LTM8049IY#PBF [Linear]

LTM8049 - Dual SEPIC or Inverting µModule DC/DC Converter; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C;
LTM8049IY#PBF
型号: LTM8049IY#PBF
厂家: Linear    Linear
描述:

LTM8049 - Dual SEPIC or Inverting µModule DC/DC Converter; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C

文件: 总20页 (文件大小:1734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8049  
Dual SEPIC or Inverting  
µModule DC/DC Converter  
FEATURES  
DESCRIPTION  
TheLTM®8049isaDualSEPIC/InvertingµModule® (power  
module) DC/DC Converter. Each of the two outputs can  
be easily configured as a SEPIC or Inverting converter by  
simplygroundingtheappropriateoutputrail.TheLTM8049  
includes power devices, inductors, control circuitry and  
passive components. All that is needed to complete the  
design are input and output caps, and small resistors to  
set the output voltages and switching frequency. Other  
components may be used to control the soft-start and  
undervoltage lockout.  
n
Two Complete Switch Mode Power Supplies  
n
SEPIC or Inverting Topology  
n
Wide Input Voltage Range: 1.6V to 10V  
n
1.5V to 14V or –1.5V to –14V Output Voltage  
n
±A at 5V  
from ±1V  
OUT  
IN  
n
n
n
n
n
Selectable Switching Frequency: 100kHz to 1.5MHz  
Power Good Outputs for Event Based Sequencing  
User Configurable Undervoltage Lockout  
(e4) RoHS Compliant Package with Gold Pad Finish  
Low Profile 15mm × 9mm × 2.42mm Surface Mount  
BGA Package  
The LTM8049 is packaged in a thermally enhanced, com-  
pact (15mm × 9mm) over-molded Ball Grid Array (BGA)  
package suitable for automated assembly by standard  
surface mount equipment. The LTM8049 is available with  
SnPb (BGA) or RoHS compliant terminal finish.  
APPLICATIONS  
n
Battery Powered Regulator  
n
Local Negative Voltage Regulator  
n
All registered trademarks and trademarks are the property of their respective owners.  
Low Noise Amplifier Power  
TYPICAL APPLICATION  
±±1VOUT from 1.7VIN to 10VIN  
Maximum Load Current vs VIN  
ꢀꢁꢂ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂ  
ꢃꢄꢅꢀ ꢆꢇ ꢃ0ꢀ  
ꢄꢅꢀ  
4ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
×ꢄ  
ꢀꢁ0ꢂ  
ꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢀꢁꢂ  
80ꢀꢁꢂ  
ꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢂ8049  
80ꢀꢁꢂ  
ꢃꢄꢅꢆ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
4ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ4ꢁꢂ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢅꢆꢄꢀ  
0
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢃꢃꢊꢋ ꢃꢃꢌꢋ ꢀꢍꢊꢋ ꢀꢍꢌꢋ ꢎꢏꢐꢄꢆꢅꢌꢋ ꢃꢑꢒꢓꢇꢊꢋ ꢃꢑꢒꢓꢇꢌ  
8049 ꢀꢁ0ꢂa  
8049 ꢀꢁ0ꢂ  
8049fa  
1
For more information www.linear.com/LTM8049  
LTM8049  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note ±)  
ꢀꢁꢂ ꢃꢄꢅꢆ  
V
, RUNn, PGn.......................................................20V  
INn  
ꢇꢉꢘꢋ ꢕ  
SYNCn, FBXn ..............................................................5V  
SSn..........................................................................2.5V  
SHAREn ......................................................................2V  
ꢄꢘꢑ  
ꢇꢉꢘꢋ 4  
ꢁꢛꢀꢑꢂ  
ꢚꢛꢘꢑ  
ꢜꢜꢑ  
ꢇꢉꢘꢋ ꢑ  
ꢈꢘꢏ  
ꢟꢇꢠꢑ  
ꢂꢈꢑ  
V
V
(V  
= 0V)..................................................25V  
= 0V)................................................–25V  
OUTP OUTN  
ꢜꢝꢘꢊꢑ  
ꢚꢀꢑ  
ꢇꢉꢘꢋ ꢡ  
ꢊꢎꢋꢁꢛꢀꢑ  
ꢜꢞꢉꢚꢅꢕ  
(V  
OUTN OUTP  
ꢁꢛꢀꢑꢘ  
Maximum Internal Temperature............................ 125°C  
Maximum Solder Temperature..............................260°C  
Storage Temperature.............................. –55°C to 125°C  
ꢜꢞꢉꢚꢅꢑ  
ꢚꢀꢕ  
ꢇꢉꢘꢋ ꢌ  
ꢁꢛꢀꢕꢘ  
ꢊꢎꢋꢁꢛꢀꢕ  
ꢜꢝꢘꢊꢕ  
ꢜꢜꢕ  
ꢂꢈꢕ  
ꢟꢇꢠꢕ  
ꢚꢛꢘꢕ  
ꢇꢉꢘꢋ ꢒ  
ꢁꢛꢀꢕꢂ  
ꢇꢉꢘꢋ ꢙ  
ꢄꢘꢕ  
4
ꢇꢈꢉ ꢂꢉꢊꢋꢉꢈꢅ  
ꢌꢌꢍꢎꢅꢉꢏ ꢐꢑꢒꢓꢓ ꢔ 9ꢓꢓ ꢔ ꢕꢖ4ꢕꢓꢓꢗ  
T
= 125°C, θ = 16.2°C/W, θ = 3.8°C/W, θ  
= 8.8°C/W,  
JMAX  
θ
JA  
JB  
JCtop  
= 3.8°C/W, θ  
= 4.6°C/W, WEIGHT = 0.8g,  
JCbottom  
JCboard  
θ VALUES DETERMINED PER JEDEC 51-9, 51-12  
http://www.linear.com/product/LTM8049#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 1)  
PART NUMBER  
LTM8049EY#PBF  
LTM8049IY#PBF  
LTM8049IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
LTM8049Y  
LTM8049  
FINISH CODE  
TYPE  
RATING  
e1  
BGA  
3
–40°C to 125°C  
e0  
* Device temperature grade is indicated by a label on the shipping container. Recommended BGA PCB Assembly and Manufacturing Procedures:  
www.linear.com/BGA-assy  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• BGA Package and Tray Drawings: www.linear.com/packaging  
• Terminal Finish Part Marking: www.linear.com/leadfree  
This product is moisture sensitive. For more information, go to:  
This product is not recommended for second side reflow. For more  
www.linear.com/BGA-assy  
information, go to www.linear.com/BGA-assy  
8049fa  
2
For more information www.linear.com/LTM8049  
LTM8049  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range (Notes 1, 3), otherwise specifications are at TA = 15°C. RUN = 1V unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Operating Voltage  
Positive Output DC Voltage  
2.6  
V
I
I
= 50mA, R = 15.4k, V  
Grounded  
OUTN  
Grounded  
OUTN  
2.5  
24  
V
V
OUT  
OUT  
FB  
= 50mA, R = 274k, V  
FB  
Negative Output DC Voltage  
I
I
= 50mA, R = 30.1k, V  
Grounded  
OUTP  
Grounded  
OUTP  
–2.5  
–24  
V
V
OUT  
OUT  
FB  
= 50mA, R = 287k, V  
FB  
Maximum Continuous Output DC Current  
V
V
= 12V, V  
= 12V, V  
= 5V or –5V  
= 24 or –24V  
1
0.25  
A
A
IN  
IN  
OUT  
OUT  
V
IN  
Quiescent Current  
V
RUN  
V
RUN  
= 0V  
= 2V, No Load  
0
10  
2
µA  
mA  
Line Regulation  
4 ≤ V ≤ 20V, I  
= 0.6A  
0.1  
0.3  
%
%
IN  
OUT  
Load Regulation  
Switching Frequency  
0 ≤ I  
≤ 1A  
OUT  
l
l
R = 31.6k  
2100  
160  
2500  
200  
2900  
240  
kHz  
kHz  
T
R = 412k  
T
l
l
Voltage at FBX Pin  
Positive Output  
Negative Output  
1.185  
2
1.204  
7
1.22  
16  
V
mV  
l
l
Current into FBX Pin  
RUN pin Threshold Voltage  
RUN Pin Current  
Positive Output  
Negative Output  
81  
81  
83.3  
83.3  
85.6  
85.6  
µA  
µA  
RUN Pin Rising  
RUN Pin Falling  
1.31  
1.27  
1.4  
V
V
1.21  
10.1  
V
RUN  
V
RUN  
V
RUN  
= 3V  
= 1.3V  
= 0V  
45  
12.1  
0
65  
14.1  
0.1  
µA  
µA  
µA  
SS Sourcing Current  
SS = 0V  
5.7  
8.8  
11.7  
2500  
0.4  
µA  
kHz  
V
Synchronization Frequency Range  
SYNC Input Low Threshold  
SYNC Input High Threshold  
CLKOUT1 Duty Cycle  
200  
1.3  
V
(Note 5)  
50  
%
CLKOUT Output Voltage (Low)  
CLKOUT Output Voltage (High)  
PG Threshold for Positive Feedback Voltage  
PG Threshold for Negative Feedback Voltage  
PG Output Voltage Low  
2k Pull-Up to 2V  
0.2  
V
2k Pull-Down to GND  
FBX Rising  
1.9  
1.09  
20  
V
1.2  
120  
150  
1
V
FBX Falling  
mV  
mV  
µA  
100µA into PG, FBX = 1V  
PG = 20V, Run = 0V  
PG Leakage Current  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 1: The LTM8049E is guaranteed to meet performance specifications  
from 0°C to 125°C. Specifications over the –40°C to 125°C internal  
temperature range are assured by design, characterization and correlation  
with statistical process controls. LTM8049I is guaranteed to meet  
specifications over the full –40°C to 125°C internal operating temperature  
range. Note that the maximum internal temperature is determined by  
specific operating conditions in conjunction with board layout, the rated  
package thermal resistance and other environmental factors.  
Note 3: This μModule regulator includes overtemperature protection that  
is intended to protect the device during momentary overload conditions.  
Internal temperature will exceed 125°C when overtemperature protection  
is active. Continuous operation above the specified maximum internal  
operating junction temperature may impair device reliability.  
Note 4: CLKOUTn is intended to drive other circuitry. Do not apply a  
positive or negative voltage or current source to CLKOUT, otherwise  
permanent damage may occur.  
Note 5: The duty cycle of CLKOUT2 is dependent upon the internal  
temperature. See the Applications Information section for more details.  
8049fa  
3
For more information www.linear.com/LTM8049  
LTM8049  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT ±2.5V  
Efficiency, VOUT ±3.3V  
Efficiency, VOUT ±5V  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
4ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
4ꢀ  
80  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8049 ꢀ0ꢁ  
8049 ꢀ0ꢁ  
8049 ꢀ0ꢁ  
Efficiency, VOUT ±8V  
Efficiency, VOUT ±12V  
Efficiency, VOUT ±15V  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ0  
ꢀꢁꢂ0  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8049 ꢀ04  
8049 ꢀ0ꢁ  
8049 ꢀ0ꢁ  
Efficiency, VOUT ±18V  
Efficiency, VOUT ±24V  
Input vs Load Current, VOUT ±2.5V  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
8ꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ0  
0ꢀ40  
0ꢀꢁ0  
0ꢀ80  
0
0ꢀꢁ  
0ꢀ4  
0ꢀꢁ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8049 ꢀ0ꢁ  
8049 ꢀ08  
8049 ꢀ09  
8049fa  
4
For more information www.linear.com/LTM8049  
LTM8049  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input vs Load Current, VOUT ±3.3V  
Input vs Load Current, VOUT ±5V  
Input vs Load Current, VOUT ±8V  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8049 ꢀꢁ0  
8049 ꢀꢁꢁ  
8049 ꢀꢁꢂ  
Input vs Load Current, VOUT ±12V  
Input vs Load Current, VOUT ±15V  
Input vs Load Current, VOUT ±18V  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
0ꢀꢁ0  
ꢀꢁꢂ0  
0
0ꢀꢁ  
0ꢀ4  
0ꢀꢁ  
0ꢀ8  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
8049 ꢀꢁ4  
8049 ꢀꢁꢂ  
8049 ꢀꢁꢂ  
Input vs Load Current, VOUT ±24V  
Maximum Load Current vs VIN  
Maximum Load Current vs VIN  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢀꢁꢂ ꢃꢄꢅꢆꢆꢁꢇ  
ꢀꢁꢂ ꢃꢄꢅꢆꢆꢁꢇ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0ꢀꢁ  
0ꢀ4  
0ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
8049 ꢀꢁꢂ  
8049 ꢀꢁꢂ  
8049 ꢀꢁ8  
8049fa  
5
For more information www.linear.com/LTM8049  
LTM8049  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Load Current vs VIN  
Derating Curve, VOUT ±2.5VOUT  
Derating Curve, VOUT ±3.3VOUT  
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
ꢀꢁꢂ ꢃꢄꢅꢆꢆꢁꢇ  
0ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀ8ꢁ  
ꢀ4ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁ  
8049 ꢀꢁ9  
8049 ꢀꢁ0  
8049 ꢀꢁꢂ  
Derating Curve, VOUT ±5VOUT  
Derating Curve, VOUT ±8VOUT  
Derating Curve, VOUT ±12VOUT  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
8049 ꢀꢁꢁ  
8049 ꢀꢁꢂ  
8049 ꢀꢁ4  
Derating Curve, VOUT ±15VOUT  
Derating Curve, VOUT ±18VOUT  
Derating Curve, VOUT ±24VOUT  
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢀꢁꢂ  
8049 ꢀꢁꢂ  
8049 ꢀꢁꢂ  
8049 ꢀꢁꢂ  
8049fa  
6
For more information www.linear.com/LTM8049  
LTM8049  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Ripple, DC2244A Board  
800mA Load, 12VIN  
Measured Across C5, C6  
CLKOUT2 Duty Cycle  
vs Temperature  
80  
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢃꢄꢅ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
ꢀ0  
40  
ꢀ0  
ꢀꢁꢂꢃ  
ꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢂ  
8049 ꢀꢁ9  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
8049 ꢀꢁ8  
PIN FUNCTIONS  
GND (Bank 1): Tie these GND pins to a local ground plane  
RUN1,RUN2(PinsB7,K7):Thesepinsareusedtoenable/  
disable the chip and restart the soft-start sequence. Drive  
below 1.21V to stop the LTM8049 from switching. Drive  
above 1.4V to activate the device and restart the soft-start  
sequence. Do not float this pin.  
below the LTM8049 and the circuit components. GND  
MUST BE CONNECTED EITHER TO V  
OR V  
FOR  
OUTP  
OUTN  
PROPER OPERATION. In most applications, the bulk of  
the heat flow out of the LTM8049 is through these pads,  
so the printed circuit design has a large impact on the  
thermal performance of the part. See the PCB Layout and  
Thermal Considerations sections for more details. Return  
the feedback divider (RFB) to this net.  
RT1,RT2(PinsE7,G7):TheRTnpinsareusedtoprogram  
the switching frequency of the LTM8049 by connecting a  
resistor from this pin to ground. The switching frequency  
of the LTM8049 is determined by the equation RTn =  
V
, V (Banks 2, 3): The V pins supply current to  
IN1 IN2  
(81.6/f )-1, wherethef  
istheswitchingfrequencyin  
INn  
OSC  
OSC  
theLTM8049’sinternalregulatorandtotheinternalpower  
switch. Thispinmustbelocallybypassedwithanexternal,  
low ESR capacitor.  
MHz. This pin must have a resistor to GND. Do not apply  
a voltage to this pin.  
SS1, SS2 (Pins C7, J7): Connect a soft-start capacitor  
from this pin to GND. Upon start-up, the SSn pins will be  
charged by an internal current source to about 2V.  
V
, V  
(Banks 4, 5): V  
is the positive out-  
OUTnP  
OUT1P OUT2P  
put of the LTM8049. Apply an external capacitor between  
V
and V . Tie this net to GND to configure the  
OUTnP  
OUTnN  
SYNC1, SYNC2(PinsD7, H7):Tosynchronizetheswitch-  
ingfrequencytoanoutsideclock,simplydrivethispinwith  
a clock signal. The high voltage level of the clock needs  
to exceed 1.3V, and the low level must be less than 0.4V.  
Drive this pin to less than 0.4V to revert to the internal  
free running clock. Ground these pins if synchronization  
is not required. See the Applications Information section  
for more information.  
LMT8049 as a negative output Inverting regulator.  
V
, V (Banks 6, 7): V is the negative out-  
OUT1N OUT2N  
put of the LTM8049. Apply an external capacitor between  
OUTnP  
OUTnN  
V
and V . Tie this net to GND to configure the  
OUTnN  
LTM8049 as a positive output SEPIC regulator.  
8049fa  
7
For more information www.linear.com/LTM8049  
LTM8049  
PIN FUNCTIONS  
FBX1, FBX2 (Pins C1, J1): If configured as a SEPIC, the  
LTM8049 regulates its FBX pin to 1.204V. Apply a resis-  
CLKOUT1, CLKOUT2 (Pins E6, G6): Use these pins to  
synchronize devices to either channel of the LTM8049.  
ThesepinsoscillateatthesamefrequencyastheLTM8049  
internaloscillatoror, ifactive, theSYNCpin. TheCLKOUT1  
signal is about 180° out of phase with the oscillator of  
channel1anddutycycleisabout50%.TheCLKOUT2signal  
is in phase with the internal oscillator of channel 2 and its  
duty cycle varies linearly with the internal temperature of  
theLTM8049. PleaserefertotheApplicationsInformation  
section for detailed information on using CLKOUT2 as an  
indication of the LTM8049 internal temperature. Do not  
apply a voltage to this pin or use this pin to drive capaci-  
tive loads greater than 120pF.  
tor between FBX and V  
. Its value should be R  
=
OUTP  
FB  
[(V  
– 1.204)/0.0833]k. If the LTM8049 is configured  
OUTP  
as an inverting converter, the LTM8049 regulates the FBX  
pin to 7mV. Apply a resistor between FBX and V of  
OUTN  
value R = [(|V  
| + 0.007)/0.0833]k. The LTM8049  
OUTN  
FB  
features frequency foldback to protect the power switches  
during a fault or output current overload. During start-up,  
frequency foldback also limits the current the LTM8049  
delivers to the load. The user must evaluate the start-up  
behavior of the LTM8049 to ensure that it properly pow-  
ers up the load.  
PG1, PG2 (Pins D6, H6): These active high pins indicates  
that the FBn pin voltage for the corresponding channel  
is within 4% of its regulation voltage These open drain  
outputsrequiresapull-upresistortoindicatepowergood.  
Also, the status of these pins is valid only when RUN >  
SHARE1, 2 (pins F3, F4): Connect these pins together if  
thetwooutputsoftheLTM8049areparalleled. Otherwise,  
leave these pins floating.  
1.4V and V > 2.6V.  
IN  
8049fa  
8
For more information www.linear.com/LTM8049  
LTM8049  
BLOCK DIAGRAM  
ꢀꢁꢀꢂꢃ  
4ꢀꢁꢂꢃ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
0ꢀꢁꢂꢃ  
4ꢀꢁꢂꢃ  
ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁꢅꢅꢆꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
8049 ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢀꢀꢃꢈ ꢉꢊ ꢅꢆꢇꢀꢀꢃꢈ ꢋ ꢌꢍ ꢎꢏꢀꢅꢂꢌꢁꢀꢇꢈ ꢌꢐꢃꢀꢂꢌꢅꢇꢈꢑ ꢃꢒꢅꢃꢓꢂ ꢎꢁꢔ ꢂꢆꢃ ꢅꢈꢕꢁꢏꢂꢋ  
ꢖꢍ ꢂꢃꢗꢓꢃꢔꢇꢂꢏꢔꢃ ꢘꢃꢆꢇꢖꢌꢁꢔꢊ ꢓꢈꢃꢇꢍꢃ ꢍꢃꢃ ꢂꢆꢃ ꢓꢌꢀ ꢐꢃꢍꢅꢔꢌꢓꢂꢌꢁꢀ ꢇꢀꢐ ꢇꢓꢓꢈꢌꢅꢇꢂꢌꢁꢀꢍ  
ꢌꢀꢎꢁꢔꢗꢇꢂꢌꢁꢀ ꢍꢃꢅꢂꢌꢁꢀꢍ ꢎꢁꢔ ꢐꢃꢂꢇꢌꢈꢍꢊ  
8049fa  
9
For more information www.linear.com/LTM8049  
LTM8049  
OPERATION  
The LTM8049 contains two stand-alone switching DC/  
DC converters; either one may be configured as a SEPIC  
(single-ended primary inductance converter) or inverting  
The LTM8049 also features RUN and SS pins to control  
the start-up behavior of the device. The RUN pin may also  
be used to implement an accurate undervoltage lockout  
function by applying a resistor network to the RUN pin.  
power supply simply by tying V  
or V  
to GND,  
OUTN  
OUTP  
respectively. It accepts an input voltage up to 20VDC. The  
output is adjustable between 2.5V and 24V for the SEPIC,  
and between –2.5V and –24V for the inverting configura-  
The LTM8049 features frequency foldback to protect the  
power switches during a fault or output current overload.  
Duringstart-up, frequencyfoldbackalsolimitsthecurrent  
the LTM8049 delivers to the load. The user must evaluate  
the start-up behavior of the LTM8049 to ensure that it  
properly powers up the load.  
tion. The LTM8049 can provide 1.5A at V = 12V when  
IN  
V
OUT  
= 5V or –5V at ambient room temperature.  
As shown in the Block Diagram, the LTM8049 contains a  
current mode controller, power switching element, power  
coupled inductor, power Schottky diode and a modest  
amount of input and output capacitance. The LTM8049  
is a fixed frequency PWM regulator.  
The LTM8049 is equipped with a thermal shutdown to  
protectthedeviceduringmomentaryoverloadconditions.  
It is set above the 125°C absolute maximum internal tem-  
perature rating to avoid interfering with normal specified  
operation, so internal device temperatures will exceed  
the absolute maximum rating when the overtemperature  
protection is active. Therefore, continuous or repeated  
activation of the thermal shutdown may impair device  
reliability.  
TheLTM8049switchingcanfreerunbyapplyingaresistorto  
theRTpinorsynchronizetoanexternalsourceatafrequency  
between 200kHz and 2.5MHz. To synchronize to an external  
source, drive a valid signal source into the SYNC pin. See  
SynchronizationintheApplicationsSectionformoredetails.  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
optimal efficiency over the given input condition is given  
in the f  
column. Running the LTM8049 faster than  
OPTIMAL  
the recommended frequency may reduce the usable input  
voltage range.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. ApplytherecommendedC , C , R andR values.  
Capacitor Selection Considerations  
IN OUT ADJ  
T
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
Table 1 gives the recommended component values and  
configuration for a single channel. Each channel may be  
configured independently. The maximum frequency (and  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
attendant R value) at which the LTM8049 should be al-  
T
lowed to switch is given in Table 1 in the f  
column,  
MAX  
while the recommended frequency (and R value) for  
voltage coefficients of capacitance. In an application  
T
8049fa  
10  
For more information www.linear.com/LTM8049  
LTM8049  
APPLICATIONS INFORMATION  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
V
IN  
RANGE (V)  
V
OUT  
(V)  
C
IN  
C
OUT  
R
FB  
(Ω)  
f
R
(Ω)  
f
R
TMIN  
(Ω)  
OPTIMAL  
TOPTIMAL  
MAX  
2.6V to 11.5V  
2.6V to 9.5V  
2.5V  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
100µF 4V 0805 X5R  
15.4k  
30.1k  
600kHz  
600kHz  
137k  
2MHz  
2MHz  
38.3k  
38.3k  
–2.5V  
100µF 4V 0805 X5R  
+ 47µF 6.3V 0805 X5R  
137k  
2.6V to 18V  
2.6V to 12V  
3.3V  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
100µF 4V 0805 X5R  
25.5k  
39.2k  
650kHz  
650kHz  
124k  
124k  
2.3MHz  
2.3MHz  
33.2k  
33.2k  
–3.3V  
100µF 4V 0805 X5R  
+ 47µF 6.3V 0805 X5R  
2.7V to 20V  
2.7V to 15V  
5V  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
47µF 6.3V 0805 X5R  
45.3k  
60.4k  
750k  
750k  
107k  
107k  
2.5MHz  
2.5MHz  
31.6k  
31.6k  
–5V  
100µF 6.3V 1206 X5R  
+ 47µF 10V 1206 X5R  
2.7V to 20V  
2.7 to 18.5V  
2.7V to 20V  
2.7V to 20V  
2.7V to 20V  
2.7V to 20V  
3V to 20V  
8V  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
4.7µF 25V 0603 X5R  
22µF 10V 1206 X5R  
2x 47µF 10V 1206 X5R  
22µF 16V 1210 X5R  
47µF 16V 1210 X5R  
22µF 16V 1210 X5R  
47µF 16V 1210 X5R  
22µF 16V 1210 X7R  
22µF 16V 1210 X7R  
22µF 25V 1206 X5R  
22µF 25V 1206 X5R  
82.5k  
95.3k  
130k  
143k  
165k  
178k  
200k  
215k  
274k  
287k  
1MHz  
1MHz  
80.6k  
80.6k  
80.6k  
80.6k  
73.2k  
73.2k  
53.6k  
53.6k  
53.6k  
53.6k  
2.5MHz  
2.5MHz  
2.5MHz  
2.5MHz  
1.9MHz  
1.9MHz  
1.8MHz  
1.8MHz  
1.8MHz  
1.8MHz  
31.6k  
31.6k  
31.6k  
31.6k  
41.2k  
41.2k  
45.3k  
45.3k  
45.3k  
45.3k  
–8V  
12V  
1MHz  
–12V  
15V  
1MHz  
1.1MHz  
1.1MHz  
1.5MHz  
1.5MHz  
1.5MHz  
1.5MHz  
–15V  
18V  
3V to 20V  
–18V  
24V  
3.7V to 18V  
3.7V to 18V  
–24V  
Note: An input bulk capacitor is required.  
circuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
Switching Frequency Trade-Offs  
ItisrecommendedthattheuserapplytheoptimalR value  
T
given in Table 1 for the corresponding input and output  
operatingcondition. Systemlevelorotherconsiderations,  
however, may necessitate another operating frequency.  
While the LTM8049 is flexible enough to accommodate  
a wide range of operating frequencies, a haphazardly  
chosen one may result in undesirable operation under  
certain operating or fault conditions. A frequency that is  
too high can reduce efficiency, reduce the usable input  
voltage range, generate excessive heat or even damage  
the LTM8049 in some fault conditions. A frequency that  
is too low can result in a final design that has too much  
output ripple or too large of an output capacitor. Note that  
the Maximum Output Current vs Input Voltage curves  
given in the Typical Characteristics section are for the  
recommended operating conditions in Table 1. Using a  
different operating frequency may result in a different  
maximum output current.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8049. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (underdamped) tank circuit.  
If the LTM8049 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
Programming Switching Frequency  
TheLTM8049hasanoperationalswitchingfrequencyrange  
between 200kHz and 2.5MHz. The free running frequency  
is programmed with an external resistor from the RT pin  
to ground. Do not leave this pin open under any condition.  
When the SYNC pin is driven low (<0.4V), the frequency  
of operation is set by a resistor from RT to ground. The  
R value is calculated by the following equation:  
T
81.6  
R =  
T
1, where f  
is in MHz and R is in kΩ  
T
OSC  
f
OSC  
8049fa  
11  
For more information www.linear.com/LTM8049  
LTM8049  
APPLICATIONS INFORMATION  
Soft-Start  
The RUN pin has a voltage hysteresis with typical thresh-  
olds of 1.31V (rising) and 1.27V (falling). Resistor R  
UVLO2  
The soft-start circuitry provides for a gradual ramp-up of  
the switch current in each channel. When the channel is  
enabled, the external SS capacitor is first discharged. This  
resets the state of the logic circuits in the channel. Then  
an integrated resistor pulls the channel’s SS pin to about  
1.8V. The LTM8049 has a built-in soft-start characteristic,  
but a slower ramp rate may be implemented by adding  
capacitance to the SS pin. Typical values are between  
0.1µF and 1µF.  
is optional. R  
can be included to reduce the overall  
UVLO2  
UVLO voltage variation caused by variations in the RUN  
pin current (see the Electrical Characteristics). A good  
choice for R  
UVLO2 UVLO1  
following:  
is ≤10k + 1%. After choosing a value  
can be determined from either of the  
UVLO2  
, R  
for R  
V
– 1.31V  
IN(RISING)  
R
=
UVLO1  
1.32V  
+ 12.1µA  
R
UVLO2  
Configurable Undervoltage Lockout  
or  
Figure 1 shows how to configure an undervoltage lock-  
out (UVLO) for the LTM8049. Typically, UVLO is used in  
situations where the input supply is current-limited, has  
a relatively high source resistance, or ramps up/down  
slowly. A switching regulator draws constant power from  
the source, so source current increases as source voltage  
drops. This looks like a negative resistance load to the  
source and can cause the source to current-limit or latch  
low under low source voltage conditions. UVLO prevents  
the regulator from operating at source voltages where  
these problems might occur.  
V
IN(FALLING) – 1.27V  
RUVLO1  
=
1.29V  
+ 11.6µA  
RUVLO2  
where V  
and V  
are the V threshold  
IN(FALLING) IN  
IN(RISING)  
voltages when rising or falling respectively.  
For example, to disable the LTM8049 for V voltages  
below3.5Vusingthesingleresistorconfiguration,choose:  
IN  
3.5V – 1.27V  
1.29V  
RUVLO1  
=
191k  
ꢂ8049  
+ 11.6µA  
ꢁꢂ  
ꢁꢂ  
ꢀꢁꢂꢀꢃ  
ꢁꢂꢃꢄꢅ  
To activate the LTM8049 for V greater than 4.5V using  
the two resistor configuration, choose R  
IN  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢇꢈꢁꢉꢈꢊꢂ  
ꢀꢁꢂ  
= 10k and:  
UVLO2  
ꢀꢁꢂꢃꢄꢅ  
ꢅꢆ ꢀꢂꢃꢀꢇ  
ꢁꢂꢃꢄꢅ  
ꢆꢄꢇꢈꢉꢄꢊꢋꢃꢌ  
4.5V – 1.31V  
1.32V  
10k  
RUVLO1  
=
22.1k  
ꢀꢁꢂ  
+ 12.1µA  
8049 ꢀ0ꢁ  
Figure 1. The RUN Pin May Be Used to Implement  
an Accurate UVLO  
Internal Undervoltage Lockout  
The LTM8049 monitors the V supply voltage in case V  
IN  
IN  
The RUN pin sinks 12.1µA at the 1.31V rising threshold  
voltage and about 11.6µA at the 1.27V falling threshold.  
This makes it easy to set up an input voltage UVLO thresh-  
drops below a minimum operating level (typically about  
2.3V). When V is detected low, the power switch is  
IN  
deactivated, and while sufficient V voltage persists, the  
IN  
old with just a single resistor. For a desired V threshold,  
IN  
soft-start capacitor is discharged. After V is sufficiently  
IN  
choose R  
using the equation:  
UVLO1  
high,theLTM8049willreactivateandthesoft-startcapaci-  
V
IN  
– 1.31V  
tor will begin charging.  
R
=
UVLO1  
12.1µA  
8049fa  
12  
For more information www.linear.com/LTM8049  
LTM8049  
APPLICATIONS INFORMATION  
Frequency Foldback  
that internal temperatures will exceed the 125°C absolute  
maximum rating when the overtemperature protection is  
active, possibly impairing the device’s reliability.  
The frequency foldback function reduces the switching  
frequency for that channel when the output is about 15%  
below the target regulation point. This feature lowers the  
operatingfrequency,thuscontrollingthemaximumoutput  
current during start-up. When the FBX voltage is pulled  
abovetheabovementionedrangeinapositiveoutputvolt-  
age application, the switching frequency for that channel  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8049. The LTM8049 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 2  
for a suggested layout. Ensure that the grounding and  
heat-sinking are acceptable.  
runs that the rate set by the R resistor value. Note that  
T
the maximum output current at start-up is a function of  
many variables including load profile, output capacitance,  
target V , V , switching frequency, so the user must  
OUT IN  
evaluate the performance of the LTM8049 to ensure that  
it properly powers up its load.  
A few rules to keep in mind are:  
Thermal Shutdown  
1. Place the R and R resistors as close as possible to  
FBX  
T
If the part is too hot, the LTM8049 engages its thermal  
shutdown and terminates switching and discharges the  
soft-startcapacitor.Whentheparthascooled,thepartauto-  
maticallyrestarts.Thisthermalshutdownissettoengageat  
temperaturesabovethe125°Cabsolutemaximuminternal  
operating rating to ensure that it does not interfere with  
functionality in the specified operating range. This means  
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8049.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8049.  
OUT  
ꢊꢋꢌ  
ꢎꢋꢐ  
ꢎꢋꢁ  
ꢅꢒꢋꢐ ꢏꢏꢐ ꢏꢖꢋꢗꢐ ꢅꢂꢐ  
ꢅꢂꢁ ꢏꢖꢋꢗꢁ ꢏꢏꢁ ꢅꢒꢋꢁ  
ꢔꢊꢐ ꢗꢈꢚꢑꢒꢂꢐ ꢗꢈꢚꢑꢒꢂꢁ ꢔꢊꢁ  
ꢎꢋꢐ  
ꢊꢋꢌ  
ꢊꢋꢌ  
ꢏꢃꢇꢅꢄꢁ  
ꢏꢃꢇꢅꢄꢐ  
ꢎꢋꢁ  
ꢀꢘꢙꢐ  
ꢀꢘꢙꢁ  
ꢑꢒꢂꢐ  
ꢑꢒꢂꢁ  
ꢑꢒꢂꢐ  
ꢑꢒꢂꢁ  
ꢊꢋꢌ  
ꢊꢋꢌ  
ꢓꢔꢑꢏꢎꢂꢎꢍꢄ ꢑꢒꢂꢔꢒꢂꢕ  
ꢓꢋꢄꢊꢇꢂꢎꢍꢄ ꢑꢒꢂꢔꢒꢂꢕ  
8049 ꢀ0ꢁ  
ꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢌ ꢍꢎꢇꢏ  
Figure 2. Layout Showing Suggested External Components, GND Plane and Thermal Vias  
8049fa  
13  
For more information www.linear.com/LTM8049  
LTM8049  
APPLICATIONS INFORMATION  
4. Place the C and C  
capacitors such that their  
Thermal Considerations  
IN  
OUT  
ground current flow directly adjacent or underneath  
The LTM8049 output current may need to be derated if  
it is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Character-  
istics section can be used as a guide. These curves were  
the LTM8049.  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8049.  
6. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
board. Pay attention to the location and density of the  
thermal vias in Figure 2. The LTM8049 can benefit from  
theheat-sinkingaffordedbyviasthatconnecttointernal  
GND planes at these locations, due to their proximity  
to internal power handling components. The optimum  
number of thermal vias depends upon the printed  
circuit board design. For example, a board might use  
very small via holes. It should employ more thermal  
vias than a board that uses larger holes.  
2
generated by a LTM8049 mounted to a 58cm 4-layer FR4  
printedcircuitboard. Boardsofothersizesandlayercount  
can exhibit different thermal behavior, so it is incumbent  
upon the user to verify proper operation over the intended  
system’sline,loadandenvironmentaloperatingconditions.  
The thermal resistance numbers listed in Page 2 of the  
data sheet are based on modeling the µModule package  
mounted on a test board specified per JESD51-9 (Test  
Boards for Area Array Surface Mount Package Thermal  
Measurements). The thermal coefficients provided in this  
page are based on JESD 51-12 (Guidelines for Reporting  
and Using Electronic Package Thermal Information).  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, Page 2 of the data sheet typically gives four  
thermal coefficients:  
Hot-Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8049. However, these capacitors  
can cause problems if the LTM8049 is plugged into a live  
input supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
θ : Thermal resistance from junction to ambient  
JA  
θ
: Thermal resistance from junction to the bottom  
JCbottom  
of the product case  
θ
: Thermal resistance from junction to top of the  
JCtop  
underdamped tank circuit, and the voltage at the V pin  
IN  
product case  
of the LTM8049 can ring to more than twice the nominal  
inputvoltage,possiblyexceedingtheLTM8049’sratingand  
damaging the part. If the input supply is poorly controlled  
or the user will be plugging the LTM8049 into an energized  
supply,theinputnetworkshouldbedesignedtopreventthis  
overshoot. This can be accomplished by installing a small  
θ :Thermalresistancefromjunctiontotheprintedcircuit  
JB  
board.  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
resistor in series to V , but the most popular method of  
IN  
controlling input voltage overshoot is to add an electrolytic  
θ
is the natural convection junction-to-ambient air  
JA  
bulkcapacitortotheV net. Thiscapacitor’srelativelyhigh  
IN  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
equivalentseriesresistancedampsthecircuitandeliminates  
the voltage overshoot. The extra capacitor improves low  
frequency ripple filtering and can slightly improve the ef-  
ficiency of the circuit, though it is physically large.  
8049fa  
14  
For more information www.linear.com/LTM8049  
LTM8049  
APPLICATIONS INFORMATION  
stillairalthoughnaturalconvectioncausestheairtomove.  
This value is determined with the part mounted to a JESD  
51-9 defined test board, which does not reflect an actual  
application or viable operating condition.  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule converter. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
θ
is the thermal resistance between the junction  
JCbottom  
andbottomofthepackagewithallofthecomponentpower  
dissipation flowing through the bottom of the package. In  
the typical µModule converter, the bulk of the heat flows  
out the bottom of the package, but there is always heat  
flow out into the ambient environment. As a result, this  
thermal resistance value may be useful for comparing  
packages but the test conditions don’t generally match  
the user’s application.  
A graphical representation of these thermal resistances  
is given in Figure 3.  
θ
isdeterminedwithnearlyallofthecomponentpower  
The blue resistances are contained within the µModule  
converter, and the green are outside.  
JCtop  
dissipation flowing through the top of the package. As the  
electricalconnectionsofthetypicalµModuleconverterare  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
The die temperature of the LTM8049 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8049. The bulk of the heat flow out of the LTM8049  
is through the bottom of the μModule converter and the  
BGA pads into the printed circuit board. Consequently a  
poor printed circuit board design can cause excessive  
heating, resulting in impaired performance or reliability.  
Please refer to the PCB Layout section for printed circuit  
board design suggestions.  
tion to the top of the part. As in the case of θ , this  
JCbottom  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
θ
JB  
is the junction-to-board thermal resistance where  
almost all of the heat flows through the bottom of the  
µModule converter and into the board, and is really the  
sum of the θ  
and the thermal resistance of the  
JCbottom  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
a specified distance from the package, using a two sided,  
two layer board. This board is described in JESD 51-9.  
ꢌꢆꢍꢋꢎꢊꢄꢍꢏꢎꢄꢏꢐꢃꢖꢊꢈꢍꢎ ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ ꢒꢌꢈꢑꢅ ꢗꢘꢏ9 ꢅꢈꢀꢊꢍꢈꢅ ꢖꢄꢐꢕꢅꢔ  
ꢌꢆꢍꢋꢎꢊꢄꢍꢏꢎꢄꢏꢋꢐꢑꢈ ꢒꢎꢄꢓꢔ  
ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
ꢋꢐꢑꢈ ꢒꢎꢄꢓꢔꢏꢎꢄꢏꢐꢃꢖꢊꢈꢍꢎ  
ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
ꢌꢆꢍꢋꢎꢊꢄꢍꢏꢎꢄꢏꢖꢄꢐꢕꢅ ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
ꢌꢆꢍꢋꢎꢊꢄꢍ  
ꢐꢃꢖꢊꢈꢍꢎ  
ꢌꢆꢍꢋꢎꢊꢄꢍꢏꢎꢄꢏꢋꢐꢑꢈ  
ꢒꢖꢄꢎꢎꢄꢃꢔ ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
ꢋꢐꢑꢈ ꢒꢖꢄꢎꢎꢄꢃꢔꢏꢎꢄꢏꢖꢄꢐꢕꢅ  
ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
ꢖꢄꢐꢕꢅꢏꢎꢄꢏꢐꢃꢖꢊꢈꢍꢎ  
ꢕꢈꢑꢊꢑꢎꢐꢍꢋꢈ  
8049 ꢀ0ꢁ  
ꢂꢃꢄꢅꢆꢇꢈ ꢅꢈꢉꢊꢋꢈ  
Figure 3. Graphical Representation of JESD51-12 Thermal Coefficients  
8049fa  
15  
For more information www.linear.com/LTM8049  
LTM8049  
TYPICAL APPLICATIONS  
±±5V Converve  
MaximumVLCadV ueevorVnsV5IN  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0ꢀꢁ  
0
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂ  
ꢃꢄꢅꢀ ꢆꢇ ꢈꢉꢀ  
ꢅꢀ  
4ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
×ꢄ  
4ꢀꢁꢂꢃ  
ꢀꢁꢂ  
4ꢀꢁꢂ  
ꢁꢂꢃꢄꢅ  
ꢀ0ꢁꢂ  
ꢁꢃ0ꢂꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢂ8049  
ꢀ0ꢁꢂ  
ꢁꢃ0ꢂꢄꢅ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢀ4ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0ꢁ4ꢂ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄꢅ  
ꢅꢆꢀ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢃꢃꢊꢋ ꢃꢃꢌꢋ ꢀꢍꢊꢋ ꢀꢍꢌꢋ ꢎꢏꢐꢄꢆꢅꢌꢋ ꢃꢑꢒꢓꢇꢊꢋ ꢃꢑꢒꢓꢇꢌ  
8049 ꢀꢁ0ꢂa  
ꢀꢁꢂ  
ꢀꢁ  
8049 ꢀꢁ0ꢂꢃ  
PaeallvlV85VOurpursVfCeVIocevasvdV ueevor  
MaximumVLCadV ueevorVnsV5IN  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0ꢀꢁ  
ꢃꢄꢅꢀ ꢆꢇ ꢃ0ꢀ  
4ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
×ꢄ  
8ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢁꢂꢃꢄꢅ  
80ꢀꢁꢂ  
ꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
8ꢀ  
ꢂ8049  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
80ꢀꢁꢂ  
ꢃꢄꢅꢆ  
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
8ꢀꢁꢂꢃ  
4ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄꢅ  
0
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
8049 ꢀꢁ0ꢂꢃ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢃꢃꢊꢋ ꢃꢃꢌꢋ ꢀꢍꢊꢋ ꢀꢍꢌꢋ ꢎꢏꢐꢄꢆꢅꢌ  
8049 ꢀꢁ0ꢂa  
8049fa  
16  
For more information www.linear.com/LTM8049  
LTM8049  
PACKAGE DESCRIPTION  
PioVAssigomvorVTablv  
(AeeaogvdVbyVPioVNumbve)  
PINVNAME  
PINVNAME  
PINVNAME  
PINVNAME  
PINVNAME  
PINVNAME  
F1 GND  
A1  
A2  
V
OUT1P  
V
OUT1P  
B1  
B2  
V
V
C1 FBX1  
D1  
D2  
V
V
E1  
E2  
V
V
OUT1P  
OUT1P  
OUT1N  
OUT1N  
OUT1N  
OUT1N  
C2  
V
F2 GND  
OUT1N  
A3 GND  
A4 GND  
B3 GND  
B4 GND  
B5 GND  
B6 GND  
B7 RUN1  
C3 GND  
C4 GND  
C5 GND  
C6 GND  
C7 SS1  
D3 GND  
D4 GND  
D5 GND  
D6 PG1  
D7 SYNC1  
E3 GND  
E4 GND  
E5 GND  
F3 SHARE1  
F4 SHARE2  
F5 GND  
A5  
A6  
A7  
V
IN1  
V
IN1  
V
IN1  
E6 CLKOUT1 F6 GND  
E7 RT1 F7 GND  
PINVNAME  
PINVNAME  
PINVNAME  
J1 FBX2  
J2  
PINVNAME  
PINVNAME  
G1  
G2  
V
V
H1  
H2  
V
V
K1  
K2  
V
OUT2P  
V
OUT2P  
L1  
L2  
V
V
OUT2N  
OUT2N  
OUT2N  
OUT2N  
OUT2P  
OUT2P  
V
OUT2N  
G3 GND  
G4 GND  
G5 GND  
H3 GND  
H4 GND  
H5 GND  
J3 GND  
J4 GND  
J5 GND  
J6 GND  
J7 SS2  
K3 GND  
K4 GND  
K5 GND  
K6 GND  
K7 RUN2  
L3 GND  
L4 GND  
L5  
L6  
L7  
V
IN2  
V
IN2  
V
IN2  
G6 CLKOUT2 H6 PG2  
G7 RT2 H7 SYNC2  
PACKAGE PHOTO  
8049fa  
17  
For more information www.linear.com/LTM8049  
LTM8049  
PACKAGE DESCRIPTION  
PlvasvVevfveVrCVhrrp://www.liovae.cCm/peCducr/LTM8049#packagiogVfCeVrhvVmCsrVevcvorVpackagvVdeawiogs.  
BGA Package  
77-Lead (15.00mm × 9.00mm × 2.42mm)  
ꢓꢏꢔfꢔꢕꢔꢖꢗꢔ ꢘꢆꢂ ꢙꢊꢄꢚ 0ꢛꢜ08ꢜꢍ9ꢝ4 ꢏꢔꢞ ꢟꢠ  
ꢡꢅꢅ ꢋꢇꢆꢅꢡ  
ꢙꢅꢆꢁꢉꢘ ꢁ  
aaa  
ꢁꢥ  
ꢡꢅꢅ ꢋꢇꢆꢅꢡ  
ꢀꢉꢋ ꢍ  
ꢁꢍ  
ꢗꢗꢗ  
ꢀꢉꢋ ꢌꢁꢍꢎ  
ꢂꢇꢏꢋꢅꢏ  
4
ꢭꢍ  
ꢤꢇꢘꢙ  
ꢂꢁꢀ  
ꢡꢪꢟꢡꢆꢏꢁꢆꢅ  
ꢫꢍ  
ꢫꢥ  
ꢙꢅꢆꢁꢉꢘ ꢟ  
ꢬꢭ ꢓꢮꢮ ꢀꢘꢁꢂꢅꢡꢠ  
ꢯꢯꢯ  
ꢔꢔꢔ  
ꢑ ꢐ  
aaa  
4
ꢀꢁꢂꢃꢁꢄꢅ ꢆꢇꢀ ꢈꢉꢅꢊ  
ꢀꢁꢂꢃꢁꢄꢅ ꢟꢇꢆꢆꢇꢤ ꢈꢉꢅꢊ  
ꢙꢅꢆꢁꢉꢘ ꢟ  
ꢀꢁꢂꢃꢁꢄꢅ ꢡꢉꢙꢅ ꢈꢉꢅꢊ  
ꢋꢇꢆꢅꢡꢢ  
ꢍꢣ ꢙꢉꢤꢅꢋꢡꢉꢇꢋꢉꢋꢄ ꢁꢋꢙ ꢆꢇꢘꢅꢏꢁꢋꢂꢉꢋꢄ ꢀꢅꢏ ꢁꢡꢤꢅ ꢐꢍ4ꢣꢛꢤꢜꢍ994  
ꢙꢅꢆꢁꢉꢘ ꢁ  
ꢥꢣ ꢁꢘꢘ ꢙꢉꢤꢅꢋꢡꢉꢇꢋꢡ ꢁꢏꢅ ꢉꢋ ꢤꢉꢘꢘꢉꢤꢅꢆꢅꢏꢡ  
4
ꢟꢁꢘꢘ ꢙꢅꢡꢉꢄꢋꢁꢆꢉꢇꢋ ꢀꢅꢏ ꢦꢅꢡꢙ ꢤꢡꢜ0ꢥ8 ꢁꢋꢙ ꢦꢅꢀ9ꢛ  
DIMENSIONS  
ꢙꢅꢆꢁꢉꢘꢡ ꢇꢨ ꢀꢉꢋ ꢚꢍ ꢉꢙꢅꢋꢆꢉꢨꢉꢅꢏ ꢁꢏꢅ ꢇꢀꢆꢉꢇꢋꢁꢘꢩ  
ꢟꢪꢆ ꢤꢪꢡꢆ ꢟꢅ ꢘꢇꢂꢁꢆꢅꢙ ꢊꢉꢆꢫꢉꢋ ꢆꢫꢅ ꢒꢇꢋꢅ ꢉꢋꢙꢉꢂꢁꢆꢅꢙꢣ  
ꢆꢫꢅ ꢀꢉꢋ ꢚꢍ ꢉꢙꢅꢋꢆꢉꢨꢉꢅꢏ ꢤꢁꢐ ꢟꢅ ꢅꢉꢆꢫꢅꢏ ꢁ ꢤꢇꢘꢙ ꢇꢏ  
ꢤꢁꢏꢃꢅꢙ ꢨꢅꢁꢆꢪꢏꢅ  
SYMBOL  
ꢁꢍ  
ꢁꢥ  
ꢭꢍ  
ꢫꢍ  
ꢫꢥ  
aaa  
ꢭꢭꢭ  
ꢗꢗꢗ  
ꢯꢯꢯ  
ꢔꢔꢔ  
MIN  
ꢥꢣꢥꢥ  
0ꢣꢛ0  
ꢍꢣꢮꢥ  
0ꢣꢝ0  
0ꢣꢝ0  
NOM  
ꢥꢣ4ꢥ  
0ꢣꢝ0  
ꢍꢣ8ꢥ  
0ꢣꢮꢛ  
0ꢣꢝꢧ  
ꢍꢛꢣ00  
9ꢣ00  
ꢍꢣꢥꢮ  
ꢍꢥꢣꢮ0  
ꢮꢣꢝꢥ  
0ꢣꢧꢥ  
ꢍꢣꢛ0  
MAX  
ꢥꢣꢝꢥ  
0ꢣꢮ0  
ꢍꢣ9ꢥ  
0ꢣ90  
0ꢣꢝꢝ  
NOTES  
0ꢣꢝꢧ0 0ꢣ0ꢥꢛ ꢬ ꢮꢮꢴ  
ꢝꢣꢧꢛ0  
ꢛꢣ080  
ꢧꢣ8ꢍ0  
ꢥꢣꢛ40  
ꢍꢣꢥꢮ0  
0ꢣ000  
ꢍꢣꢥꢮ0  
ꢥꢣꢛ40  
ꢧꢣ8ꢍ0  
ꢛꢣ080  
ꢝꢣꢧꢛ0  
ꢟꢁꢘꢘ ꢫꢆ  
ꢛꢣ ꢀꢏꢉꢤꢁꢏꢐ ꢙꢁꢆꢪꢤ ꢜꢒꢜ ꢉꢡ ꢡꢅꢁꢆꢉꢋꢄ ꢀꢘꢁꢋꢅ  
ꢟꢁꢘꢘ ꢙꢉꢤꢅꢋꢡꢉꢇꢋ  
ꢀꢁꢙ ꢙꢉꢤꢅꢋꢡꢉꢇꢋ  
ꢀꢁꢂꢃꢁꢄꢅ ꢏꢇꢊ ꢁꢋꢙ ꢂꢇꢘꢪꢤꢋ ꢘꢁꢟꢅꢘꢉꢋꢄ ꢤꢁꢐ ꢈꢁꢏꢐ  
ꢁꢤꢇꢋꢄ ꢰꢤꢱꢯꢲꢳꢔ ꢀꢏꢇꢙꢪꢂꢆꢡꢣ ꢏꢅꢈꢉꢅꢊ ꢅꢁꢂꢫ ꢀꢁꢂꢃꢁꢄꢅ  
ꢘꢁꢐꢇꢪꢆ ꢂꢁꢏꢅꢨꢪꢘꢐ  
!
0ꢣꢥꢮ  
ꢍꢣ4ꢛ  
0ꢣꢧꢮ  
ꢍꢣꢛꢛ  
0ꢣꢍꢛ  
0ꢣꢍ0  
0ꢣꢥ0  
0ꢣꢧ0  
0ꢣꢍꢛ  
ꢡꢪꢟꢡꢆꢏꢁꢆꢅ ꢆꢫꢃ  
ꢤꢇꢘꢙ ꢂꢁꢀ ꢫꢆ  
ꢤꢑꢑꢑꢑꢑꢑ  
ꢰꢤꢱꢯꢲꢳꢔ  
ꢂꢇꢤꢀꢇꢋꢅꢋꢆ  
ꢀꢉꢋ ꢌꢁꢍꢎ  
ꢡꢪꢄꢄꢅꢡꢆꢅꢙ ꢀꢂꢟ ꢘꢁꢐꢇꢪꢆ  
ꢆꢇꢀ ꢈꢉꢅꢊ  
ꢆꢏꢁꢐ ꢀꢉꢋ ꢍ  
ꢟꢅꢈꢅꢘ  
ꢆꢇꢆꢁꢘ ꢋꢪꢤꢟꢅꢏ ꢇꢨ ꢟꢁꢘꢘꢡꢢ ꢮꢮ  
ꢀꢁꢂꢃꢁꢄꢅ ꢉꢋ ꢆꢏꢁꢐ ꢘꢇꢁꢙꢉꢋꢄ ꢇꢏꢉꢅꢋꢆꢁꢆꢉꢇꢋ  
ꢟꢄꢁ ꢮꢮ 0ꢛꢍꢮ ꢏꢅꢈ ꢟ  
8049fa  
18  
For more information www.linear.com/LTM8049  
LTM8049  
REVISION HISTORY  
RE5  
DATE  
DES RIPTION  
PAGEVNUMBER  
A
12/17 Added SnPb BGA Package  
1, 2  
8049fa  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
19  
LTM8049  
TYPICAL APPLICATION  
PaeallvlVOurpursVrCVIocevasvV±5VOurpurV ueevor  
MaximumVLCadV ueevorVnsV5IN  
4
ꢁꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢃꢄ  
ꢁꢂ  
ꢃꢄꢅꢀ ꢆꢇ ꢈꢉꢀ  
4ꢀꢁꢂꢃ  
×ꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0ꢁ4ꢂ  
ꢀꢁꢂ  
ꢁꢂꢃꢄꢅ  
ꢀ0ꢁꢂ  
ꢁꢃ0ꢂꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
0
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢂ8049  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢁꢃ0ꢂꢄꢅ  
ꢁꢂꢃ  
ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0ꢁ4ꢂ  
ꢁꢂꢃ  
ꢄꢅꢀ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄꢅ  
0
ꢀ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
8049 ꢀꢁ04a  
ꢀꢁ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢃꢃꢊꢋ ꢃꢃꢌꢋ ꢀꢍꢊꢋ ꢀꢍꢌꢋ ꢎꢏꢐꢄꢆꢅꢌ  
8049 ꢀꢁ04ꢂ  
DESIGN RESOURCES  
SUBJE T  
DES RIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PARTVNUMBER DES RIPTION  
OMMENT  
LTM8045  
LTM8046  
Single. Inverting or SEPIC µModule DC/DC Convertor  
2.8 ≤ V ≤ 18V. 2.5V ≤ V  
≤ 15V. 6.25mm ꢀ 11.25mm ꢀ 4.92mm BGA  
IN  
OUT  
2kVAC, 2.75W Isolated DC/DC µModule Converter  
3.1V ≤ V ≤ 31V, 1.8V ≤ V  
≤ 12V. 5V at 550mA from 24V ,  
IN  
OUT  
IN  
9mm ꢀ 15mm ꢀ 4.92mm BGA  
LTM8047  
LTM8048  
725kVDC, 1.5W Isolated DC/DC µModule Converter  
3.1V ≤ V ≤ 32V, 2.5V ≤ V  
≤ 12V. 9mm ꢀ 11.25mm ꢀ 4.92mm BGA  
OUT  
IN  
725kVDC, 1.5W Isolated DC/DC µModule Converter with 3.1V ≤ V ≤ 32V, 1.2V ≤ LDO V  
Integrated LDO  
≤ 12V. 9mm ꢀ 11.25mm ꢀ 4.92mm BGA  
IN  
OUT  
LTM8067  
LTM8068  
2kVAC, 2.25W Isolated DC/DC µModule Converter  
2.8V ≤ V ≤ 40V, 2.5V ≤ V  
≤ 24V. 9mm ꢀ 11.25mm ꢀ 4.92mm BGA  
IN  
OUT  
2kVAC, 2.25W Isolated DC/DC µModule Converter with  
Integrated LDO  
2.8V ≤ V ≤ 40V, 1.2V ≤ LDO V  
≤ 18V. 9mm ꢀ 11.25mm ꢀ 4.92mm BGA  
IN  
OUT  
LTM8023  
LTM8053  
36V , 2A, Step-Down DC/DC µModule Converter. Can Be 3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V. 9mm x 11.25mm x 2.82mm LGA.  
IN  
IN  
OUT  
Used for Inverting  
9mm x 11.25mm x 3.52mm BGA  
40V , 3.5A Step-Down DC/DC µModule Regulator. Can  
3.4V ≤ V ≤ 40V. 0.97V ≤ V ≤ 15V. 6.25mm x 9mm x 3.32mm BGA.  
IN  
IN  
OUT  
be used for inverting.  
8049fa  
LT 1217 REV A • PRINTED IN USA  
www.linear.com/LTM8049  
ANALOG DEVICES, INC. 2016  
20  

相关型号:

LTM8049IYPBF

Dual SEPIC or Inverting Module DC DC Converter
Linear System

LTM8050

60VIN, 3A Silent Switcher μModule Regulator
Linear

LTM8050EY#PBF

LTM8050 - 58V, 2A Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8050IY#PBF

LTM8050 - 58V, 2A Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8050MPY

LTM8050 - 58V, 2A Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8050MPY#PBF

LTM8050 - 58V, 2A Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8051

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8051EY

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8051IY

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8052

36VIN, 5A, 2-Quadrant CVCC Step-Down
Linear

LTM8052

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8052AIV#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear