MAX17515 [MAXIM]

5A, 2.4V to 5.5V Input, High-Efficiency Power Module; 5A , 2.4V至5.5V输入,高效率电源模块
MAX17515
型号: MAX17515
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5A, 2.4V to 5.5V Input, High-Efficiency Power Module
5A , 2.4V至5.5V输入,高效率电源模块

电源电路
文件: 总15页 (文件大小:2139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
General Description  
Benefits and Features  
●ꢀ CompleteꢀSwitch-ModeꢀPowerꢀSupplyꢀinꢀOneꢀ  
The MAX17515 is  
a
fixed-frequency, step-down  
power module in  
a
thermally efficient system-  
Package  
in-package (SIP) package that operates from  
a
●ꢀ 2.4Vꢀtoꢀ5.5VꢀInputꢀVoltageꢀRange  
2.4V to 5.5V input supply voltage and supports  
output currents up to 5A. The device includes switch-  
mode power-supply controller, dual n-channel MOSFET  
power switches, a fully shielded inductor, as well as  
compensation components. The device supports 0.75V  
to 3.6V programmable output voltage. The high level of  
integration significantly reduces design complexity, manu-  
facturing risks, and offers a true “plug-and-play” power-  
supply solution, reducing the time to market.  
●ꢀ 0.75Vꢀtoꢀ3.6VꢀProgrammableꢀOutputꢀVoltage  
●ꢀ AutoꢀSwitchꢀLight-LoadꢀPulse-SkippingꢀMode  
●ꢀ FaultꢀProtection  
• Output Overvoltage Protection  
• Output Undervoltage Protection  
• Thermal-Fault Protection  
PeakꢀCurrentꢀLimit  
●ꢀ EnableꢀInputꢀ  
The device operates at a fixed 1MHz that requires smaller  
input and output capacitor size. The internal fixed con-  
stant gain at the error-amplifier output results in output-  
voltage positioning with respect to the load current. The  
fixed internal digital soft-start limits the input inrush cur-  
rent at startup. The device also operates in pulse-skipping  
mode at light loads to improve the light-load efficiency.  
●ꢀ Upꢀtoꢀ94%ꢀEfficiency  
●ꢀ Power-GoodꢀOutput  
●ꢀ Voltage-ControlledꢀInternalꢀSoft-Start  
●ꢀ High-ImpedanceꢀShutdown  
●ꢀ <ꢀ1µAꢀShutdownꢀCurrent  
●ꢀ PassesꢀEN55022ꢀ(CISPR22)ꢀClassꢀBꢀRadiatedꢀandꢀ  
The MAX17515 is available in a thermally enhanced,  
Conducted EMI Standard  
compact 28-pin, 10mm  
x 6.5mm x 2.8mm SIP  
package and can operate over the -40°C to +85°C  
industrial temperature range.  
Typical Application Circuit  
Applications  
●ꢀ FPGAꢀandꢀDSPꢀPoint-of-LoadꢀRegulator  
●ꢀ BaseꢀStationꢀPoint-of-LoadꢀRegulator  
●ꢀ IndustrialꢀControlꢀEquipment  
●ꢀ Servers  
●ꢀ ATEꢀEquipment  
●ꢀ MedicalꢀEquipment  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
FB  
IN  
IN  
IN  
IN  
VIN  
5V  
22µF  
VOUT  
1.1V, 5A  
MAX17515  
VCC  
22µF  
220µF  
VCC  
EN  
Ordering Information appears at end of data sheet.  
22.1k  
47.5kΩ  
1kΩ  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX17515.related.  
VCC  
POK  
GND  
GND  
GND  
19-6711; Rev 0; 6/13  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Absolute Maximum Ratings  
INꢀtoꢀPGND .............................................................-0.3V to +6V  
EP2ꢀtoꢀPGND ......................................... -0.3V to + (V + 0.3V)  
IN  
V
V
ꢀtoꢀGND ............................................................-0.3V to +6V  
ꢀtoꢀIN.................................................................-0.3V to +6V  
EP2ꢀtoꢀGND............................................ -0.6V to + (V + 0.3V)  
CC  
IN  
ContinuousꢀPowerꢀDissipationꢀ(T = +70°C)  
CC  
A
ENꢀtoꢀGND ..............................................................-0.3V to +6V  
FB,ꢀPOKꢀtoꢀGND...................................... -0.3V to (V + 0.3V)  
28-Pin SIP (derate 37mW/°C above +70°C) ............2000mW  
OperatingꢀTemperatureꢀRange........................... -40°C to +85°C  
Junction Temperature......................................................+125°C  
StorageꢀTemperatureꢀRange............................ -55°C to +150°C  
LeadꢀTemperatureꢀ(soldering,ꢀ10s) .................................+245°C  
CC  
OUT,ꢀEP3ꢀtoꢀGND ......................................-0.6V to (V + 0.3V)  
IN  
PGNDꢀtoꢀGND......................................................-0.3V to +0.3V  
EP1ꢀtoꢀGND..........................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
SIP  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(q )...........25°C/W  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(q ).................6°C/W  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = V  
= V  
= 5V,ꢀ-40°Cꢀ<ꢀT ꢀ<ꢀ+85°C.ꢀTypicalꢀvaluesꢀareꢀatꢀT = +25°C, unless otherwise noted.) (Typical Application Circuit)  
IN  
CC  
EN  
A
A
(Noteꢀ2)  
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
2.4  
4.5  
5.5  
5.5  
2.4  
5.5  
INꢀInputꢀVoltageꢀRange  
V
V
IN  
V
= V  
CC  
IN  
INꢀUndervoltageꢀThreshold  
INꢀStandbyꢀSupplyꢀCurrent  
Risingꢀedgeꢀ(100mVꢀhysteresis)  
= V = 4.5V, no load  
2.05  
2.19  
V
I
V
1
μA  
Q
IN  
CC  
V
V
V
SUPPLY  
CC  
CC  
CC  
ꢀInputꢀVoltageꢀRange  
Undervoltage Threshold  
V
4.5  
5.5  
4.5  
V
V
CC  
Risingꢀedgeꢀ(160mVꢀhysteresis)  
3.9  
4.2  
0.1  
ENꢀ=ꢀGND,ꢀPOKꢀunconnected,ꢀmeasuredꢀ  
V
V
Shutdown Supply Current  
Supply Current  
I
1.0  
μA  
μA  
CC  
VCC_SHD  
at V , T = +25°C  
CC  
A
Regulatorꢀenabled,ꢀnoꢀload,ꢀnoꢀswitchingꢀ  
(V = 1V)  
I
62  
135  
CC  
VCC  
FB  
OUTPUT  
Output Voltage Programmable  
Range  
V
= V  
= 5.2V, I  
= 2A  
LOAD  
IN  
CC  
V
0.754  
0.750  
-7.5  
3.6  
0.786  
-1  
V
V
OUT  
(see derating curve for V  
> 2.5V)  
OUT  
UnityꢀGainꢀOutput-Voltageꢀ  
Tolerance/FBꢀaccuracy  
FBꢀ=ꢀOUT,ꢀnoꢀload  
0.770  
-4.4  
FBꢀLoadꢀRegulationꢀAccuracyꢀ  
(RDROOP)  
2Aꢀ<ꢀI  
ꢀ<ꢀ5A,ꢀFBꢀ=ꢀOUT  
mV/A  
OUT  
FBꢀLineꢀRegulationꢀAccuracy  
FBꢀInputꢀBiasꢀCurrent  
FBꢀ=ꢀOUT,ꢀnoꢀload,ꢀ2.4Vꢀ<ꢀV <ꢀ5.5V  
1.253  
4.5  
mV/V  
IN  
T ꢀ=ꢀ-40°Cꢀtoꢀ+85°Cꢀ(Noteꢀ3)  
-0.1  
-0.015  
+0.1  
μA  
A
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Electrical Characteristics (continued)  
(V = V  
= V  
= 5V,ꢀ-40°Cꢀ<ꢀT ꢀ<ꢀ+85°C.ꢀTypicalꢀvaluesꢀareꢀatꢀT = +25°C, unless otherwise noted.) (Typical Application Circuit)  
IN  
CC  
EN  
A
A
(Noteꢀ2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AverageꢀOutputꢀCurrentꢀLimit  
V
= 5V  
5
8
A
IN  
EFFICIENCY  
V
V
= 5V, V  
= 5V, V  
= 1.1V, I  
= 1.1V, I  
= 2A  
= 5A  
86  
77  
IN  
IN  
OUT  
OUT  
Efficiency  
%
OUT  
OUT  
SWITCHING FREQUENCY  
Switching Frequency  
f
0.9  
1
1.1  
MHz  
SW  
SOFT-START  
Soft-StartꢀRampꢀTime  
t
1.79  
ms  
ms  
SS  
Soft-StartꢀFaultꢀBlankingꢀTime  
POWER-GOOD OUTPUT (POK)  
t
3
SSLT  
POKꢀUpperꢀTripꢀThresholdꢀandꢀ  
Overvoltage-Fault Threshold  
Risingꢀedge,ꢀ50mVꢀhysteresis  
8.5  
-14  
12  
14  
%
POKꢀLowerꢀTripꢀThreshold  
POKꢀLeakageꢀCurrent  
Falling edge, 50mV hysteresis  
-12  
0.1  
2
-6  
1
%
μA  
μs  
I
T
= +25°C, V  
= 5.5V  
POK  
POK  
A
POK  
POKꢀPropagationꢀDelayꢀTime  
POKꢀOutputꢀLowꢀVoltage  
t
FBꢀforcedꢀ50mVꢀbeyondꢀPOKꢀtripꢀthreshold  
= 3mA  
I
100  
mV  
SINK  
Overvoltage-FaultꢀLatch-Delayꢀ  
Time  
FBꢀforcedꢀ50mVꢀaboveꢀPOKꢀupperꢀtripꢀ  
threshold  
2
μs  
Undervoltage-FaultꢀLatch-Delayꢀ  
Time  
FBꢀforcedꢀ50mVꢀbelowꢀPOKꢀlowerꢀtripꢀ  
threshold, TUV  
1.6  
ms  
LOGIC INPUTS  
ENꢀInputꢀHighꢀThreshold  
ENꢀInputꢀLeakageꢀCurrent  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Rising,ꢀhysteresisꢀ=ꢀ215mVꢀ(typ)  
1.0  
1.4  
0.1  
1.6  
1
V
T
= +25°C  
μA  
A
TSHDN  
Hysteresis = 15°C  
+160  
°C  
Note 2:ꢀ Limitsꢀareꢀ100%ꢀtestedꢀatꢀT = +25°C. Maximum and minimum limits are guaranteed by design and characterization over  
A
temperature.  
Note 3:ꢀ DesignꢀguaranteedꢀbyꢀATEꢀcharacterization.ꢀLimitsꢀareꢀnotꢀproductionꢀtested.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Typical Operating Characteristics  
(V  
= 5V, V = 3.3V - 5V, V  
ꢀ=ꢀ0.9Vꢀ-ꢀ3.3V,ꢀI  
= 0–5A, T = +25°C, unless otherwise noted.)  
CC  
IN  
OUT  
OUT  
A
EFFICIENCY  
vs. OUTPUT CURRENT  
EFFICIENCY  
vs. OUTPUT CURRENT  
LOAD REGULATION  
(V = 0.75V)  
OUT  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
0.745  
0.740  
0.735  
V
= 2.5V  
V
= 2.5V  
V
= 3.3V  
OUT  
OUT  
OUT  
V
= 0.75V  
= 5.0V  
OUT  
V
95  
90  
85  
80  
75  
70  
65  
60  
CC  
V
= 5.0V  
IN  
V
= 1.2V  
OUT  
V
= 1.2V  
OUT  
V
= 1.8V  
OUT  
V
OUT  
= 0.9V  
V
= 1.8V  
V
OUT  
= 0.9V  
OUT  
V
IN  
= 3.3V  
V
= 3.3V  
= 5.0V  
IN  
V
V
= 5.0V  
= 5.0V  
IN  
CC  
V
CC  
100  
1k  
10k  
100  
1k  
10k  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
LOAD REGULATION  
LOAD REGULATION  
LOAD REGULATION  
(V  
OUT  
= 1.8V)  
(V  
OUT  
= 2.5V)  
(V  
OUT  
= 1.2V)  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.38  
1.83  
1.21  
V
OUT  
= 2.5V  
= 5.0V  
V
V
= 1.8V  
= 5.0V  
CC  
V
= 1.2V  
= 5.0V  
OUT  
OUT  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
V
CC  
V
CC  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
V
= 5.0V  
IN  
V
= 5.0V  
IN  
V
IN  
= 5.0V  
V
IN  
= 3.3V  
V
= 3.3V  
IN  
V
= 3.3V  
IN  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT (A)  
OUTPUT-VOLTAGE RIPPLE  
INPUT-VOLTAGE RIPPLE  
(V = 5V, V = 1.2V, I = 5A)  
(V = 5V, V  
= 1.2V, I  
= 5A)  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
MAX17515 toc08  
MAX17515 toc07  
10mV/div  
(AC-COUPLED)  
50mV/div  
(AC-COUPLED)  
V
IN  
V
OUT  
1µs/div  
1µs/div  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 3.3V - 5V, V  
ꢀ=ꢀ0.9Vꢀ-ꢀ3.3V,ꢀI  
= 0–5A, T = +25°C, unless otherwise noted.)  
CC  
IN  
OUT  
OUT A  
LOAD CURRENT TRANSIENT RESPONSE  
LOAD CURRENT TRANSIENT RESPONSE  
(V = 3.3V, V  
IN  
= 1.2V, I  
= 2.5 TO 5A)  
(V = 5.0V, V  
IN  
= 1.2V, I  
= 2.5 TO 5A)  
OUT  
MAX17515 toc10  
OUT  
OUT  
OUT  
MAX17515 toc09  
2A/div  
2A/div  
I
I
OUT  
OUT  
50mV/div  
(AC-COUPLED)  
50mV/div  
(AC-COUPLED)  
V
OUT  
V
OUT  
2ms/div  
2ms/div  
LOAD CURRENT TRANSIENT RESPONSE  
LOAD CURRENT TRANSIENT RESPONSE  
(V = 3.3V, V  
IN  
= 2.5V, I  
= 2.5 TO 5A)  
(V = 5.0V, V  
IN  
= 2.5V, I  
= 2.5 TO 5A)  
OUT  
MAX17515 toc12  
OUT  
OUT  
OUT  
MAX17515 toc11  
I
2A/div  
I
2A/div  
OUT  
OUT  
50mV/div  
(AC-COUPLED)  
50mV/div  
(AC-COUPLED)  
V
OUT  
V
OUT  
2ms/div  
2ms/div  
STARTUP WAVEFORM  
(V = 3.3V, V = 1.2V, I  
SHUTDOWN WAVEFORM  
(V = 3.3V, V = 1.2V, I = 30mA)  
= 0A)  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
MAX17515 toc14  
MAX17515 toc13  
5V/div  
5V/div  
V
V
EN  
EN  
5V/div  
5V/div  
V
LX  
V
LX  
500mV/div  
500mV/div  
V
V
OUT  
V
V
OUT  
2V/div  
2V/div  
POK  
POK  
400µs/div  
400µs/div  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 3.3V - 5V, V  
ꢀ=ꢀ0.9Vꢀ-ꢀ3.3V,ꢀI  
= 0–5A, T = +25°C, unless otherwise noted.)  
CC  
IN  
OUT  
OUT A  
STARTUP WAVEFORM  
(V = 3.3V, V = 1.2V, I  
SHUTDOWN WAVEFORM  
(V = 3.3V, V = 1.2V, I = 5A)  
= 5A)  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
MAX17515 toc16  
MAX17515 toc15  
5V/div  
5V/div  
V
V
EN  
EN  
5V/div  
5V/div  
V
LX  
V
LX  
500mV/div  
V
V
500mV/div  
OUT  
V
V
OUT  
2V/div  
2V/div  
POK  
POK  
400µs/div  
400µs/div  
STARTUP WAVEFORM  
(V = 5.0V, V = 1.2V, I  
SHUTDOWN WAVEFORM  
(V = 5.0V, V = 1.2V, I = 30mA)  
= 0A)  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
MAX17515 toc18  
MAX17515 toc17  
5V/div  
5V/div  
V
V
EN  
EN  
5V/div  
5V/div  
V
LX  
V
LX  
500mV/div  
V
500mV/div  
OUT  
V
V
OUT  
2V/div  
V
POK  
2V/div  
POK  
400µs/div  
400µs/div  
STARTUP WAVEFORM  
(V = 5.0V, V = 1.2V, I  
SHUTDOWN WAVEFORM  
(V = 5.0V, V = 1.2V, I = 5A)  
= 5A)  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
MAX17515 toc20  
MAX17515 toc19  
5V/div  
5V/div  
V
V
EN  
EN  
5V/div  
5V/div  
V
LX  
V
LX  
500mV/div  
V
V
500mV/div  
OUT  
V
V
OUT  
2V/div  
2V/div  
POK  
POK  
400µs/div  
400µs/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 3.3V - 5V, V  
ꢀ=ꢀ0.9Vꢀ-ꢀ3.3V,ꢀI  
= 0–5A, T = +25°C, unless otherwise noted.)  
CC  
IN  
OUT  
OUT A  
LOAD SHORT-CIRCUIT  
LOAD SHORT-CIRCUIT  
(V = 5.0V, V = 1.2V, I = 5A)  
OUT  
(V = 5.0V, V  
= 1.2V, I  
= 0A)  
IN  
OUT  
OUT  
IN  
OUT  
MAX17515 toc21  
MAX17515 toc22  
I
I
OUT  
OUT  
5A/div  
5V/div  
5A/div  
5V/div  
V
LX  
V
LX  
V
V
V
OUT  
V
POK  
OUT  
1V/div  
2V/div  
1V/div  
2V/div  
POK  
400µs/div  
400µs/div  
OUTPUT CURRENT  
vs. AMBIENT TEMPERATURE  
(V = 5.0V NO AIR FLOW)  
IN  
6
5
4
3
2
1
0
V
= 1.1V  
OUT  
V
= 1.8V  
OUT  
V
= 3.3V  
OUT  
50  
60  
70  
80  
90 100 110 120  
AMBIENT TEMPERATURE (°C)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Pin Configuration  
23  
19  
27  
21  
20  
28  
26  
25  
24  
22  
MAX17515  
1
2
IN  
IN  
18 OUT  
17 OUT  
EP1  
IN  
3
4
EP2  
EP3  
16  
OUT  
POK  
15 OUT  
10  
13  
6
7
8
9
11  
12  
14  
5
Pin Description  
PIN  
NAME  
FUNCTION  
InputꢀSupplyꢀConnection.ꢀBypassꢀtoꢀGNDꢀwithꢀaꢀ22µFꢀorꢀ2ꢀxꢀ10µFꢀceramicꢀcapacitor.ꢀSupplyꢀrangeꢀforꢀthisꢀ  
1–3,  
28  
IN  
pin is 4.5V to 5.5V. When V ꢀcanꢀbeꢀsuppliedꢀseparatelyꢀfromꢀaꢀ4.5Vꢀtoꢀ5.5Vꢀsource,ꢀtheꢀINꢀpinꢀcanꢀthenꢀbeꢀ  
CC  
powered from a 2.4V to 5.5V supply.  
Open-DrainꢀPower-GoodꢀOutput.ꢀPOKꢀisꢀpulledꢀlowꢀifꢀFBꢀisꢀmoreꢀthanꢀ12%ꢀ(typ)ꢀaboveꢀorꢀbelowꢀtheꢀnominalꢀ  
regulationꢀthreshold.ꢀPOKꢀisꢀheldꢀlowꢀinꢀshutdown.ꢀPOKꢀbecomesꢀhighꢀimpedanceꢀwhenꢀFBꢀisꢀinꢀregulationꢀ  
range.ꢀPullꢀthisꢀpinꢀupꢀwithꢀ10kΩꢀ(typ)ꢀresistorꢀvalue.  
4
5–7  
8
POK  
GND  
GND.ꢀConnectꢀPGNDꢀandꢀGNDꢀtogetherꢀatꢀaꢀsingleꢀpoint.  
5VꢀBiasꢀSupplyꢀInputꢀforꢀtheꢀInternalꢀSwitchingꢀRegulatorꢀDrivers.ꢀForꢀINꢀfromꢀ4.5Vꢀtoꢀ5.5V,ꢀV  
can be  
CC  
V
connectedꢀtoꢀtheꢀINꢀsupply.ꢀForꢀINꢀsupplyꢀvoltagesꢀlowerꢀthanꢀtheꢀaboveꢀrange,ꢀV  
should be powered from  
CC  
CC  
aꢀseparateꢀ5Vꢀ±10%ꢀsupplyꢀandꢀbypassedꢀwithꢀaꢀ1µFꢀorꢀgreaterꢀceramicꢀcapacitor.  
FeedbackꢀInputꢀforꢀtheꢀInternalꢀ5AꢀStep-DownꢀConverter.ꢀConnectꢀFBꢀtoꢀaꢀresistiveꢀdividerꢀbetweenꢀOUTꢀandꢀ  
GNDꢀtoꢀadjustꢀtheꢀtypicalꢀoutputꢀvoltageꢀbetweenꢀ0.765Vꢀtoꢀ3.6V.ꢀKeepꢀequivalentꢀdividerꢀresistanceꢀlowerꢀ  
thanꢀ50kΩ.  
9
FB  
RegulatorꢀEnableꢀInput.ꢀWhenꢀENꢀisꢀpulledꢀlow,ꢀtheꢀregulatorꢀisꢀdisabled.ꢀWhenꢀENꢀisꢀdrivenꢀhigh,ꢀtheꢀ  
regulator is enabled.  
10  
EN  
11, 12  
13–20  
N.C.  
OUT  
NoꢀConnection  
RegulatorꢀOutputꢀPins.ꢀConnectꢀanꢀoutputꢀcapacitorꢀbetweenꢀOUTꢀandꢀPGNDꢀwithꢀaꢀ220µFꢀ(typ)ꢀPOSCAPꢀ  
low-ESRꢀcapacitor.  
21–27  
PGND PowerꢀGNDꢀReturn.ꢀConnectꢀtoꢀGND.  
EP1  
EP2  
EP3  
ExposedꢀPadꢀ1.ꢀConnectꢀthisꢀpadꢀtoꢀtheꢀPGNDꢀandꢀGNDꢀgroundꢀplanesꢀofꢀ1inꢀbyꢀ1inꢀcopperꢀforꢀcooling.  
ExposedꢀPadꢀ2.ꢀDoꢀnotꢀconnectꢀthisꢀpadꢀtoꢀanyꢀotherꢀnodeꢀonꢀtheꢀPCB.ꢀMinimizeꢀareaꢀofꢀcopperꢀisland.  
Exposed Pad 3. Connect this pad to copper area of 1in by 1in. Electrically can be connected to the OUT pins.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Functional Diagram  
MAX17515  
UVLO  
POR  
UVLO  
VCC  
IN  
0.1µF  
2.2µF  
BST  
EN  
1µH  
PWM  
OUT  
CONTROLLER  
VCC  
THERMAL FAULT  
+160°C  
2.2µF  
OSC  
POK  
PGND  
ZX  
-
+
ILIM_VALLEY  
ILIM_PEAK  
ISKIP  
-
+
GND  
-
+
PWM  
COMP  
-
+
+
-
VREF  
FB  
OV  
COMP  
1.12 x VREF  
+
-
UV  
COMP  
-
+
0.88 x VREF  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
The minimum input capacitor required can be calculated  
by the following equation:  
Design Procedure  
Adjusting Output Voltage  
I
(
×(1D)  
)
Theꢀ MAX17515ꢀ producesꢀ anꢀ adjustableꢀ 0.75Vꢀ toꢀ 3.6Vꢀ  
output voltage from a 2.4V to 5.5V input voltage range by  
usingaresistivefeedbackdividerfromOUTtoFB.Theꢀ  
device can deliver up to 5A output current up to an output  
voltage of 2.5V at +70°C. The output current derates for  
output voltages above 2.5V.  
IN_AVG  
C
=
IN  
V × f  
(
)
IN  
SW  
where:  
I
is the average input current given by:  
IN_AVGꢀ  
P
OUT  
Adjustingꢀtheꢀoutputꢀvoltageꢀofꢀtheꢀdeviceꢀrequiresꢀaꢀresis-  
tiveꢀ dividerꢀ networkꢀ fromꢀ OUTꢀ toꢀ FB,ꢀ accordingꢀ toꢀ theꢀ  
equation below. From the initial output voltage, the load-  
line regulation reduces the effective feedback voltage by  
a typical 5mV/A as the output current increases.  
I
=
IN_Avg  
η× V  
IN  
Dꢀ isꢀ theꢀ operatingꢀ dutyꢀ cycle,ꢀ whichꢀ isꢀ approximatelyꢀ  
equal to V /V where:  
OUT INꢀ  
∆ꢀV is the required input-voltage ripple,  
IN  
V
OUT  
R
= R  
×
1  
f is the operating switching frequency,  
SW  
kΩ,ꢀwhereꢀR ꢀisꢀinꢀkΩ.  
U
B
B
0.765  
P
I
is the output power, which is equal to V  
x
OUT  
OUT  
OUT,  
Input Voltage Range  
The maximum value (V  
ηꢀisꢀtheꢀefficiency.  
) and minimum value  
IN(MAX)  
(V  
) must accommodate the worst-case conditions  
Forꢀ theꢀ device’sꢀ systemꢀ (IN)ꢀ supply,ꢀ ceramicꢀ capaci-  
tors are preferred due to their resilience to inrush surge  
currents typical of systems, and due to their low parasitic  
inductance, which helps reduce the high-frequency ring-  
ingꢀ onꢀ theꢀ INꢀ supplyꢀ whenꢀ theꢀ internalꢀ MOSFETsꢀ areꢀ  
turned off. Choose an input capacitor that exhibits less  
thanꢀ+10°CꢀtemperatureꢀriseꢀatꢀtheꢀRMSꢀinputꢀcurrentꢀforꢀ  
optimal circuit longevity.  
IN(MIN)  
accounting for the input voltage soars and drops. If there  
is a choice at all, lower input voltages result in better  
efficiency.ꢀWithꢀaꢀmaximumꢀdutyꢀcycleꢀofꢀ87.5%,ꢀV  
is  
OUT  
limited to 0.875 x V .  
IN  
Input Capacitor Selection  
The input capacitor must meet the ripple-current require-  
ment (I ) imposed by the switching currents. The I  
RMS  
RMS  
Output Capacitor Selection  
requirements of the regulator can be determined by the  
following equation:  
The output capacitor selection requires careful evalua-  
tion of several different design requirements (e.g., stabil-  
ity, transient response, and output ripple voltage) that  
place limits on the output capacitance and the effective  
seriesꢀ resistanceꢀ (ESR).ꢀ Basedꢀ onꢀ theseꢀ requirements,ꢀ  
aꢀcombinationꢀofꢀlow-ESRꢀpolymerꢀcapacitorsꢀ(lowerꢀcostꢀ  
but higher output ripple voltage) and ceramic capacitors  
(higher cost but low output ripple voltage) should be used  
to achieve stability with low output ripple.  
I
= I  
× D ×(1D)  
OUT  
RMS  
Theꢀ worst-caseꢀ RMSꢀ currentꢀ requirementꢀ occursꢀ whenꢀ  
operatingꢀwithꢀDꢀ=ꢀ0.5.ꢀAtꢀthisꢀpoint,ꢀtheꢀaboveꢀequationꢀ  
simplifies to I  
= 0.5 x I  
.
RMS  
OUT  
VOUT  
OUT  
Loop Compensation  
RU  
RB  
The gain portion of the loop gain is a result of error-  
amplifier gain, current-sensing gain, and load with an  
MAX17515  
overallꢀ typicalꢀ valueꢀ atꢀ 1kHzꢀ ofꢀ 36dBꢀ atꢀ V = 5V, and  
IN  
FB  
46dBꢀatꢀV = 3V, with a typical limit to the gain-bandwidth  
IN  
(GBW)productof120,000.Thecrossovershouldoccurꢀ  
before this error-amplifier bandwidth limit of 120kHz  
(gain = 1). The output capacitor and load introduces a  
pole with the worst case at the maximum load (5A). If  
the load pole location is further than a frequency where  
Figure 1. Adjusting Output Voltage  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
theꢀgainꢀexceedsꢀtheꢀGBW,ꢀtheꢀgainꢀdropꢀstartsꢀearlierꢀatꢀ  
the location where the loop gain is limited. This situation  
applies typically to an output voltage less than 1.8V, so  
zerofrequencyfromtheESRisneededtoincreasetheꢀ  
phase margin at the crossover frequency.  
The actual capacitance value required relates to the  
physicalcasesizeneededtoachievetheESRrequire-  
ment, as well as to the capacitor chemistry. Thus, polymer  
capacitorꢀselectionꢀisꢀusuallyꢀlimitedꢀbyꢀESRꢀandꢀvoltageꢀ  
rating rather than by capacitance value.  
Theꢀ recommendedꢀ relationshipꢀ betweenꢀ ESRꢀ andꢀ totalꢀ  
output capacitance values are shown in Table 1. When  
aꢀlow-ESRꢀtypeꢀcapacitorꢀisꢀusedꢀwithꢀaꢀceramicꢀcapaci-  
tor,ꢀ aꢀ recommendedꢀ valueꢀ ofꢀ 44µFꢀ toꢀ 100µFꢀ ceramicꢀ  
capacitor should be used to make up the total capaci-  
tanceꢀvalueꢀwithꢀtheꢀrelationshipꢀbetweenꢀESRꢀandꢀtotalꢀ  
output capacitance value, such that the zero frequency is  
between32kHzand40kHz.Whenonlyalow-ESRtypeꢀ  
capacitor is used, the zero frequency should be between  
62kHz and 80kHz.  
With ceramic capacitors, the ripple voltage due to capaci-  
tance dominates the output ripple voltage. Therefore,  
the minimum capacitance needed with ceramic output  
capacitors is:  
I  
8 × fSW  
1
L
COUT  
=
×
V
RIPPLE  
Alternatively,combiningceramics(forthelowESR)andꢀ  
polymers (for the bulk capacitance) helps balance the out-  
put capacitance vs. output ripple-voltage requirements.  
Optionally, for an output greater than or equal to 1.8V,  
an all-ceramic capacitor solution can be used with a  
minimum capacitance value that locates the pole location  
below 1kHz with resistive load (5A), and with a simplified  
Load-Transient Response  
The load-transient response depends on the overall out-  
put impedance over frequency, and the overall amplitude  
and slew rate of the load step. In applications with large,  
fast-loadꢀtransientsꢀ(loadꢀstepꢀ>ꢀ80%ꢀofꢀfullꢀloadꢀandꢀslewꢀ  
rateꢀ >ꢀ 10A/μs),ꢀ theꢀ outputꢀ capacitor’sꢀ high-frequencyꢀ  
responseꢀ (ESLꢀ andꢀ ESR)ꢀ needsꢀ toꢀ beꢀ considered.ꢀ Toꢀ  
prevent the output voltage from spiking too low under a  
load-transientevent,theESRislimitedbythefollowingꢀ  
equation (ignoring the sag due to finite capacitance):  
equation given by C  
ꢀ(µF)ꢀ=ꢀ900/V  
.
OUTMIN  
OUT  
Output Ripple Voltage  
Withpolymercapacitors,theESRdominatesanddeter-  
mines the output ripple voltage. The step-down regulator’s  
output ripple voltage (V  
) equals the total inductor  
RIPPLE  
rippleꢀ currentꢀ (ΔI ) multiplied by the output capacitor’s  
L
ESR.Therefore,ꢀ theꢀ maximumꢀ ESRꢀ toꢀ meetꢀ theꢀ outputꢀ  
ripple-voltage requirement is:  
V
RIPPLESTEP  
R
ESR  
I  
OUTSTEP  
V
RIPPLE  
R
where V  
load current transient, and I  
load current step.  
is the allowed voltage drop during  
ESR  
RIPPLESTEP  
I  
L
is the maximum  
OUTSTEP  
where:  
V
V  
L
V
1
IN  
OUT  
OUT  
The capacitance value dominates the mid-frequency  
output impedance and continues to dominate the load-  
transient response as long as the load transient’s slew  
rate is fewer than two switching cycles. Under these  
I  
=
×
×
L
V
f
IN SW  
where f ꢀisꢀtheꢀswitchingꢀfrequencyꢀandꢀLꢀisꢀtheꢀinduc-  
torꢀ(1µH).ꢀ  
SW  
Table 1. Output Capacitor Selection vs. ESR  
LOW-ESR TYPE WITH CERAMIC-TYPE  
LOW-ESR TYPE WITHOUT CERAMIC-TYPE  
ESR (mΩ)  
TOTAL C  
(µF)  
OUT  
ESR (mΩ)  
250  
16–20  
13–17  
11–14  
10–12  
9–11  
8–10  
7–9  
8–10  
7–9  
6, 7  
5, 6  
4–6  
4, 5  
4, 5  
3, 4  
300  
350  
400  
450  
500  
550  
600  
7, 8  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
conditions, the sag and soar voltages depend on the  
output capacitance, inductance value, and delays in the  
transientꢀresponse.ꢀLowꢀinductorꢀvaluesꢀallowꢀtheꢀinductorꢀ  
current to slew faster, replenishing charge removed from  
or added to the output filter capacitors by a sudden load  
step, especially with low differential voltages across the  
inductor. The minimum capacitance needed to handle the  
voltage soft-start reduces the inrush current by gradually  
ramping up the internal reference voltage.  
Fixed-Frequency Current-Mode Controller  
The heart of the current-mode PWM controller is a  
multistage, open-loop comparator that compares the  
output voltage-error signal with respect to the reference  
voltage, the current-sense signal, and the slope-compen-  
sation ramp (see the Functional Diagram). The device  
uses a direct summing configuration, approaching ideal  
cycle-to-cycle control over the output voltage without a  
traditional error amplifier and the phase shift associated  
with it.  
sag voltage (V  
) that occurs after applying the load  
SAG  
current can be estimated by the following equation:  
1
C
=
×
OUT_SAG  
V
SAG  
2
L × ∆IOUT  
1
STEP  
+ ∆IOUT  
(
×(t  
− ∆T)  
sw  
)
STEP  
2
VIN×D  
VOUT  
(
)
MAX  
Light-Load Operation  
The device features an inherent automatic switchover  
to pulse skipping (PFM operation) at light loads. This  
switchover is affected by a comparator that truncates  
the low-side switch on-time at the inductor current’s  
zero crossing. The zero-crossing comparator senses the  
inductor current during the off-time. Once the current  
through the low-side MOSFET drops below the zero-  
crossing trip level, it turns off the low-side MOSFET. This  
prevents the inductor from discharging the output capaci-  
tors and forces the switching regulator to skip pulses  
under light-load conditions to avoid overcharging the  
output. Therefore, the controller regulates the valley of the  
output ripple under light-load conditions. The switching  
waveforms can appear noisy and asynchronous at light-  
load pulse-skipping operation, but this is a normal operat-  
ing condition that results in high light-load efficiency.  
where:  
D
MAX  
ꢀisꢀtheꢀmaximumꢀdutyꢀfactorꢀ(87.5%),ꢀ  
t
is the switching period (1/f ),  
SW  
SW  
ΔTꢀ equalsꢀ V  
/V x t  
when in PWM mode, or  
OUT IN  
SW  
LꢀxꢀI  
/(V - V  
) when in Idle Mode (1.5A).  
IDLE IN  
OUT  
The minimum capacitance needed to handle the over-  
shoot voltage (V ) that occurs after load removal  
(due to stored inductor energy) can be calculated as:  
SOAR  
2
IOUT  
L
(
)
STEP  
V
C
OUT  
2V  
OUT SOAR  
When the device is operating under low duty cycle,  
the output capacitor size is usually determined by the  
Idle Mode™ Current-Sense Threshold  
C
.
OUT_SOAR  
In Idle Mode, the on-time of the step-down controller ter-  
minates when both the output voltage exceeds the feed-  
back threshold, and the internal current-sense voltage  
Detailed Description  
The MAX17515 is a complete step-down switch-mode  
power-supply solution that can deliver up to 5A output  
current and up to 3.6V output voltage from a 2.4V to 5.5V  
input voltage range. The device includes switch-mode  
power-supply controller, dual n-channel MOSFET power  
switches, and an inductor. The device uses a fixed-fre-  
quency current-mode control scheme.  
falls below the Idle Mode current-sense threshold (I  
=
IDLE  
1.5A). Another on-time cannot be initiated until the output  
voltage drops below the feedback threshold. In this mode,  
the behavior appears like PWM operation with occasional  
pulse skipping, where inductor current does not need to  
reach the light-load level.  
Power-On Reset (POR) and UVLO  
The device provides peak current-limit protection, output  
undervoltage protection, output overvoltage protection,  
and thermal protection. The device operates in skip  
mode at light loads to improve the light-load efficiency.  
Independent enable and an open-drain power-good out-  
put allow flexible system power sequencing. The fixed  
Power-onꢀ resetꢀ (POR)ꢀ occursꢀ whenꢀ V  
rises above  
CC  
approximately 2.1V, resetting the undervoltage, over-  
voltage, and thermal-shutdown fault latches. The V  
inputundervoltage-lockout(UVLO)circuitrypreventstheꢀ  
CC  
switching regulators from operating if the 5V bias supply  
(V )ꢀisꢀbelowꢀitsꢀ4VꢀUVLOꢀthreshold.  
CC  
Idle Mode is a trademark of Maxim Integrated Products, Inc  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
below 1V or toggle the enable input to clear the fault latch  
and restart the regulator.  
Soft-Start  
The internal step-down controller starts switching and  
the output voltage ramps up using soft-start. If the V  
CC  
Output Undervoltage Protection (UVP)  
biasꢀsupplyꢀvoltageꢀdropsꢀbelowꢀtheꢀUVLOꢀthreshold,ꢀtheꢀ  
controllerꢀ stopsꢀ switchingꢀ andꢀ disablesꢀ theꢀ driversꢀ (LXꢀ  
becomes high impedance) until the bias supply voltage  
recovers.  
The device includes an output undervoltage-protection  
(UVP) circuit that begins to monitor the output once the  
startup blanking period has ended. If the output voltage  
dropsbelow88%(typ)ofitsnominalregulationvoltage,ꢀ  
theꢀ regulatorꢀ pullsꢀ theꢀ POKꢀ outputꢀ lowꢀ andꢀ beginsꢀ theꢀ  
UVP fault timer. Once the timer expires after 1.6ms, the  
regulator shuts down, forcing the high-side MOSFET  
off and disabling the low-side MOSFET once the zero-  
Once the 5V V  
bias supply and V rise above their  
IN  
CC  
respectiveꢀinputꢀUVLOꢀthresholds,ꢀandꢀENꢀisꢀpulledꢀhigh,ꢀ  
the internal step-down controller becomes enabled and  
begins switching. The internal voltage soft-starts gradu-  
ally increment the feedback voltage by approximately  
25mV every 61 switching cycles, making the output volt-  
ageꢀreachꢀitsꢀnominalꢀregulationꢀvoltageꢀ1.79msꢀafterꢀtheꢀ  
regulator is enabled (see the Soft-Start Waveforms in the  
Typical Operating Characteristics section).  
crossing threshold has been reached. Cycle V  
1V, or toggle the enable input to clear the fault latch and  
restart the regulator.  
below  
CC  
Thermal-Fault Protection  
The device features a thermal-fault protection circuit.  
Whenꢀtheꢀjunctionꢀtemperatureꢀrisesꢀaboveꢀ+160°Cꢀ(typ),ꢀ  
a thermal sensor activates the fault latch, pulls down the  
POKꢀoutput,ꢀandꢀshutsꢀdownꢀtheꢀregulator.ꢀToggleꢀENꢀtoꢀ  
clear the fault latch, and restart the controllers after the  
junctionꢀtemperatureꢀcoolsꢀbyꢀ15°Cꢀ(typ).  
Power-Good Output (POK)  
POKistheopen-drainoutputofthewindowcomparatorꢀ  
that continuously monitors the output for undervoltage  
andꢀ overvoltageꢀ conditions.ꢀ POKꢀ isꢀ activelyꢀ heldꢀ lowꢀ inꢀ  
shutdownꢀ (ENꢀ =ꢀ GND).ꢀ POKꢀ becomesꢀ highꢀ impedanceꢀ  
after the device is enabled and the output remains within  
±10%ofthenominalregulationvoltagesetbyFB.POKꢀ  
goesꢀlowꢀonceꢀtheꢀoutputꢀdropsꢀ12%ꢀ(typ)ꢀbelowꢀorꢀrisesꢀ  
12%ꢀ(typ)ꢀaboveꢀitsꢀnominalꢀregulationꢀpoint,ꢀorꢀtheꢀoutputꢀ  
shutsꢀ down.ꢀ Forꢀ aꢀ logic-levelꢀ POKꢀ outputꢀ voltage,ꢀ con-  
Power Dissipation  
The device output current needs to be derated if the out-  
put voltage is above 2.5V or if the device needs to oper-  
ate in high ambient temperature. The amount of current  
derating depends upon the input voltage, output voltage,  
and ambient temperature. The derating curves given in  
the Typical Operating Characteristics section can be used  
as a guide.  
nectꢀanꢀexternalꢀpullupꢀresistorꢀbetweenꢀPOKꢀandꢀV . A  
10kΩꢀpullupꢀresistorꢀworksꢀwellꢀinꢀmostꢀapplications.  
CC  
Output Overvoltage Protection (OVP)  
Ifꢀ theꢀ outputꢀ voltageꢀ risesꢀ toꢀ 112%ꢀ (typ)ꢀ ofꢀ itsꢀ nominalꢀ  
regulation voltage, the controller sets the fault latch, pulls  
POKꢀ low,ꢀ shutsꢀ downꢀ theꢀ regulator,ꢀ andꢀ immediatelyꢀ  
pulls the output to ground through its low-side MOSFET.  
Turningonthelow-sideMOSFETwith100%dutycycleꢀ  
rapidly discharges the output capacitors and clamps the  
output to ground. However, this commonly undamped  
response causes negative output voltages due to the  
energyꢀstoredꢀinꢀtheꢀoutputꢀLCꢀatꢀtheꢀinstantꢀofꢀ0Vꢀfault.ꢀIfꢀ  
the load cannot tolerate a negative voltage, place a power  
Schottky diode across the output to act as a reverse-  
polarity clamp. If the condition that caused the overvolt-  
age persists (such as a shorted high-side MOSFET),  
The maximum allowable power losses can be calculated  
using the following equation:  
T
T  
A
JMAX  
PD  
=
MAX  
q
JA  
where:  
PD  
is the maximum allowed power losses with  
MAX  
maximumꢀallowedꢀjunctionꢀtemperature,  
T
T
q
ꢀisꢀtheꢀmaximumꢀallowedꢀjunctionꢀtemperature,  
JMAX  
is operating ambient temperature,  
A
ꢀisꢀtheꢀjunction-to-ambientꢀthermalꢀresistance.  
JA  
the input source also fails (short-circuit fault). Cycle V  
CC  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
PCB Layout Guidelines  
PGND  
V
OUT  
CarefulPCBlayoutiscriticaltoachievinglowswitchingꢀ  
losses and clean, stable operation. Use the following  
guidelinesꢀforꢀgoodꢀPCBꢀlayout:  
23  
19  
28 27 26 25 24  
22 21 20  
EP 1  
EP 2  
EP 3  
●ꢀ Keepꢀtheꢀinputꢀcapacitorsꢀasꢀcloseꢀasꢀpossibleꢀtoꢀtheꢀ  
INꢀandꢀPGNDꢀpins.ꢀ  
18  
1
2
3
4
17  
V
IN  
16  
15  
●ꢀ Keepꢀtheꢀoutputꢀcapacitorsꢀasꢀcloseꢀasꢀpossibleꢀtoꢀtheꢀ  
OUTꢀandꢀPGNDꢀpins.ꢀ  
●ꢀ ConnectꢀallꢀtheꢀPGNDꢀconnectionsꢀtoꢀasꢀlargeꢀaꢀcop-  
10  
13  
5
6
7
8
9
11 12  
14  
per plane area as possible on the top layer.  
GND  
●ꢀ ConnectꢀEP1ꢀtoꢀtheꢀPGNDꢀandꢀGNDꢀplanesꢀonꢀtheꢀtopꢀ  
layer.  
●ꢀ UseꢀmultipleꢀviasꢀtoꢀconnectꢀinternalꢀPGNDꢀplanesꢀtoꢀ  
theꢀtop-layerꢀPGNDꢀplane.  
PGND  
V
OUT  
●ꢀ DoꢀnotꢀkeepꢀanyꢀsolderꢀmaskꢀonꢀEP1–EP3ꢀonꢀbottomꢀ  
layer.ꢀKeepingꢀsolderꢀmaskꢀonꢀexposedꢀpadsꢀdecreas-  
es the heat-dissipating capability.  
●ꢀ Keepꢀ theꢀ powerꢀ tracesꢀ andꢀ loadꢀ connectionsꢀ short.ꢀ  
This practice is essential for high efficiency. Using  
thickꢀcopperꢀPCBsꢀ(2ozꢀvs.ꢀ1oz)ꢀcanꢀenhanceꢀfull-loadꢀ  
efficiency.ꢀ Correctlyꢀ routingꢀ PCBꢀ tracesꢀ isꢀ aꢀ difficultꢀ  
task that must be approached in terms of fractions of  
centimeters, where a single milliohm of excess trace  
resistance causes a measurable efficiency penalty.  
Figure 2. Layout Recommendation  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages.ꢀNoteꢀ  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only. Package drawings may show a different suffix character, but  
theꢀdrawingꢀpertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX17515ELI+  
-40°C to +85°C  
28 SIP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Chip Information  
PROCESS:ꢀBiCMOS  
28 SIP  
L286510+1  
21-0701  
90-0445  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17515  
5A, 2.4V to 5.5V Input,  
High-Efficiency Power Module  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/13  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2013 Maxim Integrated Products, Inc.  
15  

相关型号:

MAX17521ATG+

Dual Switching Controller, Current-mode, 1.85A, 600kHz Switching Freq-Max, BICMOS, TQFN-24
MAXIM

MAX17523

4.5V to 36V Operating Voltage Range
MAXIM

MAX17523EVKIT

4.5V to 36V Operating Voltage Range
MAXIM

MAX17524

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17524ATJ+

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17525

Robust, High-Power Protection Reduces System
MAXIM

MAX17525ATP+

Power Supply Support Circuit, Adjustable, 5 Channel, BICMOS, TQFN-20
MAXIM

MAX17525ATP+T

Robust, High-Power Protection Reduces System
MAXIM

MAX17526A

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526AATP+T

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526C

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17528

1-Phase Quick-PWM Intel IMVP-6.5/GMCH Controllers
MAXIM