MAX11904ETP+ [MAXIM]

ADC, Successive Approximation,;
MAX11904ETP+
型号: MAX11904ETP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation,

转换器
文件: 总29页 (文件大小:750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
General Description  
Features and Benefits  
High DC/AC Accuracy Provides Better Measurement  
The MAX11904 is a 20-bit, 1Msps, single-channel, fully  
differential SAR ADC with internal reference buffers. The  
MAX11904 provides excellent static and dynamic perfor-  
mance with best-in-class power consumption that directly  
scales with throughput. The device has a unipolar differ-  
Quality  
20-Bit Resolution with No Missing Codes  
±6 LSB INL and ±0.9 LSB DNL at 20 Bits  
99.2dB SNR and 99.2dB SINAD at f = 10kHz  
IN  
ential ±V  
input range. Supplies include a 3.3V supply  
REF  
125dB SFDR and -123dB THD at f = 10kHz  
IN  
for the reference buffers, a 1.8V analog supply, a 1.8V  
digital supply, and a 1.5V to 3.6V digital interface supply.  
High Sampling Rate SAR Architecture Enables Fast  
Settling and Acquisition  
This ADC achieves 99.2dB SNR and -123dB THD, guar-  
antees 20-bit resolution with no-missing codes and 6 LSB  
INL (max).  
1Msps Throughput with No Pipeline Delay  
Integration Simplifies Design  
Integrated Reference Buffers  
±V Unipolar Differential Analog Input Range  
The MAX11904 communicates data using a SPI-  
compatible serial interface. The MAX11904 is offered in a  
20-pin, 4mm x 4mm, TQFN package and is specified over  
the -40°C to +85°C operating temperature range.  
REF  
Scalable Ultra-Low Power Supply Reduces Power  
Consumption  
6.7mW at 1Msps  
Applications  
Scale as 6.7µW/ksps  
Test and Measurement  
Automatic Test Equipment  
Medical Instrumentation  
Process Control and Industrial Automation  
Data Acquisition Systems  
Telecommunications  
Flexible Low-Voltage Supplies Save Cost  
1.8V Analog and Digital Core Supply  
1.5V to 3.6V Digital Interface Supply  
3.3V REFVDD Reference Buffer Supply  
Flexible, Industry-Standard Serial Interface and Small  
Package Reduce Size  
SPI-/QSPI™-/MICROWIRE®/DSP-Compatible  
Battery-Powered Equipment  
20-Pin, 4mm x 4mm, TQFN Package  
Ordering Information and Selector Guide appears at end of  
data sheet.  
Application Diagram  
16-Bit to 20-Bit SAR ADC Family  
1.5 TO  
1.8V 1.8V 3.6V  
16-BIT  
18-BIT  
20-BIT  
3.3V  
3.6V  
1.6Msps  
1Msps  
MAX11901  
MAX11900  
MAX11903  
MAX11902  
MAX11905  
MAX11904  
REFVDD AVDD DVDD OVDD  
DIN  
10Ω  
REFIN  
AIN+  
0 TO 3.3V  
3.3V TO 0  
4-WIRE  
SPI  
INTERFACE  
SCLK  
MAX11904  
DOUT  
2nF  
C0G  
CNVST  
AIN-  
10Ω  
REF  
A
D
REF REF GND GND GND  
QSPI is a trademark of Motorola, Inc.  
10µF  
MICROWIRE is a registered trademark of National  
Semiconductor Corporation.  
19-7449; Rev 1; 4/15  
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Application Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
16-Bit to 20-Bit SAR ADC Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Mode Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Conversion Result Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Chip ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Single-Ended Unipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Single-Ended Bipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Layout, Grounding, and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Integral Nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Offset Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Gain Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Signal-to-Noise Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Signal-to-Noise Plus Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
TABLE OF CONTENTS (continued)  
Effective Number of Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Spurious-Free Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Aperture Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Aperture Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Full-Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Chip Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LIST OF FIGURES  
Figure 1. Signal Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 2. Simplified Model of Input Sampling Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 4. Ideal Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5. Read During Track Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 6. Read During SAR Conversion Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 7. Split Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 8. SPI Interface Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. DIN Timing for Register Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Timing Diagram for Data Out Reading After Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 11. Mode Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Unipolar Single-Ended Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14. Bipolar Single-Ended Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15. Top Layer Sample Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LIST OF TABLES  
Table 1. ADC Driver Amplifier Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2. Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3. MAX11904 External Reference Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 4. Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 5. DOUT Driver Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Absolute Maximum Ratings  
REFVDD, REF, REFIN, OVDD to GND ..................-0.3V to +4V  
AVDD, DVDD to GND .............................................-0.3V to +2V  
DGND to AGND, REFGND ..................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
TQFN (derate 30.30mW/°C above +70°C).............2424.2mW  
A
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
AIN+, AIN- to GND...... -0.3V to the lower of (V  
+ 0.3V) and  
REF  
+4V or ±130mA  
SCLK, DIN, DOUT, CNVST, to GND...........-0.3V to the lower of  
(V + 0.3V) and +4V  
OVDD  
Maximum Current into Any Pin...........................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient Thermal Resistance (θ ).... ......33°C/W  
JA  
Junction-to-Case Thermal Resistance (θ ) ............... 2°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(f  
T
= 1Msps, V  
= 1.8V, V  
= 1.8V, V  
= 1.5V to 3.6V, V  
= 3.6V, V  
= 3.3V, Internal Ref Buffers On,  
SAMPLE  
AVDD  
DVDD  
OVDD  
REFVDD  
REF  
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Input Voltage Range (Note 3)  
(AIN+) - (AIN-)  
-V  
+V  
V
V
REF  
REF  
V
REF  
0.1  
+
Absolute Input Voltage Range  
Common-Mode Input Range  
AIN+, AIN- relative to AGND  
-0.1  
V
REF  
0.1  
/2 -  
V
/2  
REF  
[(AIN+) + (AIN-)]/2  
Acquisition phase  
V
/2  
V
REF  
+ 0.1  
Input Leakage Current  
Input Capacitance  
-1  
0.001  
32  
+1  
µA  
pF  
STATIC PERFORMANCE (Note 4)  
Resolution  
N
20  
Bits  
µV  
Resolution  
LSB  
V
= 3.3V  
6.3  
REF  
No Missing Codes  
Offset Error (Note 4)  
Offset Temperature Coefficient  
Gain Error  
20  
Bits  
-10  
±1  
+10  
LSB  
LSB/°C  
LSB  
±0.01  
±20  
Referred to REFIN reference input  
Referred to REFIN reference input  
Referred to REF pins  
-175  
-42  
-6  
+175  
Gain Error Temperature  
Coefficient (Note 5)  
±0.2  
±10  
LSB/°C  
LSB  
Gain Error  
+42  
+6  
Gain Error Temperature  
Coefficient (Note 5)  
Referred to REF pins  
±0.12  
±1.5  
LSB/°C  
LSB  
Integral Nonlinearity  
INL  
Maxim Integrated  
4  
www.maximintegrated.com  
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Electrical Characteristics (continued)  
(f  
= 1Msps, V  
= 1.8V, V  
= 1.8V, V  
= 1.5V to 3.6V, V  
= 3.6V, V  
= 3.3V, Internal Ref Buffers On,  
SAMPLE  
AVDD  
DVDD  
OVDD  
REFVDD  
REF  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±0.5  
16  
MAX  
UNITS  
LSB  
Differential Nonlinearity  
(Note 6)  
DNL  
-0.9  
+0.9  
Analog Input CMR  
CMR  
DC  
LSB/V  
LSB/V  
Power-Supply Rejection  
(Note 7)  
PSR  
PSR vs. AVDD  
2
Power-Supply Rejection  
(Note 7)  
PSR  
PSR vs. REFVDD  
2
4
LSB/V  
Transition Noise  
LSB  
RMS  
EXTERNAL REFERENCE  
REF Voltage Input Range  
Load Current  
V
2.5  
2.5  
3.3  
350  
1
3.6  
V
REF  
I
1Msps, V  
= 3.3V  
µA  
nF  
REF  
REF  
REF Input Capacitance  
REFERENCE BUFFER  
V
REFVDD  
- 200mV  
REFIN Input Voltage Range  
REFIN Input Current  
V
V
< (V - 200mV)  
REFVDD  
3
1
V
REFIN  
REF  
I
nA  
ms  
REFIN  
C
C
= 10µF on REF pin,  
EXT  
Turn-On Settling Time  
20  
= 0.1µF on REFIN pin  
REFIN  
External Compensation  
Capacitor  
CEXT  
REF pins  
4.7  
10  
µF  
DYNAMIC PERFORMANCE (Note 8)  
Dynamic Range  
Internal RefBuffer, -60dBFS input  
99.4  
99.2  
dB  
dB  
Signal-to-Noise Ratio  
SNR  
Internal RefBuffer, f = 10kHz  
98  
98  
IN  
Internal RefBuffer, f = 10kHz,  
IN  
-0.1dBFs  
Signal-to-Noise Plus Distortion  
SINAD  
99.2  
dB  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Total Harmonic Distortion  
Total Harmonic Distortion  
SAMPLING DYNAMICS  
Throughput  
SFDR  
THD  
THD  
THD  
Internal RefBuffer, f = 10kHz  
125  
-123  
-115  
-107  
dB  
dB  
dB  
dB  
IN  
Internal RefBuffer, f = 10kHz  
IN  
Internal RefBuffer, f = 100kHz  
IN  
Internal RefBuffer, f = 250kHz  
IN  
0
1
Msps  
MHz  
ns  
-3dB point  
20  
3
Full-Power Bandwidth  
Acquisition Time  
-0.1dB point  
t
150  
ACQ  
Time delay from CNVST rising edge  
to time at which sample is taken for  
conversion  
Aperture Delay  
Aperture Jitter  
1
3
ns  
ps  
RMS  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Electrical Characteristics (continued)  
(f  
= 1Msps, V  
= 1.8V, V  
= 1.8V, V  
= 1.5V to 3.6V, V  
= 3.6V, V  
= 3.3V, Internal Ref Buffers On,  
SAMPLE  
AVDD  
DVDD  
OVDD  
REFVDD  
REF  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Analog Supply Voltage  
Digital Supply Voltage  
AVDD  
DVDD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
Reference Buffer Supply  
Voltage  
REFVDD  
OVDD  
2.7  
1.5  
3.3  
3.6  
V
Interface Supply Voltage  
Analog Supply Current  
Digital Supply Current  
3.6  
2.3  
1.9  
V
I
V
V
V
= 1.8V  
1.75  
1.5  
mA  
mA  
AVDD  
AVDD  
I
= 1.8V  
DVDD  
DVDD  
Reference Buffer Supply  
Current  
= 3.6V, internal buffers  
REFVDD  
I
I
3.3  
0.2  
3.55  
mA  
mA  
REFVDD  
REFVDD  
enabled  
Reference Buffer Supply  
Current  
V
REFVDD  
powered down  
= 3.6V, internal buffers  
V
V
= 1.5V  
= 3.6V  
0.27  
Interface Supply Current  
(Note 9)  
OVDD  
I
mA  
OVDD  
1
1
1
OVDD  
Shutdown Current  
Shutdown Current  
For AVDD, DVDD, REFVDD  
For DVDD  
µA  
µA  
V
V
= 1.8V, V  
= 1.8V,  
AVDD  
DVDD  
Power Dissipation  
= 3.3V, internal reference  
6.7  
8.4  
mW  
REFVDD  
buffers disabled  
DIGITAL INPUTS (DIN, SCLK, CNVST)  
0.7 x  
Input Voltage High  
Input Voltage Low  
V
V
V
= 1.5V to 3.6V  
= 1.5V to 3.6V  
V
V
IH  
OVDD  
V
OVDD  
0.3 x  
V
IL  
OVDD  
V
OVDD  
Input Capacitance  
C
10  
1
pF  
µA  
IN  
Input Current  
I
V
= 0V or V  
OVDD  
IN  
IN  
DIGITAL OUTPUTS (DOUT)  
V
-
OVDD  
0.4  
Output Voltage High  
Output Voltage Low  
V
I
I
= 2mA  
V
V
OH  
SOURCE  
V
= 2mA  
SINK  
0.4  
OL  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Electrical Characteristics (continued)  
(f  
= 1Msps, V  
= 1.8V, V  
= 1.8V, V  
= 1.5V to 3.6V, V  
= 3.6V, V  
= 3.3V, Internal Ref Buffers On,  
SAMPLE  
AVDD  
DVDD  
OVDD  
REFVDD  
REF  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING  
DIN to SCLK Rising Edge  
Setup  
t1  
t2  
t3  
4
ns  
ns  
ns  
DIN to SCLK Rising Edge Hold  
1
DOUT End-Of-Conversion  
Low Time  
15  
DOUT to SCLK Rising  
Edge Hold  
t4  
t5  
2.5  
1.5  
ns  
ns  
DOUT to SCLK Rising  
Edge Setup  
100MHz SCLK  
SCLK High  
SCLK Period  
SCLK Low  
t6  
t7  
t8  
4.5  
10  
ns  
ns  
ns  
4.5  
CNVST Rising Edge To SCLK  
Rising Edge  
t9  
0
ns  
ns  
SCLK Rising Edge to CNVST  
Rising Edge  
t10  
25  
25  
CNVST High  
t11  
t12  
t13  
ns  
ns  
ns  
CNVST High to EOC  
Conversion Period  
850  
1000  
Note 2: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design  
A
and device characterization.  
Note 3: See the Analog Inputs section.  
Note 4: See the Definitions section at the end of the data sheet.  
Note 5: See the Definitions section at the end of the data sheet. Error contribution from the external reference not included.  
Note 6: Parameter is guaranteed by design.  
Note 7: Defined as the change in positive full-scale code transition caused by a ±5% variation in the supply voltage.  
Note 8: Sine wave input, f = 10kHz, A = -0.1dB below full scale.  
IN  
IN  
Note 9: C  
= 10pF on DOUT. f  
= 1Msps. All data is read out.  
LOAD  
CONV  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Typical Operating Characteristics  
(V  
= 1.8V, V  
= 1.8V, V  
= 1.8V, V  
= 3.6V, f  
= 1Msps, V  
= 3.3V, Internal Ref Buffer On, T = T  
to  
MIN  
AVDD  
DVDD  
OVDD  
REFVDD  
SAMPLE  
REF  
A
T
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
toc1  
INL vs. TEMPERATURE  
DNL vs. TEMPERATURE  
toc3  
toc4  
6
4
MAX INL (LSB)  
5
MAX DNL (LSB)  
MIN DNL (LSB)  
3
2
MIN INL (LSB)  
4
3
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
DNL vs. AVDD SUPPLY VOLTAGE  
INL vs. AVDD SUPPLY VOLTAGE  
toc5  
toc6  
4
6
5
MAX DNL (LSB)  
MIN DNL (LSB)  
VREFVDD = 3.6V  
VREF = 3.3V  
VREFVDD = 3.6V  
VREF = 3.3V  
MAX INL (LSB)  
MIN INL (LSB)  
3
2
4
3
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
1.70  
1.73  
1.75  
1.78  
1.80  
1.83  
1.85  
1.88  
1.90  
1.70  
1.73  
1.75  
1.78  
1.80  
1.83  
1.85  
1.88  
1.90  
VAVDD (V)  
VAVDD (V)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Typical Operating Characteristics (continued)  
(V  
= 1.8V, V  
= 1.8V, V  
= 1.8V, V  
= 3.6V, f  
= 1Msps, V  
= 3.3V, Internal Ref Buffer On, T = T  
to  
MIN  
AVDD  
DVDD  
OVDD  
REFVDD  
SAMPLE  
REF  
A
T
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
DNL vs. REFVDD SUPPLY VOLTAGE  
INL vs. REFVDD SUPPLY VOLTAGE  
toc8  
toc7  
12  
4
MAX DNL (LSB)  
MIN DNL (LSB)  
VAVDD = 1.8V  
VREF = 2.5V  
MAX INL (LSB)  
MIN INL (LSB)  
V
AVDD = 1.8V  
10  
8
3
2
VREF = 2.5V  
6
4
1
2
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-1  
-2  
-3  
-4  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VREFVDD (V)  
VREFVDD (V)  
OFFSET AND GAIN ERROR vs. AVDD SUPPLY VOLTAGE  
OFFSET AND GAIN ERROR vs. TEMPERATURE  
toc9  
toc10  
20  
16  
12  
8
2.0  
1.5  
12  
10  
8
VREF = 3.3V  
VREFVDD = 3.6V  
OFFEST ERROR (LSB)  
GAIN ERROR (LSB)  
Offset Error (LSB)  
Gain Error (LSB)  
VREF = 3.3V  
VREFVDD = 3.6V  
1.0  
0.5  
6
4
0
0.0  
4
-4  
-0.5  
-1.0  
-1.5  
-2.0  
2
-8  
0
-12  
-16  
-20  
-2  
-4  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
1.7  
1.75  
1.8  
1.85  
1.9  
TEMPERATURE (°C)  
VAVDD (V)  
OFFSET AND GAIN ERROR vs. REFVDD VOLTAGE  
OUTPUT NOISE HISTOGRAM  
toc11  
toc12  
8
6
12  
10  
8
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
VREF = 2.5V  
VAVDD = 1.8V  
Offset Error (LSB)  
Gain Error (LSB)  
STDEV = 3.8 LSB  
4
2
6
0
4
-2  
-4  
-6  
-8  
2
0
-2  
-4  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VREFVDD (V)  
OUTPUT CODE (DECIMAL)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Typical Operating Characteristics (continued)  
(V  
= 1.8V, V  
= 1.8V, V  
= 1.8V, V  
= 3.6V, f  
= 1Msps, V  
= 3.3V, Internal Ref Buffer On, T = T  
A MIN  
to  
AVDD  
DVDD  
OVDD  
REFVDD  
SAMPLE  
REF  
T
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
OUTPUT NOISE HISTOGRAM  
4 SAMPLES AVERAGE  
OUTPUT NOISE HISTOGRAM  
16 SAMPLES AVERAGE  
toc14  
toc13  
14000  
12000  
24000  
20000  
16000  
12000  
8000  
4000  
0
STDEV = 2.0 LSB  
STDEV = 1.1 LSB  
10000  
8000  
6000  
4000  
2000  
0
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
SFDR AND THD vs. TEMPERATURE  
SNR AND SINAD vs. TEMPERATURE  
toc18  
toc17  
135  
102  
101  
100  
99  
-THD  
SNR  
133  
131  
129  
127  
125  
123  
121  
119  
117  
115  
SINAD  
SFDR  
98  
97  
96  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Typical Operating Characteristics (continued)  
(V  
= 1.8V, V  
= 1.8V, V  
= 1.8V, V  
= 3.6V, f  
= 1Msps, V  
= 3.3V, Internal Ref Buffer On, T = T  
A MIN  
to  
AVDD  
DVDD  
OVDD  
REFVDD  
SAMPLE  
REF  
T
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
SNR AND SINAD vs. REFERENCE VOLTAGE  
THD AND SFDR vs. REFERENCE VOLTAGE  
toc19  
toc20  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
100  
SINAD  
SFDR  
-THD  
SNR  
99  
98  
97  
96  
95  
94  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3  
VREF (V)  
VREF (V)  
SHUTDOWN CURRENT vs. TEMPERATURE  
CURRENT vs. TEMPERATURE  
toc21  
toc22  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
30  
25  
20  
15  
10  
5
IAVDD  
IOVDD  
IREFVDD  
IDVDD  
IOVDD  
IREFVDD (BUFFER OFF)  
IREFVDD  
IDVDD  
IAVDD  
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CURRENT vs. SAMPLING RATE  
toc23  
2.5  
IDVDD  
IOVDD  
IAVDD  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
0.3  
0.5  
0.8  
1.0  
SAMPLING RATE (Msps)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Pin Configuration  
TOP VIEW  
20  
19  
17  
16  
18  
1
2
3
4
5
15 DGND  
REF  
REF  
14  
13  
12  
DIN  
MAX11904  
CNVST  
SCLK  
REFGND  
REFGND  
AIN-  
DVDD  
10  
6
7
8
9
TQFN  
4mm × 4mm  
EXPOSED PAD IS GROUND. IT MUST BE SOLDERED TO PCB.  
Pin Description  
PIN  
NAME  
I/O  
FUNCTION  
Reference. REF is a bypass pin for the reference either driven by the internal reference buffers  
or the external reference directly. Bypass these pins with 10µF capacitors to REFGND.  
1, 2  
REF  
I/O  
3, 4  
5
REFGND  
AIN-  
I
I
I
I
Reference Ground  
Negative Analog Input  
Positive Analog Input  
Analog Ground  
6
AIN+  
7
AGND  
Digital Interface Supply. Nominally at 1.8V. Bypass to DGND with a 10µF capacitor in parallel  
with a 0.1µF capacitor (10µF || 0.1µF).  
8
OVDD  
I
9
DOUT  
DGND  
O
I
Digital Output Data  
Digital Ground  
10  
Digital Supply. Nominally at 1.8V. Bypass with a 10µF capacitor in parallel with a 0.1µF  
capacitor (10µF || 0.1µF).  
11  
12  
13  
DVDD  
SCLK  
I
I
I
Serial Clock Input  
Conversion Start. The analog inputs (AIN+, AIN-) are sampled at the rising edge and conversion  
process is started.  
CNVST  
14  
15  
DIN  
I
I
Serial Data Input. DIN data is latched into the serial interface on the rising edge of SCLK.  
Digital Ground  
DGND  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Pin Description (continued)  
PIN  
16  
NAME  
REFVDD  
AGND  
I/O  
FUNCTION  
Reference Buffer Supply. Nominally at 3.3V. Bypass to AGND with a 10µF capacitor in parallel  
with a 0.1µF capacitor (10µF || 100nF).  
I
I
17, 18  
Analog Ground.  
Analog Supply. Nominally at 1.8V. Bypass to AGND with a 10µF capacitor in parallel with a  
0.1µF capacitor (10µF || 100nF).  
19  
AVDD  
I
Input for the Internal Reference Buffer. Voltage must be at least 200mV lower than  
REFVDD voltage. If REFIN = 0V, reference buffer will be disabled.  
20  
REFIN  
EP  
I
Exposed Pad. Must be connected to the same plane as AGND.  
Functional Diagram  
REFIN  
AVDD  
DVDD  
REFVDD  
REFERENCE  
BUFFER  
REFERENCE  
BUFFER  
MAX11904  
REFGND  
REF  
OVDD  
REF  
DIN  
AIN+  
SCLK  
DOUT  
CNVST  
INTERFACE  
20-BIT ADC  
AIN-  
AGND  
DGND  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
The differential analog input must be centered around  
Detailed Description  
a signal common mode of V  
±100mV.  
/2, with a tolerance of  
REF  
The MAX11904 is a 20-bit, 1Msps maximum sampling  
rate, fully differential input, single-channel SAR ADC with  
SPI interface. This part features industry-leading sample  
rate and resolution, while consuming very low power. The  
MAX11904 has an integrated reference buffer to minimize  
board space, component count, and system cost. An  
internal oscillator drives the conversion and sets conver-  
sion time, easing external timing considerations.  
The reference voltage can range from 2.5V to the refer-  
ence supply, REFVDD, if an external reference buffer  
is used. When using the on-board reference buffer the  
reference voltage can range from 2.5V to 200mV below  
reference supply REFVDD. This will guarantee adequate  
headroom for the internal reference buffers.  
Figure 1 illustrates signal ranges for AIN+/AIN-, reference  
Analog Inputs  
Both analog inputs, AIN+ and AIN-, range from 0V to  
voltage V  
and reference supply voltage REFVDD.  
REF  
Figure 2 shows the input equivalent circuit of MAX11904.  
The ADC samples both inputs, AIN+ and AIN-, with a fully  
differential on-chip track-and-hold exhibiting no pipeline  
delay or latency.  
V
. Thus, the differential input interval V  
= (AIN+)  
REF  
DIFF  
- (AIN-) ranges from -V  
range is:  
to +V  
, and the full-scale  
REF  
REF  
FSR = 2 x V  
REF  
The MAX11904 has dedicated input clamps to protect  
the inputs from overranging. Diodes D1 and D2 provide  
ESD protection and act as a clamp for the input voltages.  
Diodes D1/D2 can sustain a maximum forward current  
of 100mA. The sampling switches connect inputs to the  
sampling capacitors.  
The nominal resolution step width of the least significant  
bit (LSB) is:  
FSR  
LSB =  
,N = 20  
N
2
Figure3showsthetimingofthedigitizingcycle:Conversion  
frame, SAR conversion, Track and Read operations.  
V
VREF +200mV ≤ VREFVDD 3.6V  
REFVDD  
VREF  
IF BUFFER IS ENABLED  
200mV  
VREF ≤ VREFVDD 3.6V  
IF BUFFER IS DISABLED  
AIN+  
AIN-  
0.5 x VREF  
0V  
time  
Figure 1. Signal Ranges  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
REFVDD  
D1  
RON = 260Ω  
AIN+  
CIN = 30pF  
D2  
VDC  
REFVDD  
D1  
RON = 260Ω  
AIN-  
CIN = 30pF  
D2  
Figure 2. Simplified Model of Input Sampling Circuit  
1/Sample Rate  
SAR Conversion  
1/Sample Rate  
SAR Conversion  
Track  
Track  
Read Data  
Read Data  
Sample 1  
Sample 2  
CNVST  
SCLK  
Sample 1  
Sample 2  
MSB MSB-1  
LSB+1  
LSB  
MSB MSB-1  
LSB+1  
LSB  
DOUT  
Reading sample1 during track  
Reading sample 2 during track  
Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
capacitor, PCB parasitic capacitor), and t  
track time.  
is the  
Input Settling  
TRACK  
During track phase (Figure 3), the sample switches are  
closed and the analog inputs are directly connected to the  
sample capacitors. The charging of the sample capacitor  
to the input voltage is determined by the source resis-  
tance and sampling capacitor size. The rising edge of  
CNVST is the sampling instant for the ADC. At this instant,  
the track phase ends, the sample switch opens, and the  
device enters into the successive approximation (SAR)  
conversion phase. In the conversion phase, a differential  
comparator compares the voltage on the sample capaci-  
When an ADC driver is used, it is recommended to use  
a series resistance (typically 5Ω to 50Ω) between the  
amplifier and the ADC input, as shown in the Application  
Diagram. Below are some of the requirements for the  
ADC driver amplifier:  
1) Fast settling time: For a multichannel multiplexed cir-  
cuit the ADC driver amplifier must be able to settle with  
an error less than 0.5 LSB during the minimum track  
time when a full-scale step is applied.  
tor against the CDAC value, which cycles through values  
20  
2) Low noise: It is important to ensure that the ADC driver  
has a sufficiently low-noise density in the bandwidth  
of interest of the application. When the MAX11904 is  
used with its full bandwidth of 20MHz, it is preferable  
to use an amplifier with an output noise spectral den-  
sity of less than 3nV/√Hz, to ensure that the overall  
SNR is not degraded significantly. It is recommended  
to insert an external RC filter at the ADC input to  
attenuate out-of-band input noise.  
between V  
/2 and V  
/2  
using the successive  
REF  
REF  
approximation technique. The final result can be read via  
the SPI bus. The ADC automatically goes back into track  
phase at the end of SAR conversion and powers down its  
active circuits. That is, the ADC consumes no static power  
in track mode.  
The conversion results will be accurate if the ADC tracks  
the input signal for an interval longer than the input sig-  
nal’s settling time. If the signal cannot settle within the  
track time due to excessive source resistance, external  
ADC drivers are required to achieve faster settling. Since  
the MAX11904 has a fixed conversion time set by an  
internal oscillator, track time can be increased by lowering  
the sample rate for better settling.  
3) To take full advantage of the ADC’s excellent dynamic  
performance, Maxim recommends the use of an ADC  
driver with equal or even better THD performance.  
This will ensure that the ADC driver does not limit  
distortion performance in the signal path. Table 1 sum-  
marizes the most important features of the MAX9632  
when used as an ADC driver.  
The settling behavior is determined by the time constant  
in the sampling network. The time constant depends upon  
the total resistance (source resistance + switch resis-  
tance) and total capacitance (sampling capacitor, external  
input capacitor, PCB parasitic capacitors).  
Input Filtering  
Noisy input signals should be filtered prior to the ADC  
driver amplifier input with an appropriate filter to minimize  
noise. The RC network shown in the Application Diagram  
is mainly designed to reduce the load transient seen by  
the amplifier when the ADC starts the track phase. This  
network also has to satisfy the settling time requirement  
and provides the benefit of limiting the noise bandwidth.  
Modeling the input circuit with a single pole network, the  
time constant, R  
× C  
, of the input should not  
TOTAL  
LOAD  
exceed t  
/15, where R  
is the total resistance  
TOTAL  
TRACK  
(source resistance + switch resistance), C  
total capacitance (sampling capacitor, external input  
is the  
LOAD  
Table 1. ADC Driver Amplifier Recommendation  
INPUT-NOISE  
DENSITY (nV/√Hz)  
SMALL-SIGNAL  
BANDWIDTH (MHz)  
SLEW RATE  
(V/µs)  
THD  
(dB)  
ICC  
(mA)  
AMPLIFIER  
COMMENTS  
Ultra-low noise, wide  
GBWP, single ended  
MAX9632  
0.9  
55  
30  
-128  
-137  
3.9mA  
3.7mA  
Ultra-low distortion, wide  
GBWP, fully differential  
MAX44205  
3.1  
180  
180  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
MAX11904. The MAX6126 and MAX6325 offer, respec-  
tively, 0.02% and 0.04% initial accuracy and 3ppm/°C and  
1ppm/°C (max) temperature coefficient for high-precision  
applications. Maxim recommends bypassing REFIN and  
REF with a 2.2µF capacitor close to the ADC pins.  
Voltage Reference Configurations  
The MAX11904 features internal reference buffers,  
helping to reduce component count and board space.  
Alternatively, the user may drive the reference nodes REF  
with an external reference. To use the internal reference  
buffers, drive the REFIN pin with an external reference  
voltage source. It will appear on the REF pin as a buffered  
reference output. The internal reference buffers can be  
disabled by writing to a register (see the Mode Register  
section) or tying REFIN to 0V. Once the on-chip reference  
buffers are disabled, REF pins can be directly driven by  
external reference buffers. A simplified diagram is shown  
to clarify the required connections for external reference.  
Transfer Function  
Figure 4 shows the ideal transfer characteristics for the  
MAX11904.  
The default data format is two’s complement. However,  
offset binary format can be chosen by setting mode regis-  
ter BIT 1 (see the Mode Register section).  
Table 4 shows the codes in terms of input voltage applied.  
The data reported is with V  
scale range of 6V.  
of 3.0V, that gives a full-  
A low-noise, low-temperature drift reference is required  
to achieve high system accuracy. The MAX6126 and  
MAX6325 are particularly well suited for use with the  
REF  
Table 2. Voltage Reference Configurations  
REFERENCE  
CONFIGURATION  
INTERNAL  
REFERENCE BUFFERS  
REFIN  
2.5V to V  
V
V
REFVDD  
REF  
Internal Reference Buffer  
ON  
- 0.2V  
2.5V to V  
- 0.2V  
2.7V to 3.6V  
2.5V to 3.6V  
REFVDD  
REFVDD  
External Reference  
Buffer  
Tie to 0V or disable  
through serial interface  
OFF  
2.5V to V  
REFVDD  
Table 3. MAX11904 External Reference Recommendations  
TEMPERATURE  
COEFFICIENT  
(ppm/°C, max)  
INITIAL  
ACCURACY  
(%)  
NOISE  
(0.1Hz TO 10Hz)  
PART  
V
(V)  
PACKAGE  
OUT  
(µV  
)
P-P  
MAX6126  
MAX6325  
2.5, 3  
2.5  
3
1
0.02  
0.04  
1.45  
1.5  
µMAX-8, SO-8  
SO-8  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
OUTPUT CODE  
(OFFSET  
BINARY)  
OUTPUT CODE  
(TWO'S COMPLEMENT)  
FS - 1.5 x LSB  
FS - 1.5 x LSB  
011...111  
011...110  
011...101  
111...111  
111...110  
111...101  
100...010  
100...001  
000...010  
000...001  
V
IN = (AIN+) - (AIN-)  
DIFFERENTIAL  
ANALOG INPUT  
(LSB)  
V
IN = (AIN+) - (AIN-)  
DIFFERENTIAL  
ANALOG INPUT  
(LSB)  
100...000  
000...000  
-219-219+1-219+2  
219-2 219-1 219  
219-2 219-1 219  
-219-219+1-219+2  
2 x VREF  
2 X VREF  
ZERO SCALE  
(ZS)  
VIN = -VREF  
FULL SCALE  
(FS)  
VIN = +VREF  
ZERO SCALE  
(ZS)  
VIN = -VREF  
FULL SCALE  
(FS)  
VIN = +VREF  
Figure 4. Ideal Transfer Characteristic  
Table 4. Transfer Characteristic  
DIFFERENTIAL ANALOG INPUT  
FULL-SCALE RANGE = 6V (V)  
HEXADECIMAL  
TWO’S COMPLEMENT  
HEXADECIMAL OFFSET  
BINARY  
MIDCODE VALUE  
FS - 1 LSB  
2.99999428  
0.00000572  
0.00000000  
-0.00000572  
-2.99999428  
-3.00000000  
0x7FFFF  
0x00001  
0x00000  
0xFFFFF  
0x80001  
0x80000  
0xFFFFF  
0x80001  
0x80000  
0x7FFFF  
0x00001  
0x00000  
Midscale + 1 LSB  
Midscale  
Midscale - 1 LSB  
-FS + 1 LSB  
-FS  
Maxim Integrated  
18  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
The MAX11904 has three different modes to read the data:  
Reading during track phase (Figure 5)  
Reading during SAR conversion phase (Figure 6)  
Split reading (Figure 7)  
Digital Interface  
The MAX11904 has a SPI interface with CNVST control-  
ling the sampling, and SCLK, DOUT, DIN forming the  
standard SPI signals. The SAR conversion begins with  
the rising edge of CNVST. The minimum CNVST high  
time is 20ns and CNVST should be brought low before  
DOUT goes low, which signals the completion of a SAR  
conversion. The DOUT goes low for 10ns, followed by  
the output of the MSB on the DOUT pin. The 20-bit con-  
version result can then be read via the SPI interface by  
sending 20 SCLK pulses. DOUT going low also signals  
the start of the track phase. The ADC stays in track phase  
until the next rising edge of CNVST.  
When reading during track phase mode, the data is read  
only while the ADC is in track mode. Figure 5 shows the  
SPI signal for this reading mode.  
In the reading during SAR conversion phase mode,  
the data is read only in the SAR conversion phase.  
Figure 6 illustrates all SPI signals for this mode. Note that  
the data being read only during the SAR conversion phase  
corresponds to the previous conversion frame.  
1/Sample Rate  
1/Sample Rate  
SAR Conversion  
SAR Conversion  
Track  
Track  
Read Data  
Read Data  
Sample 1  
Sample 2  
CNVST  
SCLK  
Sample 1  
Sample 2  
MSB MSB-1  
LSB+1 LSB  
MSB MSB-1  
LSB+1 LSB  
DOUT  
Reading sample1 during track  
Reading sample 2 during track  
Figure 5. Read During Track Phase  
1/SAMPLE RATE  
1/SAMPLE RATE  
SAR CONVERSION  
READ DATA  
SAR CONVERSION  
TRACK  
TRACK  
READ DATA  
SAMPLE 1  
SAMPLE 2  
CNVST  
SCLK  
SAMPLE 0  
SAMPLE 1  
MSB  
MSB-1  
LSB+1  
LSB  
MSB  
MSB-1  
LSB+1  
LSB  
MSB  
DOUT  
READING SAMPLE 0 DURING SAR  
CONVERSION  
READING SAMPLE 1 DURING SAR  
CONVERSION  
Figure 6. Read During SAR Conversion Phase  
Maxim Integrated  
19  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
In the split reading mode, the data is read during the track  
phase and the following SAR conversion phase. Figure 7  
shows the descriptive timing diagram.  
SPI Timing Diagram  
Figure 8 shows the typical digital SPI interface connection  
between the MAX11904 and host processor.  
At higher sampling rates, the track time may not be long  
enough to allow reading all 20 bits of data. In this case,  
the data read can be started in track mode, and then  
continued in the subsequent SAR conversion phase. Note  
that the read operation must be completed before DOUT  
goes low, signaling the end of the SAR conversion phase.  
Also note that no SCLK pulses should be applied close to  
the sampling edge (rising edge of CNVST), to safeguard  
the sampling edge from digital noise (see the Quiet Time  
The dashed connections are optional.  
Figure 9 shows the timing diagram for configuration reg-  
isters.  
Figure 10 shows the timing diagram for data output read-  
ing after conversion.  
specification t ). This split reading feature can be used  
10  
to accommodate slower SPI clocks.  
1/Sample Rate  
1/Sample Rate  
SAR Conversion  
SAR Conversion  
Track  
Track  
Read Data  
Read Data  
Sample 2  
Sample 1  
CNVST  
SCLK  
Quiet Time  
Sample 1  
Sample 2  
MSB MSB-1  
LSB+1 LSB  
MSB MSB-1  
DOUT  
Reading sample 1  
Figure 7. Split Read Mode  
MAX11904  
Host Processor  
DIN  
DOUT  
SCLK  
SCLK  
DIN  
DOUT  
IRQ  
CNVST  
CNVST  
Figure 8. SPI Interface Connection  
Maxim Integrated  
20  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
t1  
0.7 x OVDD  
SCLK  
t2  
0.7 x OVDD  
0.3 x OVDD  
DIN  
Figure 9. DIN Timing for Register Write Operations  
t13  
t12  
t11  
0.7 x OVDD  
0.7 x OVDD  
CNVST  
t6  
t8  
t7  
t10  
t9  
0.7 x OVDD  
0.3 x OVDD  
0.7 x OVDD  
SCLK  
DOUT  
t3  
t5  
t4  
0.7 x OVDD  
MSB-2  
MSB-1  
MSB  
0.3 x OVDD  
Figure 10. Timing Diagram for Data Out Reading After Conversion  
Maxim Integrated  
21  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Register Write  
All SPI operations start with a command word. The structure of the command word is shown below. If there is no start  
bit, i.e. DIN is low, the part will output the conversion result and then go idle (see Figures 5, 6, and 7). The 16-bit mode  
register is the only register that can be written to. Figure 11 shows the waveform for a mode register write operation.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Start  
0
Adr 3  
Adr 2  
Adr 1  
Adr 0  
R/W  
0
CNVST  
DOUT  
SCLK  
DIN  
ST  
0
A3  
A2  
A1  
A0  
R/W  
0
D15  
D14  
D1  
D0  
Figure 11. Mode Register Write  
Register Read  
A read operation is specified by setting the R/W bit high. Data will be output by the MAX11904 after the 8th rising SCLK  
edge. Figure 12 shows the waveform for a mode register read.  
CNVST  
D7  
D6  
D1  
D0  
DOUT  
SCLK  
DIN  
ST  
0
0
A3  
A2  
A1  
A0  
R/W  
Figure 12. Register Read  
Maxim Integrated  
22  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Register Map  
FUNCTION  
ADDRESS  
0001  
R/W BITS  
DATA WIDTH  
DATA  
Mode Register  
Read or Write Mode Register  
Read Conversion Result*  
Read Chip ID  
1 or 0  
16  
20  
8
0010  
1
1
Conversion Result  
Chip ID  
0100  
Reserved, Do Not Use  
All other  
Reserved, Do Not Use  
*Conversion result can also be read as shown in Figures 5, 6, and 7.  
Mode Register  
The reset state is: 0x0000. That is, the reference buffers are enabled if a valid reference voltage is applied at the REFIN  
pin. If external reference buffers are used, tie REFIN low and the buffers will be automatically powered down.  
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
PD  
POR  
OTP  
busy  
PD  
REF2  
Reset  
DD2  
DD1  
DD0  
OB  
REF1 pass  
Reset:  
Reset the part when high.  
Program the driver strength on DOUT.  
Power down the first reference buffer when set.  
DD[2:0]:  
PD REF1:  
POR pass:  
OTP busy:  
OB:  
High to indicate that POR was successful. If this bit is low, RESET should be asserted.  
High to indicate that the device is powering up.  
Output data format is offset binary when high. two’s complement when low.  
Power down the second reference buffer when set.  
PD REF2:  
DD[2:0] program the driver strength on DOUT pin. Higher driver strengths are for systems that have larger capacitive  
loads on DOUT. The lowest driver strength that works should be chosen to save power and improve performance.  
The driver strength is ordered from 1 to 6. The driver strength 1 is the weakest while the driver strength 6 is the strongest.  
Table 5 shows the mapping between the register value D[2:0] and the correspondent driver strength.  
Table 5. DOUT Driver Strength  
DD[2:0]  
000  
DRIVER STRENGTH  
4
001  
5
010  
6
011  
Not Valid  
100  
1
101  
2
3
110  
111  
Not Valid  
Maxim Integrated  
23  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Conversion Result Register  
A 20-bit read-only register, can be read directly or via a command read sequence.  
Chip ID Register  
This register holds a 4-bit code that can be used to verify the silicon revision. The ID = 1001b.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ID3  
ID2  
ID1  
ID0  
ration and drives the AIN+ input of the ADC. This ampli-  
fier adds an offset to generate a signal with peak-to-peak  
Typical Application Circuit  
Real-world signals usually require conditioning before  
they can be digitized by an ADC. The following outlines  
common examples of analog signal processing circuits for  
shifting, gaining, attenuating, and filtering signals.  
amplitude of V  
and common-mode output voltage  
REF  
of V  
/2. The input impedance, seen by the signal  
REF  
source, depends on the input resistor of the first-stage  
inverting amplifier. Input impedance must be chosen care-  
fully based on the output source impedance of the signal  
source.  
Single-Ended Unipolar Input to Differential  
Unipolar Output  
The circuit in Figure 13 shows how a single-ended, uni-  
polar signal can interface with the MAX11904. This signal  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with ground planes.  
Ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines paral-  
lel to one another (especially clock lines), and avoid run-  
ning digital lines underneath the ADC package. A single  
solid GND plane configuration with digital signals routed  
from one direction and analog signals from the other pro-  
vides the best performance. Connect the GND pin on the  
MAX11904 to this ground plane. Keep the ground return  
to the power supply for this ground low impedance and as  
short as possible for noise-free operation.  
conditioning circuit transforms a 0V to +V  
single-end-  
REF  
ed input signal to a fully differential output signal with a  
signal peak-to-peak amplitude of 2 x V and common-  
REF  
mode voltage (V  
/2). In this case, the single-ended  
REF  
signal source drives the high-impedance input of the first  
amplifier. This amplifier drives the AIN+ input of ADC and  
the second stage amplifier with peak-to-peak amplitude  
of V  
and common-mode output voltage of V  
/2.  
REF  
REF  
The second amplifier inverts this input signal and adds  
an offset to generate an inverted signal with peak-to-peak  
amplitude of V  
and common-mode output voltage of  
REF  
V
/2, which drives the AIN- input of ADC.  
REF  
A 2nF C0G ceramic chip capacitor should be placed  
between AIN+ and AIN- as close as possible to the  
MAX11904. This capacitor reduces the voltage transient  
seen by the input source circuit.  
Single-Ended Bipolar Input to Differential  
Unipolar Output  
The MAX11904 is a differential input ADC that accepts  
a differential input signal with unipolar common mode.  
Figure 14 shows a signal conditioning circuit that trans-  
forms a -2 x V  
input signal to a fully differential output signal with ampli-  
tude peak-to-peak 2 x V and common-mode voltage  
For best performance, connect the REF output to the  
ground plane with a 16V, 10µF ceramic chip capacitor  
with a X5R dielectric in a 1210 or smaller case size.  
Ensure that all bypass capacitors are connected directly  
into the ground plane with an independent via.  
to +2 x V  
single-ended bipolar  
REF  
REF  
REF  
V
/2.  
Bypass AVDD, DVDD, and OVDD to the ground plane with  
10µF ceramic chip capacitors on each pin as close as pos-  
sible to the device to minimize parasitic inductance. For  
best performance, bring the AVDD and DVDD power plane  
in from the analog interface side of the MAX11904 and the  
OVDD power plane from the digital interface side of the  
device. Figure 15 shows the top layer of a sample layout.  
REF  
The single-ended bipolar input signal drives the inverting  
input of the first amplifier. This amplifier inverts and adds  
an offset to the input signal. It also drives the AIN- input  
of ADC and the second stage amplifier with peak-to-peak  
amplitude of V  
and common-mode output voltage of  
REF  
V
REF  
/2. The second amplifier is also in inverting configu-  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
2.7V  
1.5V TO  
TO  
2.5V TO  
VREFVDD - 0.2V  
1.8V  
1.8V  
3.6V  
3.6V  
REFVDD AVDD DVDD OVDD  
RS  
REFIN  
AIN+  
VREF  
0.5 x VREF  
0V  
DIN  
DSP  
R
R
CS  
SCLK  
DOUT  
MAX11904  
SPI  
INTERFACE  
COG  
RS  
CNVST  
AIN-  
REF  
A
D
REF REF GND GND GND  
VREF  
2
+
-
10µF  
Figure 13. Unipolar Single-Ended Input  
2.7V  
2.5V TO  
VREFVDD - 0.2V  
TO  
1.5V TO  
3.6V  
3.6V  
1.8V  
1.8V  
R
R
REFVDD AVDD DVDD OVDD  
RS  
REFIN  
AIN+  
R
DIN  
DSP  
SPI  
+2 x VREF  
4R  
SCLK  
+
-
CS  
COG  
VREF  
2
MAX11904  
0V  
INTERFACE  
DOUT  
-2 x VREF  
R
RS  
CNVST  
AIN-  
REF  
A
D
+
VREF  
2
4R  
REF REF GND GND GND  
-
10µF  
Figure 14. Bipolar Single-Ended Input  
Maxim Integrated  
25  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Figure 15. Top Layer Sample Layout  
Maxim Integrated  
26  
www.maximintegrated.com  
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Effective Number of Bits  
Definitions  
The effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quantiza-  
tion noise only. With an input range equal to the full-scale  
range of the ADC, calculate the ENOB as follows:  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values on  
an actual transfer function from a straight line. For these  
devices, this straight line is a line drawn between the end  
points of the transfer function, once offset and gain errors  
have been nullified.  
SINAD -1.76  
ENOB =  
Differential Nonlinearity  
6.02  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. For  
these devices, the DNL of each digital output code is  
measured and the worst-case value is reported in the  
Electrical Characteristics table. A DNL error specification  
of less than ±1 LSB guarantees no missing codes.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the power  
contained in the first five harmonics of the converted data  
to the power of the fundamental. This is expressed as:  
P + P + P + P  
2
3
4
5
Offset Error  
THD = 10×log  
P
1
The offset error is defined as the deviation between the  
actual output and ideal output measured with 0V differen-  
tial analog input voltage.  
where P is the fundamental power and P through P is  
1
2
5
Gain Error  
the power of the 2nd- through 5th-order harmonics.  
Gain error is defined as the difference between the  
actual output range measured and the ideal output range  
expected. It is measured with signal applied at the input  
with an amplitude close to full-scale range.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
power of the fundamental (maximum signal component)  
to the power of the next-largest frequency component.  
Signal-to-Noise Ratio  
Aperture Delay  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the full-  
scale analog input power to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization noise error only  
and results directly from the ADC’s resolution (N bits):  
Aperture delay (t ) is the time delay from the sampling  
AD  
clock edge to the instant when an actual sample is taken.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
SNR = (6.02 x N + 1.76)dB  
Full-Power Bandwidth  
In reality, there are other noise sources besides quantiza-  
tion noise: thermal noise, reference noise, clock jitter, etc.  
SNR is computed by taking the ratio of the signal power to  
the noise power, which includes all spectral components  
not including the fundamental, the first five harmonics,  
and the DC offset.  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-power  
input bandwidth frequency.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s power to the power of all  
the other ADC output signals:  
Signal  
SINAD(dB) = 10×LOG  
Noise + Distortion  
Maxim Integrated  
27  
www.maximintegrated.com  
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Selector Guide  
FULLY  
DIFFERENTIAL  
INPUT (MAX) (V)  
SPEED  
(ksps)  
REFERENCE  
BUFFERS  
PART  
BITS  
PACKAGE  
MAX11900  
MAX11901  
MAX11902  
MAX11903  
MAX11904  
MAX11905  
16  
16  
18  
18  
20  
20  
1000  
1600  
1000  
1600  
1000  
1600  
±3.6  
±3.6  
±3.6  
±3.6  
±3.6  
±3.6  
Internal/External  
Internal/External  
Internal/External  
Internal/External  
Internal/External  
Internal/External  
4mm x 4mm TQFN-20  
4mm x 4mm TQFN-20  
4mm x 4mm TQFN-20  
4mm x 4mm TQFN-20  
4mm x 4mm TQFN-20  
4mm x 4mm TQFN-20  
Package Information  
Ordering Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
-40°C to +85°C  
PIN-PACKAGE  
20 TQFN-EP*  
MAX11904ETP+  
+Denotes lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Chip Information  
PROCESS: CMOS  
20 TQFN-EP  
T2044+5  
21-0139  
90-0429  
Maxim Integrated  
28  
www.maximintegrated.com  
 
 
MAX11904  
20-Bit, 1Msps, Low-Power,  
Fully Differential SAR ADC  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
9/14  
Initial release  
Removed future product references in the 16-Bit to 20-Bit SAR ADC Family table  
and Selector Guide  
1
4/15  
1, 28  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
29  

相关型号:

MAX11905

20-Bit, 1.6Msps, Low-Power, Fully Differential
MAXIM

MAX11905ETP

20-Bit, 1.6Msps, Low-Power, Fully Differential
MAXIM

MAX11905ETP+

ADC, Successive Approximation, 20-Bit, 1 Func, 1 Channel, Serial Access, CMOS, 4 X 4 MM, ROHS COMPLIANT, TQFN-20
MAXIM

MAX11905ETP+T

A/D Converter, 20-Bit, 1 Func, CMOS, PQCC20,
MAXIM

MAX11905EVKIT

Peripheral Module and FMC Connector for Interface
MAXIM

MAX1190ECM

Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX1190ECM+

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48
MAXIM

MAX1190ECM+D

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48
MAXIM

MAX1190ECM+TD

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48
MAXIM

MAX1190ECM-T

ADC, Flash Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, MS-026ABA-HD, TQFP-48
MAXIM

MAX1191

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC
MAXIM

MAX1191ETI

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM