13.3k  
10µF  
35V  
f
C1  
SGND PGND  
SET  
10µF  
35V  
4603 TA05  
5% MARGIN  
MARGIN CONTROL  
package photograph  
2.82mm  
15mm  
15mm  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4628  
Dual 8A, 26V, DC/DC µModule Regulator  
0.6V ≤ V  
≤ 5V, Remote Sense Amplifier, Internal Temperature Sensing  
OUT  
Output, 15mm × 15mm × 4.32mm LGA  
LTM4627  
20V, 15A DC/DC µModule Regulator  
26V, 6A DC/DC µModule Regulator  
0.6V ≤ V ≤ 5V, PLL Input, Remote Sense Amplifier, V  
Tracking,  
OUT  
OUT  
15mm × 15mm × 4.32mm LGA  
LTM4618  
LTM4606  
0.8V ≤ V  
≤ 5V, PLL Input, V  
Tracking, 9mm × 15mm × 4.32mm LGA  
Tracking and Margining,  
OUT  
OUT  
28V, 6A EN55022 Class B DC/DC µModule Regulator  
0.6V ≤ V  
≤ 5V, PLL Input, V  
OUT  
OUT  
15mm × 15mm × 2.82mm LGA  
LTM4601AHV  
28V, 12A DC/DC µModule Regulator  
0.6V ≤ V ≤ 5V, PLL Input, Remote Sense Amplifier, V  
Tracking and  
OUT  
OUT  
Margining, 15mm × 15mm × 2.82mm LGA  
LTM8025  
LTM6908  
36V , 3A DC/DC µModule Regulator  
0.8V ≤ V ≤ 24V, CLK Input, 9mm × 15mm × 4.32mm LGA Package  
IN  
OUT  
50kHz to 10MHz Dual Output Oscillator  
90° or 180° Phase Shift Between Outputs, Optional Spread Spectrum  
Frequency Modulation, 2mm × 3mm DFN  
4603fb  
LT 0811 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4604

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604A

Low Voltage, 4A DC/DC μModule with Tracking
Linear

LTM4604AEV-PBF

Low Voltage, 4A DC/DC μModule with Tracking
Linear

LTM4604AIV-PBF

Low Voltage, 4A DC/DC μModule with Tracking
Linear

LTM4604EV#PBF

LTM4604 - Low Voltage, 4A DC/DC &#181;Module (Power Module) Regulator with Tracking; Package: LGA; Pins: 66; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4604EV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604IV-PBF

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4604V

Low Voltage, 4A DC/DC μModuleTM with Tracking
Linear

LTM4605

High Effi ciency Buck-Boost DC/DC μModule
Linear

LTM4605

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTM4605EV#PBF

LTM4605 - High Efficiency Buck-Boost DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 141; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4605EV-PBF

High Effi ciency Buck-Boost DC/DC μModule
Linear