LTM8025MPVPBF [Linear]

36V, 3A Step-Down μModule Converter; 36V , 3A降压型μModule转换器
LTM8025MPVPBF
型号: LTM8025MPVPBF
厂家: Linear    Linear
描述:

36V, 3A Step-Down μModule Converter
36V , 3A降压型μModule转换器

转换器
文件: 总20页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8025  
36V, 3A Step-Down  
µModule Converter  
FEATURES  
DESCRIPTION  
The LTM®8025 is a 36V , 3A step down μModule® con-  
n
Complete Step-Down Switch Mode Power Supply  
IN  
n
Wide Input Voltage Range: 3.6V to 36V  
verter.Includedinthepackagearetheswitchingcontroller,  
power switches, inductor and all support components.  
Operating over an input voltage range of 3.6V to 36V, the  
LTM8025 supports an output voltage range of 0.8V to 24V  
and a switching frequency range of 200kHz to 2.4MHz,  
eachsetbyasingleresistor. Onlythebulkinputandoutput  
filter capacitors are needed to finish the design.  
n
Up to 3A Output Current  
n
Parallelable for Increased Output Current  
n
0.8V to 24V Output Voltage  
n
Selectable Switching Frequency: 200kHz to 2.4MHz  
n
Current Mode Control  
n
(e4) RoHS Compliant Package with Gold Pad Finish  
n
Programmable Soft-Start  
The low profile package (4.32mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation.  
n
Tiny, Low Profile (15mm × 9mm × 4.32mm) Surface  
Mount LGA Package  
TheLTM8025ispackagedinathermallyenhanced,compact  
(15mm × 9mm) and low profile (4.32mm) over-molded  
land grid array (LGA) package suitable for automated  
assembly by standard surface mount equipment. The  
LTM8025 is RoHS compliant.  
APPLICATIONS  
n
Automotive Battery Regulation  
n
Power for Portable Products  
n
Distributed Supply Regulation  
Industrial Supplies  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Wall Transformer Regulation  
TYPICAL APPLICATION  
Efficiency  
100  
V
= 24V  
IN  
V
*
V
OUT  
IN  
V
V
OUT  
90  
80  
70  
60  
50  
40  
IN  
22V TO 36V  
12V AT 3A  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
4.7μF  
SHARE  
RT  
22μF  
ADJ  
SYNC GND  
47.5k  
34.8k  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8025 TA01a  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8025 TA01b  
8025f  
1
LTM8025  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
1
2
3
4
5
6
7
V , RUN/SS Voltage.................................................36V  
IN  
V
OUT  
GND  
ADJ, RT, SHARE Voltage.............................................6V  
A
B
C
D
E
F
V
, AUX.................................................................25V  
OUT  
BANK 1  
BANK 2  
PGOOD, SYNC...........................................................30V  
BIAS..........................................................................25V  
V + BIAS.................................................................56V  
IN  
Maximum Junction Temperature (Note 2) ............ 125°C  
RT  
G
H
J
Solder Temperature............................................... 245°C  
SHARE  
PGOOD  
ADJ  
AUX  
BIAS  
K
L
BANK 3  
V
RUN/SS SYNC  
LGA PACKAGE  
IN  
70-PIN (15mm s 9mm s 4.32mm)  
T
= 125°C, θ = 24.4°C/W, θ = 11.5°C/W,  
JMAX  
JA  
JC(BOTTOM)  
θ
= 42.7°C/W, θ = 18.7°C/W  
JC(TOP)  
JB  
θ VALUES DETERMINED PER JESD51-9, MAX OUTPUT POWER  
WEIGHT = 1.8 GRAMS  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM8025EV#PBF  
LTM8025IV#PBF  
LTM8025MPV#PBF  
TRAY  
PART MARKING  
8025V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM8025EV#PBF  
LTM8025IV#PBF  
LTM8025MPV#PBF  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
70-Lead (15mm × 9mm × 4.32mm) LGA  
70-Lead (15mm × 9mm × 4.32mm) LGA  
70-Lead (15mm × 9mm × 4.32mm) LGA  
8025V  
8025MPV  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN/SS = 12V, BIAS = 3V unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
3.6  
V
0 < I  
0 < I  
≤ 3A; R  
≤ 3A; R  
Open  
0.8  
24  
V
V
OUT  
OUT  
ADJ  
ADJ  
= 16.9k; V = 32V  
IN  
Output DC Current  
V
OUT  
= 3.3V  
0
3
A
Quiescent Current into V  
RUN/SS = 0V  
Not Switching  
BIAS = 0V, Not Switching  
0.01  
25  
85  
1
μA  
μA  
μA  
IN  
60  
150  
Quiescent Current into BIAS  
RUN/SS = 0V  
0.01  
65  
0
0.5  
120  
5
μA  
μA  
μA  
Not Switching  
BIAS = 0V, Not Switching  
Line Regulation  
Load Regulation  
5.5V < V < 36V, I  
= 1A  
0.3  
0.4  
%
%
IN  
OUT  
0A < I  
< 3A  
OUT  
8025f  
2
LTM8025  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN/SS = 12V, BIAS = 3V unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
0A < I < 3A  
MIN  
TYP  
10  
MAX  
UNITS  
mV  
Output Voltage Ripple (RMS)  
Switching Frequency  
Voltage (at ADJ Pin)  
OUT  
R = 45.3k  
T
775  
790  
kHz  
775  
770  
805  
810  
mV  
mV  
l
Current Out of ADJ Pin  
ADJ = 0V, V  
= 1V  
2
2
5
μA  
V
OUT  
Minimum BIAS Voltage for Proper Operation  
RUN/SS Pin Current  
2.8  
10  
RUN/SS = 2.5V  
μA  
V
RUN Input High Voltage  
RUN Input Low Voltage  
2.5  
0.2  
1
V
PGOOD Threshold (at ADJ Pin)  
PGOOD Leakage Current  
PGOOD Sink Current  
V
OUT  
Rising  
710  
0.1  
mV  
μA  
μA  
V
PGOOD = 30V  
PGOOD = 0.4V  
200  
0.7  
700  
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
f
f
= 550kHz  
= 550kHz  
0.5  
SYNC  
SYNC  
V
SYNC = 0V  
0.1  
μA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8025E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM8025I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. The LTM8025MP is  
guaranteed to meet specifications over the full –55°C to 125°C internal  
operating temperature range. Note that the maximum internal temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
8025f  
3
LTM8025  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5VOUT Efficiency  
3.3VOUT Efficiency  
5VOUT Efficiency  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
5V  
5.5V  
IN  
IN  
12V  
24V  
32V  
12V  
24V  
32V  
12V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
50  
40  
IN  
IN  
IN  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G01  
8025 G02  
8025 G03  
8VOUT Efficiency  
12VOUT Efficiency  
18VOUT Efficiency  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
12V  
24V  
32V  
16V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
32V  
IN  
IN  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G04  
8025 G05  
8025 G06  
Bias Current vs Load Current  
2.5VOUT  
Bias Current vs Load Current  
3.3VOUT  
Bias Current vs Load Current  
5VOUT  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
12V  
24V  
12V  
24V  
12V  
24V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G07  
8025 G08  
8025 G09  
8025f  
4
LTM8025  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Bias Current vs Load Current  
8VOUT  
Bias Current vs Load Current  
12VOUT  
Bias Current vs Load Current  
18VOUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
12V  
24V  
IN  
IN  
24V  
IN  
24V  
IN  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
500  
1000  
1500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G10  
8025 G11  
8025 G12  
Input Current vs Load Current  
2.5VOUT  
Input Current vs Load Current  
3.3VOUT  
Input Current vs Load Current  
5VOUT  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5V  
5.5V  
12V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
12V  
24V  
32V  
12V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G13  
8025 G14  
8025 G15  
Input Current vs Load Current  
8VOUT  
Input Current vs Load Current  
12VOUT  
Input Current vs Load Current  
18VOUT  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
12V  
24V  
32V  
16V  
24V  
32V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G16  
8025 G17  
8025 G18  
8025f  
5
LTM8025  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Current vs Input Voltage  
Output Shorted  
Minimum Input Running Voltage  
vs VOUT, IOUT = 3A  
Minimum Input Voltage vs Load  
Current, 3.3VOUT  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
5
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
TO RUN  
TO START  
RUN/SS CONTROLLED  
0
0
10  
20  
30  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
1000  
2000  
3000  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
8025 G19  
8025 G20  
8025 G21  
Minimum Input Voltage vs Load  
Current, 5VOUT  
Minimum Input Voltage vs Load  
Current, 8VOUT  
Minimum Input Voltage vs Load  
Current, 12VOUT  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
11.0  
10.5  
10.0  
9.5  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
TO RUN  
TO START  
RUN/SS CONTROLLED  
TO RUN  
TO START  
RUN/SS CONTROLLED  
TO RUN  
TO START  
RUN/SS CONTROLLED  
9.0  
8.5  
8.0  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G22  
8025 G23  
8025 G24  
Minimum Input Voltage vs Load  
Current, 18VOUT  
Minimum Input Voltage vs Load  
Current, –3.3VOUT  
Minimum Input Voltage vs Load  
Current, –5VOUT  
10  
9
8
7
6
5
4
3
2
1
0
14  
12  
10  
8
TO RUN  
TO START  
RUN/SS CONTROLLED  
TO RUN  
TO START  
RUN/SS CONTROLLED  
32  
27  
22  
17  
12  
6
4
TO RUN  
TO START  
RUN/SS CONTROLLED  
2
0
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
1000  
2000  
3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G25  
8025 G26  
8025 G27  
8025f  
6
LTM8025  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Minimum Input Voltage vs Load  
Current, –8VOUT  
Minimum Input Voltage vs Load  
Minimum Input Voltage vs  
Current, –12VOUT  
Negative VOUT  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
TO RUN  
TO START  
RUN/SS CONTROLLED  
TO RUN  
TO START  
RUN/SS CONTROLLED  
1A  
2A  
3A  
0
0
0
0
1000  
2000  
3000  
0
1000  
2000  
3000  
0
–5  
–10  
–15  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE (V)  
8025 G28  
8025 G29  
8025 G13  
Junction Temperature Rise vs  
Load Current, 2.5VOUT  
Junction Temperature Rise vs  
Load Current, 3.3VOUT  
Junction Temperature Rise vs  
Load Current, 5VOUT  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5V  
5V  
12V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
12V  
24V  
32V  
12V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0
0
500 1000 1500 2000 2500 3000 3500  
0
500 1000 1500 2000 2500 3000 3500  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G31  
8025 G32  
8025 G33  
Junction Temperature Rise vs  
Load Current, 8VOUT  
Junction Temperature Rise vs  
Load Current, 12VOUT  
Junction Temperature Rise vs  
Load Current, 18VOUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
12V  
24V  
32V  
16V  
24V  
32V  
24V  
32V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
500 1000 1500 2000 2500 3000 3500  
0
500 1000 1500 2000 2500 3000  
0
500  
1000  
1500  
2000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8025 G34  
8025 G35  
8025 G36  
8025f  
7
LTM8025  
PIN FUNCTIONS  
V
(Bank 1): Power Output Pins. Apply the output filter  
RUN/SS (Pin L5): Pull the RUN/SS pin below 0.2V to  
shut down the LTM8025. Tie to 2.5V or more for normal  
operation. If the shutdown feature is not used, tie this pin  
OUT  
capacitor and the output load between these pins and  
GND pins.  
to the V pin. RUN/SS also provides a soft-start function;  
IN  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8025 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8025  
is through these pads, so the printed circuit design has  
a large impact on the thermal performance of the part.  
See the PCB Layout and Thermal Considerations sections  
see the Applications Information section.  
SYNC (Pin L6): This is the external clock synchronization  
input. Ground this pin for low ripple Burst Mode operation  
at low output loads. Tie to a stable voltage source greater  
than 0.7V to disable Burst Mode operation. Do not leave  
this pin floating. Tie to a clock source for synchroniza-  
tion. Clock edges should have rise and fall times faster  
than 1ꢀs. See the Synchronization section in Applications  
Information.  
for more details. Return the feedback divider (R ) to  
this net.  
ADJ  
V (Bank3):TheV pinsuppliescurrenttotheLTM8025’s  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
RT (Pin G7): The RT pin is used to program the switching  
frequency of the LTM8025 by connecting a resistor from  
this pin to ground. Table 2 gives the resistor values that  
correspondtotheresultantswitchingfrequency.Minimize  
the capacitance at this pin.  
AUX (Pin G5): Low Current Voltage Source for BIAS. In  
many designs, the BIAS pin is simply connected to V  
.
OUT  
and is placed  
The AUX pin is internally connected to V  
OUT  
adjacent to the BIAS pin to ease printed circuit board rout-  
SHARE (Pin H7): Tie this to the SHARE pin of another  
LTM8025 when paralleling the outputs. Otherwise, do  
not connect.  
ing. Although this pin is internally connected to V , it  
OUT  
is not intended to deliver a high current, so do not draw  
current from this pin to the load. If this pin is not tied to  
BIAS, leave it floating.  
PGOOD (Pin J7): The PGOOD pin is the open-collector  
output of an internal comparator. PGOOD remains low  
until the ADJ pin is within 10% of the final regulation  
BIAS(PinH5):TheBIASpinconnectstotheinternalpower  
bus. Connect to a power source greater than 2.8V and less  
than 25V. If the output is greater than 2.8V, connect this  
pin there. If the output voltage is less, connect this to a  
voltage source between 2.8V and 25V. Also, make sure  
voltage. PGOOD output is valid when V is above 3.6V  
IN  
and RUN/SS is high. If this function is not used, leave  
this pin floating.  
ADJ (Pin K7): The LTM8025 regulates its ADJ pin to 0.79V.  
Connect the adjust resistor from this pin to ground. The  
that BIAS + V is less than 56V.  
IN  
valueofR isgivenbytheequationR =394.21/(V  
ADJ  
ADJ  
OUT  
– 0.79), where R  
is in kΩ.  
ADJ  
8025f  
8
LTM8025  
BLOCK DIAGRAM  
V
V
OUT  
8.2μH  
15pF  
IN  
499k  
AUX  
0.2μF  
4.4μF  
BIAS  
RUN/SS  
SHARE  
SYNC  
CURRENT  
MODE  
CONTROLLER  
GND  
RT  
PGOOD  
ADJ  
8025 BD  
OPERATION  
The LTM8025 is a standalone nonisolated step-down  
switching DC/DC power supply that can deliver up to 3A of  
outputcurrent.Thismoduleprovidesapreciselyregulated  
output voltage programmable via one external resistor  
from 0.8V to 25V. The input voltage range is 3.6V to 36V.  
Given that the LTM8025 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desired output voltage and load current.  
To further optimize efficiency, the LTM8025 automatically  
switchestoBurstMode® operationinlightloadsituations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down reducing the input supply  
current to 50ꢀA in a typical application.  
TheoscillatorreducestheLTM8025’soperatingfrequency  
when the voltage at the ADJ pin is low. This frequency  
foldback helps to control the output current during start-  
up and overload.  
As shown in the Block Diagram, the LTM8025 contains a  
current mode controller, power switching element, power  
inductor, power Schottky diode and a modest amount of  
input and output capacitance. The LTM8025 is a fixed  
frequency PWM regulator. The switching frequency is set  
by simply connecting the appropriate resistor value from  
the RT pin to GND.  
The LTM8025 contains a power good comparator which  
trips when the ADJ pin is at roughly 90% of its regulated  
value.ThePGOODoutputisanopen-collectortransistorthat  
is off when the output is in regulation, allowing an external  
resistor to pull the PGOOD pin high. Power good is valid  
when the LTM8025 is enabled and V is above 3.6V.  
IN  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The bias regulator normally draws power from the V  
The LTM8025 is equipped with a thermal shutdown that  
will inhibit power switching at high junction tempera-  
tures. The activation threshold of this function, however,  
is above 125°C to avoid interfering with normal operation.  
Thus, prolonged or repetitive operation under a condition  
in which the thermal shutdown activates may damage or  
impair the reliability of the device.  
IN  
pin, but if the BIAS pin is connected to an external volt-  
age higher than 2.8V, bias power will be drawn from the  
external source (typically the regulated output voltage).  
This improves efficiency. The RUN/SS pin is used to place  
the LTM8025 in shutdown, disconnecting the output and  
reducing the input current to less than 1ꢀA.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
8025f  
9
LTM8025  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. Apply the recommended C , C , R and R values.  
IN OUT ADJ  
T
3. Connect BIAS as indicated.  
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8025’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8025 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
The maximum frequency (and attendant R value) at  
T
which the LTM8025 should be allowed to switch is given  
in Table 1 in the f  
column, while the recommended  
MAX  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8025. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8025 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
OPTIMAL  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Capacitor Selection Considerations  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
Frequency Selection  
The LTM8025 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 200kHz to  
2.4MHz by using a resistor tied from the RT pin to ground.  
Table 2 provides a list of R resistor values and their re-  
T
sultant frequencies.  
8025f  
10  
LTM8025  
APPLICATIONS INFORMATION  
Table 1: Recommended Component Values and Configuration (TA = 25°C)  
V
V
C
C
R
BIAS  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
AUX  
f
R
f
R
T(MIN)  
IN  
OUT  
IN  
OUT  
ADJ  
OPTIMAL  
T(OPTIMAL)  
MAX  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
4.1V to 36V  
5.3V to 36V  
7.5V to 36V  
10.5V to 36V  
16V to 36V  
23V to 36V  
31V to 36V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
4.1V to 15V  
5.3V to 15V  
7.5V to 15V  
10.5V to 15V  
9V to 24V  
0.8V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
10μF, 50V, 1210  
10μF, 50V, 1210  
10μF, 50V, 1210  
4.7μF, 50V, 1206  
4.7μF, 50V, 1206  
4.7μF, 50V, 1206  
4.7μF, 50V, 1206  
2.2μF, 50V, 1206  
2.2μF, 50V, 1206  
F, 50V, 1206  
Open  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
22.6k  
16.5k  
Open  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
Open  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
22.6k  
Open  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
154k  
93.1k  
54.9k  
34.8k  
230kHz  
270kHz  
285kHz  
300kHz  
345kHz  
425kHz  
550kHz  
760kHz  
800kHz  
1MHz  
182k  
154k  
147k  
137k  
118k  
93.1k  
69.8k  
47.5k  
44.2k  
34k  
250kHz  
360kHz  
420kHz  
540kHz  
675kHz  
950kHz  
1.45MHz  
2.3MHz  
2.4MHz  
2.4MHz  
575kHz  
840kHz  
1.0MHz  
1.3MHz  
1.6MHz  
2.4MHz  
2.4MHz  
360kHz  
550kHz  
620kHz  
800kHz  
1MHz  
169k  
113k  
95.3k  
71.5k  
54.9k  
36.5k  
20.5k  
9.09k  
8.25k  
8.25k  
66.5k  
42.2k  
34k  
4× 100μF, 6.3V, 1210  
4× 100μF, 6.3V, 1210  
3× 100μF, 6.3V, 1210  
2× 100μF, 6.3V, 1210  
100μF, 6.3V, 1210  
100μF, 6.3V, 1206  
47μF, 16V, 1210  
AUX  
8V  
AUX  
12V  
18V  
24V  
0.8V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
22μF, 16V, 1210  
AUX  
22μF, 25V, 1812  
AUX  
22μF, 25V, 1812  
2.8V to 25V  
10μF, 25V, 1210  
10μF, 25V, 1210  
10μF, 25V, 1210  
4.7μF, 16V, 1206  
4.7μF, 16V, 1206  
4.7μF, 16V, 1206  
2.2μV, 25V, 1206  
4.7μF, 25V, 1206  
4.7μF, 25V, 1206  
4.7μF, 25V, 1206  
4.7μF, 25V, 1206  
4.7μF, 25V, 1206  
4.7μF, 25V, 1206  
2.2μF, 25V, 1206  
2.2μF, 50V, 1206  
2.2μF, 50V, 1206  
F, 50V, 1206  
V
IN  
230kHz  
270kHz  
285kHz  
300kHz  
345kHz  
425kHz  
550kHz  
270kHz  
310kHz  
330kHz  
345kHz  
425kHz  
500kHz  
590kHz  
760kHz  
800kHz  
230kHz  
270kHz  
300kHz  
345kHz  
385kHz  
500kHz  
550kHz  
760kHz  
345kHz  
425kHz  
550kHz  
760kHz  
182k  
154k  
147k  
137k  
118k  
93.1k  
69.8k  
154k  
133k  
124k  
118k  
93.1k  
76.8k  
64.9k  
47.5k  
44.2k  
182k  
154k  
137k  
118k  
105k  
76.8k  
69.8k  
47.5k  
118k  
93.1k  
69.8k  
47.5k  
4× 100μF, 6.3V, 1210  
4× 100μF, 6.3V, 1210  
4× 100μF, 6.3V, 1210  
2× 100μF, 6.3V, 1210  
100μF, 6.3V, 1206  
100μF, 6.3V, 1206  
47μF, 16V, 1210  
V
IN  
V
IN  
V
23.7k  
17.8k  
8.25k  
8.25k  
113k  
69.8k  
60.4k  
44.2k  
34k  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
8V  
0.8V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
4× 100μF, 6.3V, 1210  
4× 100μF, 6.3V, 1210  
3× 100μF, 6.3V, 1210  
100μF, 6.3V, 1206  
100μF, 6.3V, 1206  
47μF, 16V, 1210  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
AUX  
AUX  
9V to 24V  
1.4MHz  
2.2MHz  
2.3MHz  
2.4MHz  
250kHz  
360kHz  
420kHz  
540kHz  
675kHz  
950kHz  
1.45MHz  
2.3MHz  
675kHz  
950kHz  
1.45MHz  
2.3MHz  
21.5k  
9.76k  
9.09k  
8.25k  
169k  
113k  
95.3k  
71.5k  
54.9k  
36.5k  
20.5k  
9.09k  
54.9k  
36.5k  
20.5k  
9.09k  
10.5V to 24V  
16V to 24V  
23V to 24V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
8V  
22μF, 16V, 1210  
AUX  
12V  
18V  
0.8V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
22μF, 16V, 1210  
AUX  
22μF, 25V, 1812  
AUX  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
AUX  
4× 100μF, 6.3V, 1210  
4× 100μF, 6.3V, 1210  
3× 100μF, 6.3V, 1210  
100μF, 6.3V, 1206  
100μF, 6.3V, 1206  
47μF, 16V, 1210  
F, 50V, 1206  
F, 50V, 1206  
F, 50V, 1206  
F, 50V, 1206  
F, 50V, 1206  
AUX  
8V  
2.2μF, 50V, 1206  
2.2μF, 50V, 1206  
22μF, 16V, 1210  
AUX  
12V  
22μF, 16V, 1210  
AUX  
4.75V to 32V –3.3V 4.7μF, 50V, 1206  
100μF, 6.3V, 1210  
100μF, 6.3V, 1210  
47μF, 16V, 1210  
AUX  
7V to 31V  
15V to 28V  
20V to 24V  
–5V  
–8V  
4.7μF, 50V, 1206  
4.7μF, 50V, 1206  
4.7μF, 50V, 1206  
AUX  
AUX  
–12V  
22μF, 16V, 1210  
AUX  
Note: An input bulk capacitance is required. Do not allow V + BIAS to exceed 56V. Refer to the Typical Performance Characteristics section for load  
IN  
conditions.  
8025f  
11  
LTM8025  
APPLICATIONS INFORMATION  
Table 2. Switching Frequency vs RT Value  
dependent upon many factors, such as load current, input  
voltage, output voltage and switching frequency, but 4V to  
5V works well in many applications. In all cases, ensure  
that the maximum voltage at the BIAS pin is less than 25V  
SWITCHING FREQUENCY  
0.2MHz  
R VALUE  
T
215kꢁ  
137kꢁ  
100kꢁ  
76.8kꢁ  
63.4kꢁ  
52.3kꢁ  
44.2kꢁ  
38.3kꢁ  
34.0kꢁ  
26.7kꢁ  
21.5kꢁ  
17.8kꢁ  
14.7kꢁ  
12.1kꢁ  
9.76kꢁ  
8.25kꢁ  
0.3MHz  
and that the sum of V and BIAS is less than 56V. If BIAS  
IN  
0.4MHz  
power is applied from a remote or noisy voltage source, it  
may be necessary to apply a decoupling capacitor locally  
to the pin.  
0.5MHz  
0.6MHz  
0.7MHz  
0.8MHz  
Load Sharing  
0.9MHz  
TwoormoreLTM8025’smaybeparalleledtoproducehigher  
1MHz  
currents. To do this, tie the V , ADJ, V  
and SHARE  
IN  
OUT  
1.2MHz  
pins of all the paralleled LTM8025’s together. To ensure  
thatparalleledmodulesstartuptogether, theRUN/SSpins  
may be tied together, as well. If the RUN/SS pins are not  
tied together, make sure that the same valued soft-start  
capacitors are used for each module. Current sharing can  
be improved by synchronizing the LTM8025s. An example  
of two LTM8025s configured for load sharing is given in  
the Typical Applications section.  
1.4MHz  
1.6MHz  
1.8MHz  
2MHz  
2.2MHz  
2.4MHz  
Operating Frequency Tradeoffs  
Burst Mode Operation  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8025 is flexible enough to accommodate a wide range  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8025 if the output is overloaded or short circuited.  
A frequency that is too low can result in a final design  
that has too much output ripple or too large of an output  
capacitor.  
To enhance efficiency at light loads, the LTM8025 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizingtheinputquiescentcurrent.DuringBurstMode  
operation, the LTM8025 delivers single cycle bursts of  
current to the output capacitor followed by sleep periods  
wheretheoutputpowerisdeliveredtotheloadbytheoutput  
capacitor. In addition, V and BIAS quiescent currents are  
IN  
each reduced to microamps during the sleep time. As the  
load current decreases towards a no load condition, the  
percentage of time that the LTM8025 operates in sleep  
mode increases and the average input current is greatly  
reduced, resulting in higher efficiency.  
BIAS Pin Considerations  
BurstModeoperationisenabledbytyingSYNCtoGND. To  
disable Burst Mode operation, tie SYNC to a stable voltage  
above 0.7V. Do not leave the SYNC pin floating.  
The BIAS pin is used to provide drive power for the in-  
ternal power switching stage and operate other internal  
circuitry. For proper operation, it must be powered by at  
least 2.8V. If the output voltage is programmed to 2.8V  
Minimum Input Voltage  
or higher, BIAS may be simply tied to AUX. If V  
is less  
OUT  
The LTM8025 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. In addition, the input voltage required to turn  
than 2.8V, BIAS can be tied to V or some other voltage  
IN  
source. If the BIAS pin voltage is too high, the efficiency  
of the LTM8025 may suffer. The optimum BIAS voltage is  
8025f  
12  
LTM8025  
APPLICATIONS INFORMATION  
on is higher than that required to run, and depends upon  
whether the RUN/SS is used. As shown in the Typical  
Performance Characteristics section, the minimum input  
voltage to run a 3.3V output at light load is only about 3.6V,  
totheloadunderfault. Duringthestart-uptime, frequency  
foldback is also active to limit the energy delivered to the  
potentially large output capacitance of the load.  
Synchronization  
but, if the RUN/SS is pulled up to V , it takes 5.5V to  
IN  
IN  
start. If the LTM8025 is enabled with the RUN/SS pin, the  
minimumvoltagetostartatlightloadsislower,about4.3V.  
Similar curves detailing this behavior of the LTM8025 for  
otheroutputsarealsoincludedintheTypicalPerformance  
Characteristics section.  
TheinternaloscillatoroftheLTM8025canbesynchronized  
byapplyinganexternal250kHzto2MHzclocktotheSYNC  
pin. Do not leave this pin floating. When synchronizing  
the LTM8025, select an R resistor value that corresponds  
T
to an operating frequency 20% lower than the intended  
synchronization frequency (see the Frequency Selection  
section).  
Soft-Start  
The RUN/SS pin can be used to soft-start the LTM8025,  
reducing the maximum input current during start-up. The  
RUN/SS pin is driven through an external RC filter to cre-  
ate a voltage ramp at this pin. Figure 1 shows the start-up  
and shutdown waveforms with the soft-start circuit. By  
choosing an appropriate RC time constant, the peak start-  
up current can be reduced to the current that is required to  
regulate the output, with no overshoot. Choose the value  
of the resistor so that it can supply at least 20ꢀA when  
the RUN/SS pin reaches 2.5V.  
Inadditiontosynchronization,theSYNCpincontrolsBurst  
Mode behavior. If the SYNC pin is driven by an external  
clock, or pulled up above 0.7V, the LTM8025 will not en-  
ter Burst Mode operation, but will instead skip pulses to  
maintain regulation instead.  
Shorted Input Protection  
Care needs to be taken in systems where the output will be  
held high when the input to the LTM8025 is absent. This  
may occur in battery charging applications or in battery  
backup systems where a battery or some other supply is  
diode ORed with the LTM8025’s output. If the V pin is  
IN  
RUN  
allowed to float and the SHDN pin is held high (either by a  
I
L
1A/DIV  
logicsignalorbecauseitistiedtoV ),thentheLTM8025’s  
15k  
IN  
internal circuitry will pull its quiescent current through  
its internal power switch. This is fine if your system can  
tolerate a few milliamps in this state. If you ground the  
SHDN pin, the SW pin current will drop to essentially zero.  
RUN/SS  
RUN  
V
RUN/SS  
2V/DIV  
0.22μF  
V
OUT  
2V/DIV  
However, if the V pin is grounded while the output is  
IN  
held high, then parasitic diodes inside the LTM8025 can  
8025 F01  
2ms/DIV  
pull large currents from the output through the V pin.  
IN  
Figure 1. To Soft-Start the LTM8025, Add a Resistor and  
Capacitor to the RUN/SS Pin  
Figure 2 shows a circuit that will run only when the input  
voltage is present and that protects against a shorted or  
reversed input.  
Frequency Foldback  
The LTM8025 is equipped with frequency foldback which  
actstoreducethethermalandenergystressontheinternal  
power elements during a short circuit or output overload  
condition.IftheLTM8025detectsthattheoutputhasfallen  
out of regulation, the switching frequency is reduced as a  
function of how far the output is below the target voltage.  
Thisinturnlimitstheamountofenergythatcanbedelivered  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8025. The LTM8025 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
8025f  
13  
LTM8025  
APPLICATIONS INFORMATION  
might use very small via holes. It should employ more  
thermal vias than a board that uses larger holes.  
V
IN  
V
OUT  
V
V
OUT  
IN  
RUN/SS  
AUX  
BIAS  
LTM8025  
AUX  
PGOOD  
GND  
GND  
RT  
ADJ  
R
T
R
ADJ  
SYNC GND  
SYNC  
SHDN  
BIAS  
8025 F02  
Figure 2. The Input Diode Prevents a Shorted Input from  
V
OUT  
V
Discharging a Backup Battery Tied to the Output. It Also Protects  
the Circuit from a Reversed Input. The LTM8025 Runs Only When  
the Input is Present.  
IN  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout. Ensure that the grounding and  
heatsinking are acceptable.  
C
C
IN  
OUT  
GND  
THERMAL VIAS TO GND  
8025 F03  
1. Place the R and R resistors as close as possible to  
Figure 3. Layout Showing Suggested External Components, GND  
Plane and Thermal Vias.  
ADJ  
T
their respective pins.  
2. Place the C capacitor as close as possible to the V  
Hot-Plugging Safely  
IN  
IN  
and GND connection of the LTM8025.  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8025. However, these capacitors  
can cause problems if the LTM8025 is plugged into a live  
supply (see Linear Technology Application Note 88 for  
a complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an underdamped tank circuit, and the volt-  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8025.  
OUT  
4. Place the C and C  
capacitors such that their  
IN  
OUT  
ground current flow directly adjacent or underneath  
the LTM8025.  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8025.  
age at the V pin of the LTM8025 can ring to more than  
IN  
twice the nominal input voltage, possibly exceeding the  
LTM8025’s rating and damaging the part. If the input  
supply is poorly controlled or the user will be plugging  
the LTM8025 into an energized supply, the input network  
should be designed to prevent this overshoot. This can be  
6. For good heatsinking, use vias to connect the GND cop-  
per area to the board’s internal ground planes. Liberally  
distributetheseGNDviastoprovidebothagoodground  
connectionandthermalpathtotheinternalplanesofthe  
printed circuit board. Pay attention to the location and  
density of the thermal vias in Figure 3. The LTM8025  
can benefit from the heat-sinking afforded by vias that  
connecttointernalGNDplanesattheselocations,dueto  
theirproximitytointernalpowerhandlingcomponents.  
The optimum number of thermal vias depends upon  
the printed circuit board design. For example, a board  
accomplishedbyinstallingasmallresistorinseriestoV ,  
IN  
but the most popular method of controlling input voltage  
overshoot is to add an electrolytic bulk capacitor to the  
V net. This capacitor’s relatively high equivalent series  
IN  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripple filtering and can slightly improve the efficiency of  
the circuit, though it is likely to be the largest component  
in the circuit.  
8025f  
14  
LTM8025  
APPLICATIONS INFORMATION  
Thermal Considerations  
The die temperature of the LTM8025 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8025. The bulk of the heat flow out of the LTM8025  
is through the bottom of the module and the LGA pads  
into the printed circuit board. Consequently a poor printed  
circuit board design can cause excessive heating, result-  
ing in impaired performance or reliability. Please refer to  
the PCB Layout section for printed circuit board design  
suggestions.  
The LTM8025 output current may need to be derated if it is  
requiredtooperateinahighambienttemperatureordeliver  
alargeamountofcontinuouspower.Theamountofcurrent  
deratingisdependentupontheinputvoltage,outputpower  
and ambient temperature. The temperature rise curves  
given in the Typical Performance Characteristics section  
can be used as a guide. These curves were generated by a  
2
LTM8025 mounted to a 58cm 4-layer FR4 printed circuit  
board. Boards of other sizes and layer count can exhibit  
differentthermalbehavior,soitisincumbentupontheuser  
to verify proper operation over the intended system’s line,  
load and environmental operating conditions.  
The LTM8025 is equipped with a thermal shutdown that  
willinhibitpowerswitchingathighjunctiontemperatures.  
Theactivationthresholdofthisfunction,however,isabove  
125°C to avoid interfering with normal operation. Thus,  
it follows that prolonged or repetitive operation under a  
condition in which the thermal shutdown activates neces-  
sarily means that the internal components are subjected  
to temperatures above the 125°C rating for prolonged  
or repetitive intervals, which may damage or impair the  
reliability of the device.  
The junction to air and junction to board thermal resis-  
tances given in the Pin Configuration diagram may also  
be used to estimate the LTM8025 internal temperature.  
These thermal coefficients are determined for maximum  
outputpowerperJESD51-9JEDECStandard,TestBoards  
for Area Array Surface Mount Package Thermal Measure-  
ments” through analysis and physical correlation. Bear in  
mind that the actual thermal resistance of the LTM8025  
to the printed circuit board depends upon the design of  
the circuit board.  
Finally, be aware that at high ambient temperatures the  
internalSchottkydiodewillhavesignificantleakagecurrent  
increasing the quiescent current of the LTM8025.  
8025f  
15  
LTM8025  
TYPICAL APPLICATIONS  
1.8V Step-Down Converter  
V
V
OUT  
1.8V AT 3A  
IN  
V
V
OUT  
IN  
3.6V TO 24V  
RUN/SS  
AUX  
10μF  
300μF  
BIAS LTM8025  
SHARE  
PGOOD  
ADJ  
RT  
SYNC GND  
147k  
383k  
8025 TA02  
2.5V Step-Down Converter  
V
*
V
OUT  
2.5V AT 3A  
IN  
V
V
OUT  
IN  
4.1V TO 36V  
RUN/SS  
AUX  
4.7μF  
200μF  
3.3V  
137k  
BIAS LTM8025  
SHARE  
PGOOD  
ADJ  
RT  
SYNC GND  
226k  
8025 TA03  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
3.3V Step-Down Converter  
V
*
V
OUT  
3.3V AT 3A  
IN  
V
V
OUT  
IN  
5.5V TO 36V  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
4.7μF  
SHARE  
RT  
100μF  
ADJ  
SYNC GND  
118k  
154k  
8025 TA04  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8V Step-Down Converter  
V
*
V
OUT  
8V AT 3A  
IN  
V
V
OUT  
IN  
11V TO 36V  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
4.7μF  
69.8k  
SHARE  
RT  
47μF  
ADJ  
SYNC GND  
54.9k  
8025 TA05  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8025f  
16  
LTM8025  
TYPICAL APPLICATIONS  
–5V Negative Output Converter  
V
*
IN  
V
V
OUT  
IN  
7.5V TO 30V  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
4.7μF  
SHARE  
RT  
100μF  
ADJ  
SYNC GND  
93.1k  
93.1k  
V
OUT  
–5V AT 2A  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8025 TA06  
Two LTM8025s in Paralel, 2.5V at 5.5A  
V
*
V
OUT  
2.5V AT 5.6A  
IN  
V
V
OUT  
IN  
4.1V TO 36V  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
3V  
SHARE  
RT  
2.2μF  
ADJ  
SYNC GND  
137k  
113k  
OPTIONAL  
SYNC  
V
V
OUT  
IN  
RUN/SS  
AUX  
LTM8025 BIAS  
PGOOD  
300μF  
SHARE  
RT  
2.2μF  
ADJ  
SYNC GND  
137k  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO APPLICATIONS INFORMATION  
SECTION FOR START-UP DETAILS  
NOTE: SYNCHRONIZE THE TWO MODULES TO AVOID BEAT FREQUENCIES,  
IF NECESSARY. OTHERWISE, TIE EACH SYNC TO GND  
8025 TA07  
8025f  
17  
LTM8025  
PACKAGE DESCRIPTION  
Z
/ / b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
8025f  
18  
LTM8025  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1 GND  
E2 GND  
E3 GND  
E4 GND  
E5 GND  
E6 GND  
E7 GND  
PIN NAME  
F1 GND  
F2 GND  
F3 GND  
F4 GND  
F5 GND  
F6 GND  
F7 GND  
A1  
A2  
A3  
A4  
V
V
V
V
B1  
B2  
B3  
B4  
V
V
V
V
C1  
C2  
C3  
C4  
V
V
V
V
D1  
D2  
D3  
D4  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A5 GND  
A6 GND  
A7 GND  
B5 GND  
B6 GND  
B7 GND  
C5 GND  
C6 GND  
C7 GND  
D5 GND  
D6 GND  
D7 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1 GND  
G2 GND  
G3 GND  
G4 GND  
G5 AUX  
G6 GND  
G7 RT  
H1  
H2  
H3  
H4  
-
-
-
-
J1  
J2  
J3  
J4  
V
V
V
-
K1  
K2  
K3  
K4  
V
V
V
-
L1  
L2  
L3  
L4  
V
V
V
-
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
H5 BIAS  
H6 GND  
J5 GND  
J6 GND  
K5 GND  
K6 GND  
L5 RUN/SS  
L6 SYNC  
L7 GND  
H7 SHARE J7 PGOOD K7 ADJ  
8025f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM8025  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
LTM4600/LTM4602  
LTM4601/LTM4603  
LTM4604  
DESCRIPTION  
COMMENTS  
Pin Compatible, 4.5V ≤ V ≤ 28V, 15mm × 15mm × 2.8mm LGA Package  
10A and 6A DC/DC μModule  
12A and 6A DC/DC μModule  
IN  
Pin Compatible; Remote Sensing; PLL, Tracking and Margining, 4.5V ≤ V ≤ 28V  
IN  
4A, Low V DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
IN  
IN  
OUT  
LTM4606  
Low EMI 6A, 28V DC/DC μModule  
200mA, 36V DC/DC μModule  
1A, 36V DC/DC μModule  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.8mm LGA Package  
≤ 5V, 6.25mm × 6.25mm × 2.32mm LGA Package  
≤ 10V, 11.25mm × 9mm × 2.82mm LGA Package  
≤ 10V, 11.25mm × 9mm × 2.82mm, LGA Package  
IN  
OUT  
LTM8020  
4V ≤ V ≤ 36V, 1.25V ≤ V  
IN  
OUT  
LTM8022  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
OUT  
OUT  
LTM8023  
2A, 36V DC/DC μModule  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
8025f  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM8026

36VIN, 5A, 2-Quadrant CVCC Step-Down
Linear

LTM8026EV#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026IV#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026IY#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026MPY

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8026_1208

36VIN, 5A CVCC Step-Down μModule Regulator
Linear

LTM8027

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027EVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear