LTM4619IV [Linear]

Dual, 26VIN, 4A DC/DC μModule Regulator; 双通道, 26VIN , 4A DC / DCμModule稳压器
LTM4619IV
型号: LTM4619IV
厂家: Linear    Linear
描述:

Dual, 26VIN, 4A DC/DC μModule Regulator
双通道, 26VIN , 4A DC / DCμModule稳压器

稳压器
文件: 总24页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4619  
Dual, 26V , 4A DC/DC  
IN  
µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®4619 is a complete dual 4A step-down switch-  
ing mode DC/DC power supply. Included in the package  
are the switching controller, power FETs, inductor, and all  
supportcomponents. Operatingoverinputvoltageranges  
of 4.5V to 26.5V, the LTM4619 supports two outputs with  
voltage ranges of 0.8V to 5V, each set by a single external  
resistor. Its high efficiency design delivers 4A continuous  
current (5A peak) for each output.  
n
Complete Standalone Power Supply  
n
Wide Input Voltage Range: 4.5V to 26.5V  
(EXTV Available for V ≤ 5.5V)  
CC  
IN  
n
Dual 180° Out-of-Phase Outputs with 4A DC  
Typical, 5A Peak Output Current for Each  
n
n
n
n
n
n
n
n
n
n
n
Dual Outputs with 0.8V to 5V V  
Output Voltage Tracking  
Range  
OUT  
1.5ꢀ Total DC Output Error  
Current Mode Control/Fast Transient Response  
Power Good  
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The two outputs are  
interleavedwith180°phasetominimizetheripplenoiseand  
reduce the I/O capacitors. The device supports frequency  
synchronization and output voltage tracking for supply  
rail sequencing. Burst Mode operation or pulse-skipping  
mode can be selected for light load operations.  
Phase-Lockable Fixed Frequency 250kHz to 780kHz  
On Board Frequency Synchronization  
Parallel Current Sharing  
Selectable Burst Mode® Operation  
Output Overvoltage Protection  
Small Surface Mount Footprint, Low Profile  
(15mm × 15mm × 2.8mm) LGA Package  
Fault protection features include overvoltage protection,  
overcurrent protection and foldback current limit for  
short-circuit protection.  
APPLICATIONS  
n
Telecom and Networking Equipment  
The low profile package (2.8mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. The power module is offered in a  
space saving and thermally enhanced 15mm × 15mm ×  
2.8mm LGA package. The LTM4619 is Pb-free and RoHS  
compliant.  
n
Servers  
n
Storage Cards  
ATCA Cards  
Industrial Equipment  
Point of Load Regulation  
n
n
n
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode and μModule are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
TYPICAL APPLICATION  
Dual 4A 3.3V/2.5V DC/DC μModule® Regulator  
Efficiency and Power Loss at 12V input  
95  
90  
85  
80  
75  
70  
65  
60  
55  
2.0  
1.5  
1.0  
0.5  
0
EFFICIENCY  
MODE/PLLIN INTV  
CC  
FREQ/PLLFLTR  
5.5V TO 26.5V  
V
V
IN  
10μF  
28k  
19.1k  
22pF  
s2  
V
FB1  
FB2  
22pF  
COMP1  
COMP2  
V
V
OUT2  
3.3V/4A  
OUT1  
LTM4619  
V
V
OUT2  
OUT1  
2.5V/4A  
100μF  
100μF  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
POWER LOSS  
0.1μF  
0.1μF  
PGOOD  
EXTV  
CC  
2.5V  
3.3V  
OUT  
OUT  
SGND  
PGND  
4619 TA01a  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
LOAD CURRENT (A)  
4619 TA01b  
4619f  
1
LTM4619  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V ............................................................. –0.3V to 28V  
IN  
M
L
INTV , PGOOD, RUN1, RUN2, EXTV ....... –0.3V to 6V  
CC  
CC  
COMP1, COMP2, V , V , .................... –0.3V to 2.7V  
FB1 FB2  
K
J
MODE/PLLIN, TK/SS1, TK/SS2,  
FREQ/PLLFLTR...................................... –0.3V to INTV  
OUT1 OUT2  
Internal Operating Temperature Range (Note 2)  
CC  
V
, V  
.................................................. 0.8V to 5V  
H
G
F
..........................................................–40°C to 125°C  
Junction Temperature ........................................... 125°C  
Maximum Reflow Body Temperature .................... 245°C  
Storage Temperature Range...................–55°C to 125°C  
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10  
11  
12  
LGA PACKAGE  
144-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 13°C/W, θ = 6°C/W  
JA JP  
JMAX  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4619EV#PBF  
LTM4619IV#PBF  
TRAY  
PART MARKING*  
LTM4619V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4619EV#PBF  
LTM4619IV#PBF  
144-Lead (15mm × 15mm × 2.8mm) LGA  
144-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4619V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 18. Specified as  
each channel. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
26.5  
5.0  
UNITS  
l
l
V
V
V
Input DC Voltage  
Output Voltage Range  
Output Voltage  
V
V
C
≤ 5.5V, Connect V and INTV Together  
V
V
IN(DC)  
IN  
IN  
IN  
IN  
CC  
= 5.5V to 26.5V  
0.8  
OUT1, 2(RANGE)  
OUT1, 2(DC)  
= 10μF ×1, C  
= 100μF Ceramic, 100μF POSCAP,  
OUT  
R
= 28.0kΩ  
= 12V, V  
= 12V, V  
SET  
V
2.483  
2.470  
2.52 2.557  
2.52 2.570  
V
V
= 2.5V, I  
= 2.5V, I  
= 0A  
= 4A  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
l
V
Input Specifications  
V
Undervoltage Lockout Thresholds  
V
V
Rising  
Falling  
2.00  
1.85  
2.2  
2.0  
2.35  
2.15  
V
V
IN(UVLO)  
INTVCC  
INTVCC  
4619f  
2
LTM4619  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 18. Specified as  
each channel (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Inrush Current at Start-Up  
I
= 0A, C = 10μF, C  
= 100μF, V  
= 2.5V  
OUT  
INRUSH(VIN)  
OUT  
IN  
IN  
OUT  
V
= 12V  
0.25  
A
I
Input Supply Bias Current  
Input Supply Current  
V
V
V
V
= 12V, V  
= 12V, V  
= 2.5V, Switching Continuous  
= 2.5V, Switching Continuous  
OUT1  
OUT2  
30  
30  
40  
40  
40  
mA  
mA  
mA  
mA  
μA  
Q(VIN)  
IN  
IN  
IN  
IN  
OUT1  
OUT2  
= 26.5V, V  
= 26.5V, V  
= 2.5V, Switching Continuous  
= 2.5V, Switching Continuous  
Shutdown, RUN = 0, V = 20V  
IN  
I
V
IN  
V
IN  
= 12V, V  
= 26.5V, V  
= 2.5V, I = 4A  
OUT  
0.97  
0.480  
A
A
S(VIN)  
OUT  
= 2.5V, I  
= 4A  
OUT  
OUT  
INTV  
Internal V Voltage  
V
= 12V, V > 2V, No Load  
RUN  
4.8  
4.5  
5
5.2  
4
V
V
CC  
CC  
IN  
l
EXTV  
EXTV Switchover Voltage  
EXTV Ramping Positive  
4.7  
CC  
CC  
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 2.5V (Note 5)  
OUT  
0
A
OUT1, 2(DC)  
IN  
= 2.5V, V from 6V to 26.5V  
0.15  
0.25  
0.3  
0.5  
%
%
ΔV  
OUT  
OUT  
IN  
OUT1(LINE)  
l
I
= 0A For Each Output  
V
OUT(NOM)  
Line Regulation Accuracy  
Load Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
V
= 2.5V, V from 6V to 26.5V  
0.15  
0.25  
0.3  
0.5  
%
%
ΔV  
V
OUT  
OUT  
IN  
OUT2(LINE)  
l
l
I
= 0A For Each Output  
OUT(NOM)  
For Each Output, V  
= 2.5V, 0A to 4A (Note 5)  
0.6  
0.8  
%
ΔV  
OUT1(LOAD)  
OUT  
V
IN  
= 12V  
V
OUT1(NOM)  
l
For Each Output, V  
= 2.5V, 0A to 4A (Note 5)  
0.6  
0.8  
%
ΔV  
OUT2(LOAD)  
OUT  
V
IN  
= 12V  
V
OUT2(NOM)  
V
I
= 0A, C  
= 100μF X5R Ceramic  
OUT1, 2(AC)  
OUT  
OUT  
V
V
= 12V, V  
= 2.5V  
OUT  
20  
25  
mV  
mV  
IN  
IN  
= 26.5V, V  
= 2.5V  
OUT  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
I
= 2A, V = 12V, V  
= 2.5V  
780  
kHz  
S
OUT  
IN  
OUT  
CC  
FREQ/PLLFLTR = INTV  
C
= 100μF X5R Ceramic, V  
= 2.5V, I  
= 2.5V, I  
= 0A  
= 0A  
ΔV  
OUT  
OUT  
OUT  
OUT  
OUTSTART  
V
= 12V  
10  
10  
mV  
mV  
IN  
IN  
V
= 26.5V  
t
Turn-On Time  
C
= 100μF X5R Ceramic, V  
OUT  
START  
OUT  
Resistive Load,  
V
IN  
V
IN  
= 12V  
= 26.5V  
0.250  
0.130  
ms  
ms  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load  
= 100μF X5R Ceramic,V = 2.5V, V = 12V  
ΔV  
OUTLS  
C
OUT  
15  
10  
mV  
μs  
OUT  
IN  
t
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load  
OUT  
SETTLE  
C
= 100μF X5R Ceramic,V  
= 2.5V, V = 12V  
OUT IN  
I
Output Current Limit  
C
= 100μF X5R Ceramic,  
OUTPK  
OUT  
V
= 6V, V  
= 2.5V  
12  
11  
A
A
IN  
IN  
OUT  
V
= 26.5V, V  
= 2.5V  
OUT  
Control Section  
V , V  
FB1 FB2  
Voltage at V Pin  
I
= 0A, V = 2.5V  
OUT  
0.792  
0.788  
0.8  
0.8  
0.808  
0.810  
V
FB  
OUT  
l
I
Soft-Start Charge Current  
Maximum Duty Factor  
Minimum On-Time  
V
= 0V, V = 2.5V  
OUT  
0.9  
1.3  
97  
90  
1.7  
μA  
%
TK/SS1, 2  
TK/SS  
DF  
In Dropout (Note 4)  
(Note 4)  
MAX  
t
ns  
ON(MIN)  
4619f  
3
LTM4619  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 18. Specified as  
each channel. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
450  
210  
700  
TYP  
500  
250  
780  
250  
MAX  
550  
290  
860  
UNITS  
kHz  
f
f
f
Nominal Frequency  
Lowest Frequency  
Highest Frequency  
MODE/PLLIN Input Resistance  
V
V
V
= 1.2V  
= 0V  
NOM  
LOW  
HIGH  
FREQ  
FREQ  
FREQ  
kHz  
≥ 2.4V  
kHz  
R
kꢀ  
MODE/PLLIN  
FREQ  
I
Frequency Setting  
Sinking Current  
Sourcing Current  
f
f
> f  
< f  
–13  
13  
μA  
μA  
MODE  
MODE  
OSC  
OSC  
V
RUN Pin ON/OFF Threshold  
RUN Rising  
RUN Falling  
1.1  
1.02  
1.22  
1.14  
1.35  
1.27  
V
V
RUN1, 2  
R , R  
FB1 FB2  
Resistor Between V  
and V  
FB  
60.1  
60.4  
60.7  
kΩ  
OUT  
Pins for Each Channel  
V
PGOOD Voltage Low  
I
= 2mA  
= 5V  
0.1  
0.3  
2
V
PGL  
PGOOD  
I
PGOOD Leakage Current  
PGOOD Range  
V
μA  
PGOOD  
PGOOD  
V
V
Ramping Negative  
Ramping Positive  
–5  
5
–7.5  
7.5  
–10  
10  
%
%
ΔV  
FB  
FB  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
internal operating temperature range. Note that the maximum ambient  
temperature is determined by specific operating conditions in conjunction  
with board layout, the rated package thermal resistance and other  
environmental factors.  
Note 2: The LTM4619E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4619I is guaranteed to meet specifications over the full  
Note 3: The two outputs are tested separately and the same testing  
condition is applied to each output.  
Note 4: 100% tested at wafer level only.  
Note 5: See Output Current Derating curves for different V , V  
and T .  
A
IN OUT  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Refer to Figures 18 and 19)  
Efficiency vs Load Current with  
Efficiency vs Load Current with  
12VIN (f = 500kHz for 1.2VOUT and  
5VIN (f = 500kHz for 0.8VOUT  
,
Efficiency vs Load Current with  
24VIN (f = 500kHz for 1.5VOUT  
1.2VOUT and 1.5VOUT  
)
1.5VOUT  
)
)
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
5V  
3.3V  
OUT  
OUT  
5V  
OUT  
2.5V  
OUT  
3.3V  
OUT  
3.3V  
OUT  
2.5V  
OUT  
1.2V  
OUT  
1.5V  
OUT  
1.5V  
1.2V  
OUT  
2.5V  
OUT  
OUT  
1.5V  
OUT  
0.8V  
OUT  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4619 G03  
4619 G01  
4619 G02  
4619f  
4
LTM4619  
(Refer to Figures 18 and 19)  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.2V Output Transient Response  
1.5V Output Transient Response  
2.5V Output Transient Response  
I
I
I
OUT  
1A/DIV  
OUT  
OUT  
1A/DIV  
1A/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4619 G04  
4619 G05  
4619 G06  
100μs/DIV  
100μs/DIV  
100μs/DIV  
6V 1.2V  
AT 2A/μs LOAD STEP  
6V 1.5V  
AT 2A/μs LOAD STEP  
6V 2.5V AT 2A/μs LOAD STEP  
IN  
OUT  
IN  
OUT  
IN  
OUT  
f = 780kHz  
f = 780kHz  
f = 780kHz  
C
C
2s 22μF, 6.3V X5R CERAMIC  
1s 330μF, 6.3V SANYO POSCAP  
C
C
2s 22μF, 6.3V X5R CERAMIC  
1s 330μF, 6.3V SANYO POSCAP  
C
C
2s 22μF, 6.3V X5R CERAMIC  
1s 330μF, 6.3V SANYO POSCAP  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3.3V Output Transient Response  
Start-Up, IOUT = 0A  
Start-Up, IOUT = 4A  
I
V
V
OUT  
IN  
IN  
1A/DIV  
1V/DIV  
1V/DIV  
V
OUT  
50mV/DIV  
I
I
IN  
IN  
0.5A/DIV  
0.5A/DIV  
4619 G09  
4619 G07  
4619 G08  
20ms/DIV  
100μs/DIV  
20ms/DIV  
V
I
= 12V, V  
= 2.5V,  
6V 3.3V  
AT 2A/μs LOAD STEP  
V
C
= 12V, V  
OUT  
= 2.5V, I  
= 0A  
IN  
OUT  
IN  
OUT  
IN  
OUT  
OUT  
= 4A RESISTIVE LOAD  
f = 780kHz  
= 2s 22μF 10V  
OUT  
OUT  
C
= 2s 22μF 10V,  
C
C
2s 22μF, 6.3V X5R CERAMIC  
1s 330μF, 6.3V SANYO POSCAP  
AND 1s 100μF 6.3V CERAMIC CAPs  
OUT  
OUT  
AND 1s 100μF 6.3V CERAMIC CAPs  
C
= 0.1μF  
SOFTSTART  
C
= 0.1μF  
USE RUN PIN TO CONTROL START-UP  
SOFTSTART  
USE RUN PIN TO CONTROL START-UP  
Short Circuit, IOUT = 0A  
Short Circuit, IOUT = 4A  
V
V
OUT  
1V/DIV  
OUT  
1V/DIV  
I
IN  
0.5A/DIV  
I
IN  
0.5A/DIV  
4619 G10  
4619 G11  
50μs/DIV  
= 2.5V, I  
50μs/DIV  
V
C
= 12V, V  
OUT  
= 0A  
V
C
= 12V, V  
OUT  
= 2.5V, I  
= 4A  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
= 2s 22μF 10V,  
= 2s 22μF 10V,  
AND 1s 100μF 6.3V CERAMIC CAPs  
AND 1s 100μF 6.3V CERAMIC CAPs  
4619f  
5
LTM4619  
PIN FUNCTIONS  
V (J1 to J3, J10 to J12, K1 to K4, K9 to K12, L1 to L5,  
FREQ/PLLFLTR (J8): Frequency Selection Pin. An internal  
lowpass filter is tied to this pin. The frequency can be se-  
lected from 250kHz to 780kHz by varying the DC voltage  
on this pin from 0V to 2.4V. Leave this pin floating when  
external synchronization is used.  
IN  
L8 to L12, M1 to M12): Power Input Pins. Apply input  
voltage between these pins and PGND pins. Recommend  
placing input decoupling capacitance directly between V  
IN  
CC  
pins and PGND pins. For V < 5.5, tie V and INTV  
IN  
IN  
together.  
TK/SS1, TK/SS2 (K8, K5): Output Voltage Tracking and  
Soft-StartPins.Internalsoft-startcurrentsof1.3μAcharge  
thesoft-startcapacitors. SeetheApplicationsInformation  
section to use the tracking function.  
V
, V  
(A10 to D10, A11 to D11, A12 to D12, A1 to  
OUT1 OUT2  
D1, A2 to D2, A3 to D3): Power Output Pins. Apply output  
load between these pins and PGND pins. Recommend  
placing output decoupling capacitance directly between  
these pins and PGND pins.  
V
, V  
(K7, K6): The negative input of the error  
FB1  
FB2  
amplifier. Internally, this pin is connected to V  
with  
OUT  
PGND (H1, H2, H4, H9, H11, H12, G1 to G12, F1 to  
F5, F7 to F12, E1 to E12, D4 to D9, C4 to C9, B4 to B9,  
A4 to A9): Power ground pins for both input and output  
returns.  
a 60.4k precision resistor. Different output voltages can  
be programmed with an additional resistor between V  
FB  
and SGND pins. See the Applications Information section  
for details.  
INTV (F6): Internal 5V Regulator Output. This pin is for  
COMP1, COMP2 (L7, L6): Current Control Threshold and  
ErrorAmplifierCompensationPoint.Themodulehasbeen  
internally compensated for most I/O ranges.  
CC  
additional decoupling of the 5V internal regulator.  
EXTV (J4): External Power Input to Controller. When  
CC  
EXTV is higher than 4.7V, the internal 5V regulator is  
PGOOD (H5): Output Voltage Power Good Indicator. Open  
drain logic output that is pulled to ground when the output  
voltage is not within 7.5% of the regulation point.  
CC  
disabled and external power supplies current to reduce  
the power dissipation in the module. This will improve the  
efficiency more at high input voltages.  
RUN1, RUN2 (J9, J5): Run Control Pins. 0.5μA pull-up  
currents on these pins turn on the module if these pins  
are floating. Forcing either of these pins below 1.2V will  
shutdownthecorrespondingoutputs.Anadditional4.5μA  
pull-up current is added to this pin, once the RUN pin rises  
above 1.2V. Also, active control or pull-up resistors can  
be used to enable the RUN pin. The maximum voltage is  
6V on these pins.  
SGND(J6, J7, H6, H7):SignalGroundPin. Returnground  
path for all analog and low power circuitry. Tie a single  
connection to PGND in the application.  
MODE/PLLIN(H8):Modeselectionorexternalsynchroniza-  
tion pin. Tying this pin high enables pulse-skipping mode.  
Tying this pin low enables force continuous operation.  
Floating this pin enables Burst Mode operation. A clock  
on the pin will force the controller into continuous mode  
of operation and synchronize the internal oscillator. The  
external clock input high threshold is 1.6V, while the input  
low threshold is 1V.  
SW1, SW2(H10, H3):SwitchingTestPins. Thesepinsare  
provided externally to check the operation frequency.  
4619f  
6
LTM4619  
SIMPLIFIED BLOCK DIAGRAM  
V
INTERNAL  
FILTER  
IN  
4.5V TO 26.5V*  
+
+
1.5μF  
C
C
IN  
INTV  
CC  
M1  
M2  
PGND  
SW1  
PGOOD  
L1  
MODE/PLLIN  
V
OUT1  
2.5V/4A  
EXTV  
CC  
10μF  
V
IN  
OUT1  
TK/SS1  
PGND  
C
SS1  
R1  
R2  
RUN1  
60.4k  
COMP1  
V
FB1  
R
28k  
INTERNAL  
COMP  
SET1  
POWER  
CONTROL  
R2  
R1R2  
¥
´
• V  
IN  
¦
§
µ
1.5μF  
TK/SS2  
= UVLO THRESHOLD = 1.22V  
M3  
M4  
PGND  
SW2  
C
SS2  
L2  
RUN2  
V
OUT2  
3.3V/4A  
COMP2  
+
10μF  
C
OUT2  
INTERNAL  
COMP  
PGND  
60.4k  
FREQ  
V
FB2  
INTERNAL  
FILTER  
R
SET2  
19.1k  
SGND  
4619 BD  
*USE EXTV FOR V ≤ 5.5V, OR TIE V AND EXTV TOGETHER FOR V ≤ 5.5V  
CC  
IN  
IN  
CC  
IN  
Figure 1. Simplified LTM4619 Block Diagram  
TA = 25°C. Use Figure 1 configuration.  
CONDITIONS  
DECOUPLING REQUIREMENTS  
SYMBOL  
PARAMETER  
MIN  
10  
TYP  
MAX  
UNITS  
External Input Capacitor Requirement  
C
(V = 4.5V to 26.5V, V  
= 2.5V, V  
= 3.3V)  
= 3.3V)  
I
= 4A, I = 4A  
OUT2  
μF  
IN  
IN  
OUT1  
OUT2  
OUT1  
External Output Capacitor Requirement  
(V = 4.5V to 26.5V, V = 2.5V, V  
C
C
I
I
= 4A  
= 4A  
200  
200  
μF  
μF  
OUT1  
OUT2  
IN  
OUT1  
OUT2  
OUT1  
OUT2  
4619f  
7
LTM4619  
OPERATION  
The LTM4619 is a dual-output standalone non-isolated  
switching mode DC/DC power supply. It can deliver up to  
4A(DCcurrent)foreachoutputwithfewexternalinputand  
outputcapacitors.Thismoduleprovidespreciselyregulated  
output voltages programmable via external resistors from  
0.8VDC to 5.0VDC over 4.5V to 26.5V input voltages. The  
typical application schematic is shown in Figure 18.  
the open-drain PGOOD output low if the output feedback  
voltageexitsa 7.5%windowaroundtheregulationpoint.  
The power good pin is disabled during start-up.  
Pulling the RUN pin below 1.2V forces the controller into  
its shutdown state, by turning off both MOSFETs. The  
TK/SSpinisusedforprogrammingtheoutputvoltageramp  
and voltage tracking during start-up. See the Applications  
Information section.  
The LTM4619 has integrated constant frequency current  
mode regulators and built-in power MOSFET devices with  
fast switching speed. The typical switching frequency is  
780kHz. To reduce switching noise, the two outputs are  
interleaved with 180° phase internally and it can be syn-  
chronized externally using the PLLIN pin.  
The LTM4619 is internally compensated to be stable over  
all operating conditions. The Linear Technology μModule  
Power Design Tool will be provided for transient and  
stability analysis. The V pin is used to program the  
FB  
output voltage with a single external resistor to ground.  
Multiphase operation can be easily employed with the  
synchronization.  
With current mode control and internal feedback loop  
compensation, the LTM4619 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation or pulse-skipping mode  
using the MODE pin. Efficiency graphs are provided for  
light load operations in the Typical Performance Charac-  
teristics section.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit and current foldback in a short-circuit condition.  
Internal overvoltage and undervoltage comparators pull  
4619f  
8
LTM4619  
APPLICATIONS INFORMATION  
The typical LTM4619 application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage.  
Without considering the inductor current ripple, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
Output Voltage Programming  
η
ThePWMcontrollerhasaninternal0.8Vreferencevoltage.  
As shown in the block diagram, a 60.4k internal feedback  
In the above equation, η is the estimated efficiency of the  
power module. The bulk capacitor can be a switcher-rated  
electrolytic aluminum capacitor, polymer capacitor for  
bulk input capacitance due to high inductance traces or  
leads. One 10μF ceramic input capacitor is typically rated  
for 2A of RMS ripple current, so the RMS input current  
at the worst case for each output at 4A maximum current  
is about 2A. If a low inductance plane is used to power  
the device, then two 10μF ceramic capacitors are enough  
for both outputs at 4A load and no external input bulk  
capacitor is required.  
resistor R connects V  
to V pin. The output voltage  
FB  
OUT  
FB  
will default to 0.8V with no feedback resistor. Adding a  
resistor R from V pin to SGND programs the output  
SET  
FB  
voltage:  
60.4k +RSET  
VOUT = 0.8V •  
RSET  
Table 1. VFB Resistor Table vs Various Output Voltages  
V
OUT  
(V)  
0.8  
1.2  
1.5  
1.8  
2.5  
3.3  
5
R
(k)  
Open  
121  
68.1  
48.7  
28.0  
19.1  
11.5  
SET  
Output Capacitors  
The LTM4619 is designed for low output voltage ripple  
Input Capacitors  
noise. The bulk output capacitors defined as C  
are  
OUT  
The LTM4619 module should be connected to a low AC-  
impedanceDCsource.Two1.5μFinputceramiccapacitors  
areincludedinsidethemodule.Additionalinputcapacitors  
are needed if a large load is required up to the 4A level. A  
47μF to 100μF surface mount aluminum electrolytic bulk  
capacitor can be used for more input bulk capacitance.  
This bulk capacitor is only needed if the input source im-  
pedance is compromised by long inductive leads, traces  
or not enough source capacitance.  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
ments. C  
can be the low ESR tantalum capacitor, the  
OUT  
lowESRpolymercapacitororceramiccapacitor.Thetypical  
output capacitance range for each output is from 47μF to  
220μF. Additional output filtering may be required by the  
system designer, if further reduction of output ripples or  
dynamictransientspikesisrequired.TheLinearTechnology  
μModule Power Design Tool will be provided for stability  
analysis.Multiphaseoperationwillreduceeffectiveoutput  
ripple as a function of the number of phases. Application  
Note77discussesthisnoisereductionversusoutputripple  
current cancellation, but the output capacitance should be  
consideredcarefullyasafunctionofstabilityandtransient  
response. The Linear Technology μModule Power Design  
Toolcancalculatetheoutputripplereductionasthenumber  
of implemented phases increased by N times.  
For a buck converter, the switching duty-cycle can be  
estimated as:  
VOUT  
D=  
V
IN  
4619f  
9
LTM4619  
APPLICATIONS INFORMATION  
Mode Selections and Phase-Locked Loop  
Frequency Selection  
The LTM4619 can be enabled to enter high efficiency  
BurstModeoperation,constant-frequencypulse-skipping  
mode, or forced continuous conduction mode. To select  
the forced continuous operation, tie the MODE/PLLIN pin  
to a DC voltage below 0.8V. To select pulse-skipping mode  
The switching frequency of the LTM4619’s controllers can  
be selected using the FREQ/PLLFLTR pin. If the MODE/  
PLLIN pin is not being driven by an external clock source,  
the FREQ/PLLFLTR pin can be set from 0V to 2.4V to pro-  
gram the controller’s operating frequency from 250kHz to  
of operation, tie the MODE/PLLIN pin to INTV . To select  
780kHz using a voltage divider to INTV (see Figure 19).  
CC  
CC  
Burst Mode operation, float the MODE/PLLIN pin.  
The typical frequency is 780kHz. If the output is too low  
or the minimum on-time is reached, the frequency needs  
to decrease to enlarge the turn-on time. Otherwise, a  
significant amount of cycle skipping can occur with cor-  
respondingly larger current and voltage ripple.  
Frequency Synchronization  
A phase-lock loop is available on the LTM4619 to synchro-  
nizetheinternalclocktoanexternalclocksourceconnected  
on the MODE/PLLIN pin. The clock high level needs to be  
higher than 1.6V and the clock low level needs to be lower  
than 1V. The frequency programming voltage and or the  
programming voltage divider must be removed from the  
FREQ/PLLFLTR pin when synchronizing to an external  
clock. The FREQ/PLLFLTR pin has the required onboard  
PLL filter components for clock synchronization. The LTM  
will default to forced continuous mode while being clock  
synchronized. Channel 1 is synchronized to the rising  
edge on the external clock, and channel 2 is 180 degrees  
out-of-phase with the external clock.  
RefertothegureofOutputVoltagevsMinimumOn-Time  
to choose a proper frequency.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
FREQ PIN VOLTAGE (V)  
4619 F02  
Figure 2. Switching Frequency vs FREQ/PLLFLTR Pin Voltage  
4619f  
10  
LTM4619  
APPLICATIONS INFORMATION  
Soft-Start and Tracking  
Output voltage tracking can be programmed externally  
using the TK/SS pin. The master channel is divided down  
with an external resistor divider that is the same as the  
slave channel’s feedback divider to implement coincident  
tracking. The LTM4619 uses an accurate 60.4k resistor  
internally for the top feedback resistor. Figure 3 shows an  
example of coincident tracking. Figure 4 shows the output  
voltages with coincident tracking.  
The LTM4619 has the ability to either soft-start by itself  
with a capacitor or track the output of another channel or  
externalsupply.Whenoneparticularchannelisconfigured  
to soft-start by itself, a capacitor should be connected to  
its TK/SS pin. This channel is in the shutdown state if its  
RUN pin voltage is below 1.2V. Its TK/SS pin is actively  
pulled to ground in this shutdown state.  
R1  
R2  
Once the RUN pin voltage is above 1.2V, the channel pow-  
ers up. A soft-start current of 1.3μA then starts to charge  
its soft-start capacitor. Note that soft-start or tracking is  
achieved not by limiting the maximum output current of  
the controller but by controlling the output ramp voltage  
according to the ramp rate on the TK/SS pin. Current  
foldback is disabled during this phase to ensure smooth  
soft-start or tracking. The soft-start or tracking range is  
defined to be the voltage range from 0V to 0.8V on the  
TK/SS pin. The total soft-start time can be calculated as:  
VSLAVE = 1+  
• V  
TRACK  
V
is the track ramp applied to the slave’s TK/SS2  
TRACK  
pin. V  
has a control range of 0V to 0.8V. When the  
TRACK  
master’s output is divided down with the same resistor  
values used to set the slave’s output, then the slave will  
coincident track with the master until it reaches its final  
value. The master will continue to its final value from the  
slave’s regulation point.  
Ratiometric modes of tracking can be achieved by select-  
ing different divider resistors values to change the output  
tracking ratio. The master output must be greater than the  
slave output for the tracking to work. Master and slave  
data inputs can be used to implement the correct resistors  
values for coincident or ratio tracking.  
0.8V CSS  
tSOFT-START  
=
1.3µA  
V
MODE/PLLIN INTV  
IN  
CC  
5.5V TO  
V
V
FREQ/PLLFLTR  
IN  
28V  
C
IN  
V
FB1  
FB2  
R3  
19.1k  
R4  
MASTER OUTPUT  
C2  
22pF  
C3  
22pF  
COMP1  
COMP2  
28k  
V
V
LTM4619  
OUT2  
OUT1  
3.3V  
V
V
OUT2  
OUT1  
2.5V  
SLAVE OUTPUT  
C
C
OUT1  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
OUT2  
OUTPUT  
VOLTAGE  
C1  
0.1μF  
V
OUT1  
PGOOD  
EXTV  
CC  
R1  
60.4k  
SGND  
PGND  
4619 F03  
R2  
28k  
4619 F04  
TIME  
Figure 3. Example of Coincident Tracking  
Figure 4. Coincident Tracking  
4619f  
11  
LTM4619  
APPLICATIONS INFORMATION  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4619 F05  
Figure 5. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Phases  
1.00  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4619 F06  
Figure 6. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOUT T/L  
4619f  
12  
LTM4619  
APPLICATIONS INFORMATION  
Multiphase Operation  
RUN Pin  
Multiphase operation with multiple LTM4619 devices in  
parallel will lower the effective input RMS ripple current  
as well as the output ripple current due to the interleaving  
operation of the regulators. Figure 5 provides a ratio of  
input RMS ripple current to DC load current as a function  
of duty cycle and the number of paralleled phases. Choose  
the corresponding duty factor and the number of phases  
to get the correct ripple current value. For example, the  
2-phase parallel for one LTM4619 design provides 8A  
at 2.5V output from a 12V input. The duty cycle is DC =  
2.5V/12V = 0.21. The 2-phase curve has a ratio of ~0.25  
for a duty cycle of 0.21. This 0.25 ratio of RMS ripple cur-  
rent to a DC load current of 8A equals ~2A of input RMS  
ripple current for the external input capacitors.  
The RUN pins can be used to enable or sequence the  
particular regulator channel. The RUN pins have their  
own internal 0.5μA current source to pull up the pin to  
1.2V, and then the current increases to 4.5μA above 1.2V.  
Careful consideration is needed to assure that board  
contamination or residue does not load down the 0.5μA  
pull-up current. Otherwise active control to these pins can  
be used to activate the regulators. A voltage divider can  
be used from V to set an enable point that can be used  
IN  
as a UVLO feature for the regulator. The resistor divider  
needs to be low enough resistance to swamp out the pull-  
up current sources and not enable the device when not  
attended. See the Simplified Block Diagram.  
Power Good  
The effective output ripple current is lowered with mul-  
tiphase operations as well. Figure 6 provides a ratio of  
peak-to-peak output ripple current to the normalized  
output ripple current as a function of duty factor and the  
number of paralleled phases. Choose the corresponding  
duty factor and the number of phases to get the correct  
output ripple current ratio value. If a 2-phase operation  
ThePGOODpinisconnectedtoanopendrainofaninternal  
N-channel MOSFET. The MOSFET turns on and pulls the  
PGOOD pin low when either V pin voltage is not within  
FB  
7.5% of the 0.8V reference voltage. The PGOOD pin is  
alsopulledlowwheneitherRUNpinisbelow1.2Vorwhen  
the LTM4619 is in the soft-start or tracking phase. When  
the V pin voltage is within the 7.5% requirement, the  
is chosen at 12V to 2.5V  
with a duty factor of 21%,  
FB  
IN  
OUT  
MOSFET is turned off and the pin is allowed to be pulled  
up by an external resistor to a source of up to 6V. The  
PGOOD pin will flag power good immediately when both  
then 0.6 is the ratio of the normalized output ripple current  
to inductor ripple DIr at the zero duty factor. This leads  
to ~1.3A of the effective output ripple current ΔI if the  
L
V
pins are within the 7.5% window. However, there is  
DIr is at 2.2A. Refer to Application Note 77 for a detailed  
explanation of the output ripple current reduction as a  
function of paralleled phases.  
FB  
an internal 17μs power bad mask when either V goes  
FB  
out of the 7.5% window.  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output voltage ripple can be calculated with  
the known effective output ripple current. The equation:  
ΔV  
ΔI /(8 • f • N • C ) + ESR • ΔI  
L OUT L  
OUT(P-P)  
where f is frequency and N is the number of parallel  
phases.  
4619f  
13  
LTM4619  
APPLICATIONS INFORMATION  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
INTV and EXTV  
CC  
CC  
The INTV is the internal 5V regulator that powers the  
CC  
The LTM4619 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady-state operation, but also in transient.  
LTM4619internalcircuitryanddrivesthepowerMOSFETs.  
The input voltage of the LTM4619 must be 6V or above  
for the INTV to regulate to the proper 5V level due to  
CC  
the internal LDO dropout from the input voltage. For ap-  
plications that need to operate below 6V input, then the  
To further limit current in the event of an overload condi-  
tion,theLTM4619providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to one-third of its  
fullcurrentlimitvalue.Foldbackcurrentlimitingisdisabled  
during the soft-start and tracking up.  
input voltage can be connected directly to the EXTV  
CC  
pin to bypass the LDO dropout concern, or an external  
5V supply can be used to power the EXTV pin when  
CC  
the input voltage is at high end of the supply range to  
reduce power dissipation in the module. For example the  
dropout voltage for 24V input would be 24V – 5V = 19V.  
This 19V headroom then multiplied by the power MOSFET  
drive current of ~15mA would equal ~0.3W additional  
power dissipation. So utilizing an external 5V supply on  
Thermal Considerations and Output Current Derating  
Indifferentapplications,theLTM4619operatesinavariety  
of thermal environments. The maximum output current is  
limited by the environmental thermal condition. Sufficient  
cooling should be provided to ensure reliable operation.  
When the cooling is limited, proper output current derat-  
ing is necessary, considering the ambient temperature,  
airflow,input/outputconditions,andtheneedforincreased  
reliability.  
the EXTV would improve design efficiency and reduce  
CC  
device temperature rise.  
Slope Compensation  
The module has already been internally compensated  
for all output voltages. The Linear Technology μModule  
Power Design Tool will be provided for control loop op-  
timization.  
Two outputs of LTM4619 are paralleled to get high output  
current for derating curve tests. The power loss curves in  
Figures 7 and 8 can be used in coordination with the load  
current derating curves in Figures 9 to 16 for calculating  
Burst Mode Operation and Pulse-Skipping Mode  
an approximate θ for the module with various cooling  
JA  
The LTM4619 regulator can be placed into high efficiency  
power saving modes at light load condition to conserve  
power. The Burst Mode operation can be selected by float-  
ing the MODE/PLLIN pin, and pulse-skipping mode can  
methods. Application Note 103 provides a detailed ex-  
planation of the analysis for the thermal models and the  
derating curves. Tables 2 and 3 provide a summary of the  
equivalent θ for the noted conditions. These equivalent  
JA  
be selected by pulling the MODE/PLLIN pin to INTV .  
CC  
θ
JA  
parameters are correlated to the measured values,  
and are improved with airflow. The junction temperature  
is maintained at 125°C or below for the derating curves.  
Burst Mode operation offers the best efficiency at light  
load, but output ripple will be higher and lower frequency  
rangesarecapablewhichcaninterferewithsomesystems.  
Pulse-skipping mode efficiency is not as good as Burst  
Mode operation, but this mode only skips pulses to save  
efficiencyandmaintainsaloweroutputrippleandahigher  
switchingfrequency.BurstModeoperationandpulse-skip-  
ping mode efficiencies can be reviewed in graph supplied  
in the Typical Performance Characteristics section.  
Safety Considerations  
TheLTM4619modulesdonotprovideisolationfromV to  
IN  
V
OUT  
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
with a rating twice the maximum input current needs to be  
provided to protect each unit from catastrophic failure.  
4619f  
14  
LTM4619  
APPLICATIONS INFORMATION  
Table 2. 1.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIRFLOW (LFM)  
HEATSINK  
none  
Θ
JA  
(°C/W)  
IN  
6, 12  
6, 12  
6, 12  
6, 12  
6, 12  
6, 12  
0
12.8  
9.0  
Figure 7  
200  
400  
0
none  
Figure 7  
none  
8.0  
Figure 7  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
11.9  
8.4  
Figure 7  
200  
400  
Figure 7  
7.4  
Table 3. 3.3V Output  
DERATING CURVE  
Figures 13, 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIRFLOW (LFM)  
HEATSINK  
none  
Θ
(°C/W)  
IN  
JA  
12, 24  
0
13.4  
9.6  
Figures 13, 15  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
Figure 8  
200  
400  
0
none  
Figures 13, 15  
Figure 8  
none  
8.5  
Figures 14, 16  
Figure 8  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
12.5  
8.9  
Figures 14, 16  
Figure 8  
200  
400  
Figures 14, 16  
Figure 8  
7.9  
HEATSINK MANUFACTURER  
PART NUMBER  
WEBSITE  
www.aavid.com  
Aavid Thermalloy  
375424B00034G  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
12V LOSS  
24V LOSS  
6V LOSS  
12V LOSS  
0
0
0
0
2
4
6
8
2
4
6
8
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4619 F08  
4619 F07  
Figure 7. Power Loss at 1.5V Output  
Figure 8. Power Loss at 3.3V Output  
4619f  
15  
LTM4619  
APPLICATIONS INFORMATION  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
1
0
6V TO 1.5V  
0LFM  
200LFM  
400LFM  
6V TO 1.5V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
1
0
6V TO 1.5V  
6V TO 1.5V  
IN  
IN  
6V TO 1.5V  
6V TO 1.5V  
IN  
IN  
70 75 80 85 90 95 100 105 110 115  
70 75 80 85 90 95 100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4619 F09  
4619 F10  
Figure 10. 6VIN to 1.5VOUT  
with Heat Sink  
Figure 9. 6VIN to 1.5VOUT  
without Heat Sink  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
8
7
6
5
4
3
2
12V TO 1.5V  
0LFM  
200LFM  
400LFM  
12V TO 1.5V  
0LFM  
200LFM  
400LFM  
12V TO 3.3V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
1
0
1
0
12V TO 1.5V  
12V TO 1.5V  
12V TO 3.3V  
IN  
IN  
IN  
12V TO 1.5V  
12V TO 1.5V  
12V TO 3.3V  
IN  
IN  
IN  
70 75 80 85 90 95 100 105 110 115  
70 75 80 85 90 95 100 105 110 115  
60 65 70 75 80 85 90 95 100 105 110  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4619 F11  
4619 F12  
4619 F13  
Figure 13. 12VIN to 3.3VOUT  
without Heat Sink  
Figure 12. 12VIN to 1.5VOUT  
with Heat Sink  
Figure 11. 12VIN to 1.5VOUT  
without Heat Sink  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
12V TO 3.3V  
0LFM  
200LFM  
400LFM  
24V TO 3.3V  
0LFM  
200LFM  
400LFM  
24V TO 3.3V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
12V TO 3.3V  
24V TO 3.3V  
24V TO 3.3V  
IN  
IN  
IN  
12V TO 3.3V  
24V TO 3.3V  
24V TO 3.3V  
IN  
IN  
IN  
60 65 70 75 80 85 90 95 100 105 110  
40  
50  
60  
70  
80  
90  
100  
40  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4619 F14  
4619 F15  
4619 F16  
Figure 14. 12VIN to 3.3VOUT  
with Heat Sink  
Figure 15. 24VIN to 3.3VOUT  
without Heat Sink  
Figure 16. 24VIN to 3.3VOUT  
with Heat Sink  
4619f  
16  
LTM4619  
APPLICATIONS INFORMATION  
Layout Checklist/Example  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnections  
between top layer and other power layers.  
The high integration of LTM4619 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
• Do not put vias directly on the pad.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
• UselargePCBcopperareasforhighcurrentpath,includ-  
ing V , PGND, V  
and V  
. It helps to minimize  
IN  
OUT1  
OUT2  
the PCB conduction loss and thermal stress.  
• Decouple the input and output grounds to lower the  
output ripple noise. Refer to Figure 17.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
Figure 17 gives a good example of the recommended  
layout.  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
TOP VIEW  
PGND  
V
IN  
PGND  
M
L
C
IN2  
C
IN1  
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10  
11  
12  
C
OUT2  
C
OUT1  
V
OUT2  
PGND  
V
OUT1  
Figure 17. Recommended PCB Layout  
4619f  
17  
LTM4619  
TYPICAL APPLICATIONS  
MODE/PLLIN INTV  
CC  
V
IN  
V
V
FREQ/PLLFLTR  
4.5V TO 26.5V  
IN  
C
11.5k  
19.1k  
IN  
10μF  
V
FB1  
FB2  
s2  
C1  
C2  
COMP1  
COMP2  
22pF  
22pF  
V
V
OUT2  
OUT1  
5V/4A  
V
V
OUT2  
OUT1  
3.3V/4A  
LTM4619  
C
C
OUT2  
100μF  
OUT1  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
100μF  
0.1μF  
0.1μF  
100k  
R1 (OPT*)  
INTV  
PGOOD  
EXTV  
V
IN  
CC  
CC  
SGND  
PGND  
4619 F18  
PGOOD  
*R1 IS NEEDED FOR 4.5V < V < 5.5V  
IN  
Figure 18. Typical 4.5V to 26.5V Input, 5V and 3.3V Outputs at 4A Design  
4619f  
18  
LTM4619  
TYPICAL APPLICATIONS  
EXTERNAL 5V SUPPLY FOR  
INPUT VOLTAGE BELOW 5.5V  
R1  
3.83k  
R2  
1.21k  
MODE/PLLIN INTV EXTV  
CC  
CC  
V
IN  
V
V
FREQ/PLLFLTR  
IN  
4.5V TO  
26.5V  
C
IN  
121k  
68.1k  
10μF  
V
FB2  
FB1  
s2  
C1  
C2  
COMP1  
COMP2  
22pF  
22pF  
V
V
OUT2  
OUT1  
1.2V/4A  
V
V
OUT2  
OUT1  
1.5V/4A  
LTM4619  
C
C
OUT2  
OUT1  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
100μF  
100μF  
s2  
s2  
0.1μF  
0.1μF  
100k  
INTV  
PGOOD  
CC  
SGND  
PGND  
4619 F19  
PGOOD  
Figure 19. Typical 4.5V to 26.5V Input, 1.2V and 1.5V  
Outputs at 4A Design with Adjusted Frequency at 500kHz  
4619f  
19  
LTM4619  
TYPICAL APPLICATIONS  
MODE/PLLIN EXTV  
INTV  
CC  
CC  
V
IN  
V
FREQ/PLLFLTR  
IN  
6V TO  
26.5V  
C
IN  
COMP1  
COMP2  
TK/SS1  
TK/SS2  
PGOOD  
V
V
10μF  
FB1  
FB2  
C1  
51pF  
R1  
5.76k  
V
V
LTM4619  
OUT1  
OUT2  
V
OUT2  
5V/8A  
+
C4  
100μF  
C5  
C3  
0.1μF  
RUN2  
RUN1  
330μF  
SGND  
PGND  
4619 F20  
Figure 20. Output Paralleled LTM4619 Module for 5V Output at 8A Design  
4619f  
20  
LTM4619  
TYPICAL APPLICATIONS  
CLOCK SYNC, 0° PHASE  
MODE/PLLIN INTV  
CC  
V
IN  
V
IN  
FREQ/PLLFLTR  
6V TO 26.5V  
+
C
10μF  
2x  
C
IN2  
IN1  
V
FB1  
V
FB2  
330μF  
R3  
11.5k  
R4  
19.1k  
C10  
C11  
22pF  
COMP1  
COMP2  
22pF  
V
OUT2  
V
OUT1  
LTM4619  
V
OUT1  
V
OUT2  
3.3V/4A  
5V/4A  
+
+
V
C3  
22μF  
C4  
22μF  
OUT1  
C2  
220μF  
C5  
220μF  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
C1  
R1  
60.4k  
0.1μF  
PGOOD  
EXTV  
CC  
R2  
19.1k  
2 PHASE OSCILLATOR  
+
SGND  
PGND  
V
OUT1  
OUT2  
MOD  
ON/OFF  
C3  
0.1μF  
GND  
SET  
LTC6908-2  
R9  
143k  
CLOCK SYNC, 90° PHASE  
MODE/PLLIN INTV  
CC  
V
IN  
FREQ/PLLFLTR  
V
V
FB1  
FB2  
R7  
28k  
R8  
48.7k  
C12  
22pF  
C13  
22pF  
COMP1  
COMP2  
V
OUT4  
V
OUT3  
LTM4619  
V
V
1.8V/4A  
OUT1  
OUT2  
2.5V/4A  
+
+
V
V
OUT1  
C8  
22μF  
C6  
22μF  
OUT1  
C9  
220μF  
C7  
220μF  
TK/SS1  
RUN1  
TK/SS2  
RUN2  
R10  
60.4k  
R5  
60.4k  
PGOOD  
EXTV  
CC  
R11  
28k  
R6  
48.7k  
SGND  
PGND  
4619 F21  
Figure 21. 4-Phase, Four Outputs (5V, 3.3V, 2.5V and 1.8V) with Tracking  
4619f  
21  
LTM4619  
PACKAGE DESCRIPTION  
Pin Assignment Table 4  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
D1  
V
OUT2  
OUT2  
GND  
GND  
GND  
GND  
GND  
GND  
G1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K1  
V
V
V
V
OUT2  
OUT2  
OUT2  
OUT2  
IN  
IN  
IN  
IN  
A2  
D2  
V
V
G2  
K2  
A3  
D3  
G3  
K3  
A4  
D4  
G4  
K4  
A5  
D5  
G5  
K5  
TK2  
A6  
D6  
G6  
K6  
V
V
FB2  
FB1  
A7  
D7  
G7  
K7  
A8  
D8  
G8  
K8  
TK1  
A9  
D9  
G9  
K9  
V
IN  
V
IN  
V
IN  
V
IN  
A10  
A11  
A12  
V
V
V
D10  
D11  
D12  
V
V
V
G10  
G11  
G12  
K10  
K11  
K12  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
B1  
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
E1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H1  
GND  
L1  
V
V
V
V
V
OUT2  
OUT2  
OUT2  
IN  
IN  
IN  
IN  
IN  
B2  
E2  
H2  
GND  
L2  
B3  
E3  
H3  
SW2  
GND  
L3  
B4  
E4  
H4  
L4  
B5  
E5  
H5  
PGOOD  
SGND  
SGND  
MODE/PLLIN  
GND  
L5  
B6  
E6  
H6  
L6  
COMP2  
COMP1  
B7  
E7  
H7  
L7  
B8  
E8  
H8  
L8  
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
B9  
E9  
H9  
L9  
B10  
B11  
B12  
V
V
V
E10  
E11  
E12  
H10  
H11  
H12  
SW1  
L10  
L11  
L12  
OUT1  
OUT1  
OUT1  
GND  
GND  
C1  
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
F1  
GND  
GND  
GND  
GND  
GND  
INTV  
GND  
GND  
GND  
GND  
GND  
GND  
J1  
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
OUT2  
OUT2  
OUT2  
IN  
IN  
IN  
C2  
F2  
J2  
C3  
F3  
J3  
C4  
F4  
J4  
EXTV  
CC  
C5  
F5  
J5  
RUN2  
C6  
F6  
J6  
SGND  
CC  
C7  
F7  
J7  
SGND  
C8  
F8  
J8  
FREQ/PLLFLTR  
RUN1  
C9  
F9  
J9  
C10  
C11  
C12  
V
V
V
F10  
F11  
F12  
J10  
J11  
J12  
V
V
V
OUT1  
OUT1  
OUT1  
IN  
IN  
IN  
4619f  
22  
LTM4619  
PACKAGE DESCRIPTION  
LGA Package  
144-Lead (15mm × 15mm × 2.82mm)  
(Reference LTC DWG # 05-08-1816)  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4619f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4619  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4614  
Dual 4A Low V DC/DC μModule  
2.375V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V; 15mm × 15mm × 2.8mm LGA  
OUT  
IN  
IN  
LTM4615  
Triple Low V DC/DC μModule  
Two 4A Outputs and One 1.5A; 15mm × 15mm × 2.8mm LGA  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V ≤ 5V; 15mm × 15mm × 2.8mm LGA  
IN  
LTM4616  
Dual 8A Low V DC/DC μModule  
IN  
IN  
OUT  
4619f  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4619IV#PBF

LTM4619 - Dual, 26VIN, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4619IVPBF

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4620

Dual 13A or Single 26A DC/DC μModule Regulator
Linear

LTM4620A

Dual 8A per Channel Low VIN DC/DC μModule Regulator
LINEAR_DIMENS

LTM4620A

Dual 13A or Single 26A DC/DC μModule Regulator Frequency Synchronization
Linear

LTM4622

Ultrathin, Triple Output, Step-Down μModule Regulator for DDR-QDR4 Memory
Linear

LTM4622AEV#PBF

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC &#181;Module Regulator; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622AEY#PBF

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC &#181;Module Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622AIV#PBF

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC &#181;Module Regulator; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622AIY

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC &#181;Module Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622AIY#PBF

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC &#181;Module Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622EV#PBF

LTM4622 - Dual Ultrathin 2.5A or Single 5A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear