LTM4622AIY#PBF [Linear]

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC µModule Regulator; Package: BGA; Pins: 25; Temperature Range: -40°C to 85°C;
LTM4622AIY#PBF
型号: LTM4622AIY#PBF
厂家: Linear    Linear
描述:

LTM4622A - Dual Ultrathin 2A or Single 4A Step-Down DC/DC µModule Regulator; Package: BGA; Pins: 25; Temperature Range: -40°C to 85°C

文件: 总30页 (文件大小:1249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4622A  
Dual Ultrathin 2A or Single 4A  
Step-Down DC/DC µModule Regulator  
FEATURES  
DESCRIPTION  
2
TheLTM®4622Aisacompletedual2Astep-downswitching  
modeµModule® (micromodule)regulatorinatinyultrathin  
6.25mm×6.25mm×1.82mmLGAand 2.42mmBGApack-  
n
Complete Solution in <1cm  
Wide Input Voltage Range: 3.6V to 20V  
1.5V to 12V Output Voltage  
Dual 2A (3A Peak) or Single 4A Output Current  
1.5ꢀ Maꢁimum Total Output Voltage Regulation  
Error Over Load, Line and Temperature  
Current Mode Control, Fast Transient Response  
External Frequency Synchronization  
n
n
n
n
ages. Included in the package are the switching controller,  
powerFETs, inductorandsupportcomponents. Operating  
over an input voltage range of 3.6V to 20V, the LTM4622A  
supports an output voltage range of 1.5V to 12V, set by a  
single external resistor. Its high efficiency design delivers  
dual 2A continuous, 3A peak, output current. Only a few  
ceramic input and output capacitors are needed.  
n
n
n
n
n
n
n
n
Multiphase Parallelable with Current Sharing  
Output Voltage Tracking and Soft-Start Capability  
Selectable Burst Mode® Operation  
TheLTM4622AsupportsselectableBurstModeoperation  
and output voltage tracking for supply rail sequencing. Its  
highswitchingfrequencyandcurrentmodecontrolenable  
a very fast transient response to line and load changes  
without sacrificing stability.  
Overvoltage Input and Overtemperature Protection  
Power Good Indicators  
6.25mm × 6.25mm × 1.82mm LGA and  
6.25mm × 6.25mm × 2.42mm BGA Packages  
Faultprotectionfeaturesincludeinputovervoltage, output  
overcurrent and overtemperature protection.  
APPLICATIONS  
n
General Purpose Point-of-Load Conversion  
The LTM4622A is available with SnPb (BGA) or RoHS  
compliant terminal finish.  
n
Telecom, Networking and Industrial Equipment  
n
Medical Diagnostic Equipment  
Test and Debug Systems  
Product Selection Guide  
n
PART NUMBER  
LTM4622  
V
RANGE  
V
RANGE  
I
OUT  
IN  
OUT  
All registered trademarks and trademarks are the property of their respective owners.  
0.6V to 5.5V  
1.5V to 12V  
Dual 2.5A or Single 5A  
Dual 2A or Single 4A  
3.6V to 20V  
LTM4622A  
TYPICAL APPLICATION  
12V Input, 3.3V and 5V Output,  
Efficiency vs Load Current  
3.3V and 5V Dual Output DC/DC Step-Down µModule Regulator  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢕꢖꢏꢏꢗꢀ  
ꢕꢖꢏꢏꢗ2  
ꢏꢐꢅꢀ  
ꢏꢐꢅꢀ  
ꢌꢍꢀ  
ꢌꢍ2  
ꢁꢂꢁ ꢑ 2ꢄ  
ꢌꢍ  
4ꢇꢈꢉ  
ꢎꢋ ꢅꢏ 2ꢆꢋ  
4ꢂꢇꢈꢉ  
2ꢊꢋ  
ꢔ4622ꢄ  
ꢙꢐꢍꢀ  
ꢙꢐꢍ2  
ꢏꢐꢅ2  
ꢏꢐꢅ2  
ꢊ ꢑ 2ꢄ  
4ꢇꢈꢉ  
ꢌꢍꢅꢋ  
ꢓꢏꢔꢕꢀ  
ꢓꢏꢔꢕ2  
ꢓꢓ  
ꢚꢛꢍꢓꢜꢔꢏꢗꢝ  
ꢅꢙꢄꢓꢞꢜꢚꢚꢀ  
ꢅꢙꢄꢓꢞꢜꢚꢚ2  
ꢉꢒꢀ  
ꢉꢒ2  
ꢄ ꢅꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢁꢃ  
ꢄ ꢅꢆꢅꢀ  
ꢎꢂ2ꢊꢃ  
ꢉꢙꢝꢟ  
ꢖꢍꢗ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ 2ꢀꢁ  
4622ꢄ ꢅꢄꢆꢀa  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
4622ꢀ ꢁꢀꢂꢃꢄ  
4622afa  
1
For more information www.linear.com/LTM4622A  
LTM4622A  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V
OUT  
, V ................................................... –0.3V to 22V  
Operating Internal Temperature Range  
IN1 IN2  
V
........................................................... –0.3V to 16V  
(Note 2) ............................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Solder Reflow Body Temperature.................260°C  
PGOOD1, PGOOD2..................................... –0.3V to 18V  
RUN1, RUN2 .................................... –0.3V to V + 0.3V  
IN  
INTV , TRACK/SS1, TRACK/SS2............ –0.3V to 3.6V  
CC  
SYNC/MODE, COMP1, COMP2,  
FB1, FB2........................................... –0.3V to INTV  
CC  
PIN CONFIGURATION (See Pin Functions, Pin Configuration Table)  
ꢏꢐꢃ ꢑꢒꢆꢓ  
ꢐꢑꢃ ꢒꢓꢆꢔ  
ꢕꢖꢗꢄꢘ  
ꢖꢗꢘꢄꢙ  
ꢄꢐꢔꢃ2 ꢁꢗꢊ ꢔꢐꢊꢆ ꢁꢗꢊ ꢄꢐꢔꢃꢝ  
ꢄꢑꢕꢃ2 ꢁꢘꢉ ꢕꢑꢉꢆ ꢁꢘꢉ ꢄꢑꢕꢃꢍ  
ꢚꢛꢆꢜ  
ꢙꢚꢆꢛ  
ꢃꢁꢑꢑꢉ2  
ꢚꢞ2  
ꢃꢁꢐꢐꢊ2  
ꢙꢀ2  
ꢃꢁꢑꢑꢉꢍ  
ꢃꢁꢐꢐꢊꢝ  
4
2
4
2
ꢚꢞꢍ  
ꢙꢀꢝ  
ꢓꢘꢐꢒ  
ꢒꢗꢏꢑ  
ꢄꢄ  
ꢄꢄ  
ꢓꢘꢍ  
ꢒꢗꢝ  
ꢐꢛꢂꢄꢅꢙꢖꢖ2  
ꢏꢚꢂꢄꢅꢘꢕꢕ2  
ꢐꢛꢂꢄꢅꢙꢖꢖꢍ  
ꢛꢝꢘꢍ  
ꢏꢚꢂꢄꢅꢘꢕꢕꢝ  
ꢚꢜꢗꢝ  
ꢓꢘ2  
ꢒꢗ2  
ꢛꢝꢘ2  
ꢚꢜꢗ2  
ꢓꢘꢍ  
ꢒꢗꢝ  
ꢑꢝꢐ2  
ꢁꢘꢉ  
ꢓꢘ2  
ꢐꢜꢏ2  
ꢁꢗꢊ  
ꢒꢗ2  
ꢑꢝꢐꢍ  
ꢐꢜꢏꢝ  
ꢀꢁꢂ ꢃꢂꢄꢅꢂꢁꢆ  
2ꢇꢈꢀꢆꢂꢉ ꢊ6ꢋ2ꢇꢌꢌ × 6ꢋ2ꢇꢌꢌ × ꢍꢋꢎ2ꢌꢌꢏ  
ꢀꢁꢂ ꢃꢂꢄꢅꢂꢁꢆ  
2ꢇꢈꢉꢆꢂꢊ ꢋ6ꢌ2ꢇꢍꢍ × 6ꢌ2ꢇꢍꢍ × 2ꢌ42ꢍꢍꢎ  
= 125°C, θ = 17°C/W, θ = 11°C/W,  
T
= 125°C, θ = 17°C/W, θ = 11°C/W,  
T
JMAX  
JMAX  
JCtop  
JCbottom  
JCtop  
JCbottom  
θ
+ θ = 22°C/W, θ = 22°C/W,  
θ
+ θ = 22°C/W, θ = 22°C/W,  
JB BA JA  
JB  
BA  
JA  
WEIGHT = 0.21g  
WEIGHT = 0.25g  
http://www.linear.com/product/LTM4622A#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(Note 2)  
PART NUMBER  
LTM4622AEV#PBF  
LTM4622AIV#PBF  
LTM4622AEY#PBF  
LTM4622AIY#PBF  
LTM4622AIY  
PAD OR BALL FINISH  
Au (RoHS)  
DEVICE  
FINISH CODE  
TYPE  
LGA  
LGA  
BGA  
BGA  
BGA  
RATING  
LTM4622AV  
LTM4622AV  
LTM4622AY  
LTM4622AY  
LTM4622AY  
e4  
e4  
e1  
e1  
e0  
4
4
4
4
4
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
• Pb-free and Non-Pb-free Part Markings:  
www.linear.com/leadfree  
4622afa  
2
For more information www.linear.com/LTM4622A  
LTM4622A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). Specified as each individual output channel at TA = 25°C, VIN1 = VIN2 = 12V, unless otherwise  
noted per the typical application shown in Figure 27.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Regulator Section: per Channel  
l
l
l
l
V
V
V
V
Input DC Voltage Range  
Input DC Voltage Range  
Output Voltage Range  
3.6  
1.5  
20  
20  
V
V
V
V
IN1  
3.6V < V < 20V  
IN2  
IN1  
V V = 3.6V to 20V  
IN1 = IN2  
1.5  
12  
OUT(RANGE)  
OUT(DC)  
Output Voltage, Total Variation  
with Line and Load  
C
= 22µF, C  
= 100µF Ceramic, R = 40.2k,  
1.477  
1.50  
1.523  
IN  
OUT  
FB  
MODE = INTV ,V  
V
= 3.6V to 20V, I  
= 0A to 2A  
CC IN1 = IN2  
OUT  
V
RUN  
RUN Pin On Threshold  
RUN Threshold Rising  
RUN Threshold Falling  
1.20  
0.97  
1.27  
1.00  
1.35  
1.03  
V
V
I
Input Supply Bias Current  
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, MODE = GND  
= 1.5V, MODE = INTV  
7
500  
45  
mA  
µA  
µA  
Q(VIN)  
IN1 = IN2  
OUT  
OUT  
V
IN1 = IN2  
Shutdown, RUN1 = RUN2 = 0  
CC  
I
I
Input Supply Current  
V
V
V
V
V
= 12V, V  
V = 12V, V  
IN1 = IN2  
= 1.5V, I = 2A  
OUT  
0.32  
A
A
S(VIN)  
IN1 = IN2  
OUT  
OUT  
l
l
l
Output Continuous Current Range  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
= 1.5V (Note 3)  
= 3.6V to 20V, I = 0A  
OUT  
0
2
OUT(DC)  
ΔV  
ΔV  
/V  
= 1.5V, V  
V
0.01  
0.2  
5
0.1  
1.0  
%/V  
%
OUT(Line) OUT  
OUT  
OUT  
OUT  
IN1 = IN2  
/V  
= 1.5V, I  
= 0A to 2A  
OUT(Load) OUT  
OUT  
V
I
= 0A, C  
= 1.5V  
= 100µF Ceramic, V V  
IN1 = IN2  
= 12V,  
= 12V,  
mV  
OUT(AC)  
OUT  
V
OUT  
ΔV  
Turn-On Overshoot  
Turn-On Time  
I
= 0A, C  
= 1.5V  
= 100µF Ceramic, V  
V
30  
1.25  
100  
20  
mV  
ms  
mV  
µs  
OUT(START)  
OUTLS  
OUT  
OUT  
OUT  
IN1 = IN2  
V
t
C
V
= 100µF Ceramic, No Load, TRACK/SS = 0.01µF,  
= 12V, V = 1.5V  
START  
OUT  
IN1 = IN2  
V
OUT  
ΔV  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load, C  
= 100µF  
OUT  
= 1.5V  
Ceramic, V  
V
= 12V, V  
IN1 = IN2  
OUT  
t
I
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load, C  
Ceramic, V = 12V, V  
= 100µF  
SETTLE  
OUT  
= 1.5V  
OUT  
V
IN1 = IN2  
Output Current Limit  
Voltage at FB Pin  
Current at FB Pin  
V
V
= 12V, V  
= 1.5V  
3
4
A
V
OUTPK  
IN1 = IN2  
OUT  
l
V
I
= 0A, V = 1.5V  
OUT  
0.592  
0.60  
0.608  
30  
FB  
OUT  
I
(Note 4)  
nA  
kΩ  
µA  
μs  
ns  
ns  
FB  
R
Resistor Between V  
and FB Pins  
60.00 60.40 60.80  
1.25  
FBHI  
OUT  
I
t
t
t
Track Pin Soft-Start Pull-Up Current TRACK/SS = 0V  
TRACK/SS  
SS  
Internal Soft-Start Time  
Minimum On-Time  
Minimum Off-Time  
PGOOD Trip Level  
10% to 90% Rise Time (Note 4)  
400  
20  
700  
(Note 4)  
(Note 4)  
ON(MIN)  
OFF(MIN)  
45  
V
V
FB  
With Respect to Set Output  
Ramping Negative  
Ramping Positive  
PGOOD  
V
V
–8  
8
–14  
14  
%
%
FB  
FB  
R
PGOOD Pull-Down Resistance  
1mA Load  
20  
Ω
V
PGOOD  
V
Internal V Voltage  
V
V = 3.6V to 20V  
IN1 = IN2  
3.1  
3.3  
3.5  
INTVCC  
CC  
4622afa  
3
For more information www.linear.com/LTM4622A  
LTM4622A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). Specified as each individual output channel at TA = 25°C, VIN1 = VIN2 = 12V, unless otherwise  
noted per the typical application shown in Figure 27.  
SYMBOL  
PARAMETER  
CONDITIONS  
I = 0mA to 50mA  
CC  
MIN  
TYP  
1.3  
1
MAX  
UNITS  
%
V
Load Reg INTV Load Regulation  
INTVCC  
OSC  
CC  
f
f
I
Oscillator Frequency  
Frequency Sync Range  
MODE Input Current  
MHz  
%
With Respect to Set Frequency  
MODE = INTV  
30  
SYNC  
MODE  
–1.5  
µA  
CC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: See output current derating curves for different V , V  
Note 4: 100% tested at wafer level.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
and T .  
IN OUT A  
Note 2: The LTM4622A is tested under pulsed load conditions such that  
T ≈ T . The LTM4622AE is guaranteed to meet performance  
J
A
specifications over the 0°C to 125°C internal operating temperature  
range. Specifications over the full –40°C to 125°C internal operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4622AI is guaranteed to meet  
specifications over the full –40°C to 125°C internal operating temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
4622afa  
4
For more information www.linear.com/LTM4622A  
LTM4622A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
at 5VIN  
Efficiency vs Load Current  
at 12VIN  
Efficiency vs Load Current  
at 16VIN  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀ2ꢁ ꢂꢃꢄꢅꢃꢄꢆ ꢀꢇꢈꢉꢊꢋ  
ꢀꢁ ꢂꢃꢄꢅꢃꢄꢆ ꢇꢈꢉꢊꢋꢌ  
ꢀꢁ ꢂꢃꢄꢅꢃꢄꢆ ꢇꢈꢀꢉꢊꢋ  
ꢀꢁꢀꢂ ꢃꢄꢅꢆꢄꢅꢇ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢅꢆꢈ ꢀꢉꢊꢋ  
ꢀꢁ ꢂꢃꢄꢅꢃꢄꢆ ꢇꢈꢉꢊꢋꢌ  
ꢀꢁ ꢂꢃꢄꢅꢃꢄꢆ ꢇꢈꢀꢉꢊꢋ  
ꢀꢁꢀꢂ ꢃꢄꢅꢆꢄꢅꢇ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢅꢆꢈ ꢀꢉꢊꢋ  
ꢀꢁꢀꢂ ꢃꢄꢅꢆꢄꢅꢇ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢅꢆꢈ ꢀꢉꢊꢋ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ 2ꢀꢁ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ 2ꢀꢁ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁ2 ꢀꢁ4 ꢀꢁ6 ꢀꢁꢂ 2ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
4622ꢀ ꢁꢂ2  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂꢃ  
Burst Mode Efficiency,  
12VIN, 1.5VOUT  
1.5V Output Transient Response  
3.3V Output Transient Response  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
4ꢀ  
ꢀꢁ  
2ꢀ  
ꢀꢁ  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
OUT  
V
OUT  
AC-COUPLED  
50mV/DIV  
AC-COUPLED  
50mV/DIV  
4622A G05  
4622A G06  
50µs/DIV  
50µs/DIV  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢁ  
V
= 12V, V  
= 1.5V, f = 1MHz  
OUT SW  
V
= 12V, V  
= 3.3V, f = 1MHz  
OUT SW  
IN  
IN  
OUTPUT CAPACITOR = 47µF ×1 CERAMIC  
10pF FEED-FORWARD CAPACITOR  
LOAD-STEP = 1A TO 2A (10A/μs)  
OUTPUT CAPACITOR = 47µF ×1 CERAMIC  
10pF FEED-FORWARD CAPACITOR  
LOAD-STEP = 1A TO 2A (10A/μs)  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
4622ꢀ ꢁꢂ4  
5V Output Transient Response  
8V Output Transient Response  
12V Output Transient Response  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
V
OUT  
V
OUT  
V
OUT  
AC-COUPLED  
100mV/DIV  
AC-COUPLED  
100mV/DIV  
AC-COUPLED  
100mV/DIV  
4622A G08  
4622A G09  
4622A G07  
50µs/DIV  
50µs/DIV  
50µs/DIV  
V
= 12V, V  
= 8V, f = 1.5MHz  
OUT SW  
V
= 16V, V  
= 12V, f = 1.5MHz  
OUT SW  
V
= 12V, V  
= 5V, f = 1MHz  
OUT SW  
IN  
IN  
IN  
OUTPUT CAPACITOR = 47µF ×2 CERAMIC  
10pF FEED-FORWARD CAPACITOR  
LOAD-STEP = 1A TO 2A (10A/μs)  
OUTPUT CAPACITOR = 47µF ×2 CERAMIC  
10pF FEED-FORWARD CAPACITOR  
LOAD-STEP = 1A TO 2A (10A/μs)  
OUTPUT CAPACITOR = 47µF ×2 CERAMIC  
10pF FEED-FORWARD CAPACITOR  
LOAD-STEP = 1A TO 2A (10A/μs)  
4622afa  
5
For more information www.linear.com/LTM4622A  
LTM4622A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up with No Load  
Start-Up with 2A Load  
Short-Circuit with No Load  
Current Applied  
Current Applied  
Current Applied  
ꢈꢉꢊ  
ꢈꢉꢊ  
2ꢇꢄꢅꢆꢇ  
2ꢇꢄꢅꢆꢇ  
ꢊꢋꢌ  
2ꢆꢃꢄꢅꢆ  
ꢋꢉꢌ  
ꢀꢁꢇꢄꢅꢆꢇ  
ꢋꢉꢌ  
ꢀꢁꢇꢄꢅꢆꢇ  
ꢆꢌ  
ꢆꢌ  
ꢅꢍ  
ꢁꢍꢎꢏꢄꢅꢆꢇ  
ꢀꢍꢄꢅꢆꢇ  
ꢉꢇꢃꢄꢅꢆ  
4622ꢏ ꢐꢀꢀ  
4622ꢍ ꢎꢀꢁ  
4622ꢇ ꢈꢉ2  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
2ꢀꢂꢃꢄꢅꢆ  
ꢑ ꢀ2 ꢒ ꢇ  
ꢑ ꢓꢍꢓ ꢒ f ꢑ ꢀꢖꢗꢘ  
ꢈꢉꢊ ꢔꢕ  
ꢏ ꢀ2 ꢐ ꢇ  
ꢏ ꢑꢒꢑ ꢐ f ꢏ ꢀꢕꢖꢗ  
ꢈꢉꢊ ꢓꢔ  
ꢆꢌ  
ꢎ ꢉ2 ꢏ ꢆ  
ꢎ ꢐꢑꢐ ꢏ f ꢎ ꢉꢔꢕꢖ  
ꢊꢋꢌ ꢒꢓ  
ꢆꢌ  
ꢅꢍ  
ꢈꢉꢊꢙꢉꢊ ꢚꢏꢙꢏꢚꢆꢊꢈꢋ ꢑ ꢀꢁꢛꢜ ꢚꢝꢋꢏꢖꢆꢚ  
ꢞ 4ꢟꢛꢜ ꢙꢈꢔꢚꢏꢙ  
ꢔꢈꢜꢔꢊꢏꢋꢊ ꢚꢏꢙ ꢑ ꢁꢍꢀꢛꢜ  
ꢈꢉꢊꢘꢉꢊ ꢙꢍꢘꢍꢙꢆꢊꢈꢋ ꢏ ꢀꢁꢚꢛ ꢙꢜꢋꢍꢕꢆꢙ  
ꢝ 4ꢞꢚꢛ ꢘꢈꢓꢙꢍꢘ  
ꢓꢈꢛꢓꢊꢍꢋꢊ ꢙꢍꢘ ꢏ ꢁꢒꢀꢚꢛ  
ꢊꢋꢌꢗꢋꢌ ꢘꢇꢗꢇꢘꢅꢌꢊꢙ ꢎ ꢉꢀꢁꢚ ꢘꢛꢙꢇꢔꢅꢘ  
ꢜ 4ꢝꢁꢚ ꢗꢊꢒꢘꢇꢗ  
Short-Circuit with 2A Load  
Current Applied  
Recover from Short-Circuit with  
No Load Current Applied  
Steady-State Output Voltage Ripple  
ꢇꢈꢉ  
ꢊꢋꢌꢋꢇꢈꢍꢎꢏꢄ  
ꢐꢀꢑꢆꢃꢄꢅꢆ  
ꢋꢌꢍ  
2ꢆꢃꢄꢅꢆ  
ꢋꢌꢍ  
2ꢆꢃꢄꢅꢆ  
ꢅꢎ  
ꢅꢊ  
ꢉꢇꢃꢄꢅꢆ  
ꢉꢇꢃꢄꢅꢆ  
4622ꢇ ꢈꢉ4  
4622ꢇ ꢈꢉꢊ  
4622ꢊ ꢒꢐꢓ  
2ꢀꢁꢂꢃꢄꢅꢆ  
ꢎ ꢐꢑꢐ ꢏ f ꢎ ꢉꢔꢕꢖ  
2ꢀꢁꢂꢃꢄꢅꢆ  
2ꢀꢁꢂꢃꢄꢅꢆ  
ꢏ ꢉ2 ꢐ ꢆ  
ꢏ ꢊꢑꢊ ꢐ f ꢏ ꢉꢔꢕꢖ  
ꢎ ꢉ2 ꢏ ꢆ  
ꢕ ꢐ2 ꢖ ꢆ  
ꢕ ꢗꢘꢗ ꢖ f ꢕ ꢐꢛꢜꢝ  
ꢇꢈꢉ ꢙꢚ  
ꢅꢎ  
ꢋꢌꢍ  
ꢒꢓ  
ꢅꢊ  
ꢋꢌꢍ  
ꢒꢓ  
ꢅꢔ  
ꢋꢌꢍꢗꢌꢍ ꢘꢇꢗꢇꢘꢅꢍꢋꢙ ꢏ ꢉꢀꢁꢚ ꢛ 4ꢜꢚ ꢗꢋꢒꢘꢇꢗ  
ꢋꢌꢍꢗꢌꢍ ꢘꢇꢗꢇꢘꢅꢍꢋꢙ ꢎ ꢉꢀꢁꢚ ꢛ 4ꢜꢚ ꢗꢋꢒꢘꢇꢗ  
ꢇꢈꢉꢍꢈꢉ ꢋꢊꢍꢊꢋꢅꢉꢇꢞ ꢕ ꢐꢀꢁꢟ ꢠ 4ꢡꢁꢟ ꢍꢇꢙꢋꢊꢍ  
4622afa  
6
For more information www.linear.com/LTM4622A  
LTM4622A  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
RUN1(D2),RUN2(B2):RunControlInputofEachSwitch-  
ing Mode Regulator Channel. Enables chip operation by  
tying RUN above 1.27V. Tying this pin below 1V shuts  
down the specific regulator channel. Do not float this pin.  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
V
IN1  
(D3, E2), V (A2, B3): Power Input Pins. Apply  
IN2  
input voltage between these pins and GND pins. Rec-  
ommend placing input decoupling capacitance directly  
between BOTH V and V pins and GND pins. Please  
PGOOD1 (D4), PGOOD2 (B4): Output Power Good with  
Open-Drain Logic of Each Switching Mode Regulator  
Channel. PGOOD is pulled to ground when the voltage  
on the FB pin is not within 8% (typical) of the internal  
0.6V reference.  
IN1  
IN2  
note the module internal control circuity is running off  
V
. Channel 2 will not work without a voltage higher that  
IN1  
3.6V presents at V  
.
IN1  
TRACK/SS1 (E3), TRACK/SS2 (A3): Output Tracking  
and Soft-Start Pin of Each Switching Mode Regulator  
Channel. It allows the user to control the rise time of the  
output voltage. Putting a voltage below 0.6V on this pin  
bypasses the internal reference input to the error ampli-  
fier, instead it servos the FB pin to the TRACK voltage.  
Above 0.6V, the tracking function stops and the internal  
reference resumes control of the error amplifier. There’s  
GND (C1 to C2, B5, D5): Power Ground Pins for Both  
Input and Output Returns.  
INTV (C3): Internal 3.3V Regulator Output. The internal  
CC  
power drivers and control circuits are powered from this  
voltage. This pin is internally decoupled to GND with a  
2.2µF low ESR ceramic capacitor. No additional external  
decoupling capacitor needed.  
an internal 1.4µA pull-up current from INTV on this pin,  
CC  
SYNC/MODE (C5): Mode Select and External Synchroni-  
zation Input. Tie this pin to ground to force continuous  
synchronousoperationatalloutputloads.Floatingthispin  
so putting a capacitor here provides soft-start function.  
A default internal soft-start ramp forces a minimum soft-  
start time of 400µs.  
or tying it to INTV enables high efficiency Burst Mode  
CC  
FB1 (E4), FB2 (A4): The Negative Input of the Error  
operation at light loads. Drive this pin with a clock to syn-  
chronize the LTM4622A switching frequency. An internal  
phase-locked loop will force the bottom power NMOS’s  
turn on signal to be synchronized with the rising edge  
of the clock signal. When this pin is driven with a clock,  
forced continuous mode is automatically selected.  
Amplifier for Each Switching Mode Regulator Channel.  
Internally, this pin is connected to V  
with a 60.4k preci-  
OUT  
sionresistor.Differentoutputvoltagescanbeprogrammed  
with an additional resistor between FB and GND pins. In  
PolyPhase® operation, tying the FB pins together allows  
for parallel operation. See the Applications Information  
section for details.  
V
OUT1  
(D1, E1), V  
(A1, B1): Power Output Pins of  
OUT2  
EachSwitchingModeRegulator.Applyoutputloadbetween  
these pins and GND pins. Recommend placing output  
decoupling capacitance directly between these pins and  
GND pins.  
COMP1 (E5), COMP2 (A5): Current Control Threshold  
and Error Amplifier Compensation Point of Each Switch-  
ing Mode Regulator Channel. The current comparator’s  
trip threshold is linearly proportional to this voltage,  
whose normal range is from 0.3V to 1.8V. Tie the COMP  
pins together for parallel operation. The device is internal  
compensated. Do not drive this pin.  
FREQ (C4): Frequency is set internally to 1MHz. An  
external resistor can be placed from this pin to GND to  
increase frequency, or from this pin to INTV to reduce  
CC  
frequency. See the Applications Information section for  
frequency adjustment.  
4622afa  
7
For more information www.linear.com/LTM4622A  
LTM4622A  
BLOCK DIAGRAM  
ꢁꢔꢇ2  
ꢁꢔꢇꢏ  
6ꢋꢌ4ꢍ  
6ꢋꢌ4ꢍ  
ꢏꢋꢍ  
ꢏꢋꢍ  
ꢀꢜꢁꢁꢛꢏ  
ꢀꢜꢁꢁꢛ2  
ꢉꢊꢏ  
ꢒꢆꢇꢓ  
ꢒꢆꢇꢓ  
ꢅꢅ  
ꢏꢝꢌꢝꢍ  
ꢉꢊ2  
ꢅꢅ  
ꢐꢌ2ꢑꢍ  
ꢒꢆꢇꢓ  
ꢅꢅ  
ꢒꢆꢏ  
ꢒꢆ  
2ꢌ2ꢎꢉ  
ꢐꢓ ꢇꢁ 2ꢋꢓ  
ꢋꢌ22ꢎꢉ  
ꢋꢌꢏꢎꢉ  
ꢏꢋꢎꢉ  
4ꢠꢎꢉ  
ꢏꢋꢎꢉ  
4ꢠꢎꢉ  
ꢘꢙꢆꢅꢗꢚꢁꢛꢃ  
ꢇꢄꢕꢅꢖꢗꢘꢘꢏ  
2ꢌ2ꢎꢞ  
ꢝꢌꢝꢓ  
2ꢕ  
ꢁꢔꢇꢏ  
ꢁꢔꢇꢏ  
ꢜꢆꢛ  
ꢋꢌꢏꢎꢉ  
ꢋꢌꢏꢎꢉ  
ꢇꢄꢕꢅꢖꢗꢘꢘ2  
ꢄꢔꢆꢏ  
ꢄꢔꢆ2  
ꢒꢆ2  
ꢋꢌ22ꢎꢉ  
ꢋꢌꢏꢎꢉ  
ꢅꢁꢚꢀꢏ  
ꢀꢁꢂꢃꢄ ꢅꢁꢆꢇꢄꢁꢈ  
ꢒꢆꢇꢃꢄꢆꢕꢈ  
2ꢌ2ꢎꢞ  
ꢅꢁꢚꢀ  
ꢑꢓ  
2ꢕ  
ꢁꢔꢇ2  
ꢁꢔꢇ2  
ꢜꢆꢛ  
ꢅꢁꢚꢀ2  
ꢉꢄꢃꢟ  
ꢒꢆꢇꢃꢄꢆꢕꢈ  
ꢅꢁꢚꢀ  
ꢝ24ꢍ  
4622ꢕ ꢊꢛ  
Figure 1. Simplified LTM4622A Block Diagram  
DECOUPLING REQUIREMENTS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
I
= 2A  
4.7  
10  
µF  
OUT  
(V = 3.6V to 20V, V  
= 1.5V)  
IN  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 3.6V to 20V, V = 1.5V)  
I
= 2A  
22  
47  
µF  
OUT  
IN  
OUT  
4622afa  
8
For more information www.linear.com/LTM4622A  
LTM4622A  
OPERATION  
The LTM4622A is a dual output standalone non-isolated  
switch mode DC/DC power supply. It can deliver two 2A  
DC, 3A peak output current with few external input and  
output ceramic capacitors. This module provides dual  
precisely regulated output voltage programmable via two  
external resistor from 1.5V to 12V over 3.6V to 20V input  
voltage range. The typical application schematic is shown  
in Figure 27.  
a wide range of output capacitors, even with all ceramic  
output capacitors.  
Current mode control provides cycle-by-cycle fast cur-  
rent limiting. An internal overvoltage and undervoltage  
comparators pull the open-drain PGOOD output low if the  
output feedback voltage exits a 8% window around the  
regulationpoint.Furthermore,aninputovervoltageprotec-  
tion been utilized by shutting down both power MOSFETs  
The LTM4622A contains an integrated controlled on-time  
valleycurrentmoderegulator,powerMOSFETs,inductors,  
and other supporting discrete components. The default  
switching frequency is 1MHz. For output voltages above  
3.3V, an external resistor is required between FREQ and  
SGND pins to set the operating frequency to 1.5MHz to  
2MHz to optimize inductor current ripple. For switching  
noise-sensitive applications, the switching frequency can  
beadjustedbyexternalresistorsandtheμModuleregulator  
can be externally synchronized to a clock within 30% of  
thesetfrequency.SeetheApplicationsInformationsection.  
when V rises above 22.5V to protect internal devices.  
IN  
Multiphaseoperationcanbeeasilyemployedbyconnecting  
SYNC pin to an external oscillator. Up to 6 phases can be  
paralleled to run simultaneously a good current sharing  
guaranteed by current mode control loop.  
Pulling the RUN pin below 1V forces the controller into  
its shutdown state, turning off both power MOSFETs and  
mostoftheinternalcontrolcircuitry.Atlightloadcurrents,  
Burst Mode operation can be enabled to achieve higher  
efficiency compared to continuous mode (CCM) by set-  
ting MODE pin to INTV . The TRACK/SS pin is used for  
CC  
With current mode control and internal feedback loop  
compensation, the LTM4622A module has sufficient  
stability margins and good transient performance with  
power supply tracking and soft-start programming. See  
the Applications Information section.  
APPLICATIONS INFORMATION  
where t  
is the minimum off-time, 45ns typical for  
SW  
OFF(MIN)  
The typical LTM4622A application circuit is shown in  
Figure 27. External component selection is primarily  
determined by the input voltage, the output voltage and  
the maximum load current. Refer to Table 7 for specific  
externalcapacitorrequirementsforaparticularapplication.  
LTM4622A,andf istheswitchingfrequency.Conversely  
theminimumon-timelimitimposesaminimumdutycycle  
of the converter which can be calculated as:  
DC  
= t  
• f  
(MIN)  
ON(MIN) SW  
where t  
is the minimum on-time, 20ns typical for  
ON(MIN)  
V to V  
Step-Down Ratios  
IN  
OUT  
LTM4622A. In the rare cases where the minimum duty  
cycle is surpassed, the output voltage will still remain  
in regulation, but the switching frequency will decrease  
from its programmed value. Note that additional thermal  
derating may be applied. See the Thermal Considerations  
and Output Current Derating section in this data sheet.  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage  
due to the minimum off-time and minimum on-time limits  
of the regulator. The minimum off-time limit imposes a  
maximum duty cycle which can be calculated as:  
DC  
= 1 – t  
• f  
OFF(MIN) SW  
(MAX)  
4622afa  
9
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Output Voltage Programming  
Output Decoupling Capacitors  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k 0.5% internal  
With an optimized high frequency, high bandwidth design,  
only single piece of 47µF low ESR output ceramic capaci-  
tor is required for each LTM4622A output to achieve low  
output voltage ripple and very good transient response.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripples or dynamic  
transient spikes is required. Table 7 shows a matrix of dif-  
ferent output voltages and output capacitors to minimize  
the voltage droop and overshoot during a 1A (50%) load  
step transient. Multiphase operation will reduce effective  
outputrippleasafunctionofthenumberofphases.Applica-  
tion Note 77 discusses this noise reduction versus output  
ripple current cancellation, but the output capacitance will  
be more a function of stability and transient response. The  
Linear Technology LTpowerCAD® Design Tool is available  
to download online for output ripple, stability and transient  
responseanalysisandcalculatingtheoutputripplereduction  
asthenumberofphasesimplementedincreasesbyNtimes.  
feedback resistor connects V  
and FB pins together.  
OUT  
Adding a resistor R from FB pin to GND programs the  
FB  
output voltage:  
0.6V  
R
=
60.4k  
FB  
V
– 0.6V  
OUT  
Table 1. VFB Resistor Table vs Various Output Voltages  
(1% Resistor)  
V
(V) 1.5  
1.8  
2.5  
3.3  
5.0 8.0  
10.0 12.0  
OUT  
R
FB  
(k)  
40.2 30.1 19.1 13.3 8.25 4.87 3.83 3.16  
Pease note that for output above 3.3V, a higher operating  
frequency is required to optimize inductor current ripple.  
See Operating Frequency section.  
For parallel operation of N-channels LTM4622A, the fol-  
lowing equation can be used to solve for R :  
FB  
Burst Mode Operation  
0.6V  
– 0.6V  
60.4k  
N
R
=
FB  
Inapplicationswherehighefficiencyatintermediatecurrent  
aremoreimportantthanoutputvoltageripple,BurstMode  
operation could be used by connecting SYNC/MODE pin  
V
OUT  
Input Decoupling Capacitors  
to INTV to improve light load efficiency. In Burst Mode  
CC  
The LTM4622A module should be connected to a low AC-  
impedanceDCsource.Foreachregulatorchannel,onepiece  
4.7µF input ceramic capacitor is required for RMS ripple  
current decoupling. Bulk input capacitor is only needed  
whentheinputsourceimpedanceiscompromisedbylong  
inductive leads, traces or not enough source capacitance.  
Thebulkcapacitorcanbeanelectrolyticaluminumcapaci-  
tor and polymer capacitor.  
operation, a current reversal comparator (I ) detects  
REV  
the negative inductor current and shuts off the bottom  
power MOSFET, resulting in discontinuous operation and  
increased efficiency. Both power MOSFETs will remain  
off and the output capacitor will supply the load current  
until the COMP voltage rises above the zero current level  
to initiate another cycle.  
Force Continuous Current Mode (CCM) Operation  
Without considering the inductor current ripple, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
outputrippleisdesired,forcedcontinuousoperationshould  
be used. Forced continuous operation can be enabled by  
tying the SYNC/MODE pin to GND. In this mode, induc-  
tor current is allowed to reverse during low output loads,  
the COMP voltage is in control of the current comparator  
threshold throughout, and the top MOSFET always turns  
on with each oscillator pulse. During start-up, forced  
I
OUT(MAX)  
I
=
• D • 1D  
(
)
CIN(RMS)  
η%  
where is the estimated efficiency of the power module.  
4622afa  
10  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
continuous mode is disabled and inductor current is  
prevented from reversing until the LTM4622A’s output  
voltage is in regulation.  
The programmable operating frequency range is from  
800kHz to 4MHz.  
Frequency Synchronization  
Operating Frequency  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of the external clock. The  
external clock frequency range must be within 30%  
around the set operating frequency. A pulse detection  
circuit is used to detect a clock on the SYNC/MODE pin  
to turn on the phase-locked loop. The pulse width of the  
clock has to be at least 100ns. The clock high level must  
be above 2V and clock low level below 0.3V. The presence  
of an external clock will place both regulator channels into  
forced continuous mode operation. During the start-up of  
the regulator, the phase-locked loop function is disabled.  
The operating frequency of the LTM4622A is optimized  
to achieve the compact package size and the minimum  
output ripple voltage while still keeping high efficiency.  
The default operating frequency is internally set to 1MHz.  
If any operating frequency other than 1MHz is required  
by application, the operating frequency can be increased  
by adding a resistor, R  
, between the FREQ pin and  
FSET  
SGND, as shown in Figure 29. The operating frequency  
can be calculated as:  
3.2e11  
324k||RFSET Ω  
( )  
f Hz =  
(
)
Multiphase Operation  
Pleasenoteaminimumswitchingfrequencyisrequiredfor  
given V , V operating conditions to keep a maximum  
IN OUT  
Foroutputloadsthatdemandmorethan2Aofcurrent,two  
outputsintheLTM4622AorevenmultipleLTM4622Ascan  
be paralleled to run out of phase to provide more output  
currentwithoutincreasinginputandoutputvoltageripples.  
peak-to-peak inductor ripple current below 1.2A for the  
LTM4622A.  
Thepeak-to-peakinductorripplecurrentcanbecalculatedas:  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used when all of the outputs are tied together  
to achieve a single high output current design.  
V
V
1
OUT ⎜  
OUT ⎟  
ΔI  
=
1−  
P-P  
2.2  
V
f
(MHz)  
IN  
SW  
The maximum 1.2A peak-to-peak inductor ripple current  
is enforced due to the nature of the valley current mode  
control to maintain output voltage regulation at no load.  
To reduce switching current ripple, 1.5MHz to 2MHz op-  
erating frequency is suggested for 5V and above output  
with R  
to SGND.  
FSET  
The two switching mode regulator channels inside the  
LTM4622A are internally set to operate 180° out of phase.  
Multiple LTM4622As could easily operate 90 degrees, 60  
degreesor45degreesshiftwhichcorrespondsto4-phase,  
6-phase or 8-phase operation by letting SYNC/MODE of  
the LTM4622A synchronize to an external multiphase  
oscillator like LTC®6902. Figure 2 shows a 4-phase design  
example for clock phasing.  
V
1.5V to 3.3V  
1MHz  
5V, 8V  
12V  
OUT  
f
1.5MHz  
1.5MHz to 2MHz  
SW  
The operating frequency can also be decreased by adding  
aresistorbetweentheFREQpinandINTV ,calculatedas:  
CC  
5.67e11  
RFSET Ω  
( )  
f Hz =1MHz –  
(
)
4622afa  
11  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
2ꢂꢂꢑ  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 3 shows this graph.  
ꢂꢒ  
ꢅꢆꢅꢃ ꢇꢈꢉꢃ  
ꢍꢎꢉ  
ꢍꢓꢈꢊꢔꢕꢖꢗꢎ  
ꢚꢀ  
ꢊꢊ  
ꢖꢘꢉꢙ  
ꢙꢚꢂꢒ  
Soft-Start and Output Voltage Tracking  
ꢋꢌ  
ꢕꢖꢗ  
ꢖꢘꢉ2  
ꢊ6ꢐꢂ2  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitorontheTRACK/SSpinwillprogramtheramprate  
of the output voltage. An internal 1.4µA current source  
will charge up the external soft-start capacitor towards  
ꢐꢂꢒ  
ꢂꢒ  
ꢍꢓꢈꢊꢔꢕꢖꢗꢎ  
ꢖꢘꢉꢙ  
ꢗꢇꢃ  
ꢖꢘꢉꢙ  
ꢖꢘꢉ2  
ꢐꢂꢒ  
2ꢜꢂꢒ  
ꢛꢈꢗ  
ꢖꢘꢉ2  
4622ꢀ ꢁꢂ2  
Figure 2. Example of Clock Phasing for 4-Phase  
Operation with LTC6902  
INTV voltage. When the TRACK/SS voltage is below  
CC  
0.6V, it will take over the internal 0.6V reference voltage  
to control the output voltage. The total soft-start time  
can be calculated as:  
The LTM4622A device is an inherently current mode  
controlled device, so parallel modules will have very  
good current sharing. This will balance the thermals on  
the design. Please tie RUN, TRACK/SS, FB and COMP pin  
of each paralleling channel together. Figure 31 shows an  
example of parallel operation and pin connection.  
C
SS  
t
= 0.6 •  
SS  
1.4µA  
whereC isthecapacitanceontheTRACK/SSpin.Current  
foldback and force continuous mode are disabled during  
the soft-start process.  
SS  
INPUT RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
The LTM4622A has internal 400μs soft-start time when  
TRACK/SS leave floating.  
ꢀꢁ6ꢀ  
ꢈꢜꢛꢝꢅꢚꢘ  
2ꢜꢛꢝꢅꢚꢘ  
ꢀꢁꢃꢃ  
ꢇꢜꢛꢝꢅꢚꢘ  
4ꢜꢛꢝꢅꢚꢘ  
6ꢜꢛꢝꢅꢚꢘ  
ꢀꢁꢃꢀ  
ꢀꢁ4ꢃ  
ꢀꢁ4ꢀ  
ꢀꢁꢇꢃ  
ꢀꢁꢇꢀ  
ꢀꢁ2ꢃ  
ꢀꢁ2ꢀ  
ꢀꢁꢈꢃ  
ꢀꢁꢈꢀ  
ꢀꢁꢀꢃ  
ꢀꢁꢈ ꢀꢁꢈꢃ ꢀꢁ2 ꢀꢁ2ꢃ ꢀꢁꢇ ꢀꢁꢇꢃ ꢀꢁ4 ꢀꢁ4ꢃ ꢀꢁꢃ ꢀꢁꢃꢃ ꢀꢁ6 ꢀꢁ6ꢃ ꢀꢁꢂ ꢀꢁꢂꢃ ꢀꢁꢄ ꢀꢁꢄꢃ ꢀꢁꢉ  
ꢊꢋꢌꢍ ꢆꢅꢎꢌꢏꢐ ꢑꢒ ꢓꢒ  
ꢏꢋꢌ ꢔꢕ  
4622ꢅ ꢆꢀꢇ  
Figure 3. Input RMS Current Ratios to DC Load Current as a Function of Duty Cycle  
4622afa  
12  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Outputvoltagetrackingcanalsobeprogrammedexternally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
down with another regulator. Figure 4 and Figure 5 show  
an example waveform and schematic of a Ratiometric  
tracking where the slave regulator’s output slew rate is  
proportional to the master’s.  
The R  
TR(BOT)  
is the feedback resistor and the R  
/
TR(TOP)  
FB(SL)  
R
is the resistor divider on the TRACK/SS pin of  
the slave regulator, as shown in Figure 5.  
Following the upper equation, the master’s output slew  
rate (MR) and the slave’s output slew rate (SR) in Volts/  
Time is determined by:  
R
FB(SL)  
R
+60.4k  
MR  
SR  
ꢂꢆꢄꢀꢃꢋ ꢈꢉꢀꢊꢉꢀ  
ꢄꢅꢆꢇꢃ ꢈꢉꢀꢊꢉꢀ  
FB(SL)  
R
=
TR(TOP)  
R
+R  
TR(TOP)  
TR(BOT)  
Forexample, V  
=1.5V, MR=1.5V/msandV  
OUT(MA)  
OUT(SL)  
= 3.3V, SR = 3.3V/ms. From the equation, we could solve  
out that R  
= 60.4k and R  
= 40.2k is a good  
TR(TOP)  
TR(BOT)  
ꢀꢁꢂꢃ  
combination for the Ratiometric tracking.  
4622ꢆ ꢍꢎ4  
Figure 4. Output Ratiometric Tracking Waveform  
The TRACK pins will have the 1.5µA current source on  
when a resistive divider is used to implement tracking on  
that specific channel. This will impose an offset on the  
TRACK pin input. Smaller values resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 60.4k is  
used then a 6.04k can be used to reduce the TRACK pin  
offset to a negligible value.  
ꢔꢘꢌꢌꢙꢆ ꢔꢘꢌꢌꢙ2  
ꢌꢍꢋꢆ  
ꢉꢊꢆ  
ꢌꢍꢋꢆ  
ꢆꢁꢅ ꢎ 2ꢃ  
4ꢏꢇꢄ  
6ꢁꢐꢈ  
ꢉꢊ  
4ꢈ ꢋꢌ 2ꢀꢈ  
ꢉꢊ2  
ꢆꢀꢇꢄ  
2ꢅꢈ  
ꢕꢍꢊꢆ  
ꢕꢍꢊ2  
ꢉꢊꢋꢈ  
ꢌꢍꢋ2  
ꢌꢍꢋ2  
ꢐꢁꢐ ꢎ 2ꢃ  
ꢓ4622ꢃ  
4ꢏꢇꢄ  
6ꢁꢐꢈ  
ꢒꢌꢓꢔꢆ  
ꢒꢒ  
ꢛꢜꢊꢒꢝꢓꢌꢙꢖ  
ꢋꢕꢃꢒꢞꢝꢛꢛꢆ  
ꢋꢕꢃꢒꢞꢝꢛꢛ2  
ꢄꢕꢖꢗ  
ꢒꢌꢓꢔ2  
ꢄꢑꢆ  
6ꢀꢁ4ꢂ  
ꢌꢍꢋꢆ  
ꢀꢁꢆꢇꢄ  
ꢄꢑ2  
The Coincident output tracking can be recognized as a  
special Ratiometric output tracking which the master’s  
output slew rate (MR) is the same as the slave’s output  
slew rate (SR), as waveform shown in Figure 6.  
ꢘꢊꢙ  
ꢆꢐꢁꢐꢂ  
4ꢀꢁ2ꢂ  
4622ꢃ ꢄꢀꢅ  
4ꢀꢁ2ꢂ  
Figure 5. Example Schematic of Ratiometric  
Output Voltage Tracking  
Since the slave regulator’s TRACK/SS is connected to  
the master’s output through a R /R resistor  
divider and its voltage used to regulate the slave output  
voltage when TRACK/SS voltage is below 0.6V, the slave  
outputvoltageandthemasteroutputvoltageshouldsatisfy  
the following equation during the start-up.  
ꢂꢄꢅꢀꢃꢆ ꢇꢈꢀꢉꢈꢀ  
ꢅꢊꢄꢋꢃ ꢇꢈꢀꢉꢈꢀ  
TR(TOP) TR(BOT)  
R
FB(SL)  
V
=
OUT(SL)  
ꢀꢁꢂꢃ  
R
+60.4k  
4622ꢄ ꢍꢎ6  
FB(SL)  
Figure 6. Output Coincident Tracking Waveform  
R
TR(TOP)  
V
OUT(MA)  
R
+R  
TR(BOT)  
TR(TOP)  
4622afa  
13  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
From the equation, we could easily find out that, in the  
coincident tracking, the slave regulator’s TRACK/SS pin  
resistor divider is always the same as its feedback divider.  
TheLTM4622Aaccomplishesthisbyforcingdiscontinuous  
mode (DCM) operation until the TRACK/SS pin voltage  
reaches 0.6V reference voltage. This will prevent the BG  
from turning on during the pre-biased output start-up  
which would discharge the output.  
R
R
FB(SL)  
TR(BOT)  
=
R
+60.4k  
R
+R  
TR(TOP) TR(BOT)  
FB(SL)  
Overtemperature Protection  
For example, R  
= 60.4k and R  
= 13.3k is a  
TR(TOP)  
TR(BOT)  
Theinternalovertemperatureprotectionmonitorsthejunc-  
tiontemperatureofthemodule.Ifthejunctiontemperature  
reachesapproximately160°C,bothpowerswitcheswillbe  
turned off until the temperature drops about 15°C cooler.  
good combination for coincident tracking for V  
OUT(MAX)  
= 1.5V and V  
= 3.3V application.  
OUT(SL)  
Power Good  
The PGOOD pins are open drain pins that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 8% window around the regulation point. A resistor can  
be pulled up to a particular supply voltage for monitoring.  
To prevent unwanted PGOOD glitches during transients or  
Input Overvoltage Protection  
In order to protect the internal power MOSFET devices  
againsttransientvoltagespikes,theLTM4622Aconstantly  
monitors each V pin for an overvoltage condition. When  
IN  
V rises above 22.5V, the regulator suspends operation  
IN  
dynamic V  
changes, the LTM4622A’s PGOOD falling  
OUT  
by shutting off both power MOSFETs on the correspond-  
edge includes a blanking delay of approximately 40µs.  
ing channel. Once V drops below 21.5V, the regulator  
IN  
immediately resumes normal operation. The regulator  
executes its soft-start function when exiting an overvolt-  
age condition.  
Stability compensation  
The LTM4622A module internal compensation loop is  
designed and optimized for low ESR ceramic output  
capacitors only application. Table 7 is provided for most  
application requirements. The LTpowerCAD Design Tool  
is available to down for control loop optimization.  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD51-9 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formedonaµModulepackagemountedtoahardwaretest  
board—also defined by JESD51-9 (Test Boards for Area  
Array Surface Mount Package Thermal Measurements).  
The motivation for providing these thermal coefficients in  
found in JESD51-12 (Guidelines for Reporting and Using  
Electronic Package Thermal Information).  
RUN Enable  
Pulling the RUN pin to ground forces the LTM4622A into  
its shutdown state, turning off both power MOSFETs and  
most of its internal control circuitry. Trying the RUN pin  
voltage above 1.27V will turn on the entire chip.  
Pre-Biased Output Start-Up  
There may be situations that require the power supply to  
start up with a pre-bias on the output capacitors. In this  
case, it is desirable to start up without discharging that  
output pre-bias. The LTM4622A can safely power up into  
a pre-biased output without discharging it.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the µModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
4622afa  
14  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in the data sheet can be used in  
a manner that yields insight and guidance pertaining to  
one’s application usage, and can be adapted to correlate  
thermal performance to one’s own application.  
which does not reflect an actual application or viable  
operating condition.  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetop  
of the package. As the electrical connections of the  
typical µModule are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD51-12; these coef-  
ficients are quoted or paraphrased below:  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
1. θ , the thermal resistance from junction to ambi-  
JA  
ent, is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as still air although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
4. θ , the thermal resistance from junction to the  
JB  
printed circuit board, is the junction-to-board thermal  
resistance where almost all of the heat flows through  
the bottom of the µModule and into the board, and  
is really the sum of the θ  
and the thermal re-  
JCbottom  
sistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from  
the package, using a two sided, two layer board. This  
board is described in JESD51-9.  
2. θ  
, the thermal resistance from junction to  
JCbottom  
ambient,isthenaturalconvectionjunction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as still air although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD51-9 defined test board,  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 7; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the µModule.  
ꢎꢈꢏꢍꢐꢌꢆꢏꢑꢐꢆꢑꢀꢅꢗꢌꢊꢏꢐ ꢐꢘꢊꢖꢅꢀꢉ ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ ꢍꢆꢅꢔꢆꢏꢊꢏꢐꢒ  
ꢎꢈꢏꢍꢐꢌꢆꢏꢑꢐꢆꢑꢍꢀꢒꢊ ꢓꢐꢆꢔꢕ  
ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
ꢍꢀꢒꢊ ꢓꢐꢆꢔꢕꢑꢐꢆꢑꢀꢅꢗꢌꢊꢏꢐ  
ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
ꢎꢈꢏꢍꢐꢌꢆꢏꢑꢐꢆꢑꢗꢆꢀꢖꢇ ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
ꢎꢈꢏꢍꢐꢌꢆꢏ  
ꢀꢅꢗꢌꢊꢏꢐ  
ꢎꢈꢏꢍꢐꢌꢆꢏꢑꢐꢆꢑꢍꢀꢒꢊ  
ꢓꢗꢆꢐꢐꢆꢅꢕ ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
ꢍꢀꢒꢊ ꢓꢗꢆꢐꢐꢆꢅꢕꢑꢐꢆꢑꢗꢆꢀꢖꢇ  
ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
ꢗꢆꢀꢖꢇꢑꢐꢆꢑꢀꢅꢗꢌꢊꢏꢐ  
ꢖꢊꢒꢌꢒꢐꢀꢏꢍꢊ  
4622ꢀ ꢁꢂꢃ  
ꢄꢅꢆꢇꢈꢉꢊ ꢇꢊꢋꢌꢍꢊ  
Figure 7. Graphical Representation of JESD51-12 Thermal Coefficients  
4622afa  
15  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
to correlate quite well with the µModule model with no  
airflow or heat sinking in a properly define chamber. This  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the Pin  
Configuration section replicates or conveys normal op-  
erating conditions of a μModule. For example, in normal  
board-mounted applications, never does 100% of the  
device’s total power loss (heat) thermally conduct exclu-  
sivelythroughthetoporexclusivelythroughbottomofthe  
θ
+ θ value is shown in the Pin Configuration section  
JB  
BA  
and should accurately equal the θ value because ap-  
JA  
proximately 100% of power loss flows from the junction  
through the board into ambient with no airflow or top  
mounted heat sink.  
The 1.5V, 3.3V, 5V, 8V and 12V power loss curves in  
Figure 8 to Figure 12 can be used in coordination with the  
load current derating curves in Figure 13 to Figure 23 for  
µModule—asthestandarddefinesforθ  
andθ  
,
JCtop  
JCbottom  
respectively.Inpractice,powerlossisthermallydissipated  
in bothdirectionsawayfromthepackage—granted, in the  
absence of a heat sink and airflow, a majority of the heat  
flow is into the board.  
calculating an approximate θ thermal resistance for the  
JA  
LTM4622A(intwo-phasesingleoutputoperation)withno  
heatsinkingandvariousairflowconditions.Thepowerloss  
curves are taken at room temperature, and are increased  
with multiplicative factors of 1.35 assuming junction  
temperature at 120°C. The derating curves are plotted  
with the output current starting at 4A and the ambient  
temperature at 30°C. These output voltages are chosen  
to include the lower and higher output voltage ranges  
for correlating the thermal resistance. Thermal models  
are derived from several temperature measurements in a  
controlled temperature chamber along with thermal mod-  
eling analysis. The junction temperatures are monitored  
while ambient temperature is increased with and without  
airflow.Thepowerlossincreasewithambienttemperature  
change is factored into the derating curves. The junctions  
are maintained at 120°C maximum while lowering output  
currentorpowerwithincreasingambienttemperature.The  
decreasedoutputcurrentwilldecreasetheinternalmodule  
loss as ambient temperature is increased. The monitored  
junction temperature of 120°C minus the ambient operat-  
ing temperature specifies how much module temperature  
rise can be allowed. As an example in Figure 16, the load  
current is derated to ~3A at ~100°C with 200LFM air but  
not heat sink and the power loss for the 5V to 3.3V at 3A  
output is about 1.15W. The 1.15W loss is calculated with  
the ~0.85W room temperature loss from the 5V to 3.3V  
power loss curve at 3A, and the 1.35 multiplying factor.  
If the 100°C ambient temperature is subtracted from the  
120°C junction temperature, then the difference of 20°C  
Within a SIP (system-in-package) module, be aware there  
are multiple power devices and components dissipating  
power, with a consequence that the thermal resistances  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometry of the µModule and the specified PCB with all of  
thecorrectmaterialcoefficientsalongwithaccuratepower  
losssourcedefinitions;(2)thismodelsimulatesasoftware-  
defined JEDEC environment consistent with JESD51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the µModule with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
loss as that which was simulated. An outcome of this  
process and due-diligence yields a set of derating curves  
provided in other sections of this data sheet. After these  
laboratory test have been performed and correlated to the  
divided by 1.15W equals a 17.5°C/W θ thermal resis-  
JA  
tance. Table 3 specifies a 17°C/W – 18°C/W value which  
is very close. Tables 2 to 6 provide equivalent thermal  
resistances for 1.5V, 3.3V, 5V, 8V and 12V outputs with  
4622afa  
µModulemodel,thentheθ andθ aresummedtogether  
JB  
BA  
16  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢃ ꢄ6ꢀ  
ꢃ ꢄ2ꢀ  
ꢃ ꢄꢀ  
ꢃ ꢄ6ꢀ  
ꢃ ꢄ2ꢀ  
ꢃ ꢄꢀ  
ꢃ ꢄ6ꢀ  
ꢃ ꢄ2ꢀ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2
2ꢀꢁ  
ꢀꢁꢂ  
4
ꢀꢁꢂ  
ꢀꢁꢂ  
2
2ꢀꢁ  
ꢀꢁꢂ  
4
ꢀꢁꢂ  
ꢀꢁꢂ  
2
2ꢀꢁ  
ꢀꢁꢂ  
4
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂꢃ  
Figure 8. 1.5V Output Power Loss  
Figure 9. 3.3V Output Power Loss  
Figure 10. 5V Output Power Loss  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
ꢃ ꢄ6ꢀ  
ꢁꢂ  
ꢁꢂ  
ꢃ ꢄ6ꢀ  
ꢁꢂ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢃ ꢄ2ꢀ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2
2ꢀꢁ  
ꢀꢁꢂ  
4
ꢀꢁꢂ  
ꢀꢁꢂ  
2
2ꢀꢁ  
ꢀꢁꢂ  
4
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4622ꢀ ꢁꢂꢂ  
4622ꢀ ꢁꢂ2  
4622ꢀ ꢁꢂꢃ  
Figure 13. 5V Input to 1.5V Output  
Derating Curve, No Heat Sink  
Figure 12. 12V Output Power Loss  
Figure 11. 8V Output Power Loss  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4622ꢀ ꢁꢂ4  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂ6  
Figure 14. 12V Input to to 1.5V Output  
Derating Curve, No Heat Sink  
Figure 15. 16V Input to 1.5V Output  
Derating Curve, No Heat Sink  
Figure 16. 5V Input to 3.3V Output  
Derating Curve, No Heat Sink  
4622afa  
17  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂꢃ  
4622ꢀ ꢁꢂꢃ  
Figure 17. 12V Input to 3.3V Output  
Derating Curve, No Heat Sink  
Figure 18. 16V Input to 3.3V Output  
Derating Curve, No Heat Sink  
Figure 19. 12V Input to 5V Output  
Derating Curve, No Heat Sink  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4622ꢀ ꢁ2ꢂ  
4622ꢀ ꢁ2ꢂ  
Figure 20. 16V Input to 5V Output  
Derating Curve, No Heat Sink  
Figure 21. 12V Input to 8V Output  
Derating Curve, No Heat Sink  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4ꢀꢁ  
4ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2ꢀꢁ  
2ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
2ꢀꢀꢁꢂꢃ  
4ꢀꢀꢁꢂꢃ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁ 4ꢀ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀ2ꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
4622ꢀ ꢁ22  
4622ꢀ ꢁ2ꢂ  
Figure 22. 16V Input to 8V Derating  
Curve, No Heat Sink  
Figure 23. 16V Input to 12V Output  
Derating Curve, No Heat Sink  
4622afa  
18  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Table 2. 1.5V Output  
DERATING CURVE  
Figures 13, 14, 15  
Figures 13, 14, 15  
Figures 13, 14, 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
θ
θ
θ
θ
IN  
JA(°C/W)  
5, 12, 16  
5, 12, 16  
5, 12, 16  
0
19–20  
Figure 8  
200  
400  
None  
17–18  
17–18  
Figure 8  
None  
Table 3. 3.3V Output  
DERATING CURVE  
Figures 16, 17, 18  
Figures 16, 17, 18  
Figures 16, 17, 18  
V
(V)  
POWER LOSS CURVE  
Figure 9  
AIRFLOW (LFM)  
HEAT SINK  
None  
IN  
JA(°C/W)  
5, 12, 16  
5, 12, 16  
5, 12, 16  
0
19–20  
Figure 9  
200  
400  
None  
17–18  
17–18  
Figure 9  
None  
Table 4. 5V Output  
DERATING CURVE  
Figures 19, 20  
V
(V)  
POWER LOSS CURVE  
Figure 10  
AIRFLOW (LFM)  
HEAT SINK  
None  
IN  
JA(°C/W)  
12, 16  
12, 16  
12, 16  
0
19–20  
Figures 19, 20  
Figure 10  
200  
400  
None  
17–18  
17–18  
Figures 19, 20  
Figure 10  
None  
Table 5. 8V Output  
DERATING CURVE  
Figure 21, 22  
V
(V)  
POWER LOSS CURVE  
Figure 11  
AIRFLOW (LFM)  
HEAT SINK  
None  
IN  
JA(°C/W)  
5, 12  
5, 12  
5, 12  
0
19–20  
Figure 21, 22  
Figure 11  
200  
400  
None  
17–18  
17–18  
Figure 21, 22  
Figure 11  
None  
Table 6. 12V Output  
DERATING CURVE  
Figure 23  
V
(V)  
POWER LOSS CURVE  
Figure 12  
AIRFLOW (LFM)  
HEAT SINK  
None  
IN  
JA(°C/W)  
5, 12  
0
19–20  
Figure 23  
5, 12  
5, 12  
Figure 12  
200  
400  
None  
17–18  
17–18  
Figure 23  
Figure 12  
None  
4622afa  
19  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Table 7. Output Voltage Response for Each Regulator Channel vs Component Matrix (Refer to Figure 24)  
1.0A Load Step Typical Measured Values  
C
C
C
OUT2  
IN  
OUT1  
(CERAMIC)  
PART NUMBER  
VALUE  
(CERAMIC)  
PART NUMBER  
VALUE  
(BULK) PART NUMBER  
VALUE  
Murata  
GRM188R61E475KE11# 4.7µF, 25V, Murata  
0603, X5R  
GRM21R60J476ME15# 47µF, 6.3V, Panasonic 6TPC150M  
0805, X5R  
150µF, 6.3V 3.5  
× 2.8 × 1.4mm  
Murata  
GRM188R61E106MA73# 10µF, 25V, Murata  
0603, X5R  
GRM188R60J226MEA0# 22µF, 6.3V,  
0603, X5R  
Taiyo Yuden TMK212BJ475KG-T  
4.7µF, 25V, Taiyo  
0805, X5R Yuden  
JMK212BJ476MG-T  
47µF, 6.3V,  
0805, X5R  
C
C
C
OUT2  
P-P  
DROOP DERIVATION RECOVERY  
LOAD STEP  
IN  
OUT1  
V
(CERAMIC)  
(μF)  
C
(CERAMIC) (BULK)  
C
LOAD  
TIME (μs) STEP (A)  
SLEW RATE  
(A/μs)  
R
FB  
OUT  
IN  
FF  
(V)  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
5
(BULK)  
(μF)  
(μF)  
(pF)  
10  
0
V
(V)  
(mV)  
(mV)  
(kΩ)  
40.2  
40.2  
19.1  
19.1  
13.3  
13.3  
8.25  
8.25  
4.87  
4.87  
3.16  
3.16  
IN  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0
0
0
0
0
0
0
0
0
0
0
0
1 × 47  
1 × 4.7  
1 × 47  
1 × 4.7  
1 × 47  
1 × 4.7  
2 × 47  
1 × 4.7  
2 × 47  
2 × 4.7  
3 × 47  
3 × 4.7  
0
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
12  
0
89  
10  
20  
10  
25  
15  
30  
25  
50  
50  
70  
50  
80  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
150  
0
0
75  
10  
0
0
112  
92  
150  
0
0
10  
0
0
144  
104  
157  
137  
234  
149  
301  
177  
150  
0
0
10  
0
0
5
150  
0
12  
0
8
10  
0
12  
0
8
150  
0
12  
0
12  
12  
10  
0
16  
0
150  
16  
0
4622afa  
20  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Figure 24 and Figure 25 show measured temperature  
picture of the LTM4622A with no heat sink from 12V  
input down to 3.3V and 5V output with 2A DC current on  
each and from 12V down to 5V and 8V output with 2A  
DC current on each. Both without heat sink and airflow.  
and without airflow. The derived thermal resistances in  
Tables 2 to 6 for the various conditions can be multiplied  
by the calculated power loss as a function of ambient  
temperature to derive temperature rise above ambient,  
thus maximum junction temperature. Room temperature  
power loss can be derived from the efficiency curves in  
the Typical Performance Characteristics section and ad-  
justed with the above ambient temperature multiplicative  
factors. The printed circuit board is a 1.6mm thick four  
layer board with two ounce copper for the two outer layers  
and one ounce copper for the two inner layers. The PCB  
dimensions are 95mm × 76mm.  
SAFETY CONSIDERATIONS  
The LTM4622A modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support thermal  
shutdown and over current protection.  
4622afa  
21  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
Figure 24. Thermal Image, 12V Input, 3.3V and 5V Output,  
2A Each, No Airflow and No Heat Sink  
Figure 25. Thermal Image, 12V Input, 5V and 8V Output,  
2A Each, No Airflow and No Heat Sink  
4622afa  
22  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
LAYOUT CHECKLIST/EXAMPLE  
Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
The high integration of LTM4622A makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
Do not put via directly on the pad, unless they are  
capped or plated over.  
Use large PCB copper areas for high current paths,  
including V , V , GND, V and V . It helps  
Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
IN1 IN2  
OUT1  
OUT2  
to minimize the PCB conduction loss and thermal  
stress.  
Forparallelmodules,tietheV ,V ,andCOMPpins  
OUT FB  
Placehighfrequencyceramicinputandoutputcapaci-  
together. Useaninternallayertocloselyconnectthese  
pins together. The TRACK pin can be tied a common  
capacitor for regulator soft-start.  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
Place a dedicated power ground layer underneath  
the unit.  
Bringouttestpointsonthesignalpinsformonitoring.  
Figure26givesagoodexampleoftherecommendedlayout.  
Thetwodedicatedinputdecouplingcapacitors,onefor  
each V , closely placed on each side of the module.  
IN  
ꢂꢃꢄ  
ꢆꢇꢈ2  
ꢆꢇꢈꢉ  
ꢊꢃ2  
ꢊꢃꢉ  
4622ꢀ ꢁ26  
Figure 26. Recommended PCB Layout  
4622afa  
23  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
ꢕꢙꢌꢌꢚꢀ ꢕꢙꢌꢌꢚ2  
ꢀꢍꢐꢅ  
ꢌꢎꢋꢀ  
ꢖꢎꢉꢀ  
ꢌꢎꢋꢀ  
ꢁꢂꢁ ꢏ 2ꢄ  
ꢈꢉ  
4ꢆꢐꢅ  
ꢈꢉꢀ  
ꢈꢉ2  
ꢖꢎꢉ2  
ꢈꢉꢋꢇ  
ꢊꢇ ꢋꢌ 2ꢍꢇ  
ꢌꢎꢋ2  
ꢀꢍꢐꢅ  
ꢌꢎꢋ2  
ꢑ ꢏ 2ꢄ  
ꢔ4622ꢄ  
4ꢆꢐꢅ  
ꢓꢌꢔꢕꢀ  
ꢓꢌꢔꢕ2  
ꢅꢒꢀ  
ꢓꢓ  
ꢜꢝꢉꢓꢞꢔꢌꢚꢗ  
ꢋꢖꢄꢓꢟꢞꢜꢜꢀ  
ꢋꢖꢄꢓꢟꢞꢜꢜ2  
ꢅꢖꢗꢘ  
ꢍꢂꢀꢐꢅ  
ꢅꢒ2  
ꢙꢉꢚ  
ꢀꢁꢂꢁꢃ  
ꢊꢂ2ꢑꢃ  
4622ꢄ ꢅ2ꢆ  
ꢍꢂꢀꢐꢅ  
Figure 27. 8VIN to 20VIN, 3.3V and 5V Output at 2A Design  
ꢔꢘꢇꢇꢚ  
ꢔꢘꢇꢇꢚꢐ ꢔꢘꢇꢇꢚ2  
ꢐꢏꢍꢄ  
ꢇꢈꢉ  
ꢇꢈꢉꢐ  
ꢕꢈꢙꢐ  
ꢊꢀꢊ ꢋ 4ꢃ  
4ꢌꢍꢄ  
ꢎ2ꢍꢄ  
ꢜꢙ  
ꢜꢙꢐ  
ꢜꢙ2  
ꢇꢈꢉ2  
4ꢆ ꢉꢇ 2ꢏꢆ  
ꢐꢏꢍꢄ  
ꢒꢇꢓꢔꢐ  
ꢒꢇꢓꢔ2  
ꢕꢈꢙ2  
ꢜꢙꢉꢆ  
ꢓ4622ꢃ  
ꢒꢒ  
ꢝꢞꢙꢒꢟꢓꢇꢚꢖ  
ꢉꢕꢃꢒꢠꢟꢝꢝꢐ  
ꢉꢕꢃꢒꢠꢟꢝꢝ2  
ꢄꢕꢖꢗ  
ꢄꢑꢐ  
ꢄꢑ2  
ꢏꢀꢐꢍꢄ  
6ꢀ6ꢁꢂ  
ꢘꢙꢚ  
4622ꢃ ꢄ2ꢅ  
Figure 28. 4VIN to 20VIN, 3.3V Two Phase in Parallel 4A Design  
ꢓꢗꢈꢈꢙꢂ ꢓꢗꢈꢈꢙ2  
ꢂꢎꢍꢅ  
ꢈꢉꢊꢂ  
ꢔꢉꢘꢂ  
ꢈꢉꢊꢂ  
ꢂ2 ꢋ 2ꢄ  
ꢛꢘ  
4ꢌꢍꢅ  
ꢛꢘꢂ  
ꢛꢘ2  
ꢔꢉꢘ2  
ꢛꢘꢊꢇ  
ꢂ6ꢇ ꢊꢈ 2ꢎꢇ  
ꢈꢉꢊ2  
ꢂꢎꢍꢅ  
ꢈꢉꢊ2  
ꢏ ꢋ 2ꢄ  
ꢒ4622ꢄ  
4ꢌꢍꢅ  
ꢑꢈꢒꢓꢂ  
ꢑꢈꢒꢓ2  
ꢅꢐꢂ  
ꢑꢑ  
ꢜꢝꢘꢑꢞꢒꢈꢙꢕ  
ꢊꢔꢄꢑꢟꢞꢜꢜꢂ  
ꢊꢔꢄꢑꢟꢞꢜꢜ2  
ꢅꢔꢕꢖ  
ꢎꢁꢂꢍꢅ  
ꢅꢐ2  
ꢗꢘꢙ  
4ꢁꢏꢌꢃ  
ꢀꢁꢂ6ꢃ  
ꢀ24ꢃ  
ꢎꢁꢂꢍꢅ  
4622ꢄ ꢅ2ꢆ  
Figure 29. 16VIN to 20VIN, 12V and 8V Output at 2A with 2MHz Switching Frequency  
4622afa  
24  
For more information www.linear.com/LTM4622A  
LTM4622A  
APPLICATIONS INFORMATION  
ꢒꢖꢈꢈꢘꢂ ꢒꢖꢈꢈꢘ2  
ꢂꢀꢃꢄ  
ꢈꢉꢊꢂ  
ꢓꢉꢗꢂ  
ꢈꢉꢊꢂ  
ꢂꢁꢌ ꢍ 2ꢋ  
ꢚꢗ  
4ꢎꢃꢄ  
ꢚꢗꢂ  
ꢚꢗ2  
ꢓꢉꢗ2  
ꢚꢗꢊꢇ  
4ꢇ ꢊꢈ 2ꢀꢇ  
ꢈꢉꢊ2  
ꢈꢉꢊ2  
ꢂꢀꢃꢄ  
ꢅꢁꢅ ꢍ 2ꢋ  
ꢑ4622ꢋ  
4ꢎꢃꢄ  
ꢐꢈꢑꢒꢂ  
ꢐꢈꢑꢒ2  
ꢐꢐ  
ꢛꢜꢗꢐꢝꢑꢈꢘꢔ  
ꢊꢓꢋꢐꢞꢝꢛꢛꢂ  
ꢊꢓꢋꢐꢞꢝꢛꢛ2  
ꢄꢓꢔꢕ  
ꢄꢏꢂ  
ꢄꢏ2  
6ꢀꢁ4ꢆ  
ꢈꢉꢊꢂ  
4ꢀꢁ2ꢆ  
ꢀꢁꢂꢃꢄ  
ꢖꢗꢘ  
ꢂꢅꢁꢅꢆ  
4622ꢋ ꢄꢅꢀ  
ꢂꢅꢁꢅꢆ  
Figure 30. 4VIN to 20VIN, 1.5V and 3.3V Output at 2A Design with Output Coincident Tracking  
ꢕꢙꢊꢊꢚ  
ꢕꢙꢊꢊꢚꢀ ꢕꢙꢊꢊꢚ2  
ꢇꢈꢀ  
ꢊꢋꢉ  
ꢇꢈ  
ꢇꢈ2  
ꢊꢋꢉꢀ  
ꢊꢋꢉ2  
ꢀꢌꢍ ꢎ ꢏꢐ  
4ꢆ ꢉꢊ 2ꢁꢆ  
4ꢑꢃꢄ  
ꢅ4  
ꢀꢁꢃꢄ  
ꢅ4  
ꢖꢋꢈꢀ  
ꢖꢋꢈ2  
ꢇꢈꢉꢆ  
ꢜꢝꢈꢓꢞꢔꢊꢚꢗ  
ꢉꢖꢐꢓꢟꢞꢜꢜꢀ  
ꢉꢖꢐꢓꢟꢞꢜꢜ2  
ꢄꢖꢗꢘ  
ꢔ4622ꢐ  
ꢓꢊꢔꢕꢀ  
ꢓꢊꢔꢕ2  
ꢓꢊꢔꢕ  
ꢓꢓ  
2ꢁꢁꢂ  
ꢄꢒꢀ  
ꢄꢒ2  
ꢄꢒ  
ꢀꢁꢂ  
ꢓ6ꢡꢁ2  
ꢙꢈꢚ  
ꢇꢈꢉꢆ  
ꢜꢗꢉ  
ꢓꢓ  
ꢀꢃꢄ  
ꢚꢇꢆ  
ꢔꢊꢚ  
ꢙꢈꢚ  
ꢕꢣ  
ꢕꢙꢊꢊꢚ  
ꢊꢋꢉꢀ  
ꢊꢋꢉ2  
ꢊꢋꢉ4  
ꢊꢋꢉꢠ  
ꢕꢙꢊꢊꢚꢀ ꢕꢙꢊꢊꢚ2  
ꢇꢈꢀ  
ꢇꢈ2  
ꢊꢋꢉꢀ  
ꢊꢋꢉ2  
ꢖꢋꢈꢀ  
ꢖꢋꢈ2  
ꢇꢈꢉꢆ  
ꢜꢝꢈꢓꢞꢔꢊꢚꢗ  
ꢉꢖꢐꢓꢟꢞꢜꢜꢀ  
ꢉꢖꢐꢓꢟꢞꢜꢜ2  
ꢄꢖꢗꢘ  
ꢔ4622ꢐ  
ꢓꢊꢔꢕꢀ  
ꢓꢊꢔꢕ2  
ꢓꢊꢔꢕ  
ꢄꢒ  
ꢓꢓ  
ꢄꢒꢀ  
ꢄꢒ2  
ꢁꢌꢀꢃꢄ  
ꢙꢈꢚ  
4622ꢐ ꢄꢠꢀ  
Figure 31. 4 Phase, 1.5V Output at 8A Design with LTC6902  
4622afa  
25  
For more information www.linear.com/LTM4622A  
LTM4622A  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
LTM4622A Component LGA and BGA Pinout  
PIN ID  
A1  
FUNCTION  
PIN ID  
A2  
FUNCTION  
PIN ID  
A3  
FUNCTION  
PIN ID  
A4  
FUNCTION  
FB2  
PIN ID  
A5  
FUNCTION  
COMP2  
GND  
V
OUT2  
V
OUT2  
V
IN2  
TRACK/SS2  
B1  
B2  
RUN2  
GND  
B3  
V
B4  
PGOOD2  
FREQ  
B5  
IN2  
C1  
GND  
C2  
C3  
INTV  
C4  
C5  
SYNC/MODE  
GND  
CC  
D1  
V
D2  
RUN1  
D3  
V
IN1  
D4  
PGOOD1  
FB1  
D5  
OUT1  
OUT1  
E1  
V
E2  
V
IN1  
E3  
TRACK/SS1  
E4  
E5  
COMP1  
4622afa  
26  
For more information www.linear.com/LTM4622A  
LTM4622A  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4622A#packaging for the most recent package drawings.  
ꢵ ꢵ ꢟ ꢟ ꢟ ꢒ  
2 ꢛ ꢜ 4 ꢚ  
ꢍ ꢛ 2 ꢝ ꢚ  
ꢚ ꢛ ꢗ ꢍ ꢝ ꢜ  
ꢚ ꢛ ꢚ ꢚ ꢚ  
ꢚ ꢛ ꢗ ꢍ ꢝ
ꢍ ꢛ 2 ꢝ ꢚ  
2 ꢛ ꢜ 4 ꢚ  
4622afa  
27  
For more information www.linear.com/LTM4622A  
LTM4622A  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4622A#packaging for the most recent package drawings.  
ꢵ ꢵ ꢨ ꢨ ꢨ ꢒ  
2 ꢛ ꢜ 4 ꢚ  
ꢍ ꢛ 2 ꢝ ꢚ  
ꢚ ꢛ ꢗ ꢍ ꢝ ꢜ  
ꢚ ꢛ ꢚ ꢚ ꢚ  
ꢚ ꢛ ꢗ ꢍ ꢝ
ꢍ ꢛ 2 ꢝ ꢚ  
2 ꢛ ꢜ 4 ꢚ  
4622afa  
28  
For more information www.linear.com/LTM4622A  
LTM4622A  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/17 Corrected Pin Configuration. Swapped V and V  
.
IN2  
2
IN1  
4622afa  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
29  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.linear.com/LTM4622A  
LTM4622A  
PACKAGE PHOTOS  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4614  
LTM4618  
Dual 5V, 4A µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 15mm × 15mm × 2.82mm LGA  
IN  
OUT  
26V , 6A Step-Down µModule Regulator  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V  
≤ 5V, PLL Input, V  
Tracking,  
IN  
IN  
OUT  
OUT  
9mm × 15mm × 4.32mm LGA  
LTM4619  
Dual 26V, 4A Step-Down µModule Regulator  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V  
≤ 5V, PLL Input, V  
OUT  
Tracking, PGOOD,  
IN  
OUT  
15mm × 15mm × 2.82mm LGA  
3.6V ≤ V ≤ 20V. 0.6V ≤ V ≤ 5.5V, Pin Compatible with LTM4622A  
OUT  
LTM4622  
LTM4623  
Lower V  
than LTM4622A  
OUT  
IN  
20V , 3A Step-Down µModule Regulator  
4V ≤ V ≤ 20V, 0.6V ≤ V  
≤ 5.5V, PLL Input, CLKOUT, V  
Tracking, PGOOD,  
6.25mm × 6.25mm × 5.01mm BGA  
4V ≤ V ≤ 20V, 0.6V ≤ V ≤ 5.5V, PLL Input, CLKOUT, V Tracking, PGOOD,  
OUT  
IN  
IN  
OUT  
OUT  
6.25mm × 6.25mm × 1.82mm LGA  
LTM4624  
LTM4625  
14V , 4A Step-Down µModule Regulator  
4V ≤ V ≤ 14V, 0.6V ≤ V ≤ 5.5V, V  
Tracking, PGOOD,  
OUT  
IN  
IN  
OUT  
20V , 5A Step-Down µModule Regulator  
IN  
IN  
OUT  
6.25mm × 6.25mm × 5.01mm BGA  
LTM4631  
LTM4642  
LTM4643  
LTM4644  
LTC6902  
Ultrathin, Dual 10A Step-Down µModule Regulator 4.5V ≤ V ≤ 15V, 0.6V ≤ V  
≤ 1.8V, 16mm × 16mm × 1.91mm LGA  
≤ 5.5V, 9mm × 11.25mm × 4.92mm BGA  
IN  
OUT  
OUT  
20V , Dual 4A, Step-Down µModule Regulator  
4.5V ≤ V ≤ 20V, 0.6V ≤ V  
IN  
IN  
Ultrathin, Quad 3A, Step-Down µModule Regulator 4V ≤ V ≤ 20V, 0.6V ≤ V  
≤ 3.3V, 9mm × 15mm × 1.82mm LGA  
IN  
OUT  
Quad 4A, Step-Down µModule Regulator  
4V ≤ V ≤ 14V, 0.6V to 5.5V, 9mm × 15mm × 5.01mm BGA  
IN  
Multiphase Oscillator with Spread Spectrum  
Frequency Modulation  
1-, 3-, or 4-Phase Outputs; to 20MHz Frequency  
4622afa  
LT 1117 REV A • PRINTED IN USA  
www.linear.com/LTM4622A  
30  
ANALOG DEVICES, INC. 2017  

相关型号:

LTM4622EV#PBF

LTM4622 - Dual Ultrathin 2.5A or Single 5A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622IY

LTM4622 - Dual Ultrathin 2.5A or Single 5A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4622IY#PBF

LTM4622 - Dual Ultrathin 2.5A or Single 5A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4623

Ultrathin, Triple Output, Step-Down μModule Regulator for DDR-QDR4 Memory
Linear

LTM4623EV#PBF

LTM4623 - Ultrathin 20VIN, 3A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4623EY#PBF

LTM4623 - Ultrathin 20VIN, 3A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4623IY

LTM4623 - Ultrathin 20VIN, 3A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4623IY#PBF

LTM4623 - Ultrathin 20VIN, 3A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4624

Triple 10A Step-DownDC/DC μModule Regulator
Linear

LTM4624EY#PBF

LTM4624 - 14VIN, 4A Step-Down DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 25; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4626

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4627

15A DC/DC μModule Regulator
Linear