MAX15059BETE+ [MAXIM]

76V, 300mW Boost Converter and Current Monitor for APD Bias Applications; 76V , 300mW boost转换器和电流监测器,用于APD偏置
MAX15059BETE+
型号: MAX15059BETE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

76V, 300mW Boost Converter and Current Monitor for APD Bias Applications
76V , 300mW boost转换器和电流监测器,用于APD偏置

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 信息通信管理
文件: 总15页 (文件大小:1985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5132; Rev 1; 3/10  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
General Description  
Features  
S Input Voltage Range: +2.8V to +5.5V  
The MAX15059 constant-frequency pulse-width modu-  
lating (PWM) step-up DC-DC converter features an  
internal switch and a high-side current monitor with high-  
speed adjustable current limiting. This device is capable  
of generating output voltages up to 76V (300mW for  
the MAX15059A and 200mW for the MAX15059B) and  
provides current monitoring up to 4mA. The MAX15059  
operates from 2.8V to 5.5V.  
S Wide Output-Voltage Range from (V + 5V) to 76V  
IN  
S Internal 1I (typ) 80V MOSFET  
S Boost Converter Output Power: 300mW  
S 200mW Version Available for Smaller Inductor  
S Accurate Q5% (1:1 and 5:1) High-Side Current  
Monitor  
S Resistor-Adjustable Ultra-Fast APD Current Limit  
The constant-frequency (400kHz) current-mode PWM  
architecture provides low-noise-output voltage that is  
easy to filter. A high-voltage internal power MOSFET  
allows this device to boost output voltages up to 76V.  
Internal soft-start circuitry limits the input current when  
the boost converter starts. The MAX15059 features a  
shutdown mode to save power.  
(1µs Response Time)  
S Open-Drain Current-Limit Indicator Flag  
S 400kHz Fixed-Switching Frequency  
S Constant PWM Frequency Provides Easy Filtering  
in Low-Noise Applications  
S Internal Soft-Start  
S 2µA (max) Shutdown Current  
S -40NC to +85NC Temperature Range  
The MAX15059 includes a current monitor with more  
than three decades of dynamic range and monitors  
current ranging from 500nA to 4mA with high accuracy.  
Resistor-adjustable current limiting protects the APD  
from optical power transients. A clamp diode protects  
the monitor’s output from overvoltage conditions. Other  
protection features include cycle-by-cycle current limit-  
ing of the boost converter switch, undervoltage lockout  
(UVLO), and thermal shutdown if the die temperature  
reaches +150NC.  
S Small, Thermally Enhanced, 3mm x 3mm, Lead-  
Free, 16-Pin TQFN-EP Package  
Ordering Information  
MAXIMUM  
POWER  
(mW)  
I
:
PIN-  
PACKAGE  
APD  
PART  
I
MOUT  
MAX15059AETE+  
MAX15059BETE+  
300  
200  
1:1  
5:1  
16 TQFN-EP*  
16 TQFN-EP*  
The MAX15059 is available in a thermally enhanced,  
lead-free, 16-pin TQFN-EP package and operates over  
the -40NC to +85NC temperature range.  
Note: All devices operate over the -40°C to +85°C temperature  
range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Applications  
Avalanche Photodiode Biasing and Monitoring  
PIN Diode Bias Supply  
Typical Operating Circuit  
L1  
4.7µH  
V
= 2.8V  
Low-Noise Varactor Diode Bias Supply  
FBON Modules  
IN  
TO 5.5V  
D1  
V
OUT  
(76V MAX)  
C
IN  
R2  
348kI  
C
OUT  
0.1µF  
1µF  
GPON Modules  
R
ADJ  
IN  
LX  
CNTRL  
PGND  
R1  
6.34kI  
BIAS  
FB  
MAX15059  
SHDN  
ILIM  
GPIO  
GPIO  
DAC  
RLIM  
V
DD  
V
DD  
CLAMP  
MOUT  
µC  
R
LIM  
2.87kI  
ADC  
SGND  
APD  
C
MOUT  
OPTIONAL  
(10nF)  
R
MOUT  
1kI  
APD  
TIA  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
ABSOLUTE MAXIMUM RATINGS  
IN, SHDN, FB, ILIM, RLIM, CNTRL to SGND..........-0.3V to +6V  
LX to PGND...........................................................-0.3V to +80V  
BIAS to SGND ......................................................-0.3V to +79V  
Junction-to-Case Thermal Resistance (B ) (Note 1)  
16-Pin TQFN-EP ......................................................... +7NC/W  
JC  
Junction-to-Ambient Thermal Resistance (B ) (Note 1)  
JA  
APD, CLAMP to SGND...........................-0.3V to (V  
+ 0.3V)  
16-Pin TQFN-EP ....................................................... +48NC/W  
Operating Temperature Range.......................... -40NC to +85NC  
Maximum Junction Temperature.....................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
BIAS  
PGND to SGND....................................................-0.3V to +0.3V  
MOUT to SGND.................................. -0.3V to (V + 0.3V)  
CLAMP  
Continuous Power Dissipation (T = +70NC)  
A
16-Pin TQFN-EP (derate 20.8mW/NC  
above +70NC).........................................................1666.7mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
IN  
= V  
= 3.3V, C = 1FF, V  
= V  
= 0V, V = 40V, LX = APD = CLAMP = ILIM = unconnected, V  
BIAS MOUT  
SHDN  
CNTRL  
IN  
PGND  
SGND  
= 0V, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
= VRLIM  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY  
Supply Voltage Range  
Supply Current  
V
2.8  
5.5  
1.2  
V
IN  
I
V
V
= 1.4V, no switching  
1
mA  
V
SUPPLY  
FB  
IN  
Undervoltage-Lockout Threshold  
Undervoltage-Lockout Hysteresis  
Shutdown Current  
V
rising  
2.475  
2.6  
200  
2.775  
UVLO  
V
I
mV  
FA  
FA  
UVLO_HYS  
I
2
V
V
= 0V  
SHDN  
SHDN  
Shutdown BIAS Current  
BOOST CONVERTER  
20  
= 3.3V, V  
= 0V  
BIAS_SHDN  
BIAS  
SHDN  
Output-Voltage Adjustment  
Range  
V
IN  
+ 5  
76  
V
Switching Frequency  
Maximum Duty Cycle  
FB Set-Point Voltage  
f
V
V
= 5V  
380  
88  
400  
90  
420  
92  
kHz  
%
SW  
IN  
IN  
D
= 2.8V  
CLK  
V
1.2054  
1.23  
1.2546  
500  
2
V
FB_SET  
FB Input-Bias Current  
Internal Switch On-Resistance  
I
V
= V  
, T = +25NC  
nA  
I
FB  
FB  
FB_SET  
A
R
I
LX  
= 100mA, V = 2.8V  
1
ON  
IN  
MAX15059A  
MAX15059B  
1.1  
1.2  
0.9  
100  
1.3  
Peak Switch Current Limit  
I
A
LIM_LX  
0.825  
0.975  
Peak Current-Limit Response  
LX Leakage Current  
Line Regulation  
ns  
FA  
V
LX  
= 76V, T = +25NC  
1
A
2.8V PV P5.5V, I  
= 4.5mA  
0.2  
1
%
IN  
LOAD  
Load Regulation  
0 PI  
P4.5mA  
%
LOAD  
Soft-Start Duration  
8
ms  
Steps  
Soft-Start Steps  
32  
CONTROL INPUT (CNTRL)  
Maximum Control Input Voltage  
Range  
FB set point is controlled to V  
1.2  
V
CNTRL  
2
______________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= 3.3V, C = 1FF, V  
= V  
= 0V, V = 40V, LX = APD = CLAMP = ILIM = unconnected, V  
BIAS MOUT  
IN  
SHDN  
CNTRL  
IN  
PGND  
SGND  
= 0V, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CNTRL-to-REF Transition  
Threshold  
V
V
= V  
above this voltage  
1.3  
V
FB  
REF  
CNTRL Input-Bias Current  
CURRENT MONITOR  
Bias Voltage Range  
= V  
, T = +25NC  
500  
nA  
CNTRL  
FB_SET  
A
V
10  
76  
250  
250  
6
V
BIAS  
MAX15059A  
150  
150  
4
I
= 500nA  
FA  
APD  
MAX15059B  
MAX15059A  
MAX15059B  
Bias Quiescent Current  
I
BIAS  
I
I
= 2mA  
mA  
V
APD  
3
4
Voltage Drop  
V
R
= 2mA, V  
= V  
- V  
2.7  
3.5  
DROP  
APD  
DROP  
BIAS  
APD  
Dynamic Output Resistance at  
MOUT  
R
= DV  
/DI  
,
MOUT  
MOUT MOUT  
MAX15059A  
5
GI  
MOUT  
I
= 2.5mA  
APD  
APD Current-Step Response  
MOUT Output Leakage  
Step load on I  
= 20FA to 1mA  
25  
1
ns  
APD  
nA  
V
V
-
MOUT  
Output Clamp Voltage  
Forward diode current = 500FA  
= V = 76V  
0.45  
0.7  
1
0.95  
V
nA  
V
CLAMP  
Output Clamp Leakage Current  
MOUT Voltage Range  
V
BIAS  
CLAMP  
10V PV  
P76V, 0 PI  
P1mA, CLAMP  
V
-
BIAS  
APD  
BIAS  
2.7  
V
MOUT  
is unconnected  
MAX15059A  
MAX15059B  
MAX15059A  
MAX15059B  
0. 95  
0.19  
1
1.1  
I
I
= 500nA  
= 2mA  
APD  
APD  
0.2  
1
0.22  
Current Gain  
I
/I  
mA/mA  
MOUT APD  
0.965  
0.193  
1.035  
0.207  
0.2  
(DI  
/I  
)/DV  
,
MOUT MOUT  
BIAS  
MAX15059A  
35  
35  
300  
610  
700  
Power-Supply Rejection Ratio  
PSRR  
V
= 10V to 76V and I  
BIAS APD  
ppm/V  
MAX15059B  
300  
4.6  
= 5FA to 1mA (Note 3)  
APD Input Current Limit  
I
4
5.2  
5.2  
mA  
mA  
LIM_APD  
Current-Limit Adjustment Range  
9.75kIRR R0  
0.9  
LIM  
I
settles to within 0.1%,  
MOUT  
I
I
= 500nA  
= 2.5mA  
7.5  
90  
ms  
APD  
Power-Up Settling Time  
t
10nF connected from APD to  
ground  
S
Fs  
APD  
LOGIC I/O  
V
V
0.8  
V
V
SHDN Input Voltage Low  
IL  
2.1  
SHDN Input Voltage High  
ILIM Output Voltage Low  
IH  
V
I
I
= 2mA  
LIM  
0.1  
1
V
OL  
T
= +25NC  
A
FA  
ILIM Output Leakage Current  
THERMAL PROTECTION  
Thermal-Shutdown Temperature  
Thermal-Shutdown Hysteresis  
OH  
Temperature rising  
+150  
15  
NC  
NC  
Note 2: All MIN/MAX parameters are tested at T = +25NC. Limits overtemperature are guaranteed by design.  
A
Note 3: Guaranteed by design and not production tested.  
_______________________________________________________________________________________  
3
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Typical Operating Characteristics  
(V = 3.3V, V  
IN OUT  
= 70V, T = +25°C, unless otherwise noted.)  
A
MINIMUM STARTUP VOLTAGE  
vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
2.65  
2.64  
2.63  
2.62  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V = 5V  
IN  
IN  
V
V
= 30V  
= 70V  
OUT  
OUT  
V
V
= 30V  
= 70V  
OUT  
OUT  
V
= 50V  
OUT  
V
= 50V  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (mA)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (mA)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (mA)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.0  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 1.4V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FB  
T = +25°C  
A
T = +85°C  
A
T = +85°C  
A
T = +25°C  
A
T = -40°C  
A
T = -40°C  
A
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
EXITING SHUTDOWN  
ENTERING SHUTDOWN  
MAX15059 toc06  
MAX15059 toc07  
SHDN  
2V/div  
SHDN  
2V/div  
INDUCTOR  
CURRENT  
500mA/div  
INDUCTOR  
CURRENT  
500mA/div  
V
OUT  
50V/div  
V
OUT  
50V/div  
1ms/div  
4ms/div  
4
______________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
IN  
= 70V, T = +25°C, unless otherwise noted.)  
A
OUT  
LIGHT-LOAD SWITCHING WAVEFORMS  
HEAVY-LOAD SWITCHING WAVEFORMS  
WITH RC FILTER  
WITH RC FILTER  
MAX15059 toc08  
MAX15059 toc09  
V
V
BIAS  
BIAS  
(AC-COUPLED)  
50mV/div  
(AC-COUPLED)  
20mV/div  
V
V
LX  
LX  
50V/div  
50V/div  
I
L
I
L
500mA/div  
1A/div  
1µs/div  
1µs/div  
LOAD-TRANSIENT RESPONSE  
LINE-TRANSIENT RESPONSE  
MAX15059 toc10  
MAX15059 toc11  
V
IN  
2V/div  
I
APD  
3.3V  
2mA/div  
0mA  
V
BIAS  
(AC-COUPLED)  
500mV/div  
V
BIAS  
(AC-COUPLED)  
50mV/div  
100µs/div  
100µs/div  
LX LEAKAGE CURRENT  
vs. TEMPERATURE  
MAXIMUM LOAD CURRENT  
vs. SUPPLY VOLTAGE  
LOAD REGULATION  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.5  
A: V  
D: V  
= 30V, B: V  
= 55V, E: V  
= 35V, C: V  
= 60V, F: V  
= 45V,  
= 70V  
CURRENT INTO LX PINS  
= 70V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
9
8
7
6
5
4
3
2
1
0
0.4  
0.3  
V
LX  
0.2  
A
0.1  
B
C
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
D
E
F
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
IN OUT  
= 70V, T = +25°C, unless otherwise noted.)  
A
BIAS CURRENT vs. BIAS VOLTAGE  
BIAS CURRENT vs. APD CURRENT  
BIAS CURRENT vs. TEMPERATURE  
10  
1
10  
1
10  
I
= 2mA  
APD  
I
= 2mA  
APD  
1
0.1  
0.01  
0.1  
I
= 500nA  
APD  
I
= 500nA  
APD  
V
= 70V  
BIAS  
0.01  
0.1  
0
10 20 30 40 50 60 70 80  
BIAS VOLTAGE (V)  
0.0001 0.001  
0.01  
0.1  
1
10  
-40  
-15  
10  
35  
60  
85  
APD CURRENT (mA)  
TEMPERATURE (°C)  
GAIN ERROR vs. APD CURRENT  
GAIN ERROR vs. APD CURRENT  
GAIN ERROR vs. TEMPERATURE  
5
4
5
4
2.0  
1.6  
V
= 70V  
BIAS  
I
= 0.5µA  
APD  
3
3
1.2  
I
= 5µA  
APD  
I
= 50µA  
APD  
2
2
0.8  
1
1
0.4  
0
0
0
I
= 500µA  
APD  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
I
= 2mA  
APD  
V
= 70V  
BIAS  
0.1  
1
10  
I
100  
(µA)  
1000 10,000  
0.1  
1
10  
I
100  
(µA)  
1000 10,000  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
APD  
APD  
GAIN ERROR vs. BIAS VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
2.0  
1.6  
2.0  
1.6  
1.2  
I
= 50µA  
APD  
1.2  
I
= 5µA  
APD  
I
= 2mA  
I
= 0.5µA  
APD  
APD  
0.8  
0.8  
0.4  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
I
= 500µA  
I
= 0.5µA  
APD  
APD  
I
= 500µA  
APD  
I
= 2mA  
APD  
I
= 50µA  
I
= 5µA  
APD  
APD  
10  
20  
30  
40  
50  
60  
70  
80  
-40  
-15  
10  
35  
60  
85  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
6
______________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
IN OUT  
= 70V, T = +25°C, unless otherwise noted.)  
A
GAIN ERROR vs. BIAS VOLTAGE  
APD TRANSIENT RESPONSE  
MAX15059 toc21  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
APD  
2mA/div  
0mA  
I
= 500µA  
= 50µA  
I
= 2mA  
APD  
APD  
I
= 5µA  
APD  
I
MOUT  
2mA/div  
0mA  
V
APD  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
(AC-COUPLED)  
2V/div  
I
= 0.5µA  
APD  
I
APD  
10  
20  
30  
40  
50  
60  
70  
80  
20µs/div  
BIAS VOLTAGE (V)  
STARTUP DELAY  
STARTUP DELAY  
MAX15059 toc22  
MAX15059 toc23  
SHDN  
5V/div  
SHDN  
5V/div  
V
BIAS  
50V/div  
V
BIAS  
50V/div  
I
MOUT  
1mA/div  
I
MOUT  
500nA/div  
V
= 70V  
BIAS  
V
= 70V,  
BIAS  
= 500nA  
I
= 2mA  
APD  
I
APD  
2ms/div  
1ms/div  
STARTUP DELAY  
STARTUP DELAY  
MAX15059 toc25  
MAX15059 toc24  
SHDN  
5V/div  
SHDN  
5V/div  
V
BIAS  
5V/div  
V
BIAS  
5V/div  
I
MOUT  
1mA/div  
I
MOUT  
500nA/div  
V
= 10V,  
BIAS  
= 500nA  
I
APD  
400µs/div  
200µs/div  
_______________________________________________________________________________________  
7
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
IN OUT  
= 70V, T = +25°C, unless otherwise noted.)  
A
SWITCHING FREQUENCY  
vs. TEMPERATURE  
VOLTAGE DROP vs. APD CURRENT  
SHORT-CIRCUIT RESPONSE  
MAX15059 toc26  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
410  
409  
408  
407  
406  
405  
404  
403  
402  
401  
400  
R
= 3.16kI  
LIM  
T = -40°C  
A
V
APD  
50V/div  
I
MOUT  
2mA/div  
T = +25°C  
A
T = +85°C  
A
I
ILIM  
5V/div  
0.1  
1
10  
I
100  
(µA)  
1000 10,000  
-40  
-15  
10  
35  
60  
85  
2µs/div  
TEMPERATURE (°C)  
APD  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
SWITCHING FREQUENCY AND  
DUTY CYCLE vs. LOAD CURRENT  
MAX15059 toc30  
410  
410  
408  
406  
404  
402  
400  
398  
396  
394  
392  
390  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
408  
406  
404  
402  
400  
398  
396  
394  
392  
390  
DUTY CYCLE  
SWITCHING FREQUENCY  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
APD OUTPUT RIPPLE VOLTAGE  
FB SET POINT vs. TEMPERATURE  
(0.1µF FROM APD TO GROUND, V  
= 70V, L  
= 1mA)  
BIAS  
APD  
MAX15059 toc32  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
1.228  
1.226  
1.224  
1.222  
1.220  
V
APD  
AC-COUPLED, 70V  
1mV/div  
V
= 3.3V  
IN  
-40  
-15  
10  
35  
60  
85  
1µs/div  
TEMPERATURE (°C)  
8
______________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Pin Configuration  
TOP VIEW  
12  
11  
10  
9
SGND  
8
7
6
5
BIAS 13  
LX 14  
ILIM  
CNTRL  
FB  
MAX15059  
LX  
15  
16  
PGND  
EP  
4
+
1
2
3
TQFN  
Pin Description  
PIN  
1, 16  
2
NAME  
PGND  
IN  
FUNCTION  
Power Ground. Connect the negative terminals of the input and output capacitors to PGND. Connect  
PGND externally to SGND at a single point, typically at the return terminal of the output capacitor.  
Input-Supply Voltage. Bypass IN to PGND with a ceramic capacitor of 1FF minimum value.  
Active-Low Shutdown Control Input. Apply a logic-low voltage to SHDN to shut down the device.  
3
4, 8  
5
SHDN  
SGND  
FB  
Connect SHDN to IN for normal operation. Ensure that V  
SHDN is internally pulled low. The converter is disabled when SHDN is left unconnected.  
is not greater than the input voltage, V  
.
IN  
SHDN  
Signal Ground. Connect directly to the local ground plane. Connect SGND to PGND at a single point,  
typically near the return terminal of the output capacitor.  
Feedback Regulation Input. Connect FB to the center tap of a resistive voltage-divider from the boost  
output to SGND to set the output voltage. The FB voltage regulates to 1.23V (typ) when V  
is  
CNTRL  
above 1.3V (typ) and to V  
when V is below 1.2V (typ).  
CNTRL  
CNTRL  
Control Input for Boost Converter Output-Voltage Programmability. CNTRL allows the feedback set-point  
voltage to be set externally by CNTRL when CNTRL is less than 1.2V. Pull CNTRL above 1.3V (typ) to  
use the internal 1.23V (typ) feedback set-point voltage.  
6
CNTRL  
7
9
Open-Drain Current-Limit Indicator. ILIM asserts low when the APD current limit has been exceeded.  
ILIM  
Current-Limit Resistor Connection. Connect a resistor from RLIM to SGND to program the APD current-  
limit threshold. When RLIM is connected to SGND, the current limit is set to 4.6mA.  
RLIM  
Current-Monitor Output. For the MAX15059A, MOUT sources a current equal to I  
. For the  
APD  
10  
11  
MOUT  
MAX15059B, MOUT sources a current equal to 1/5 of I  
.
APD  
CLAMP  
Clamp Voltage Input. CLAMP is the external potential used for voltage clamping of MOUT.  
_______________________________________________________________________________________  
9
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Reference Current Output. APD provides the source current to the cathode of the photodiode.  
Bias-Voltage Input. Connect BIAS to the boost converter output (V ) either directly or through a  
12  
APD  
OUT  
13  
BIAS  
lowpass filter for ripple attenuation. BIAS provides the voltage bias for the current monitor and is the  
current source for APD.  
Drain of Internal 80V n-Channel DMOS. Connect inductor to LX. Minimize the trace area at LX to reduce  
switching-noise emission.  
14, 15  
LX  
EP  
Exposed Paddle. Connect to a large copper plane at the SGND and PGND potential to improve thermal  
dissipation. Do not use as the only ground connection.  
Functional Diagram  
FB  
OUTPUT ERROR  
AND CURRENT COMPARATOR  
-A  
V
V
REF  
LX  
CNTRL  
SGND  
MUX  
+A  
80V  
-C  
SWITCH  
CONTROL  
LOGIC  
DMOS  
SOFT-  
START  
+C  
PGND  
PEAK  
CURRENT-LIMIT  
COMPARATOR  
REF  
REFERENCE  
COMPARATOR  
SWITCH  
CURRENT  
SENSE  
V
REF  
CLAMP  
MOUT  
BIAS  
AND REF  
THERMAL  
SHUTDOWN  
1X  
CURRENT-  
LIMIT  
ADJUSTMENT  
RLIM  
IN  
UVLO  
CONTROL  
MONITOR  
CLK  
APD  
ILIM  
1X (A)  
5X (B)  
CURRENT  
LIMIT  
OSCILLATOR  
400kHz  
MAX15059  
BIAS  
SHDN  
10 _____________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
tion approaches ideal cycle-by-cycle control over the  
output voltage since there is no conventional error ampli-  
fier in the feedback path.  
Detailed Description  
The MAX15059 constant-frequency, current-mode, PWM  
boost converters are intended for low-voltage systems  
that require a locally generated high voltage. These  
devices are capable of generating a low-noise, high out-  
put voltage required for PIN and varactor diode biasing.  
The MAX15059 operates from +2.8V to +5.5V.  
The devices operate in PWM mode using a fixed-  
frequency, current-mode operation. The current-mode  
frequency loop regulates the peak inductor current as a  
function of the output-voltage error signal.  
The current-mode PWM controller is intended for DCM  
operation. No internal slope compensation is added to  
the current signal.  
The MAX15059 operates in discontinuous mode in  
order to reduce the switching noise caused by reverse  
recovery charge of the rectifier diode and eliminates  
the need for external compensation components. Other  
continuous-mode boost converters generate large volt-  
age spikes at the output when the LX switch turns on  
because there is a conduction path between the output,  
diode, and switch to ground during the time needed  
for the diode to turn off and reverse its bias voltage. To  
reduce the output noise even further, the LX switch turns  
off by taking 10ns typically to transition from on to off.  
As a consequence, the positive slew rate of the LX node  
is reduced and the current from the inductor does not  
“force” the output voltage as hard as would be the case  
if the LX switch were to turn off faster.  
Current Limit  
The current limit of the current monitor is programmable  
from 1mA to 4.6mA (typ). Connect RLIM to SGND to get  
a default current-limit threshold of 4.6mA or connect a  
resistor from RLIM to SGND to program the current-limit  
threshold below the default setting of 4.6mA. Calculate  
the value of the external resistor, R , for a given cur-  
LIM  
rent limit, I , using the following equation:  
LIM  
1.23V  
R
(k) =  
x10 2.67(k)  
LIM  
I
(mA)  
LIM  
The constant-frequency (400kHz) PWM architecture  
generates an output voltage ripple that is easy to filter.  
An 80V lateral DMOS device used as the internal power  
switch is ideal for boost converters with output voltages  
up to 76V. The MAX15059 can also be used in other  
topologies where the PWM switch is grounded, like  
SEPIC and flyback converters.  
Clamping the Monitor Output Voltage  
(MOUT)  
CLAMP provides a means for diode clamping the volt-  
age at MOUT; thus, V  
is limited to (V  
+ 0.6V).  
MOUT  
CLAMP  
CLAMP can be connected to either an external supply or  
BIAS. Leave CLAMP unconnected if voltage clamping is  
not required.  
The MAX15059 includes a versatile current monitor  
intended for monitoring the APD, PIN, or varactor  
diode DC current in fiber and other applications. The  
MAX15059 features more than three decades of dynam-  
ic current ranging from 500nA to 4mA and provides an  
output current accurately proportional to the APD current  
at MOUT. MOUT output accuracy is Q10% from 500nA to  
1mA and Q5% from 1mA to 2mA.  
Shutdown  
The MAX15059 features an active-low shutdown input  
(SHDN). Pull SHDN low or leave it unconnected to enter  
shutdown. During shutdown, the supply current drops  
to 2FA (max). The output remains connected to the  
input through the inductor and output rectifier, holding  
the output voltage to one diode drop below IN when  
the MAX15059 is in shutdown. Connect SHDN to IN for  
always-on operation.  
The MAX15059 also features a shutdown logic input to  
disable the device and reduce its standby current to 2FA  
(max).  
Adjusting the Feedback  
Set-Point/Reference Voltage  
Apply a voltage to the CNTRL input to set the feedback  
Fixed-Frequency PWM Controller  
The heart of the MAX15059 current-mode PWM control-  
ler is a BiCMOS multi-input comparator that simulta-  
neously processes the output-error signal and switch  
current signal. The main PWM comparator uses direct  
summing, lacking a traditional error amplifier and its  
associated phase shift. The direct summing configura-  
set-point reference voltage, V  
(see the Functional  
REF  
Diagram). For V  
> 1.3V, the internal 1.23V (typ)  
CNTRL  
reference voltage is used as the feedback set point and  
for V < 1.2V, the CNTRL voltage is used as the  
CNTRL  
reference voltage (V set equal to V  
).  
FB  
CNTRL  
______________________________________________________________________________________ 11  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Determining the Inductor Value  
Three key inductor parameters must be specified for  
operation with the MAX15059: inductance value (L),  
Design Procedure  
Setting the Output Voltage  
Set the MAX15059 output voltage by connecting a resis-  
tive divider from the output to FB to SGND (Figure 1).  
inductor saturation current (I  
), and DC resistance  
SAT  
(DCR). In general, the inductor should have a saturation  
current rating greater than the maximum peak switch  
Select R (FB to SGND resistor) between 5kIand 10kI.  
1
Calculate R (V  
equation:  
to FB resistor) using the following  
2
OUT  
current-limit value (I  
= 1.3A). DC series resistance  
LIM_LX  
(DCR) should be be low for reasonable efficiency.  
Use the following formula to calculate the lower bound of  
the inductor value at different output voltages and output  
currents. This is the minimum inductance value for dis-  
continuous mode operation for supplying full 300mW of  
output power:  
V  
OUT  
R
2
= R  
1  
1
V
REF   
where V  
can range from (V + 5V) to 76V. Apply a  
IN  
voltage to the CNTRL input to set the feedback set-point  
reference voltage, V (see the Functional Diagram).  
> 1.3V, the internal 1.23 (typ) reference volt-  
age is used as the feedback set point and for V  
OUT  
2 × t ×I  
× (V  
V  
)
REF  
S
OUT  
OUT  
IN_MIN  
L
[µH] =  
MIN  
For V  
2
CNTRL  
η×I  
LIM_LX  
<
CNTRL  
1.2V, V  
= V  
. See the Adjusting the Feedback  
REF  
CNTRL  
where V  
, V  
(both in volts), and I  
(in amps)  
IN_MIN OUT  
OUT  
Set-Point/Reference Voltage section for more information  
on adjusting the feedback reference voltage, V  
are typical values (so that efficiency is optimum for typi-  
cal conditions), t (in Fs) is the period, Eis the efficiency,  
.
REF  
S
and I  
is the peak switch current in amps (see the  
Determining Peak Inductor Current  
If the boost converter remains in the discontinuous mode  
of operation, then the approximate peak inductor cur-  
LIM_LX  
Electrical Characteristics table).  
Calculate the optimum value of L (L  
) to ensure  
OPTIMUM  
rent, I  
(in A), is represented by the formula below:  
LPEAK  
the full output power without reaching the boundary  
between continuous-conduction mode (CCM) and dis-  
continuous-conduction mode (DCM) using the following  
formula:  
2 × t × (V  
V  
)×I  
S
OUT  
IN_MIN OUT_MAX  
I
=
LPEAK  
η×L  
where t is the switching period in Fs, V  
is the output  
OUT  
L
[µH]  
S
MAX  
L
[µH] =  
OPTIMUM  
voltage in volts, V  
is the minimum input voltage  
IN_MIN  
2.25  
in volts, I  
is the maximum output current in  
OUT_MAX  
amps, L is the inductor value in FH, and E is the effi-  
ciency of the boost converter (see the Typical Operating  
Characteristics).  
where:  
L
2
V
(V  
V  
)× t × η  
S
OUT  
IN_MIN  
2
IN_MIN  
[µH] =  
MAX  
2 ×I  
× V  
OUT  
OUT  
For a design in which V = 3.3V, V  
= 70V, I  
=
=
IN  
OUT  
S
OUT  
MAX  
V
3mA, E = 45%, I  
= 1.2A, and t = 2.5Fs: L  
OUT  
LIM_LX  
27FH and L  
= 1.5FH.  
MIN  
R
R
2
1
MAX15059  
For a worse-case scenario in which V = 2.8V, V  
IN  
OUT  
= 70V, I  
2.5Fs: L  
= 4mA, η = 43%, I  
= 15FH and L  
= 1.2A, and t =  
OUT  
MAX  
LIM_LX S  
FB  
V
V
> 1.3V, V = 1.23V  
FB  
CNTRL  
CNTRL  
= 2.2FH.  
MIN  
< 1.2V, V = V  
FB CNTRL  
The choice of 4.7FH is reasonable given the worst-case  
scenario above. In general, the higher the inductance,  
the lower the switching noise. Load regulation is also  
better with higher inductance.  
Figure 1. Adjustable Output Voltage  
12 _____________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Diode Selection  
The MAX15059’s high switching frequency demands a  
high-speed rectifier. Schottky diodes are recommended  
for most applications because of their fast recovery time  
and low forward-voltage drop. Ensure that the diode’s  
peak current rating is greater than the peak inductor cur-  
rent. Also, the diode breakdown voltage must be greater  
V
= 2.8V  
IN  
L1  
TO 5.5V  
C
IN  
IN  
D1  
R
F
V
OUT  
CNTRL  
SHDN  
LX  
than V  
.
OUT  
Output Filter Capacitor Selection  
R
R
2
MAX15059  
C
IN  
For most applications, use a small output capacitor of  
0.1FF or greater. To achieve low output ripple, a capaci-  
tor with low ESR, low ESL, and high capacitance value  
should be selected. If tantalum or electrolytic capacitors  
are used to achieve high capacitance values, always  
add a smaller ceramic capacitor in parallel to bypass the  
high-frequency components of the diode current. The  
higher ESR and ESL of electrolytic capacitors increase  
the output ripple and peak-to-peak transient voltage.  
Assuming the contribution from the ESR and capacitor  
discharge equals 50% (proportions may vary), calculate  
the output capacitance and ESR required for a specified  
ripple using the following equations:  
FB  
C
OUT  
C
F
1
PGND  
BIAS  
SGND  
Figure 2. Typical Operating Circuit with RC Filter  
Input-Capacitor Selection  
Bypass IN to PGND with a 1FF (min) ceramic capacitor.  
Depending on the supply source impedance, higher val-  
ues may be needed. Make sure that the input capacitors  
are close enough to the IC to provide adequate decou-  
pling at IN as well. If the layout cannot achieve this,  
add another 0.1FF ceramic capacitor between IN and  
PGND in the immediate vicinity of the IC. Bulk aluminum  
electrolytic capacitors may be needed to avoid chatter-  
ing at low-input voltage. In case of aluminum electrolytic  
capacitors, calculate the capacitor value and ESR of the  
input capacitor using the following equations:  
I
I
x L  
OPTIMUM  
OUT  
LPEAK  
(V  
C
[µF] =  
t −  
S
OUT  
0.5 x V  
V  
)
OUT  
OUT  
IN_MIN  
0.5xV  
OUT  
OUT  
ESR mΩ =  
[
]
I
For very-low-output-ripple applications, the output of the  
boost converter can be followed by an RC filter to further  
reduce the ripple. Figure 2 shows a 100I, 0.1FF (R C )  
filter used to reduce the switching output ripple to 1mV  
with a 0.1mA load or 1mV  
F
F
P-  
with a 4mA load. The  
P
P-P  
output voltage regulation resistive divider must remain  
connected to the diode/output capacitor node.  
V
x I  
I
x L  
x V  
Use X7R ceramic capacitors for more stability over the  
full temperature range.  
OUT  
OUT  
x 0.5 x V  
LPEAK  
V
OPTIMUM  
(V V  
OUT  
)
C
[µF] =  
IN  
t −  
S
η x V  
IN_MIN  
IN  
IN_MIN OUT  
IN_MIN  
0.5xV x η x V  
IN IN_MIN  
ESR mΩ =  
[
]
V
x I  
OUT OUT  
______________________________________________________________________________________ 13  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
In some applications where pilot tones are used to identi-  
Applications Information  
Using APD or PIN Photodiodes  
in Fiber Applications  
fy specific fiber channels, higher bandwidths are desired  
at MOUT to detect these tones. Consider the minimum  
and maximum currents to be detected, then consult the  
frequency response and noise typical operating curves.  
If the minimum current is too small, insufficient band-  
width could result, while too high a current could result in  
excessive noise across the desired bandwidth.  
When using the MAX15059 to monitor APD or PIN photo-  
diode currents in fiber applications, several issues must  
be addressed. In applications where the photodiode  
must be fully depleted, keep track of voltages budgeted  
for each component with respect to the available supply  
voltage(s). The current monitors require as much as 3.5V  
between BIAS and APD, which must be considered part  
of the overall voltage budget.  
Layout Considerations  
Careful PCB layout is critical to achieve low switching  
losses and clean and stable operation. Protect sensitive  
analog grounds by using a star ground configuration.  
Connect SGND and PGND together close to the device  
at the return terminal of the output bypass capacitor. Do  
not connect them together anywhere else. Keep all PCB  
traces as short as possible to reduce stray capacitance,  
trace resistance, and radiated noise. Ensure that the  
feedback connection to FB is short and direct. Route  
high-speed switching nodes away from the sensitive  
analog areas. Use an internal PCB layer for SGND as an  
EMI shield to keep radiated noise away from the device,  
feedback dividers, and analog bypass capacitors. Refer  
to the MAX15059 Evaluation Kit data sheet for a layout  
example.  
Additional voltage margin can be created if a nega-  
tive supply is used in place of a ground connection,  
as long as the overall voltage drop experienced by  
the MAX15059 is less than or equal to 76V. For this  
type of application, the MAX15059 is suggested so the  
output can be referenced to “true” ground and not the  
negative supply. The MAX15059’s output current can  
be referenced as desired with either a resistor to ground  
or a transimpedance amplifier. Take care to ensure  
that output voltage excursions do not interfere with the  
required margin between BIAS and MOUT. In many fiber  
applications, MOUT is connected directly to an ADC  
that operates from a supply voltage that is less than the  
voltage at BIAS. Connecting the MAX15059’s clamping  
diode output, CLAMP, to the ADC power supply helps  
avoid damage to the ADC. Without this protection, volt-  
ages can develop at MOUT that might destroy the ADC.  
This protection is less critical when MOUT is connected  
directly to subsequent transimpedance amplifiers (linear  
or logarithmic) that have low-impedance, near-ground-  
referenced inputs. If a transimpedance amp is used on  
the low side of the photodiode, its voltage drop must  
also be considered. Leakage from the clamping diode  
is most often insignificant over nominal operating condi-  
tions, but grows with temperature.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land pat-  
terns, go to www.maxim-ic.com/packages. Note that  
a “+”, “#”, or “-” in the package code indicates RoHS  
status only. Package drawings may show a different suf-  
fix character, but the drawing pertains to the package  
regardless of RoHS status.  
To maintain low levels of wideband noise, lowpass filter-  
ing the output signal is suggested in applications where  
only DC measurements are required. Connect the filter  
capacitor at MOUT. Determining the required filtering  
components is straightforward, as the MAX15059 exhib-  
its a very high output impedance of 5GI.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
16 TQFN-EP  
T1633-4  
21-0136  
14 _____________________________________________________________________________________  
76V, 300mW Boost Converter and Current  
Monitor for APD Bias Applications  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
1/10  
3/10  
Initial release  
Replaced five TOCs, added three TOCs, updated text  
1, 2, 3, 5–8, 11  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
15  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX15059EVKIT

Demonstrates Thermal-Shutdown Feature
MAXIM

MAX15059EVKIT+

Demonstrates Thermal-Shutdown Feature
MAXIM

MAX15061

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications
MAXIM

MAX15061ATE+

80V, 300mW Boost Converter and Current Monitor for APD Bias Applications
MAXIM

MAX15062

60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器
ETC

MAX15062CATA+T

Switching Regulator, Current-mode, 0.62A, 535kHz Switching Freq-Max, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, TDFN-8
MAXIM

MAX15066

High-Efficiency, 4A, Step-Down DC-DC Regulators with Internal Power Switches
MAXIM

MAX15066EWE+

High-Efficiency, 4A, Step-Down DC-DC Regulators with Internal Power Switches
MAXIM

MAX15066EWE+T

Battery Charge Controller, Current-mode, 4A, 550kHz Switching Freq-Max, BICMOS, PBGA16,
MAXIM

MAX1507

Linear Li+ Battery Charger with Integrated Pass FET Regulation in 3mm x 3mm Thin DFN
MAXIM

MAX1507/MAX1508EVKIT

Evaluation Kit for the MAX1507/MAX1508
MAXIM

MAX15070A

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM