MAX1003CAX-T [MAXIM]

ADC, Flash Method, 6-Bit, 2 Func, 1 Channel, Parallel, 6 Bits Access, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36;
MAX1003CAX-T
型号: MAX1003CAX-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Flash Method, 6-Bit, 2 Func, 1 Channel, Parallel, 6 Bits Access, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36

光电二极管 转换器
文件: 总12页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1236; Rev 0; 6/97  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Two Matched 6-Bit ADCs  
The MAX1003 is a dual, 6-bit analog-to-digital converter  
(ADC) that combines high-speed, low-power operation  
with a user-selectable input range, an internal refer-  
ence, and a clock oscillator. The dual parallel ADCs are  
designed to convert in-phase (I) and quadrature (Q)  
analog signals into two 6-bit, offset-binary-coded digital  
outputs at sampling rates up to 90Msps. The ability to  
directly interface with baseband I and Q signals makes  
the MAX1003 ideal for use in direct-broadcast satellite,  
VSAT, and QAM16 demodulation applications.  
High Sampling Rate: 90Msps per ADC  
Low Power Dissipation: 350mW  
Excellent Dynamic Performance:  
5.85 ENOB with 20MHz Analog Input  
5.7 ENOB with 50MHz Analog Input  
±1/4LSB INL and DNL (typ)  
Internal Bandgap Voltage Reference  
Internal Oscillator with Overdrive Capability  
The MAX1003 input amplifiers feature true differential  
inputs, a -0.5dB analog bandwidth of 55MHz, and user-  
programmable input full-scale ranges of 125mVp-p,  
250mVp-p, or 500mVp-p. With an AC-coupled input  
signal, matching performance between input channels  
is typically better than 0.1dB gain, 1/4LSB offset, and  
0.5° phase. Dynamic performance is 5.85 effective  
number of bits (ENOB) with a 20MHz analog input sig-  
nal, or 5.7 ENOB with a 50MHz signal.  
55MHz (-0.5dB) Bandwidth Input Amplifiers with  
True Differential Inputs  
User-Selectable Input Full-Scale Range  
(125mVp-p, 250mVp-p, or 500mVp-p)  
1/4LSB Channel-to-Channel Offset Matching (typ)  
0.1dB Gain and 0.5° Phase Matching (typ)  
Single-Ended or Differential Input Drive  
The MAX1003 operates with +5V analog and +3.3V digi-  
tal supplies for easy interfacing to +3.3V-logic-compati-  
ble digital signal processors and microprocessors. It  
comes in a 36-pin SSOP package.  
Flexible, 3.3V, CMOS-Compatible Digital Outputs  
________________________Ap p lic a t io n s  
Direct Broadcast Satellite (DBS) Receivers  
VSAT Receivers  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
PIN-PACKAGE  
Wide Local Area Networks (WLANs)  
Cable Television Set-Top Boxes  
MAX1003CAX  
0°C to +70°C  
36 SSOP  
Pin Configuration appears at end of data sheet.  
_________________________________________________________Fu n c t io n a l Dia g ra m  
IOCC+  
IOCC-  
IIN+  
IIN-  
INPUT  
AMP  
I
6
6
ADC  
I
VREF  
DI0DI5  
DCLK  
DATA  
BUFFER  
I
OFFSET  
CORREC-  
TION I  
CLOCK  
OUT  
TNK+  
TNK-  
GAIN  
BANDGAP  
REFERENCE  
CLOCK  
DRIVER  
OFFSET  
CORREC-  
TION Q  
MAX1003  
QIN+  
QIN-  
VREF  
ADC  
6
DATA  
BUFFER  
Q
INPUT  
AMP  
Q
6
DQ0DQ5  
Q
QOCC+  
QOCC-  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to GND ............................................................-0.3V to 6.5V  
Continuous Power Dissipation (T = +70°C)  
A
V
to OGND ........................................................-0.3V to 6.5V  
SSOP (derate 11.8mW/°C above +70°C) ...................941mW  
Operating Temperature Range ...............................0°C to +70°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, <10sec)...........................+300°C  
CCO  
GND to OGND ........................................................-0.3V to 0.3V  
Digital and Clock Output Pins to OGND...-0.3V to V (10sec)  
All Other Pins to GND...............................................-0.3V to V  
CCO  
CC  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX103  
DC ELECTRICAL CHARACTERISTICS  
(V = +5V ±5%, V  
= 3.3V ±300mV, T = T  
to T  
, unless otherwise noted.)  
CC  
CCO  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
RES  
INL  
6
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
-0.5  
±0.25  
±0.25  
125  
0.5  
0.5  
DNL  
No missing codes over temperature  
-0.5  
V
FSH  
GAIN = V (high gain)  
CC  
118.75  
237.5  
475  
131.25  
262.5  
525  
Full-Scale Input Range  
V
FSM  
GAIN = open (mid gain)  
GAIN = GND (low gain)  
250  
mVp-p  
V
FSL  
500  
INVERTING AND NONINVERTING ANALOG INPUTS  
Input Open-Circuit Voltage  
Input Resistance  
V
2.25  
13  
2.35  
20  
3
2.45  
29  
5
V
AOC  
R
C
k  
pF  
IN  
IN  
Input Capacitance  
Guaranteed by design  
Other analog input driven with external source  
(Note 2)  
Common-Mode Voltage Range  
V
1.75  
4.8  
2.75  
V
CM  
OSCILLATOR INPUTS  
Oscillator Input Resistance  
R
Other oscillator input tied to V + 0.3V  
8
12.1  
kΩ  
OSC  
CC  
DIGITAL OUTPUTS (DI0–DI5, DQ0–DQ5)  
Digital Outputs Logic-High  
Voltage  
V
I
= 50µA  
0.7V  
CCO  
V
V
OH  
SOURCE  
Digital Outputs Logic-Low  
Voltage  
V
OL  
I
= 400µA  
0.5  
SINK  
POWER SUPPLY  
Supply Current  
I
63  
104  
-40  
mA  
dB  
CC  
Power-Supply Rejection Ratio  
PSRR  
V
CC  
= 4.75V to 5.25V (Note 3)  
-75  
20MHz, full-scale I and Q analog inputs,  
= 15pF (Note 4)  
Digital Outputs Supply Current  
Power Dissipation  
I
21  
mA  
CCO  
C
L
PD  
350  
mW  
2
_______________________________________________________________________________________  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V ±5%, V  
= 3.3V ±300mV, T = +25°C, unless otherwise noted.)  
CC  
CCO  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
= 20MHz sine, amplitude -1dB below  
INQ  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (Gain = open, external 90MHz clock (Figure 7), V = V  
INI  
full scale, unless otherwise noted.)  
Maximum Sample Rate  
f
90  
Msps  
MAX  
Analog Input -0.5dB Bandwidth  
BW  
GAIN = GND, open, V  
55  
MHz  
CC  
GAIN = open (mid gain)  
5.6  
5.85  
ENOB  
M
GAIN = open (mid gain), f = 50MHz,  
IN  
-1dB below full scale  
5.7  
Effective Number of Bits  
Bits  
ENOB  
GAIN = V (high gain)  
CC  
5.8  
H
ENOB  
GAIN = GND (low gain)  
5.85  
L
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
OFF  
GAIN = open (mid gain)  
35.5  
37  
dB  
I channel  
-0.5  
-0.5  
0.5  
0.5  
Input Offset (Note 5)  
LSB  
Q channel  
Crosstalk Between ADCs  
XTLK  
OMM  
-55  
dB  
Offset Mismatch Between ADCs  
(Note 5)  
-0.5  
-0.2  
-2  
±0.25  
0.5  
0.2  
2
LSB  
Amplitude Match Between  
ADCs  
AM  
PM  
±0.1  
±0.5  
dB  
Phase Match Between ADCs  
degrees  
TIMING CHARACTERISTICS (Data outputs: R = 1M, C = 15pF)  
L
L
Clock to Data Propagation  
Delay  
t
(Note 6)  
3.6  
ns  
PD  
Data Valid Skew  
Input to DCLK Delay  
Aperture Delay  
t
(Note 6)  
1.5  
5.3  
7.5  
ns  
ns  
ns  
SKEW  
t
TNK+ to DCLK (Note 6)  
Figure 8  
DCLK  
t
AD  
clock  
cycle  
Pipeline Delay  
PD  
Figure 8  
1
Note 1: Best-fit straight-line linearity method.  
Note 2: A typical application will AC couple the analog input to the DC bias level present at the analog inputs (typically 2.35V).  
However, it is also possible to DC couple the analog input (using differential or single-ended drive) within this common-  
mode input range (Figures 4 and 5).  
Note 3: PSRR is defined as the change in the mid-gain full-scale range as a function of the variation in V  
supply voltage,  
CC  
expressed in decibels.  
Note 4: The current in the V  
supply is a strong function of the capacitive loading on the digital outputs. To minimize supply tran-  
CCO  
sients and achieve optimal dynamic performance, reduce the capacitive-loading effects by keeping line lengths on the dig-  
ital outputs to a minimum.  
Note 5: Offset-correction compensation enabled, 0.22µF at Q and I compensation inputs (Figures 2 and 3).  
Note 6: t and t  
are measured from the 1.4V level of the output clock, to the 1.4V level of either the rising or falling edge of a  
is measured from the 50% level of the clock-overdrive signal on TNK+ to the 1.4V level of DCLK. The capac-  
PD  
SKEW  
data bit. t  
DCLK  
itive load on the outputs is 15pF.  
_______________________________________________________________________________________  
3
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V ±5%, V  
= 3.3V ±300mV, f  
= 90Msps, GAIN = open (midgain) MAX1003 evaluation kit, T = +25°C, unless  
A
CC  
CCO  
CLK  
otherwise noted.)  
EFFECTIVE NUMBER OF BITS  
vs. ANALOG INPUT FREQUENCY  
EFFECTIVE NUMBER OF BITS  
vs. SAMPLING/CLOCK FREQUENCY  
ANALOG INPUT BANDWIDTH  
6.0  
5.8  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
MAX103  
5.6  
5.4  
5.2  
5.0  
f
= 90Msps  
f = 20MHz  
IN  
CLK  
-1.0  
10  
100  
1
10  
100  
1
10  
CLOCK FREQUENCY (MHz)  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
OSCILLATOR OPEN-LOOP PHASE NOISE  
vs. FREQUENCY OFFSET  
FFT PLOT  
-50  
-70  
0
f
= 19.9512MHz  
= 90.000MHz  
IN  
f
CLK  
1024 POINTS  
AC COUPLED  
SINGLE ENDED  
AVERAGED  
-20  
-90  
-110  
-130  
-40  
-60  
1k  
10k  
100k  
1M  
0
9
18  
27  
36  
45  
FREQUENCY OFFSET FROM CARRIER (Hz)  
FREQUENCY (MHz)  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
INTEGRAL NONLINEARITY  
vs. CODE  
0.50  
0.25  
0
0.50  
0.25  
0
-0.25  
-0.50  
-0.25  
-0.50  
0
10  
20  
30  
40  
50  
60 64  
0
10  
20  
30  
40  
50  
60 64  
CODE  
CODE  
4
_______________________________________________________________________________________  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
GAIN  
Gain-Select Input. Sets input full-scale range: 125/250/500mVp-p (Table 1).  
Positive I-Channel Offset-Correction Compensation. Connect a 0.22µF capacitor for AC-coupled  
inputs. Ground for DC-coupled inputs.  
2
3
IOCC+  
IOCC-  
Negative I-Channel Offset-Correction Compensation. Connect a 0.22µF capacitor for AC-coupled  
inputs. Ground for DC-coupled inputs.  
4
5
6
IIN+  
IIN-  
I-Channel Noninverting Analog Input  
I-Channel Inverting Analog Input  
V
CC  
+5V ±5% Supply. Bypass with a 0.01µF capacitor to GND (pin 7).  
7, 11, 12,  
18, 19  
GND  
Analog Ground  
8
V
+5V ±5% Supply. Bypass with a 0.01µF capacitor to GND (pin 11).  
Positive Oscillator/Clock Input  
CC  
9
TNK+  
TNK-  
10  
13  
14  
15  
Negative Oscillator/Clock Input  
V
CC  
+5V ±5% Supply. Bypass with a 0.01µF capacitor to GND (pin 12).  
Q-Channel Inverting Analog Input  
QIN-  
QIN+  
Q-Channel Noninverting Analog Input  
Negative Q-Channel Offset-Correction Compensation. Connect a 0.22µF capacitor for AC-coupled  
inputs. Ground for DC-coupled inputs.  
16  
17  
QOCC-  
Positive Q-Channel Offset-Correction Compensation. Connect a 0.22µF capacitor for AC-coupled  
inputs. Ground for DC-coupled inputs.  
QOCC+  
20–25  
26, 28  
27  
DQ5–DQ0  
Q-Channel Digital Outputs 0–5. DQ5 is the most significant bit (MSB).  
Digital Output Supply, +3.3V ±300mV. Bypass each with a 47pF capacitor to OGND (pin 27).  
Digital Output Ground  
V
CCO  
OGND  
DCLK  
29  
Digital Clock Output. Frames the output data.  
30–35  
36  
DI0–DI5  
I-Channel Digital Outputs 0–5. DI5 is the most significant bit (MSB).  
+5V ±5% Supply. Bypass with a 0.01µF capacitor to GND (pin 19).  
V
CC  
P ro g ra m m a b le In p u t Am p lifie rs  
_______________De t a ile d De s c rip t io n  
The MAX1003 has two (I and Q) programmable-gain  
input amplifiers with a -0.5dB bandwidth of 55MHz and  
true differential inputs. To maximize performance in  
high-speed systems, each amplifier has less than 5pF  
of input capacitance. The input amplifier gain is pro-  
grammed, via the GAIN pin, to provide three possible  
input full-scale ranges (FSRs) as shown in Table 1.  
Co n ve rt e r Op e ra t io n  
The MAX1003 contains two 6-bit analog-to-digital con-  
verters (ADCs), a buffered voltage reference, and oscil-  
la tor c irc uitry. The ADCs us e a fla s h c onve rs ion  
technique to convert an analog input signal into a 6-bit  
parallel digital output code. The MAX1003s unique  
design includes 63 fully differential comparators and a  
proprietary encoding scheme that ensures no more  
than 1LSB dynamic encoding error. The control logic  
inte rfa c e s e a s ily to mos t d ig ita l s ig na l p roc e s s ors  
(DSPs) and microprocessors (µPs) with +3.3V CMOS-  
c omp a tib le log ic inte rfa c e s . Fig ure 1 s hows the  
MAX1003 in a typical application.  
Table 1. Input Amplifier Programming  
INPUT FULL-SCALE RANGE  
GAIN  
(mVp-p)  
GND  
500  
250  
125  
Open  
V
CC  
_______________________________________________________________________________________  
5
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
Single-ended and differential AC-coupled input circuits  
are shown in Figures 2 and 3. Each of the amplifier  
inputs is internally biased to a 2.35V reference through  
a 20kresistor, eliminating external DC bias circuits. A  
series 0.1µF capacitor is required at each amplifier  
input for AC-coupled signals.  
compensation capacitor is required to set the dominant  
p ole of the offs e t-c orre c tion a mp lifie rs fre q ue nc y  
response (Figures 2 and 3). The compensation capaci-  
tor will determine the low-frequency corner of the ana-  
log input response according to the following formula:  
f = 1 / (0.1 x C)  
c
Whe n op e ra ting with AC-c oup le d inp uts , the inp ut  
amplifiersDC offset voltage is nulled to within ±1/2LSB  
by an on-chip offset-correction amplifier. An external  
where C is the value of the compensation capacitor in  
µF, and f is the corner frequency in Hz.  
c
MAX103  
LNB  
75CABLE  
950MHz TO 2150MHz  
F-CONNECTOR  
INPUT  
KU BAND  
OR  
VARACTOR-TUNED  
PRESELECTION FILTER  
FROM TANK VOLTAGE  
V
CC  
AGC  
AGC  
RFIN  
RFIN  
DATA  
BUFFER  
IIN  
6 BITS  
6 BITS  
IOUT  
CLK IN  
0
90Msps  
90  
MAX2102  
DSP  
DATA  
BUFFER  
QIN  
EXTERNAL  
VCO  
QOUT  
LO  
LO  
DIV  
ADC CLOCK  
MAX1003  
SYNTHESIZER  
MODCTL FIN CAR  
TANK  
OR  
MOD GND  
TANK  
TSA5055  
or EQUIV.  
Figure 1. Commercial Satellite Receiver System  
_______________________________________________________________________________________  
6
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
0.22µF  
0.22µF  
_OCC+  
_OCC-  
_OCC+  
_OCC-  
OFFSET  
CORREC-  
TION  
OFFSET  
CORREC-  
TION  
0.1µF  
0.1µF  
_IN+  
_IN+  
INPUT  
AMP  
INPUT  
AMP  
V
SOURCE  
V
SOURCE  
_IN-  
20k  
_IN-  
20k  
0.1µF  
0.1µF  
MAX1003  
MAX1003  
20k  
20k  
2.35V INTERNAL REFERENCE  
2.35V INTERNAL REFERENCE  
Figure 2. Single-Ended AC-Coupled Input  
Figure 3. Differential AC-Coupled Input  
OFFSET CORRECTION DISABLED  
OFFSET CORRECTION DISABLED  
_OCC+  
_OCC-  
_OCC+  
_OCC-  
OFFSET  
CORREC-  
TION  
OFFSET  
CORREC-  
TION  
_IN+  
_IN+  
INPUT  
AMP  
INPUT  
AMP  
V
SOURCE  
V
SOURCE  
_IN-  
20k  
_IN-  
20k  
MAX1003  
MAX1003  
20k  
20k  
DIFFERENTIAL SOURCE  
WITH COMMON MODE  
FROM 1.75V TO 2.75V.  
V
REF  
1.75V TO 2.75V  
2.35V INTERNAL REFERENCE  
2.35V INTERNAL REFERENCE  
Figure 4. Single-Ended DC-Coupled Input  
Figure 5. Differential DC-Coupled Input  
For applications where a DC component of the input  
signal is present, Figures 4 and 5 show single-ended  
and differential DC-coupled input circuits. The ampli-  
fiersinput common-mode voltage range extends from  
1.75V to 2.75V. To prevent attenuation of the input  
signal’s DC component in this mode, disable the offset-  
c orre c tion a mp lifie r b y g round ing the _OCC+ a nd  
_OCC- pins for the I and Q blocks (Figures 4 and 5).  
ADCs  
The I and Q ADC blocks receive the analog signals  
from the respective I and Q input amplifiers. The ADCs  
use flash conversion with 63 fully differential compara-  
tors to digitize the analog input signal into a 6-bit output  
in offset binary format.  
_______________________________________________________________________________________  
7
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
The MAX1003 features a proprietary encoding scheme  
Os c illa t o r Circ u it  
The MAX1003 includes a differential oscillator, which is  
controlled by an external parallel resonant (tank) net-  
work as shown in Figure 6. Alternatively, the oscillator  
may be overdriven with an external clock source as  
shown in Figure 7.  
that ensures no more than 1LSB dynamic encoding  
e rror. Dyna mic e nc od ing e rrors re s ulting from  
metastable states may occur when the analog input  
voltage, at the time the sample is taken, falls close to  
the decision point for any one of the input comparators.  
The resulting output code for typical converters can be  
incorrect, including false full- or zero-scale outputs. The  
MAX1003s unique design reduces the magnitude of  
this type of error to 1LSB.  
Internal Clock Operation (Tank)  
If the tank circuit is used, the resonant inductor should  
have a sufficiently high Q and a self-resonant frequen-  
cy (SRF) of at least twice the intended oscillator fre-  
q ue nc y. Coilc ra ft’s 1008HS-221, with a n SRF of  
700MHz and a Q of 45, works well for this application.  
Generate different clock frequency ranges by adjusting  
varactor and tank elements.  
MAX103  
In t e rn a l Vo lt a g e Re fe re n c e  
An internal buffered bandgap reference is included on  
the MAX1003 to drive the ADCs reference ladders. The  
on-chip reference and buffer eliminate any external  
(high-impedance) connections to the reference ladder,  
minimizing the potential for noise coupling from exter-  
nal circuitry while ensuring that the voltage reference,  
input amplifier, and reference ladder track well with  
variations of temperature and power supplies.  
An internal clock-driver buffer is included to provide  
sharp clock edges to the internal flash comparators.  
The buffer ensures that the comparators are simultane-  
ously clocked, maximizing the ADCs effective number  
of bits (ENOB) performance.  
47k  
V
CLK  
= 300mV TO 1.25V  
p-p p-p  
47pF  
TNK+  
0.1µF  
50Ω  
10k  
Z = 50Ω  
0
CLK  
DRIVER  
220nH  
5pF  
V
TUNE  
TNK+  
TNK-  
50Ω  
V
CLK  
TNK-  
CLK  
DRIVER  
47pF  
MAX1003  
0.1µF  
50Ω  
47k  
MAX1003  
V
TUNE  
= 0V TO 8V  
f
= 70MHz TO 110MHz  
OSC  
VARACTOR DIODE PAIR IS M/A-COM MA4ST079CK-287 (SOT23 PACKAGE)  
INDUCTOR COILCRAFT 1008HS-221.  
Figure 6. Tank Resonator Oscillator  
Figure 7. External Clock Drive Circuit  
8
_______________________________________________________________________________________  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
N
N + 1  
ANALOG  
INPUT  
N + 2  
t
AD  
50%  
TNK+  
(INPUT CLOCK)  
t
DCLK  
1.4V  
t
PD  
DCLK  
t
SKEW  
DATA VALID N - 1  
DATA VALID N  
1.4V  
DATA OUT  
Figure 8. MAX1003 Timing Diagram  
External Clock Operation  
To accommodate designs that use an external clock,  
the MAX1003s internal oscillator can be overdriven by  
an external clock source as shown in Figure 7. The  
external clock source should be a sinusoid to minimize  
clock phase noise and jitter, which can degrade the  
ADCsENOB performance. AC couple the clock source  
(recommended voltage level is approximately 1Vp-p) to  
the oscillator inputs as shown in Figure 7.  
111111  
111110  
111101  
100001  
100000  
011111  
011110  
Ou t p u t Da t a Fo rm a t  
The conversion results are output on a dual, 6-bit-wide  
data bus. Data is latched into the ADC output latch fol-  
lowing a pipeline delay of one clock cycle, as shown in  
Figure 8. Output data is clocked out of the respective  
ADCs data output pins (D_0 through D_5) on the rising  
edge of the clock output (DCLK), with a DCLK-to-data  
000011  
000010  
000001  
000000  
propagation delay (t ) of 3.6ns. The MAX1003 outputs  
PD  
are +3.3V CMOS-logic compatible.  
0
-FSR  
2
FSR  
2
1LSB  
INPUT VOLTAGE (_IN+ TO _IN-)  
Tra n s fe r Fu n c t io n  
Figure 9 shows the MAX1003s nominal transfer function.  
Output coding is offset binary with 1LSB = FSR / 63.  
Figure 9. Ideal Transfer Function  
_______________________________________________________________________________________  
9
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
__________Ap p lic a t io n s In fo rm a t io n  
_____________Dyn a m ic P e rfo rm a n c e  
The MAX1003 is designed with separate analog and  
digital power-supply and ground connections to isolate  
high-current digital noise spikes from the more sensi-  
tive analog circuitry. The high-current digital output  
ground (OGND) and analog ground (GND) should be  
at the same DC level, connected at only one location  
on the board. This will provide best noise immunity and  
imp rove d c onve rs ion a c c ura c y. Us e of s e p a ra te  
ground planes is strongly recommended.  
Signal-to-noise and distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to all  
other ADC output signals. The output spectrum is limit-  
ed to frequencies above DC and below one-half the  
ADC sample rate.  
The the ore tic a l minimum a na log -to-d ig ita l nois e is  
caused by quantization error, and results directly from  
the ADCs resolution: SNR = (6.02N + 1.76)dB, where  
N is the number of bits of resolution. Therefore, a per-  
fect 6-bit ADC can do no better than 38dB.  
MAX103  
The entire board needs good DC bypassing for both  
analog and digital supplies. Place the power-supply  
bypass capacitors close to where the power is routed  
onto the board, i.e., close to the connector. 10µF elec-  
trolytic capacitors with low-ESR ratings are recom-  
mended. For best effective bits performance, minimize  
capacitive loading at the digital outputs. Keep the digi-  
tal output traces as short as possible.  
The FFT Plot (see Typical Operating Characteristics)  
shows the result of sampling a pure 20MHz sinusoid at  
a 90MHz clock rate. This FFT plot of the output shows  
the output level in various spectral bands. The plot has  
been averaged to reduce the quantization noise floor  
and reveal the low-amplitude spurs. This emphasizes  
the e xc e lle nt s p urious -fre e d yna mic ra ng e of the  
MAX1003.  
The MAX1003 requires a +5V ±5% power supply for  
the analog supply (V ) and a +3.3V ±300mV power  
CC  
The effective resolution (or effective number of bits) the  
ADC provides can be measured by transposing the  
e q ua tion tha t c onve rts re s olution to SINAD: N =  
(SINAD - 1.76) / 6.02 (s e e Typ ic a l Op e ra ting  
Characteristics).  
s up p ly c onne c te d to V  
for the log ic outp uts .  
CCO  
Bypass each of the V  
supply pins to its respective  
CC_  
GND with high-quality ceramic capacitors located as  
close to the package as possible (Table 2). Consult the  
e va lua tion kit ma nua l for a s ug g e s te d la yout a nd  
bypassing scheme.  
Table 2. Bypassing  
BYPASS  
SUPPLY  
FUNCTION  
V
/
TO  
GND/  
OGND  
CAPACITOR  
VALUE  
CC  
V
CCO  
Analog Inputs  
Oscillator/Clock  
Converter  
6
7
0.01µF  
0.01µF  
0.01µF  
47pF  
8
11  
12  
27  
27  
19  
13  
26  
28  
36  
Digital Q-Output  
Digital I-Output  
Buffer  
47p F  
0.01µF  
10 ______________________________________________________________________________________  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
MAX103  
__________________P in Co n fig u ra t io n  
TOP VIEW  
GAIN  
1
2
3
4
5
6
7
8
9
36 V  
CC  
IOCC+  
IOCC-  
IIN+  
35 DI5  
34 DI4  
33 DI3  
32 DI2  
31 DI1  
30 DI0  
IIN-  
MAX1003  
V
CC  
GND  
V
CC  
DCLK  
29  
28  
TNK+  
V
CCO  
TNK- 10  
GND 11  
GND 12  
27 OGND  
26  
V
CCO  
25 DQ0  
24 DQ1  
23 DQ2  
22 DQ3  
21 DQ4  
20 DQ5  
19 GND  
V
CC  
13  
QIN- 14  
QIN+ 15  
QOCC- 16  
QOCC+ 17  
GND 18  
SSOP  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 6097  
______________________________________________________________________________________ 11  
Lo w -P o w e r, 9 0 Ms p s , Du a l 6 -Bit ADC  
________________________________________________________P a c k a g e In fo rm a t io n  
MAX103  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1003EVKIT

Evaluation Kit for the MAX1002/MAX1003
MAXIM

MAX1003EVKIT-SO

User-Selectable ADC Full-Scale Gain Ranges
MAXIM

MAX1005

IF Undersampler
MAXIM

MAX1005CEE

IF Undersampler
MAXIM

MAX1005CEE+

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE

IF Undersampler
MAXIM

MAX1005EEE+

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE+T

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1005EEE-T

Analog Circuit, 1 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1007

Mobile-Radio Analog Controller
MAXIM

MAX1007CAG

Mobile-Radio Analog Controller
MAXIM

MAX1007CAG+T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM