LTM4639_15 [Linear]

Low VIN 20A DC/DC Module Step-Down Regulator;
LTM4639_15
型号: LTM4639_15
厂家: Linear    Linear
描述:

Low VIN 20A DC/DC Module Step-Down Regulator

文件: 总32页 (文件大小:579K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4639  
Low V 20A DC/DC  
IN  
µModule Step-Down Regulator  
FEATURES  
DESCRIPTION  
The LTM®4639 is a complete 20A output high efficiency  
switch mode step-down DC/DC µModule (micromodule)  
regulator. Included in the package are the switching  
controller, power FETs, inductor and compensation  
components. Operating over an input voltage range from  
2.375V to 7V, the LTM4639 supports an output voltage  
n
Complete 20A Switch Mode Power Supply  
n
2.375V to 7V Input Voltage Range (V < 4.5V,  
IN  
Need C  
Bias)  
PWR  
n
n
0.6V to 5.5V Output Voltage Range  
1.5ꢀ Maꢁimum Total DC Output Voltage Error  
(–40°C to 125°C)  
n
Differential Remote Sense Amplifier for Precision  
Regulation (V ≤ 3.3V)  
range of 0.6V to 5.5V, set by a single external resistor.  
Only a few input and output capacitors are needed.  
OUT  
n
n
n
n
n
n
n
n
n
n
n
Current Mode Control/Fast Transient Response  
Parallel Multiphase Current Sharing (Up to 80A)  
Frequency Synchronization  
Currentmodeoperationallowsprecisioncurrentsharingof  
up to four LTM4639 regulators to obtain up to 80A output.  
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The device supports  
frequency synchronization, multiphase/current sharing,  
Burst Mode operation and output voltage tracking for  
supply rail sequencing. A diode-connected PNP transistor  
is included for use as an internal temperature monitor. For  
up to 20V input operation, please see the LTM4637.  
Selectable Pulse-Skipping or Burst Mode® Operation  
Soft-Start/Voltage Tracking  
Up to 88% Efficiency (3.3V , 1.5V  
)
IN  
OUT  
Overcurrent Foldback Protection  
Output Overvoltage Protection  
Internal Temperature Monitor  
Overtemperature Protection  
15mm × 15mm × 4.92mm BGA Package  
The LTM4639 is offered in a 15mm × 15mm × 4.92mm  
BGA package. The LTM4639 is RoHS compliant.  
L, LT, LTC, LTM, PolyPhase, Burst Mode, µModule, Linear Technology, the Linear logo are  
registered trademarks and LTpowerCAD is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210, 8163643.  
APPLICATIONS  
n
Telecom Servers and Networking Equipment  
Industrial Equipment  
Medical Systems  
High Ambient Temperature Systems  
3.3V Input Systems  
n
n
n
n
TYPICAL APPLICATION  
3.3V to 1.5V Efficiency  
and Power Loss  
3.3VIN, 1.5VOUT, 20A DC/DC µModule® Regulator  
+5V BIAS  
100  
95  
90  
85  
80  
75  
70  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.2µF  
EFFICIENCY  
1µF  
V
IN  
3.3V  
22µF  
6.3V  
×4  
C
COMPA  
V
C
EXTV INTV PGOOD  
IN PWR  
CC  
CC  
V
1.5V  
20A  
180pF  
OUT  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
0.1µF  
5k  
V
C
*
FF  
100µF*  
6.3V  
×2  
+
680µF*  
2.5V  
×2  
180pF  
DIFF_OUT  
+
LTM4639  
C
= 5V  
PWR  
FREQ = 400kHz  
V
POWER LOSS  
OSNS  
f
SET  
V
OSNS  
100k  
MODE_PLLIN  
V
FB  
GND OT_TEST  
+
TEMP  
R
**  
C
*
0
2
4
6
8
10 12 14 16 18 20  
FB  
40.2k  
BOT  
22pF  
TEMP  
SGND  
OUTPUT CURRENT (A)  
4639 TA01b  
* SEE TABLE 5  
** SEE TABLE 1  
4639 TA01a  
4639f  
1
For more information www.linear.com/LTM4639  
LTM4639  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , C  
OUT_LCL  
MODE_PLLIN, f , TRACK/SS,  
, OT_TEST .................................. –0.3V to 10V  
IN PWR  
MODE_PLLIN  
CC  
7
COMPB  
RUN  
V
, PGOOD, EXTV .......................... –0.3V to 6V  
INTV  
TRACK/SS COMPA  
CC  
V
IN  
1
2
3
4
5
6
8
9
10  
11  
12  
SET  
+
A
B
C
D
E
V
V
, V  
, DIFF_OUT...................–0.3V to INTV  
OSNS  
OSNS CC  
C
PWR  
V
f
IN  
SET  
COMPA, COMPB (Note 7) ................. –0.3V to 2.7V  
FB,  
OT_TEST  
RUN (Note 5) ............................................... –0.3V to 5V  
INTV  
CC  
INTV Peak Output Current (Note 6) ..................100mA  
Internal Operating Temperature Range  
CC  
TEMP  
EXTV  
CC  
PGOOD  
+
TEMP  
F
V
FB  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Maximum Peak Body Reflow Temperature ........... 245°C  
GND  
G
H
J
PGOOD  
SGND  
+
V
OSNS  
K
L
DIFF_OUT  
V
OUT  
V
V
OUT_LCL  
M
OSNS  
BGA PACKAGE  
133-LEAD (15mm × 15mm × 4.92mm)  
T
= 125°C, θ = 9.5°C/W, θ  
= 4°C/W, θ  
= 6.7°C/W, θ = 4.5°C/W  
J(MAX)  
θ
JA  
JCbottom  
JCtop JB  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS; WEIGHT = 2.8g  
θ VALUES DETERMINED PER JESD51-12  
JA  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4639EY#PBF  
LTM4639IY#PBF  
LTM4639IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
RATING  
LTM4639Y  
LTM4639Y  
LTM4639Y  
e1  
BGA  
4
–40°C to 125°C  
e0  
BGA  
4
–40°C to 125°C  
• Consult Marketing for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures: www.linear.com/umodule/pcbassembly  
• LGA and BGA Package and Tray Drawings: www.linear.com/packaging  
• Terminal Finish Part Marking: www.linear.com/leadfree  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 3.3V, CPWR = 5V, per the typical application in  
Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.375  
4.5  
TYP  
MAX  
7
UNITS  
l
V
Range  
Input DC Voltage Range  
V
< 4.5V, C Bias  
PWR  
V
V
V
V
IN  
IN  
C
Voltage  
5
6
PWR  
l
l
V
V
Range  
Output DC Voltage Range  
0.6  
5.5  
1.523  
OUT  
Output Voltage, Total  
Variation with Line and  
Load  
C
C
= 22µF × 3, C  
OUT  
= 5V  
1.477  
1.50  
OUT(DC)  
IN  
PWR  
= 100µF Ceramic, 470µF POSCAP  
= 40.2k, MODE_PLLIN = GND  
R
FB  
IN  
V
= 2.375V to 7V, I  
= 0A to 20A (Note 4)  
OUT  
4639f  
2
For more information www.linear.com/LTM4639  
LTM4639  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 3.3V, CPWR = 5V, per the typical application in  
Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Specifications  
V
V
RUN Pin On Threshold  
RUN Pin On Hysteresis  
Input Supply Bias Current  
V
Rising  
RUN  
1.1  
1.25  
130  
1.4  
V
RUN  
mV  
RUNHYS  
Q(VIN)  
I
V
V
V
= 7V, V  
= 7V, V  
= 7V, V  
= 1.5V, Burst Mode Operation, I  
= 1.5V, Pulse-Skipping Mode, I  
= 1.5V, Switching Continuous, I  
= 0.1A  
= 0.1A  
= 0.1A  
25  
35  
68  
45  
mA  
mA  
mA  
µA  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = C  
= 7V  
IN  
PWR  
I
I
Input Supply Current  
Control Power Current  
V
V
= 3.3V, V  
= 1.5V, I  
= 20A, C = 5V  
PWR  
10.35  
4.93  
A
A
S(VIN)  
IN  
IN  
OUT  
OUT  
= 7V, V  
= 1.5V, I  
= 20A, C  
= 5V  
OUT  
OUT  
PWR  
3.3V to 1.5V  
at 0A Load, C = 5V  
PWR  
28  
mA  
PWR(IN)  
IN  
OUT  
Output Specifications  
I
Output Continuous Current  
Range  
V
= 3.3V, V = 1.5V (Note 4)  
OUT  
0
20  
0.04  
0.3  
A
%/V  
%
OUT(DC)  
IN  
l
l
∆V  
(Line)  
OUT  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
Turn-On Overshoot  
V
I
= 1.5V, V from 2.375V to 7V, C  
= 5V,  
0.02  
0.1  
20  
OUT  
V
OUT  
IN  
PWR  
= 0A  
OUT  
∆V  
(Load)  
OUT  
V
= 1.5V, I  
= 0A to 20A, V = 3.3V, C = 5V  
PWR  
OUT  
V
OUT  
OUT  
IN  
(Note 4)  
V
I
= 0A, C  
= 100µF Ceramic, 470µF POSCAP  
OUT  
mV  
P-P  
OUT(AC)  
OUT  
OUT  
V
= 3.3V, V  
= 1.5V, C  
= 5V  
PWR  
IN  
∆V  
C
V
= 100µF Ceramic, 470µF POSCAP,  
15  
mV  
ms  
mV  
OUT(START)  
OUTLS  
OUT  
OUT  
= 1.5V, I  
= 0A, V = 3.3V, C  
= 5V  
OUT  
IN  
PWR  
t
Turn-On Time  
C
= 100µF Ceramic, 470µF POSCAP,  
0.6  
30  
START  
OUT  
No Load, TRACK/SS = 0.001µF, V = 3.3V, C  
= 5V  
PWR  
IN  
∆V  
Peak Deviation for  
Dynamic Load  
Load: 5A to 12.5A Load Step, 1µs Rise Time  
C
V
= 100µF × 2 Ceramic, C  
× 2 POSCAP,  
OUT  
OUT  
= 5V  
= 3.3V, V  
= 1.5V, C  
IN  
OUT  
PWR  
t
I
Settling Time for Dynamic Load: 5A to 12.5A Load Step, 3.3V, V = 5V, V  
= 1.5V  
30  
µs  
SETTLE  
IN  
OUT  
Load Step  
C
= 100µF × 2 Ceramic, 680µF POSCAP  
OUT  
Output Current Limit  
V
V
= 3.3V, V = 1.5V  
OUT  
30  
30  
A
A
OUTPK  
IN  
IN  
= 7V, V  
= 1.5V  
OUT  
Control Section  
l
l
V
Voltage at V Pin  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.60  
–12  
0.606  
–25  
V
nA  
V
FB  
FB  
OUT  
I
Current at V Pin  
(Note 7)  
FB  
FB  
V
Feedback Overvoltage  
Lockout  
0.65  
1.0  
0.67  
0.69  
OVL  
I
Track Pin Soft-Start Pull-  
Up Current  
TRACK/SS = 0V  
(Note 3)  
1.2  
1.4  
60.75  
3.6  
µA  
TRACK/SS  
t
Minimum On-Time  
100  
ns  
ON(MIN)  
R
Resistor Between V  
60.05  
0
60.40  
kΩ  
FBHI  
OUT_LCL  
and V Pins  
FB  
Remote Sense Amplifier  
+
V
V
,
Common Mode Input  
Range  
V
= 3.3V, Run > 1.4V, C = 5V  
PWR  
V
V
OSNS  
OSNS CM RANGE  
IN  
V
Maximum DIFF_OUT  
Voltage  
I
= 300µA  
INTV – 1.4  
CC  
DIFF_OUT(MAX)  
DIFF_OUT  
+
V
Input Offset Voltage  
V
= V  
= 1.5V, I = 100µA  
DIFF_OUT  
2.5  
mV  
OS  
OSNS  
DIFF_OUT  
4639f  
3
For more information www.linear.com/LTM4639  
LTM4639  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 3.3V, CPWR = 5V, per the typical application in  
Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 7)  
MIN  
TYP  
1
MAX  
UNITS  
V/V  
A
Differential Gain  
Slew Rate  
V
SR  
(Note 6)  
2
V/µs  
MHz  
dB  
GBP  
CMRR  
Gain Bandwidth Product  
(Note 6)  
3
Common Mode Rejection (Note 7)  
60  
I
DIFF_OUT Current  
Sourcing  
2
mA  
DIFF_OUT  
PSRR  
Power Supply Rejection  
Ratio  
5V < V < 7V (Note 7)  
100  
80  
dB  
IN  
C
V
Tracking V  
PWR  
IN  
R
Input Resistance  
+ to GND  
kΩ  
IN  
OSNS  
PGOOD Output  
V
PGOOD Trip Level  
V
With Respect to Set Output  
FB  
FB  
PGOOD  
FB  
V
V
–10  
10  
%
%
Ramping Negative  
Ramping Positive  
V
PGOOD Voltage Low  
I
= 2mA  
0.1  
0.3  
5.2  
V
PGL  
PGOOD  
INTV Linear Regulator  
CC  
V
Source Output  
5V < V < 7V, C  
Tracking V  
IN  
4.8  
4.5  
5
2
V
%
INTVCC  
IN  
PWR  
V
V
V
INTV Load Regulation  
I
= 0 to 40mA, C  
= 5.5V  
LDOINT  
EXTVCC  
LDOEXT  
CC  
CC  
PWR  
l
External V Switchover  
EXTV Ramping Positive, C  
= 5.5V, INTV Output 5V  
4.7  
75  
V
CC  
CC  
PWR  
CC  
EXTV Voltage Drop  
I
= 25mA, V  
= 5V, C = 5.5V  
PWR  
220  
800  
mV  
CC  
CC  
EXTVCC  
Oscillator and Phase-Locked Loop  
f
Frequency Sync Capture  
Range  
MODE_PLLIN Clock Duty Cycle = 50%  
250  
kHz  
SYNC  
f
f
f
I
Nominal Frequency  
Lowest Frequency  
Highest Frequency  
Frequency Set Current  
V
V
V
= 1.2V  
= 0V  
450  
210  
700  
9
500  
250  
770  
10  
550  
290  
850  
11  
kHz  
kHz  
kHz  
µA  
NOM  
LOW  
HIGH  
FREQ  
fSET  
fSET  
fSET  
≥ 2.4V  
R
MODE_PLLIN Input  
Resistance  
250  
kΩ  
MODE_PLLIN  
V
V
Clock Input Level High  
Clock Input Level Low  
2.0  
V
V
IH_MODE_PLLIN  
IL_MODE_PLLIN  
0.8  
Temperature Diode  
V
TEMP Diode Voltage  
I
= 100µA  
0.6  
–2  
V
TEMP  
TEMP  
l
TC V  
Temperature Coefficient  
mV/°C  
TEMP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: The minimum on-time condition is specified for a peak-to-peak  
Note 2: The LTM4639 is tested under pulsed load conditions such that  
inductor ripple current of ~40% of I  
Information section)  
Load. (See the Applications  
MAX  
T ≈ T . The LTM4639E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4639I is guaranteed to meet specifications over the  
full –40°C to 125°C internal operating temperature range. Note that the  
maximum ambient temperature consistent with these specifications is  
Note 4: See output current derating curves for different V , V  
Note 5: Limit current into the RUN pin to less than 2mA.  
Note 6: Guaranteed by design.  
Note 7: 100% tested at wafer level.  
and T .  
A
IN OUT  
4639f  
4
For more information www.linear.com/LTM4639  
LTM4639  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5V Input Efficiency Graph  
3.3V Efficiency Graph  
5V Efficiency Graph  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
5V TO 3.3V  
5V TO 2.5V  
5V TO 1.8V  
5V TO 1.5V  
5V TO 1.2V  
5V TO 1V  
3.3V TO 2.5V  
3.3V TO 1.8V  
3.3V TO 1.5V  
3.3V TO 1.2V  
3.3V TO 1V  
2.5V TO 1.8V  
2.5V TO 1.5V  
2.5V TO 1.2V  
2.5V TO 1V  
C
= 5V  
C
= 5V  
C
= V  
PWR IN  
PWR  
PWR  
FREQ = 350kHz  
FREQ = 400kHz  
FREQ = 500kHz  
0
6
10 12 14 16 18 20  
0
6
10 12 14 16 18 20  
0
6
2
4
8
2
4
8
2
4
8
10 12 14 16 18 20  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4637 G01  
4639 G02  
4639 G03  
2.5V to 1V with 7.5A/µs Load  
Step, CPWR = 5V  
2.5V to 1.2V with 7.5A/µs Load  
Step, CPWR = 5V  
7V Efficiency Graph  
100  
95  
90  
85  
80  
75  
70  
V
V
OUT  
OUT  
V
= 80mV  
V
= 80mV  
P-P  
P-P  
LOAD  
STEP  
0A TO 7.5A  
LOAD  
STEP  
0A TO 7.5A  
7V TO 5V  
7V TO 3.3V  
7V TO 2.5V  
7V TO 1.8V  
7V TO 1.5V  
7V TO 1.2V  
7V TO 1V  
4639 G05  
4639 G06  
50µs/DIV  
50µs/DIV  
C
= V  
IN  
PWR  
FREQ = 550kHz  
COMPA CONNECTED TO COMPB  
COMPA CONNECTED TO COMPB  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
FF  
OUT  
BOT  
COMPA  
FF  
OUT  
BOT  
COMPA  
0
6
2
4
8
10 12 14 16 18 20  
= 100µF CER ×2,  
= 100µF CER ×2,  
OUTPUT CURRENT (A)  
680µF 2.5V 6mΩ POSCAP ×2  
680µF 2.5V 6mΩ POSCAP ×2  
4639 G03  
2.5V to 1.5V with 7.5A/µs Load  
Step, CPWR = 5V  
3.3V to 1V with 7.5A/µs Load  
Step, CPWR = 5V  
3.3V to 1.2V with 7.5A/µs Load  
Step, CPWR = 5V  
V
V
V
OUT  
= 80mV  
P-P  
OUT  
OUT  
V
=
V
= 80mV  
V
P-P  
80mV  
P-P  
LOAD  
STEP  
0A TO 7.5A  
LOAD  
STEP  
0A TO  
7.5A  
LOAD  
STEP  
0A TO 7.5A  
4639 G07  
4639 G08  
4639 G09  
50µs/DIV  
50µs/DIV  
50µs/DIV  
COMPA CONNECTED TO COMPB  
COMPA CONNECTED TO COMPB  
COMPA CONNECTED TO COMPB  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
FF  
OUT  
BOT  
COMPA  
FF  
OUT  
BOT  
COMPA  
FF  
OUT  
BOT  
COMPA  
= 100µF CER ×2,  
= 100µF CER ×2,  
= 100µF CER ×2,  
680µF 2.5V 6mΩ POSCAP ×2  
680µF 2.5V 6mΩ POSCAP ×2  
680µF 2.5V 6mΩ POSCAP ×2  
4639f  
5
For more information www.linear.com/LTM4639  
LTM4639  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.3V to 1.5V with 7.5A/µs Load  
Step, CPWR = 5V  
5V to 1.8V with 7.5A/µs Load  
Step, CPWR = 5V  
5V to 3.3V with 7.5A/µs Load  
Step, CPWR = 5V  
V
V
OUT  
= 80mV  
P-P  
OUT  
=
V
V
V
P-P  
250mV  
P-P  
80mV  
OUT  
V
=
LOAD  
STEP  
0A TO 7.5A  
LOAD  
STEP  
0A TO  
7.5A  
LOAD  
STEP  
0A TO 7.5A  
4639 G10  
4639 G11  
4639 G12  
50µs/DIV  
50µs/DIV  
50µs/DIV  
COMPA CONNECTED TO COMPB  
COMPA CONNECTED TO COMPB  
COMPA CONNECTED TO COMPB  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
C
C
= 180pF, C  
= 22pF, C  
= 180pF  
C
C
= NONE, C  
= 22pF, C  
= 180pF  
FF  
OUT  
BOT  
COMPA  
FF  
OUT  
BOT  
COMPA  
FF  
OUT  
BOT  
COMPA  
= 100µF CER ×2, 680µF 2.5V 6mΩ POSCAP ×2  
= 100µF CER ×2, 680µF 2.5V 6mΩ POSCAP ×2  
= 47µF CER ×1,  
220µF 6.3V 15mΩ POSCAP ×2  
7V to 5V with 7.5A/µs Load Step,  
CPWR = 5V  
Turn-On No Load  
Start-Up Pre-Biased Load  
SW  
OUT  
SW  
OUT  
V
P-P  
400mV  
OUT  
V
=
V
0.5V/DIV  
V
0.5V/DIV  
LOAD  
STEP  
0A TO  
7.5A  
RUN  
1V/DIV  
RUN  
2V/DIV  
4639 G13  
4639 G14  
4639 G15  
50µs/DIV  
20ms/DIV  
20ms/DIV  
V
V
I
= 5V  
V
V
I
= 5V  
COMPA CONNECTED TO COMPB  
IN  
OUT  
IN  
= 1V  
= 1V, V  
= 20A  
= 0.5V BIAS  
OUT  
C
C
= NONE, C  
= 22pF, C  
= 180pF  
OUT  
OUT  
FF  
OUT  
BOT  
COMPA  
= 20A  
= 22µF CER ×1,  
OUT  
150µF 6.3V 15mΩ POSCAP ×2  
Recycling VIN (On-Off-On)  
Output Short-Circuit  
Output Ripple Noise  
SW  
SW  
V
= 8mV  
P-P  
I
IN  
V
OUT  
200mA/DIV  
0.5V/DIV  
V
OUT  
0.5V/DIV  
RUN  
2V/DIV  
4639 G17  
4639 G18  
4639 G16  
500µs/DIV  
1µs/DIV  
1s/DIV  
V
V
= 5V  
V
V
= 3.3V  
= 1V  
V
V
= 5V  
IN  
OUT  
IN  
OUT  
OUT  
IN  
OUT  
= 1V  
= 1V  
I
= 20A  
4639f  
6
For more information www.linear.com/LTM4639  
LTM4639  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
OT_TEST (B9): Used for Test Purposes. Float this pin, or  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
tie to V to disable overtemperature protection.  
IN  
f
(B12): A resistor can be applied from this pin to  
SET  
V
(A1-A6, B1-B6, C1-C6): Power Input Pins. Apply  
IN  
ground to set the operating frequency, or a DC voltage  
can be applied to set the frequency. See the Applications  
Information section.  
input voltage between these and GND pins. Recommend  
placing input decoupling capacitance directly between  
V and GND pins.  
IN  
TRACK/SS (A9): Output Voltage Tracking Pin and Soft-  
Start Inputs. The pin has a 1.2µA pull-up current source. A  
capacitor from this pin to ground will set a soft-start ramp  
rate. In tracking, the regulator output can be tracked to a  
differentvoltage.SeetheApplicationsInformationsection.  
V
(J1-J10, K1-K11, L1-L11, M1-M11): Power Output  
OUT  
Pins. Apply output load between these and GND pins.  
Recommend placing output decoupling capacitance  
between these pins and GND pins. Review Table 5. Output  
range 0.6V to 5.5V.  
V
(F12): The Negative Input of the Error Amplifier.  
FB  
GND (C7, C9, D1-D6, D8, E1-E5, E7, E9, F1-F5, F7-F9,  
G1-G9, H1-H9): Power Ground Pins for Both Input and  
Output.  
Internally, this pin is connected to V  
with a  
OUT_LCL  
60.4k precision resistor. Different output voltages can  
be programmed with an additional resistor between V  
FB  
and ground pins. In PolyPhase® operation, tying the  
PGOOD(F11,G12):OutputVoltagePowerGoodIndicator.  
Open-drain logic output is pulled to ground when the  
output voltage exceeds a 10% regulation window. Both  
pins are tied together internally.  
V
pins together allows for parallel operation. See the  
FB  
Applications Information section.  
COMPA (A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. Tie all  
COMP pins together for parallel operation. This pin can  
be compensated externally for optimized loop response  
or connected to the COMPB pin. See the Applications  
Information section.  
SGND (G11, H11, H12): Signal Ground Pin. Return  
ground path for all analog and low power circuitry. Tie a  
single connection to the output capacitor GND. See layout  
guidelines in Figure 21.  
+
TEMP (F6): Temperature Monitor. See Applications In-  
formation section.  
COMPB (A12): Default Compensation Network  
Corresponding to Table 5. Tie this pin to COMPA to use  
default compensation. See the Applications Information  
section.  
TEMP (E6): Kelvin Return of the Internal Temperature  
Monitor.  
MODE_PLLIN (A8): Forced Continuous Mode, Burst  
Mode Operation, or Pulse-Skipping Mode Selection Pin  
and External Synchronization Input to Phase Detector Pin.  
RUN(A10):RunControlPin.Avoltageabove1.4Vwillturn  
on the module. A 5.1V Zener diode to ground is internal to  
the module for limiting the voltage on the RUN pin to 5V  
Connect this pin to INTV to enable pulse-skipping mode.  
CC  
Connect to ground to enable forced continuous mode.  
FloatingthispinwillenableBurstModeoperation.Aclockon  
this pin will enable synchronization with forced continuous  
operation. See the Applications Information section.  
andallowingtheuseofapull-upresistortoV forenabling  
IN  
the device. Limit current into the RUN pin to ≤ 2mA.  
INTV (A7, D9): Internal 5V LDO for Driving the Control  
CC  
Circuitry and the Power MOSFET Drivers. Both pins are  
C
PWR  
(B7): Control Bias Input. Required to operate the  
LTM4639 regulator below 4.5V input. For V ≥4.5V up to  
internally connected. The 5V LDO has a 100mA current  
IN  
limit. INTV is controlled and enabled when RUN is  
CC  
7V connect C  
sequence V before C  
to V . To maintain soft-start function,  
PWR  
IN  
IN  
activated high. See Applications Section. This pin is an  
, then enable the RUN pin. If  
PWR  
output, do not drive this pin.  
the RUN pin has a pull-up resistor to V , then sequence  
IN  
C
after V .  
PWR  
IN  
4639f  
7
For more information www.linear.com/LTM4639  
LTM4639  
PIN FUNCTIONS  
+
EXTV (E12): External power input to an internal control  
V
(J12): (+) Input to the Remote Sense Amplifier.  
OSNS  
CC  
switchallowsanexternalsourcegreaterthan4.7V,butless  
This pin connects to the output remote sense point. The  
remote sense amplifier can be used for V  
Connect to ground when not used.  
than6VtosupplyICpowerandbypasstheinternalINTV  
≤ 3.3V.  
CC  
OUT  
LDO. EXTV must be less than V at all times during  
CC  
IN  
power-on and power-off sequences. See the Applications  
Informationsection.5Voutputapplicationcanconnectthe  
5V output to this pin to improve efficiency. The 5V output  
V
OSNS  
(M12): (–) Input to the Remote Sense Amplifier.  
This pin connects to the ground remote sense point. The  
remote sense amplifier can be used for V  
Connect to ground when not used.  
≤ 3.3V.  
OUT  
is connected to EXTV in the 5V derating curves.  
CC  
V
(L12): This pin connects to V  
through a 1M  
OUT_LCL  
OUT  
DIFF_OUT (K12): Output of the Remote Sense Amplifier.  
This pin connects to the V pin for remote sense  
applications. Otherwise float when not used. The remote  
sense amplifier can be used for V ≤ 3.3V.  
resistor,andtoV witha60.4kresistor.Theremotesense  
FB  
OUT_LCL  
amplifier output DIFF_OUT is connected to V  
, and  
OUT_LCL  
drives the 60.4k top feedback resistor in remote sensing  
applications. When the remote sense amplifier is used,  
OUT  
MTP1, MTP2, MTP3, MTP4, MTP5, MTP6, MTP7, (A12,  
B11,C10,C11,C12,D10,D11,D12):Extramountingpads  
usedforincreasedsolderintegritystrength.Leavefloating.  
DIFF_OUT effectively eliminates the 1MΩ from V  
to  
OUT  
V
. When the remote sense amplifier is not used,  
OUT_LCL  
then connect V  
to V  
directly.  
OUT_LCL  
OUT  
4639f  
8
For more information www.linear.com/LTM4639  
LTM4639  
BLOCK DIAGRAM  
PTC  
OT_TEST  
PGOOD  
+
OTP  
~135°C  
499k  
INTV  
CC  
+
V
OUT_LCL  
V
400mV  
OUT  
10k  
1M  
V
IN  
> 1.4V = ON  
< 1.1V = OFF  
MAX = 5V  
C
R1  
R2  
PWR  
+5V BIAS  
RUN  
V
IN  
V
IN  
2.375V TO 7V  
+
5.1V  
COMPA  
COMPB  
+
1.5µF  
35V  
TEMP  
C
IN  
60.4k  
PNP  
M1  
INTERNAL  
COMP  
TEMP  
0.3µH  
V
OUT  
V
OUT  
1V  
47pF  
POWER  
CONTROL  
SGND  
20A  
+
V
FB  
10µF  
6.3V  
M2  
C
OUT  
f
SET  
R
FB  
GND  
R
90.9k  
fSET  
75k  
INTERNAL  
LOOP  
2.2Ω  
SGND  
FILTER  
INTV  
CC  
C SOFT-START  
TRACK/SS  
V
V
MODE_PLLIN  
OSNS  
+
DIFF  
AMP  
250k  
+
+
OSNS  
INTV  
CC  
2.2µF  
C
DIFF_OUT  
EXTV  
CC  
4639 F01  
Figure 1. Simplified LTM4639 Block Diagram  
4639f  
9
For more information www.linear.com/LTM4639  
LTM4639  
DECOUPLING REQUIREMENTS  
TA = 25°C. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
I
= 20A, 4× 22µF Ceramic X7R Capacitors  
88  
µF  
OUT  
(V = 2.375V to 7V, V  
= 1.5V),  
OUT  
(See Table 5)  
IN  
C
≥ 4.5V  
PWR  
C
External Output Capacitor Requirement  
(V = 2.375V to 7V, V = 1.5V),  
PWR  
I
= 20A (See Table 5)  
400  
µF  
OUT  
OUT  
IN  
OUT  
C
≥ 4.5V  
OPERATION  
Power Module Description  
Pulling the RUN pin below 1.1V forces the regulator  
into a shutdown state. The TRACK/SS pin is used for  
programmingtheoutputvoltagerampandvoltagetracking  
during start-up. See the Application Information section.  
The LTM4639 is a low input voltage,high performance  
single output standalone nonisolated switching mode DC/  
DC power supply. It can provide a 20A output with few  
externalinputandoutputcapacitors.Thismoduleprovides  
precisely regulated output voltages programmable via  
The LTM4639 is internally compensated to be stable over  
alloperatingconditionswithCOMPAtiedtoCOMPB. Table  
5 provides a guideline for input and output capacitances  
forseveraloperatingconditions.LTpowerCADisavailable  
for transient and stability analysis. Custom compensation  
can be used with the COMPA pin using the LTpowerCAD  
external resistors from 0.6V to 5.5V over a 2.375V  
DC  
DC  
to 7V input range. The typical application schematic is  
shown in Figure 22.  
TheLTM4639hasanintegratedconstant-frequencycurrent  
mode regulator, power MOSFETs, 0.3µH inductor, and  
other supporting discrete components. The switching  
frequencyrangeisfrom250kHzto770kHz, andthetypical  
and an external compensation network. The V pin is  
FB  
used to program the output voltage with a single external  
resistor to ground.  
operating frequency is shown in Table 5 for each V . For  
Aremotesenseamplifierisprovidedforaccuratelysensing  
output voltages ≤3.3V at the load point.  
OUT  
switchingnoise-sensitiveapplications, itcanbeexternally  
synchronizedfrom250kHzto800kHz,subjecttominimum  
on-time limitations. A single resistor is used to program  
the frequency. See the Applications Information section.  
Multiphase operation can be easily employed with the  
synchronization inputs using an external clock source.  
See application examples.  
With current mode control and internal feedback loop  
compensation, the LTM4639 module has sufficient  
stability margins and good transient performance with  
a wide range of output capacitors, even with all ceramic  
output capacitors.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation using the MODE_PLLIN  
pin. These light load features will accommodate battery  
operation. Efficiency graphs are provided for light load  
operation in the Typical Performance Characteristics  
section.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit in an overcurrent condition. An internal overvoltage  
monitor protects the output voltage in the event of an  
overvoltage >10%. The top MOSFET is turned off and the  
bottom MOSFET is turned on until the output is cleared.  
+
A TEMP and TEMP pin is provided to allow the internal  
device temperature to be monitored using an onboard  
diode connected PNP transistor. This diode connected  
PNP transistor can be used with TEMP monitor devices  
like the LTC2990, LTC2997, LTC2974 and LTC2978.  
Overtemperature protection will turn off the regulator’s  
RUNpinat~130°Cto137°C.SeeApplicationsInformation.  
4639f  
10  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
The typical LTM4639 application circuit is shown in Fig-  
ure 22. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 5 for specific external capacitor  
requirements for particular applications.  
Input Capacitors  
The LTM4639 module should be connected to a low AC-  
impedance DC source. Additional input capacitors are  
neededfortheRMSinputripplecurrentrating.TheI  
CIN(RMS)  
equation which follows can be used to calculate the input  
capacitor requirement. Typically 22µF X7R ceramics are a  
good choice with RMS ripple current ratings of ~ 2A each.  
A4Fto100µFsurfacemountaluminumelectrolyticbulk  
capacitor can be used for more input bulk capacitance.  
This bulk input capacitor is only needed if the input source  
impedanceiscompromisedbylonginductiveleads,traces  
ornotenoughsourcecapacitance.Iflowimpedancepower  
planes are used, then this bulk capacitor is not needed.  
V to V  
IN  
Step-Down Ratios  
OUT  
There are restrictions in the V to V  
step-down ratio  
IN  
OUT  
that can be achieved for a given input voltage. The duty  
cycle is 94% typical at 500kHz operation. The V to V  
IN  
OUT  
minimumdropoutisafunctionofloadcurrentandoperation  
at very low input voltage and high duty cycle applications.  
At very low duty cycles the minimum 100ns on-time must  
be maintained. See the Frequency Adjustment section and  
temperature derating curves.  
For a buck converter, the switching duty cycle can be  
estimated as:  
Output Voltage Programming  
V
VIN  
OUT  
D=  
The PWM controller has an internal 0.6V 1% reference  
voltage. As shown in the Block Diagram, a 60.4k internal  
Without considering the inductor ripple current, for each  
output the RMS current of the input capacitor can be  
estimated as:  
feedback resistor connects the V  
and V pins  
OUT_LCL  
FB  
together. When the remote sense amplifier is used, then  
DIFF_OUT is connected to the V pin. If the remote  
OUT_LCL  
sense amplifier is not used, then V  
connects to  
IOUT(MAX)  
OUT_LCL  
ICIN(RMS)  
=
D(1D)  
V
. The output voltage will default to 0.6V with no  
OUT  
η%  
feedbackresistor.AddingaresistorR fromV toground  
FB  
FB  
whereη%istheestimatedefficiencyofthepowermodule.  
The bulk capacitor can be a switcher-rated aluminum  
electrolytic capacitor or a Polymer capacitor.  
programs the output voltage:  
60.4k+RFB  
VOUT = 0.6V •  
RFB  
Output Capacitors  
Table 1. VFB Resistor Table vs Various Output Voltages  
(V) 0.6 1.0 1.2 1.5 1.8 2.5 3.3  
Open 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
The LTM4639 is designed for low output voltage ripple  
V
5.0  
OUT  
noise. The bulk output capacitors defined as C  
are  
OUT  
R
(k)  
chosen with low enough effective series resistance  
FB  
(ESR) to meet the output voltage ripple and transient  
requirements. C  
can be a low ESR tantalum capacitor,  
OUT  
For parallel operation of N LTM4639s, the following  
low ESR Polymer capacitor or ceramic capacitors. The  
typical output capacitance range is from 200µF to 800µF.  
Additional output filtering may be required by the system  
designer if further reduction of output ripple or dynamic  
transient spikes is required. Table 5 shows a matrix  
of different output voltages and output capacitors to  
minimizethevoltagedroopandovershootduringa10A/µs  
transient.ThetableoptimizestotalequivalentESRandtotal  
bulk capacitance to optimize the transient performance.  
equation can be used to solve for R :  
FB  
60.4k /N  
RFB=  
V
OUT  
–1  
0.6V  
Tie the V pins together for each parallel output. The  
FB  
COMP pins must be tied together also.  
4639f  
11  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Stability criteria are considered in the Table 5 matrix, and  
LTpowerCAD is available for stability analysis and custom  
compensationforloopoptimizationusingtheCOMPApin.  
Multiphase operation will reduce effective output ripple  
as a function of the number of phases. Application Note  
77 discusses this noise reduction versus output ripple  
current cancellation, but the output capacitance should be  
consideredcarefullyasafunctionofstabilityandtransient  
response.LTpowerCADcanbeusedtocalculatetheoutput  
ripple reduction as the number of implemented phases  
increase by N times.  
operation. With pulse-skipping mode at light load, the  
internalcurrentcomparatormayremaintrippedforseveral  
cycles, thus skipping operation cycles. This mode has  
lower ripple than Burst Mode operation and maintains a  
higher frequency operation than Burst Mode operation.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
should be used. Forced continuous operation can be  
enabled by tying the MODE_PLLIN pin to ground. In this  
mode, inductor current is allowed to reverse during low  
outputloads,theCOMPAvoltageisincontrolofthecurrent  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4639’s output  
voltage is in regulation.  
Burst Mode Operation  
TheLTM4639iscapableofBurstModeoperationinwhich  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
where maximizing the efficiency at very light loads is a  
high priority, Burst Mode operation should be applied. To  
enableBurstModeoperation,simplyfloattheMODE_PLLIN  
pin. During Burst Mode operation, the peak current of the  
inductorissettoapproximately30%ofthemaximumpeak  
current value in normal operation even though the voltage  
at the COMPA pin indicates a lower value. The voltage at  
the COMPA pin drops when theinductor’s average current  
isgreaterthantheloadrequirement.AstheCOMPAvoltage  
drops below 0.5V, the burst comparator trips, causing  
the internal sleep line to go high and turn off both power  
MOSFETs.  
Multiphase Operation  
For outputs that demand more than 20A of load current,  
multiple LTM4639 devices can be paralleled to provide  
more output current without increasing input and output  
ripple voltage. The MODE_PLLIN pin allows the LTM4639  
to be synchronized to an external clock and the internal  
phase-locked loop allows the LTM4639 to lock onto input  
clockphaseaswell.Thef resistorisselectedfornormal  
SET  
frequency, then the incoming clock can synchronize  
the device over the specified range. See Figure 24 for a  
synchronizing example circuit.  
In sleep mode, the internal circuitry is partially turned  
off, reducing the quiescent current. The load current is  
now being supplied from the output capacitors. When the  
output voltage drops, causing COMPA to rise, the internal  
sleep line goes low, and the LTM4639 resumes normal  
operation. The next oscillator cycle will turn on the top  
power MOSFET and the switching cycle repeats.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output  
capacitors.TheRMSinputripplecurrentisreducedby,and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used. See Application Note 77.  
Pulse-Skipping Mode Operation  
In applications where low output ripple and high effi-  
ciency at intermediate currents are desired, pulse-  
skipping mode should be used. Pulse-skipping operation  
allows the LTM4639 to skip cycles at low output loads,  
thusincreasingefficiencybyreducingswitchingloss.Tying  
The LTM4639 device is an inherently current mode  
controlled device, so parallel modules will have good  
current sharing. This will balance the thermals in the  
the MODE_PLLIN pin to INTV enables pulse-skipping  
design. Tie the COMPA and V pins of each LTM4639  
CC  
FB  
4639f  
12  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
together to share the current evenly. Figure 24 shows a  
schematic of the parallel design.  
The relationship of f voltage to switching frequency is  
SET  
shown in Figure 3. For low output voltages from 0.6V to  
1.2V, 300kHz operation is an optimal frequency for the  
best power conversion efficiency while maintaining the  
inductor current to about 40% to 50% of maximum load  
current. For output voltages from 1.5V to 1.8V, 450kHz  
is optimal. For output voltages from 2.5V to 5V, 600kHz  
Input RMS Ripple Current Cancellation  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current  
cancellation mathematical derivations are presented, and  
a graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases  
(see Figure 2).  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
PLL, Frequency Adjustment and Synchronization  
TheLTM4639switchingfrequencyissetbyaresistor(R  
from the f pin to signal ground. A 10µA current (I  
)
)
fSET  
FREQ  
SET  
flowingoutofthef pinthroughR  
developsavoltage  
SET  
fSET  
on f . R  
can be calculated as:  
SET fSET  
0
0.5  
1
1.5  
2
2.5  
f
PIN VOLTAGE (V)  
4639 F03  
SET  
FREQ  
500kHz / V  
1
RfSET  
=
+0.2V  
10µA  
Figure 3. Relationship Between Switching  
Frequency and Voltage at the fSET Pin  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
1 PHASE  
2 PHASE  
3 PHASE  
4 PHASE  
6 PHASE  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
4639 F02  
OUT IN  
Figure 2. Normalized Input RMS Ripple Current vs Duty Cycle for One to Siꢁ µModule Regulators (Phases)  
4639f  
13  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
is optimal. See efficiency graphs for optimal frequency  
set point.  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4639 uses an  
accurate 60.4k resistor internally for the top feedback  
resistor.Figure4showsanexampleofcoincidenttracking.  
The LTM4639 can be synchronized from 250kHz to  
800kHz with an input clock that has a high level above 2V  
and a low level below 0.8V. See the Typical Applications  
section for synchronization examples. The LTM4639  
minimum on-time is limited to approximately 100ns.  
Guardband the on-time to 110ns. The on-time can be  
calculated as:  
1
V
OUT   
60.4k  
RTA  
tON(MIN)  
=
VOUT(SLAVE) = 1+  
• V  
TRACK  
FREQ  
VIN  
+5V BIAS  
14µF  
2.2µF  
V
IN  
3.3V  
C
IN1  
22µF  
16V  
×4  
SOFT-START  
CAPACITOR  
V
C
EXTV INTV PGOOD  
IN PWR  
CC  
CC  
V
1.5V  
20A  
OUT2  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
R2  
5k  
C11  
100µF  
6.3V  
×2  
C8  
+
C
SS  
180pF  
V
680µF  
2.5V  
×2  
DIFF_OUT  
+
LTM4639  
180pF  
V
OSNS  
f
SET  
V
R4  
100k  
OSNS  
MODE_PLLIN  
V
+
FB  
TEMP  
R
FB1  
22pF  
TEMP  
SGND  
GND OT_TEST  
40.2k  
2.2µF  
V
IN  
+5V BIAS  
3.3V  
C
IN2  
MASTER RAMP  
OR OUTPUT  
22µF  
16V  
×4  
180pF  
V
C
EXTV INTV PGOOD  
IN PWR  
CC  
CC  
V
1.2V  
20A  
OUT1  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
R
C6  
TB  
C4  
R
+
R1  
5k  
TA  
60.4k  
100µF  
6.3V  
×2  
V
680µF  
2.5V  
×2  
60.4k  
DIFF_OUT  
+
LTM4639  
180pF  
V
OSNS  
f
SET  
V
OSNS  
R3  
100k  
MODE_PLLIN  
V
FB  
+
TEMP  
R
FB  
22pF  
SGND  
GND OT_TEST  
TEMP  
60.4k  
4639 F04  
Figure 4. Dual Outputs (1.5V and 1.2V) with Tracking  
4639f  
14  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in volts/time. When coincident  
V
TRACK  
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.6V, or the internal  
TRACK  
V
tracking is desired, then MR and SR are equal, thus R  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
until it reaches its final value. The master will continue  
to its final value from the slave’s regulation point (see  
TB  
is equal to 60.4k. R is derived from equation:  
TA  
0.6V  
RTA=  
VFB VFB VTRACK  
+
Figure 5). Voltage tracking is disabled when V  
is  
60.4k RFB  
RTB  
TRACK  
more than 0.6V. R in Figure 4 will be equal to R for  
TA  
FB  
whereV isthefeedbackvoltagereferenceoftheregulator,  
FB  
TRACK  
coincident tracking.  
and V  
is 0.6V. Since R is equal to the 60.4k top  
TB  
feedback resistor of the slave regulator in equal slew rate  
or coincident tracking, then R is equal to R with V  
=
FB  
TA  
FB  
MASTER OUTPUT  
SLAVE OUTPUT  
V
.ThereforeR =60.4k,andR =60.4kinFigure4.  
TRACK  
TB TA  
OUTPUT  
VOLTAGE  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR  
TB  
is slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach its final value before the master output.  
4639 F05  
TIME  
For example, MR = 1.5V/ms, and SR = 1.2V/ms. Then R  
TB  
= 75k. Solve for R to equal 51.1k.  
Figure 5. Output Voltage Coincident Tracking Characteristics  
TA  
For applications that do not require tracking or  
The TRACK/SS pin of the master can be controlled by an  
externalramporthesoft-startfunctionofthatregulatorcan  
be used to develop that master ramp. The LTM4639 can  
be used as a master by setting the ramp rate on its track  
pin using a soft-start capacitor. A 1.2µA current source  
is used to charge the soft-start capacitor. The following  
equation can be used:  
sequencing, simply tie the TRACK/SS pin to INTV to  
CC  
let RUN control the turn on/off. When the RUN pin is  
below its threshold or the V undervoltage lockout, then  
IN  
TRACK/SS is pulled low.  
Overcurrent and Overvoltage Protection  
The LTM4639 has overcurrent protection (OCP) in a  
short circuit. The internal current comparator threshold  
folds back during a short to reduce the output current. An  
overvoltage condition (OVP) above 10% of the regulated  
outputvoltagewillforcethetopMOSFEToffandthebottom  
MOSFETonuntiltheconditioniscleared.Foldbackcurrent  
limiting is disabled during soft-start or tracking start-up.  
CSS  
1.2µA  
tSOFT-START = 0.6V •  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK/SS pin. As mentioned above, the TRACK/SS pin  
has a control range from 0V to 0.6V. The master’s  
TRACK/SS pin slew rate is directly equal to the master’s  
output slew rate in volts/time. The equation:  
MR  
SR  
60.4k=RTB  
4639f  
15  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Temperature Monitoring  
temperature sensors. The I term in the equation above  
S
is the extrapolated current through a diode junction when  
Measuring the absolute temperature of a diode is possible  
due to the relationship between current, voltage and  
temperature described by the classic diode equation:  
the diode has zero volts across the terminals. The I term  
S
varies from process to process, varies with temperature,  
and by definition must always be less than I . Combining  
D
all of the constants into one term:  
VD  
η• V  
I =I • e  
D
S
T   
ηk  
q
KD =  
or  
I
IS  
−5  
VD = η• VT ln D  
whereK =8.62 ,andknowingln(I /I )isalwayspositive  
D
D S  
because I is always greater than I , leaves us with the  
D
S
equation that:  
where I is the diode current, V is the diode voltage, η is  
D
D
the ideality factor (typically close to 1.0) and I (saturation  
S
I
IS  
VD = T(KELVIN)KD ln D  
current) is a process dependent parameter. V can be  
T
broken out to:  
where V appears to increase with temperature. It is  
k • T  
q
D
VT =  
common knowledge that a silicon diode biased with a  
current source has an approximate –2mV/°C temperature  
relationship (Figure 6), which is at odds with the equation.  
where T is the diode junction temperature in Kelvin, q is  
the electron charge and k is Boltzmann’s constant. V is  
approximately 26mV at room temperature (298K) and  
scales linearly with Kelvin temperature. It is this linear  
temperature relationship that makes diodes suitable  
Infact,theI termincreaseswithtemperature,reducingthe  
S
T
ln(I /I ) absolute value yielding an approximate –2mV/°C  
D S  
composite diode voltage slope.  
1.0  
0.8  
I
I
= 100µA  
= 10µA  
D
D
∆V  
D
0.6  
0.4  
–173  
–73  
27  
127  
TEMPERATURE (°C)  
4639 F06  
Figure 6. Diode Voltage VD vs Temperature T(°C)  
for Different Bias Currents  
4639f  
16  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
To obtain a linear voltage proportional to temperature,  
Run Enable  
we cancel the I variable in the natural logarithm term to  
S
The RUN pin is used to enable the power module or  
sequence the power module. The threshold is 1.25V, and  
the pin has an internal 5.1V Zener to protect the pin. The  
RUN pin can be used as an undervoltage lockout (UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin:  
remove the I dependency from the following equation.  
S
This is accomplished by measuring the diode voltage at  
two currents I , and I , where I = 10 • I  
1
2
1
2
Subtracting we get:  
I2  
IS  
I1  
IS  
VD = T(KELVIN)KD In T(KELVIN)KD In  
V
UVLO  
= ((R1+R2)/R2) • 1.25V  
Combining like terms, then simplifying the natural log  
terms yields:  
See Figure 1, Simplified Block Diagram.  
INTV Regulator  
CC  
∆V = T(KELVIN) • K • In(10)  
D
D
The LTM4639 has an internal low dropout regulator from  
and redefining constant  
V
called INTV . This regulator output has a 2.2µF  
IN  
CC  
ceramic capacitor internal. An additional 2.2µF ceramic  
capacitor is needed on this pin to ground. This regulator  
powers the internal controller and MOSFET drivers. The  
gate driver current is ~20mA for 750kHz operation. The  
regulator loss can be calculated as:  
K’ = K • In(10) = 198µV/k  
D
D
yields  
∆V = K’ • T(KELVIN)  
D
D
Solving for temperature:  
(V – 5V) • 20mA = P  
IN  
LOSS  
VD  
K'D  
T(KELVIN)=  
,
EXTV external voltage source ≥ 4.7V can be applied to  
CC  
thispintoeliminatetheinternalINTV LDOpowerlossand  
CC  
T(KELVIN)=[°C]+273.15,  
[°C]= T(KELVIN)273.15  
increase regulator efficiency. A 5V supply can be applied  
to run the internal circuitry and power MOSFET driver. If  
unused, leave pin floating. EXTV must be less than V  
CC  
IN  
means that is we take the difference in voltage across the  
diode measured at two currents with a ratio of 10, the  
resulting voltage is 198µV per Kelvin of the junction with  
a zero intercept at 0 Kelvin.  
at all times during power-on and power-off sequences.  
Stability Compensation  
TheLTM4639hasalreadybeeninternallycompensatedfor  
alloutputvoltages.Table5isprovidedformostapplication  
requirements. LTpowerCAD is available for other control  
loop optimization.  
+
The diode connected PNP transistor at the TEMP , TEMP  
pins can be used to monitor the internal temperature of  
the LTM4639. A general temperature monitor can be  
+
implemented by connecting a resistor between TEMP  
Thermal Considerations and Output Current Derating  
and V to set the current to 100µA, grounding the TEMP  
IN  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those  
parametersdefinedbyJESD51-12andareintendedforuse  
withfiniteelementanalysis(FEA)softwaremodelingtools  
thatleveragetheoutcomeofthermalmodeling,simulation,  
and correlation to hardware evaluation performed on a  
µModule package mounted to a hardware test board.  
The motivation for providing these thermal coefficients  
in found in JESD51-12 (“Guidelines for Reporting and  
pin, and then monitoring the diode voltage drop with  
temperature. A more accurate temperature monitor can  
be achieved with a circuit injecting two currents that are  
at a 10:1 ratio. See Figure 22 for an example.  
Overtemperature Protection  
The internal overtemperature protection monitors the  
internal temperature of the module and shuts off the  
regulator at ~130°C to 137°C. Once the regulator cools  
down the regulator will restart.  
Using Electronic Package Thermal Information”).  
4639f  
17  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Manydesignersmayopttouselaboratoryequipmentanda  
testvehiclesuchasthedemoboardtopredicttheµModule  
regulator’s thermal performance in their application at  
various electrical and environmental operating conditions  
to compliment any FEA activities. Without FEA software,  
the thermal resistances reported in the Pin Configuration  
sectionare, inandofthemselves, notrelevanttoproviding  
guidance of thermal performance; instead, the derating  
curves provided in this data sheet can be used in a  
manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
4 θ , the thermal resistance from junction to the printed  
JB  
circuitboard,isthejunction-to-boardthermalresistance  
where almost all of the heat flows through the bottom  
oftheµModulepackageandintotheboard, andisreally  
the sum of the θ  
and the thermal resistance of  
JCbottom  
the bottom of the part through the solder joints and a  
portionoftheboard.Theboardtemperatureismeasured  
a specified distance from the package.  
A graphical representation of the aforementioned thermal  
resistances is given in Figure 7; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
ThePinConfigurationsectiongivesfourthermalcoefficients  
explicitly defined in JESD51-12; these coefficients are  
quoted or paraphrased below:  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaµModuleregulator. Forexample,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through  
bottom of the µModule package—as the standard defines  
1 θ , the thermal resistance from junction to ambient,  
JA  
is the natural convection junction-to-ambient air  
thermal resistance measured in a one cubic foot sealed  
enclosure.Thisenvironmentissometimesreferredtoas  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
to a 95mm × 76mm PCB with four layers.  
for θ  
and θ  
, respectively. In practice, power  
JCtop  
JCbottom  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
2 θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through  
the bottom of the package. In the typical µModule  
regulator, the bulk of the heat flows out the bottom of  
the package, but there is always heat flow out into the  
ambientenvironment.Asaresult,thisthermalresistance  
valuemaybeusefulforcomparingpackagesbutthetest  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Within the LTM4639, be aware there are multiple power  
devices and components dissipating power, with a  
consequence that the thermal resistances relative to  
different junctions of components or die are not exactly  
linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometryoftheLTM4639andthespecifiedPCBwithallof  
thecorrectmaterialcoefficientsalongwithaccuratepower  
losssourcedefinitions;(2)thismodelsimulatesasoftware-  
defined JEDEC environment consistent with JESD51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
3 θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
4639f  
18  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the LTM4639 with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
loss as that which was simulated. The outcome of this  
processandduediligenceyieldsthesetofderatingcurves  
shown in this data sheet.  
ambient temperature at ~40°C. The output voltages are  
1V, 2.5V and 5V. These are chosen to include the lower,  
middle and higher output voltage ranges for correlating  
the thermal resistance. Thermal models are derived  
from several temperature measurements in a controlled  
temperature chamber along with thermal modeling  
analysis. The junction temperatures are monitored while  
ambienttemperatureisincreasedwithandwithoutairflow.  
Thepowerlossincreasewithambienttemperaturechange  
is factored into the derating curves. The junctions are  
maintained at ~120°C maximum while lowering output  
currentorpowerwithincreasingambienttemperature.The  
decreasedoutputcurrentwilldecreasetheinternalmodule  
loss as ambient temperature is increased. The monitored  
junctiontemperatureof120°Cminustheambientoperating  
temperaturespecifieshowmuchmoduletemperaturerise  
canbeallowed,asanexample,inFigure13 theloadcurrent  
is derated to ~17A at ~80°C with no air or heat sink and  
the power loss for the 7V to 1.0V at 17A output is about  
4.2W. The 4.2W loss is calculated with the ~3W room  
The 1V, 2.5V and 5V power loss curves in Figures 8 to 10  
can be used in coordination with the load current derating  
curves in Figures 11 to 20 for calculating an approximate  
θ
JA  
thermal resistance for the LTM4639 with various  
heat sinking and airflow conditions. The power loss  
curves are taken at room temperature and are increased  
with a multiplicative factor according to the junction  
temperature, which is 1.4 for 120°C. The derating curves  
are plotted with the output current starting at 20A and the  
JUNCTION-TO-AMBIENT THERMAL RESISTANCE COMPONENTS  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4639 F07  
µMODULE DEVICE  
Figure 7. Graphical Representation of JESD51-12 Thermal Coefficients  
4639f  
19  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
temperature loss from the 7V to 1.0V power loss curve at  
17A, and the 1.4 multiplying factor at 120°C junction. If the  
80°C ambient temperature is subtracted from the 120°C  
junction temperature, then the difference of 40°C divided  
calculatedpowerlossasafunctionofambienttemperature  
to derive temperature rise above ambient, thus maximum  
junction temperature. Room temperature power loss  
can be derived from the efficiency curves in the Typical  
Performance Characteristics section and adjusted with  
the above ambient temperature multiplicative factors. The  
printed circuit boardisa1.6mm thickfour layerboardwith  
two ounce copper for the two outer layers and one ounce  
copper for the two inner layers. The PCB dimensions are  
by 4.2W equals a 9.5°C/W θ thermal resistance. Table  
JA  
2 specifies a 10°C/W value which is very close. Table 2  
through Table 4 provides equivalent thermal resistances  
for 1.0V, 2.5V and 5V outputs with and without airflow and  
heat sinking. The derived thermal resistances in Tables 2  
thru 4 for the various conditions can be multiplied by the  
95mm × 76mm. The BGA heat sinks are listed  
in Table 6.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
7V TO 5V POWER LOSS  
3.3V TO 1.8V POWER LOSS  
3.3V TO 1.5V POWER LOSS  
3.3V TO 1.2V POWER LOSS  
3.3V TO 1V POWER LOSS  
5V TO 3.3V POWER LOSS  
7V TO 3.3V POWER LOSS  
7V TO 2.5V POWER LOSS  
7V TO 1.8V POWER LOSS  
7V TO 1.5V POWER LOSS  
7V TO 1.2V POWER LOSS  
7V TO 1V POWER LOSS  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V TO 2.5V POWER LOSS  
5V TO 1.8V POWER LOSS  
5V TO 1.5V POWER LOSS  
5V TO 1.2V POWER LOSS  
5V TO 1V POWER LOSS  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4639 F08  
4639 F09  
4639 F10  
Figure 10. 7V Input Power Loss Curves  
Figure 9. 5V Input Power Loss Curves  
Figure 8. 3.3V Input Power Loss Curves  
25  
25  
20  
25  
20  
15  
20  
15  
15  
10  
10  
5
10  
5
5
0 LFM  
200 LFM  
400 LFM  
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
0
0
0
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4639 F12  
4639 F11  
4639 F13  
Figure 11. 5VIN to 1.0VOUT No Heat Sink  
Figure 13. 7VIN to 1.0VOUT No Heat Sink  
Figure 12. 5VIN to 1.0VOUT with Heat Sink  
4639f  
20  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
25  
25  
25  
20  
20  
20  
15  
15  
15  
10  
5
10  
5
10  
5
0 LFM  
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
0
0
0
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4639 F14  
4639 F15  
4639 F16  
Figure 14. 7VIN to 1.0VOUT with Heat Sink  
Figure 15. 5VIN to 2.5VOUT No Heat Sink Figure 16. 5VIN to 2.5VOUT with Heat Sink  
25  
20  
25  
20  
15  
10  
15  
10  
5
0
5
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4639 F17  
4639 F18  
Figure 17. 7VIN to 2.5VOUT No Heat Sink  
Figure 18. 7VIN to 2.5VOUT with Heat Sink  
25  
20  
25  
20  
15  
10  
15  
10  
5
0
5
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4639 F19  
4639 F20  
Figure 19. 7VIN to 5VOUT No Heat Sink,  
EXTVCC = 5V, CPWR = 7V  
Figure 20. 7VIN to 5VOUT with Heat Sink,  
EXTVCC = 5V, CPWR = 7V  
4639f  
21  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Table 2. 1V Output  
DERATING  
CURVE  
POWER LOSS  
AIRFLOW  
(LFM)  
V
CURVE  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
Figures 11, 13  
Figures 11, 13  
Figures 11, 13  
Figures 12, 14  
Figures 12, 14  
Figures 12, 14  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
0
10  
8
200  
400  
0
None  
None  
7
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9
200  
400  
6.5  
5.5  
Table 3. 2.5V Output  
DERATING  
CURVE  
POWER LOSS  
CURVE  
AIRFLOW  
(LFM)  
V
HEAT SINK  
None  
θ
JA  
(°C/W)  
12  
IN  
Figures 15, 17  
Figures 15, 17  
Figures 15, 17  
Figures 16, 18  
Figures 16, 18  
Figures 16, 18  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
5V, 7V  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
0
200  
400  
0
None  
11  
None  
10  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
10.5  
9.5  
8
200  
400  
Table 4. 5V Output (5V Output Connected to EXTVCC Pin)  
DERATING  
CURVE  
POWER LOSS  
CURVE  
AIRFLOW  
(LFM)  
V
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
Figures 19  
Figures 19  
Figures 19  
Figures 20  
Figures 20  
Figures 20  
7V  
7V  
7V  
7V  
7V  
7V  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
0
12  
11  
10  
10.5  
8
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
7
4639f  
22  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Table 5*. Output Voltage Response vs Component Matriꢁ (Refer to Figure 22). Typical Measured Values  
C
AND C  
C
AND C  
OUT1  
OUT2  
OUT1 OUT2  
CERAMIC VENDORS  
VALUE  
PART NUMBER  
C3216X7S0J226M  
BULK VENDORS  
Sanyo POSCAP  
Panasonic  
VALUE  
PART NUMBER  
2R5TPF680M6L  
EEFCXOG221ER  
10TBF150M  
TDK  
22µF, 6.3V  
22µF, 10V  
47µF, 10V  
100µF, 6.3V  
100µF, 6.3V  
100µF, 6.3V  
680µF, 2.5V  
220µF, 4V  
150µF, 10V  
Murata  
Murata  
TDK  
GRM31CR61C226KE15L  
GRM31CR61A476KE15L  
C4532X5R0J107MZ  
GRM32ER60J107M  
18126D107MAT  
Sanyo POSCAP  
C
BULK VENDOR  
VALUE  
PART NUMBER  
Murata  
AVX  
IN  
Sanyo  
100µF, 16V  
16SVP100M  
Standard Internal Compensation COMPA and COMPB Tied Together  
PEAK-TO-  
FREQ (kHz)  
C
PEAK  
RECOVERY LOAD  
TRACK  
OUT2  
V
C
C
IN  
C
(CERAMIC  
C
C
BOT  
C
V
DROOP DEVIATION  
TIME  
(µs)  
STEP  
R
V 2.5V,  
IN  
(A/µs) (kΩ) 3.3V,5V,7V  
OUT  
IN  
OUT1  
FF  
COMPA  
(pF)  
IN  
FB  
*
(V) (CERAMIC) (BULK) (CERAMIC) AND BULK) (pF) (pF)  
(V)  
(mV)  
(mV)  
1
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF × 2 680µF × 2 180 22  
100µF × 2 680µF × 2 180 22  
100µF × 2 680µF × 2 180 22  
100µF × 2 680µF × 2 180 22  
180 2.5, 3.3,  
5, 7  
180 2.5, 3.3,  
5, 7  
180 2.5, 3.3,  
5, 7  
180 2.5, 3.3,  
5, 7  
34  
72  
34  
34  
34  
34  
24  
7.5  
7.5  
7.5  
7.5  
7.5  
90.9  
60.4  
40.2  
30.1  
19.1  
350, 400,  
500, 500  
350, 400,  
500, 500  
350, 400,  
500, 500  
350, 400,  
500, 500  
1.2  
1.5  
1.8  
2.5  
37  
37  
72  
80  
38  
80  
47µF  
220µF  
-
22  
180  
3.3,  
5, 7  
111  
225  
400, 500,  
550  
3.3  
5
22µF × 4  
22µF × 4  
100µF  
100µF  
22µF  
22µF  
150µF  
150µF  
-
-
22  
22  
180  
180  
5,7  
7
150  
187  
300  
370  
24  
24  
7.5  
7.5  
13.3  
8.25  
500, 550  
550  
*
Bulk capacitance is optional if V has very low input impedance.  
IN  
Additional Bulk Capacitance may be required for ≤ 3.3V input  
Depends on Source Impedance  
4639f  
23  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Table 6*. Output Voltage Response vs Component Matriꢁ (Refer to Figure 22). Typical Measured Values  
C
AND C  
OUT2  
OUT1  
CERAMIC VENDORS  
VALUE  
PART NUMBER  
GRM31CR60G227M  
GRM31CR61A476KE15L  
Murata  
220µF, 4V  
47µF, 10V  
Murata  
LTpowerCAD Can Be Used to Optimize the Control Loop Response. Eꢁamples Are Shown Using Ceramic Only for High Performance  
Transient Response  
PEAK-TO-  
PEAK  
FREQ (kHz)  
TRACK  
2.5V,  
C
REC. LOAD  
OUT2  
V
C
C
C
(CER &  
C
FF  
C
R
C
C
V
DROOP DEVIATION TIME STEP  
R
FB  
V
IN  
OUT  
IN  
IN  
OUT1  
BOT  
S
S
P
IN  
*
(V) (CERAMIC) (BULK)  
(CER) BULK) (pF) (pF)  
(k)  
(pF) (pF) (V) (mV)  
(mV)  
(µs) (A/µs) (kΩ) 3.3V,5V,7V  
1
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
100µF 200µF  
× 6  
-
-
-
-
68  
68  
68  
68  
22  
22  
22  
22  
20  
1200 100 2.5,  
40  
43  
60  
64  
80  
24  
24  
24  
28  
7.5  
7.5  
7.5  
7.5  
90.9  
60.4  
40.2  
30.1  
350, 400,  
500, 500  
3.3,  
5, 7  
1.2  
1.5  
1.8  
100µF 200µF  
× 6  
20  
20  
20  
1200 100 2.5,  
88  
350, 400,  
500, 500  
3.3,  
5, 7  
100µF 200µF  
× 4  
1200 100 2.5,  
122  
130  
350, 400,  
500, 500  
3.3,  
5, 7  
100µF 200µF  
× 4  
1200 100 2.5,  
350, 400,  
500, 500  
3.3,  
5, 7  
2.5  
3.3  
5
22µF × 4  
22µF × 4  
22µF × 4  
100µF  
100µF  
100µF  
47µF  
× 2  
47µF  
× 2  
47µF  
× 2  
-
-
-
47  
47  
-
22  
22  
22  
4
4
4
4700  
4700  
4700  
47 3.3,  
5, 7  
179  
219  
250  
320  
400  
500  
33  
33  
24  
5
5
5
19.1  
13.3  
8.25  
400, 500,  
550  
500, 550  
47  
5,7  
47  
7
550  
*
Bulk capacitance is optional if V has very low input impedance.  
IN  
Additional Bulk Capacitance may be required for ≤ 3.3V input  
Depends on Source Impedance  
Table 7. Recommended Heat Sinks  
HEAT SINK MANUFACTURER  
AAVID Thermalloy  
PART NUMBER  
WEBSITE  
375424B00034G  
www.aavidthermalloy.com  
www.coolinnovations.com  
Cool Innovations  
4-050503P to 4-050508P  
4639f  
24  
For more information www.linear.com/LTM4639  
LTM4639  
APPLICATIONS INFORMATION  
Safety Considerations  
• Use large PCB copper areas for high current paths,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
TheLTM4639doesnotprovidegalvanicisolationfromV  
IN  
PCB conduction loss and thermal stress.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
• Place high frequency ceramic input and output  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
capacitors next to the V , GND and V  
pins to  
IN  
OUT  
minimize high frequency noise.  
The fuse or circuit breaker should be selected to limit the  
current to the regulator during overvoltage in case of an  
internal top MOSFET fault. If the internal top MOSFET  
fails, then turning it off will not resolve the overvoltage,  
thus the internal bottom MOSFET will turn on indefinitely  
trying to protect the load. Under this fault condition, the  
input voltage will source very large currents to ground  
throughthefailedinternaltopMOSFETandenabledinternal  
bottomMOSFET. Thiscancauseexcessiveheatandboard  
damage depending on how much power the input voltage  
can deliver to this system. A fuse or circuit breaker can be  
used as a secondary fault protector in this situation. The  
LTM4639doessupportovervoltageprotection,overcurrent  
protection and overtemperature protection.  
• Place a dedicated power ground layer underneath the  
unit.  
• To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
• Do not put vias directly on the pad, unless they are  
capped or plated over.  
• Place test points on signal pins for testing.  
• Use a separated SGND ground copper area for  
components connected to signal pins. Connect the  
SGND to GND underneath the unit.  
• For parallel modules, tie the COMP and V pins  
FB  
Layout Checklist/Eꢁample  
together. Use an internal layer to closely connect these  
pins together.  
The high integration of the LTM4639 makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout  
considerations are still necessary.  
Figure21givesagoodexampleoftherecommendedlayout.  
C
CONTROL  
PWR  
C1  
V
IN  
COMPA COMPB  
A1  
C
C
IN  
IN  
OT_TEST  
PGND  
+
TEMP  
TEMP  
SIGNAL  
GROUND  
C
C
OUT  
OUT  
V
OUT  
V
OUT  
4639 F21  
Figure 21. Recommended PCB Layout  
4639f  
25  
For more information www.linear.com/LTM4639  
LTM4639  
TYPICAL APPLICATIONS  
INTV  
+5V BIAS  
CC  
V
IN  
2.2µF  
2.375V TO 7V  
1µF  
C
IN  
22µF  
25V  
×4  
180pF*  
C7  
INTV  
CC  
V
C
EXTV INTV PGOOD  
0.1µF  
IN PWR  
CC  
CC  
V
CC  
V
1.5V  
20A  
OUT  
R1  
10k  
+
COMPA  
COMPB  
TRACK/SS  
RUN  
1.8V  
D
D
V
V
REF  
OUT  
OUT_LCL  
0.1µF  
LTC2997  
+
C
*
C
*
OUT1  
OUT2  
V
470pF  
680µF  
2.5V  
×2  
100µF  
6.3V  
×2  
C
*
FF  
DIFF_OUT  
+
V
4mV/K  
R3  
LTM4639  
180pF  
PTAT  
GND  
V
OSNS  
f
SET  
V
OSNS  
MODE_PLLIN  
CONTINUOUS  
MODE  
100k  
V
FB  
C30*  
22pF  
+
R
*
FB  
TEMP  
40.2k  
TEMP  
SGND  
GND OT_TEST  
*SEE TABLE 5  
4639 F22  
Figure 22. 2.375V to 7VIN, 1.5V at 20A Design  
4639f  
26  
For more information www.linear.com/LTM4639  
LTM4639  
TYPICAL APPLICATIONS  
4639f  
27  
For more information www.linear.com/LTM4639  
LTM4639  
TYPICAL APPLICATIONS  
2.2µF  
+5V BIAS  
V
IN  
3.3V TO 7V  
+
C20  
22µF  
16V  
C22  
22µF  
16V  
INTV  
220µF  
6.3V  
CC  
V
OUT  
180pF  
V
C
EXTV INTV  
CC  
1.2V AT 80A  
PGOOD  
IN PWR  
CC  
V
R1  
10k  
COMPA  
COMPB  
TRACK/SS  
RUN  
C28  
0.22µF  
V
OUT  
C24  
100µF  
6.3V  
×2  
OUT_LCL  
C21  
680µF  
2.5V  
×2  
+
DIFF_OUT  
+
LTM4639  
470pF  
V
OSNS  
f
SET  
V
OSNS  
V
MODE_PLLIN  
+
75k  
FB  
TEMP  
R
INTV  
FB2 22pF  
15k  
CC  
TEMP  
SGND  
GND OT_TEST  
R2  
143k  
4-PHASE CLOCK  
+
SET  
V
2.2µF  
LTC6902  
C2  
1µF  
+5V BIAS  
MOD  
GND  
DIV  
PH  
C14  
22µF  
16V  
C18  
22µF  
16V  
22µF  
25V  
V
C
EXTV INTV  
PGOOD  
IN PWR  
CC  
CC  
COMPA  
COMPB  
TRACK/SS  
RUN  
OUT4  
OUT3  
OUT1  
OUT2  
V
OUT  
OUT_LCL  
C15  
C18  
100µF  
6.3V  
×2  
V
+
680µF  
2.5V  
×2  
DIFF_OUT  
+
LTM4639  
350kHz  
V
OSNS  
f
SET  
V
OSNS  
V
MODE_PLLIN  
+
75k  
75k  
75k  
FB  
TEMP  
TEMP  
SGND  
GND OT_TEST  
2.2µF  
+5V BIAS  
C7  
22µF  
16V  
C9  
22µF  
16V  
V
C
EXTV INTV  
PGOOD  
IN PWR  
CC  
CC  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
C8  
C11  
100µF  
6.3V  
×2  
V
+
680µF  
2.5V  
×2  
DIFF_OUT  
+
LTM4639  
V
OSNS  
f
SET  
V
OSNS  
V
MODE_PLLIN  
+
FB  
TEMP  
TEMP  
SGND  
GND OT_TEST  
2.2µF  
+5V BIAS  
C3  
22µF  
16V  
C1  
22µF  
16V  
22µF  
25V  
V
C
EXTV INTV  
PGOOD  
IN PWR  
CC  
CC  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
C4  
C6  
V
+
680µF  
2.5V  
×2  
100µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4639  
V
OSNS  
f
SET  
V
OSNS  
V
MODE_PLLIN  
+
FB  
TEMP  
TEMP  
SGND  
GND OT_TEST  
4639 F24  
Figure 24. 1.2V, 80A, Current Sharing with 4-Phase Operation  
4639f  
28  
For more information www.linear.com/LTM4639  
LTM4639  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Pin Assignment Table (Arranged by Pin Number)  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION PIN ID FUNCTION  
PIN ID  
F1  
FUNCTION  
GND  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
V
V
V
V
V
V
V
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
E1  
E2  
GND  
GND  
GND  
GND  
GND  
TEMP  
GND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A2  
B2  
C2  
D2  
F2  
GND  
A3  
B3  
C3  
D3  
E3  
F3  
GND  
A4  
B4  
C4  
D4  
E4  
F4  
GND  
A5  
B5  
C5  
D5  
E5  
F5  
GND  
+
A6  
B6  
C6  
D6  
E6  
F6  
TEMP  
A7  
INTV  
B7  
C
PWR  
C7  
GND  
D7  
E7  
F7  
GND  
GND  
GND  
CC  
A8  
MODE_PLLIN  
TRACK/SS  
RUN  
B8  
C8  
D8  
GND  
E8  
F8  
A9  
B9  
OT_TEST  
C9  
GND  
MTP2  
MTP3  
MTP4  
D9  
INTV  
E9  
GND  
F9  
CC  
A10  
A11  
A12  
B10  
B11  
B12  
C10  
C11  
C12  
D10  
D11  
D12  
MTP5  
MTP6  
MTP7  
E10  
E11  
E12  
F10  
F11  
F12  
COMPA  
MTP1  
PGOOD  
COMPB  
f
EXTV  
V
FB  
SET  
CC  
PIN ID  
G1  
FUNCTION  
GND  
PIN ID  
H1  
FUNCTION  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION PIN ID FUNCTION  
PIN ID  
M1  
FUNCTION  
V
V
V
V
V
V
V
V
V
V
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
L2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G2  
GND  
H2  
J2  
K2  
M2  
G3  
GND  
H3  
J3  
K3  
L3  
M3  
G4  
GND  
H4  
J4  
K4  
L4  
M4  
G5  
GND  
H5  
J5  
K5  
L5  
M5  
G6  
GND  
H6  
J6  
K6  
L6  
M6  
G7  
GND  
H7  
J7  
K7  
L7  
M7  
G8  
GND  
H8  
J8  
K8  
L8  
M8  
G9  
GND  
H9  
J9  
K9  
L9  
M9  
G10  
G11  
G12  
H10  
H11  
H12  
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
OUT  
SGND  
PGOOD  
SGND  
SGND  
V
+
OSNS  
DIFF_OUT  
V
V
OSNS  
OUT_LCL  
4639f  
29  
For more information www.linear.com/LTM4639  
LTM4639  
PACKAGE PHOTO  
2.2µF  
V
IN  
7V  
22µF  
10V  
×4  
C
COMPA  
V
C
EXTV INTV PGOOD  
IN PWR  
CC  
CC  
V
180pF  
OUT  
5V  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
20A  
0.1µF  
V
5k  
+
22µF  
6.3V  
150µF  
6.3V  
DIFF_OUT  
+
LTM4639  
V
OSNS  
f
SET  
V
OSNS  
140k  
MODE_PLLIN  
V
FB  
+
TEMP  
C
R
BOT  
FB  
TEMP  
SGND  
GND OT_TEST  
22pF  
8.25k  
4639 F25  
Figure 25. 7VIN, 5V at 20A Design  
4639f  
30  
For more information www.linear.com/LTM4639  
LTM4639  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4639f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
31  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4639  
TYPICAL APPLICATION  
1.8V at 20A Design with Input Current and Temperature Monitoring  
C
IN  
R
22µF  
25V  
×4  
S
C
P
20k  
100pF  
V
C
EXTV INTV PGOOD  
IN PWR  
CC  
CC  
V
C
OUT  
S
1.8V  
1200pF  
COMPA  
COMPB  
TRACK/SS  
RUN  
V
OUT  
OUT_LCL  
C7  
0.1µF  
C4  
AT 20A  
R1  
5k  
V
220µF  
6.3V  
X5R  
×6  
10mΩ  
MEASURE I  
0.1µF  
IN  
+5V INPUT  
DIFF_OUT  
+
C
FF  
LTM4639  
68pF  
V
OSNS  
f
V
V1  
V2  
SET  
CC  
R3  
CONTINUOUS MODE  
V
OSNS  
V
2-WIRE  
MODE_PLLIN  
SDA  
SCL  
125k  
2
I C  
LTC2990  
FB  
+
C
22pF  
TEMP  
INTERFACE  
BOT  
R
V3  
V4  
FB  
ADR0  
TEMP  
SGND  
GND OT_TEST  
30.1k  
470pF  
ADR1 GND  
4639 TA02  
MEASURE TEMP  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4637  
Higher V Range Than the LTM4639  
4.5V ≤ V ≤ 20V, 20A  
IN  
IN  
LTM4611  
Lower V Range Than the LTM4639  
1.5V ≤ V ≤ 5.5V,15A, Auxiliary V  
Not Required  
IN  
IN  
BIAS  
LTM4644  
Quad Output, 4A Each  
Triple Output, 4A, 4A, 1.5A  
Dual Output, 8A Each  
2.375V ≤ V ≤ 14V, Low V Required Auxiliary V  
, Current Share to 16A  
IN  
IN  
BIAS  
LTM4615  
2.375V ≤ V ≤ 5.5V, Auxiliary V  
Not Required  
IN  
BIAS  
LTM4616  
2.7V ≤ V ≤ 5.5V, Current Share to 16A, Auxiliary V  
Not Required  
IN  
BIAS  
LTM4608A  
Lower I  
and Smaller Package Than the LTM4639  
2.7V ≤ V ≤ 5.5V, 8A, 9mm × 15mm × 2.8mm  
IN  
OUT  
4639f  
LT 0914 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4639  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTM4641

38V, 10A DC/DC μModule Regulator with Advanced Input and Load Protection
Linear

LTM4641IY

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4641IY#PBF

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4641MPY

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4641MPY#PBF

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4642

Dual 10A or Single 20A μModule Regulator
Linear

LTM4642EY#PBF

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC &#181;Module Regulator; Package: BGA; Pins: 56; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4642IY#PBF

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC &#181;Module Regulator; Package: BGA; Pins: 56; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643

Ultrathin Quad μModule Regulator with Configurable 3A Output Array
Linear

LTM4643

20VIN, Dual 5A or Single 10A Step-Down DC/DC μModule Regulator
ADI

LTM4643EV#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643EY#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear