MAX6875ETJ+ [MAXIM]

Power Supply Management Circuit, Fixed, 4 Channel, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32;
MAX6875ETJ+
型号: MAX6875ETJ+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 4 Channel, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32

信息通信管理
文件: 总40页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3438; Rev 0; 10/04  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
General Description  
Features  
The MAX6874/MAX6875 EEPROM-configurable, multi-  
voltage supply sequencers/supervisors monitor several  
voltage detector inputs and general-purpose logic  
inputs, and provide programmable open-drain outputs  
for highly configurable power-supply sequencing appli-  
cations. The MAX6874 provides six voltage monitor  
inputs, four general-purpose inputs, and eight program-  
mable open-drain outputs. The MAX6875 provides four  
voltage monitor inputs, three general-purpose inputs,  
and five programmable open-drain outputs. Manual reset  
and margin disable inputs provide additional flexibility.  
Six (MAX6874) or Four (MAX6875) Configurable  
Input Voltage Detectors  
One High Voltage Input (+1.25V to +7.625V or  
+2.5V to +13.2V Thresholds)  
One Voltage Input (+1.25V to +3.05V or  
+2.5V to +5.5V)  
Four (MAX6874) or Two (MAX6875) Positive  
Voltage Inputs (+0.5V to +3.05V or +1V  
to +5.5V)  
Four (MAX6874) or Three (MAX6875) General-  
Purpose Logic Inputs  
All voltage detectors offer configurable thresholds for  
undervoltage detection. One high-voltage input (IN1)  
provides detector threshold voltages from +2.5V to  
+13.2V in 50mV increments, or from +1.25V to +7.625V  
in 25mV increments. A second positive input (IN2) pro-  
vides detector threshold voltages from +2.5V to +5.5V  
in 50mV increments, or from +1.25V to +3.05V in 25mV  
increments. Positive inputs (IN3–IN6) provide detector  
threshold voltages from +1V to +5.5V in 20mV incre-  
ments, or from +0.5V to +3.05V in 10mV increments.  
Two Configurable Watchdog Timers  
Eight (MAX6874) or Five (MAX6875) Programmable  
Open-Drain Outputs  
Active-High or Active-Low  
Timing Delays from 25µs to 1600ms  
Margining Disable and Manual Reset Controls  
4kb Internal User EEPROM  
Endurance: 100,000 Erase/Write Cycles  
Data Retention: 10 Years  
Programmable output stages control power-supply  
sequencing or system resets/interrupts. Program the  
open-drain outputs as active-high or active-low.  
Programmable timing delay blocks configure each output  
to wait between 25µs and 1600ms before deasserting.  
I2C/SMBus-Compatible Serial Configuration/  
Communication Interface  
1ꢀ Threshold Accuracy  
An SMBus™/I2C-compatible serial data interface pro-  
grams and communicates with the configuration EEP-  
ROM, the configuration registers, and the internal 4kb  
user EEPROM of the MAX6874/MAX6875.  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
The MAX6874/MAX6875 are available in a 7mm x 7mm  
x 0.8mm 32-pin thin QFN package and operate over  
the extended temperature range (-40°C to +85°C).  
MAX6874 ETJ  
MAX6875 ETJ  
-40°C to +85°C  
-40°C to +85°C  
32 Thin QFN  
32 Thin QFN  
T3277-2  
T3277-2  
Applications  
Telecommunications/Central Office Systems  
Networking Systems  
Servers/Workstations  
Base Stations  
Storage Equipment  
Multimicroprocessor/Voltage Systems  
SMBus is a trademark of Intel Corp.  
Pin Configurations, Typical Operating Circuit, and Selector  
Guide appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND)  
IN2–IN6, ABP, SDA, SCL, A0, A1,  
Continuous Power Dissipation (T = +70°C)  
A
32-Pin 7ꢀꢀ x 7ꢀꢀ Thin QFN  
GPI1–GPI4, MR, MARGIN, PO5–PO8  
(derate 33.3ꢀW/°C above +70°C).............................2667ꢀW  
Operating Teꢀperature Range ...........................-40°C to +85°C  
Maxiꢀuꢀ Junction Teꢀperature .....................................+150°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
(MAX6874), PO3–PO5 (MAX6875)...................-0.3V to +6V  
IN1, PO1–PO4 (MAX6874), PO1–PO2 (MAX6875)...-0.3V to +14V  
DBP ..........................................................................-0.3V to +3V  
Input/Output Current (all pins).......................................... 20ꢀA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
IN1  
= +6.5V to +13.2V, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise  
IN2 IN6 A  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage on IN1 to ensure the device is fully  
operational, IN3–IN6 = GND  
V
4.0  
13.2  
IN1  
Operating Voltage Range  
(Note 3)  
V
V
to  
Voltage on any one of IN3–IN5 to ensure the  
device is fully operational, IN1 = GND  
IN3  
2.7  
5.5  
6.5  
V
IN5  
IN1 Supply Voltage  
(Note 3)  
Miniꢀuꢀ voltage on IN1 to guarantee that the  
device is powered through IN1  
V
V
IN1P  
Miniꢀuꢀ voltage on one of IN3–IN5 to  
guarantee the device is EEPROM configured.  
Undervoltage Lockout  
V
2.5  
1.5  
2
V
UVLO  
V
= +13.2V, IN2–IN6 = GND, no load  
1.2  
1.3  
ꢀA  
ꢀA  
IN1  
Supply Current  
I
CC  
Writing to configuration registers or EEPROM,  
no load  
V
V
V
V
V
V
(50ꢀV increꢀents)  
(25ꢀV increꢀents)  
(50ꢀV increꢀents)  
(25ꢀV increꢀents)  
2.5  
1.250  
2.50  
1.250  
1.0  
13.2  
7.625  
5.5  
IN1  
IN1  
IN2  
IN2  
Threshold Range  
V
V
TH  
3.05  
5.5  
–V  
(20ꢀV increꢀents)  
(10ꢀV increꢀents)  
IN3 IN6  
–V  
IN3 IN6  
0.50  
-1.0  
3.05  
+1.0  
T
= +25°C  
A
A
Threshold Accuracy  
Threshold Hysteresis  
IN1–IN6, V  
falling  
%
IN_  
T
= -40°C to +85°C  
-1.5  
+1.5  
V
0.3  
10  
% V  
TH  
TH-HYST  
Reset Threshold Teꢀperature  
Coefficient  
ppꢀ/  
°C  
V /°C  
TH  
Threshold-Voltage Differential  
Nonlinearity  
V
DNL  
-1  
+1  
LSB  
TH  
2
_______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
IN1  
= +6.5V to +13.2V, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise  
IN2 IN6 A  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
IN1 Input Leakage Current  
IN2 Input Iꢀpedance  
SYMBOL  
CONDITIONS  
< the highest of V –V  
IN3 IN5  
MIN  
TYP  
100  
230  
MAX  
140  
UNITS  
µA  
I
For V  
LIN1  
IN1  
R
160  
70  
320  
kΩ  
IN2  
R
IN3  
to  
V
> 6.5V  
IN3–IN6 Input Iꢀpedance  
IN1  
100  
145  
3.5  
kΩ  
R
IN6  
V
V  
Power-Up Delay  
IN_ to PO_ Delay  
ABP  
UVLO  
t
ꢀs  
µs  
µs  
PU  
t
V
falling or rising, 100ꢀV overdrive  
IN_  
25  
25  
DPO  
000  
001  
010  
1.406  
5.625  
22.5  
45  
1.5625  
6.25  
25  
1.719  
6.875  
27.5  
55  
011  
100  
Register contents  
(Table 16)  
PO_ Tiꢀeout Period  
t
RP  
50  
ꢀs  
101  
180  
200  
400  
1600  
220  
440  
1760  
0.3  
110  
360  
111  
1440  
V
V
V
V
+2.5V, I  
+4.0V, I  
+2.5V, I  
+4.0V, I  
= 500µA  
= 2ꢀA  
= 1ꢀA  
= 4ꢀA  
ABP  
ABP  
ABP  
ABP  
SINK  
SINK  
SINK  
SINK  
PO1–PO4 (MAX6874), PO1–PO2  
(MAX6875) Output Low (Note 3)  
V
V
V
OL  
OL  
PD  
0.4  
0.3  
PO5–PO8 (MAX6874), PO3–PO5  
(MAX6875) Output Low (Note 3)  
V
0.4  
PO1–PO8 Output Initial Pulldown  
Current  
I
V
V  
, V = 0.8V  
UVLO PO_  
10  
40  
+1  
µA  
µA  
ABP  
PO1–PO8 Output Open-Drain  
Leakage Current  
I
Output high iꢀpedance  
-1  
LKG  
_______________________________________________________________________________________  
3
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
IN1  
= +6.5V to +13.2V, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise  
IN2 IN6 A  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.8  
IL  
IH  
MR, MARGIN, GPI_ Input Voltage  
V
V
1.4  
1
MR Input Pulse Width  
MR Glitch Rejection  
MR to PO_ Delay  
t
µs  
ns  
µs  
µA  
µA  
ns  
µA  
ns  
MR  
100  
2
t
DMR  
MR to V  
Pullup Current  
I
V
V
= +1.4V  
5
5
10  
10  
200  
10  
15  
15  
DBP  
MR  
MARGIN  
MR  
= +1.4V  
MARGIN  
MARGIN to V  
Pullup Current  
I
DBP  
GPI_ to PO_ Delay  
t
DGPI_  
GPI_ Pulldown Current  
Watchdog Input Pulse Width  
I
V
= +0.8V  
GPI_  
5
15  
GPI_  
t
GPI_ configured as a watchdog input  
50  
WDI  
000  
001  
010  
5.625  
22.5  
90  
6.25  
25  
6.875  
27.5  
ꢀs  
s
100  
400  
1.6  
110  
011  
100  
101  
110  
111  
360  
440  
Register Contents  
(Table 19)  
Watchdog Tiꢀeout Period  
t
WD  
1.44  
5.76  
23.04  
92.16  
1.76  
6.4  
7.04  
25.6  
102.4  
28.16  
112.64  
SERIAL INTERFACE LOGIC (SDA, SCL, A0, A1)  
Logic-Input Low Voltage  
Logic-Input High Voltage  
Input Leakage Current  
Output Voltage Low  
V
0.8  
V
V
IL  
V
2.0  
-1  
IH  
I
+1  
µA  
V
LKG  
V
I
= 3ꢀA  
0.4  
OL  
SINK  
Input/Output Capacitance  
C
10  
pF  
I/O  
4
_______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
TIMING CHARACTERISTICS  
(IN1 = GND, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise noted. Typical  
IN2 IN6  
A
values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
TIMING CHARACTERISTICS (Figure 2)  
Serial Clock Frequency  
Clock Low Period  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL  
t
1.3  
0.6  
1.3  
0.6  
0.6  
0.6  
100  
0
LOW  
Clock High Period  
t
HIGH  
Bus-Free Tiꢀe  
t
BUF  
START Setup Tiꢀe  
t
SU:STA  
HD:STA  
SU:STO  
SU:DAT  
HD:DAT  
START Hold Tiꢀe  
t
t
t
STOP Setup Tiꢀe  
Data-In Setup Tiꢀe  
Data-In Hold Tiꢀe  
t
900  
20 +  
0.1 x  
Receive SCL/SDA Miniꢀuꢀ Rise Tiꢀe  
Receive SCL/SDA Maxiꢀuꢀ Rise Tiꢀe  
Receive SCL/SDA Miniꢀuꢀ Fall Tiꢀe  
Receive SCL/SDA Maxiꢀuꢀ Fall Tiꢀe  
Transꢀit SDA Fall Tiꢀe  
t
t
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
ns  
ns  
ns  
ns  
ns  
R
C
BUS  
300  
R
20 +  
0.1 x  
t
t
t
F
F
F
C
BUS  
300  
20 +  
0.1 x  
C
= 400pF  
300  
11  
BUS  
C
BUS  
Pulse Width of Spike Suppressed  
EEPROM Byte Write Cycle Tiꢀe  
t
(Note 5)  
(Note 6)  
50  
ns  
SP  
t
ꢀs  
WR  
Note 1: Specifications guaranteed for the stated global conditions. The device also ꢀeets the paraꢀeters specified when 0 < V  
IN1  
< +6.5V, and at least one of V –V  
is between +2.7V and +5.5V, while the reꢀaining V –V  
are between 0 and  
IN3 IN6  
IN3 IN6  
+5.5V.  
Note 2: Device ꢀay be supplied froꢀ any one of IN_, except IN2 and IN6.  
Note 3: The internal supply voltage, ꢀeasured at ABP, equals the ꢀaxiꢀuꢀ of IN3–IN5 if V  
= 0, or equals +5.4V if V  
> +6.5V.  
IN1  
IN1  
For +4V < V  
< +6.5V and V –V  
> +2.7V, the input that powers the device cannot be deterꢀined.  
IN1  
IN3 IN5  
Note 4: C  
= total capacitance of one bus line in pF. Rise and fall tiꢀes are ꢀeasured between 0.1 x V  
and 0.9 x V  
.
BUS  
BUS  
BUS  
Note 5: Input filters on SDA, SCL, A0, and A1 suppress noise spikes < 50ns.  
Note 6: An additional cycle is required when writing to configuration ꢀeꢀory for the first tiꢀe.  
_______________________________________________________________________________________  
5
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Typical Operating Characteristics  
(V  
= +6.5V to +13.2V, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = +25°C, unless otherwise noted.)  
IN1  
IN2 IN6 A  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (IN1)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (IN3 TO IN5)  
NORMALIZED PO_ TIMEOUT PERIOD  
vs. TEMPERATURE  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= -40°C  
A
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5  
SUPPLY VOLTAGE (V)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED IN_ THRESHOLD  
vs. TEMPERATURE  
IN_ TO PO_  
PROPAGATION DELAY vs. TEMPERATURE  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
IN3 THRESHOLD = 1V,  
20mV/STEP RANGE  
100mV OVERDRIVE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Typical Operating Characteristics (continued)  
(V  
= +6.5V to +13.2V, V –V  
= +2.7V to +5.5V, GPI_ = GND, MARGIN = MR = DBP, T = +25°C, unless otherwise noted.)  
IN1  
IN2 IN6 A  
MAXIMUM IN_ TRANSIENT DURATION  
vs. IN_ THRESHOLD OVERDRIVE  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
450  
400  
350  
300  
250  
200  
150  
100  
50  
PO1–PO4 (MAX6874)  
PO1–PO2 (MAX6875)  
PO_ ASSERTION  
OCCURS ABOVE THIS LINE  
PO5–PO8 (MAX6874)  
PO3–PO5 (MAX6875)  
0
0
0
1
2
3
4
5
6
7
8
9 10  
11  
12 13 14 15  
1
10  
100  
1000  
IN_ THRESHOLD OVERDRIVE (mV)  
I
(mA)  
SINK  
MR TO PO_ PROPAGATION DELAY  
vs. TEMPERATURE  
MAXIMUM MR TRANSIENT DURATION  
vs. MR THRESHOLD OVERDRIVE  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
PO_ ASSERTION OCCURS  
ABOVE THIS LINE  
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1000  
TEMPERATURE (°C)  
MR THRESHOLD OVERDRIVE (mV)  
_______________________________________________________________________________________  
7
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6874 MAX6875  
Prograꢀꢀable Output 2. Configurable active-high or active-low open-drain output. PO2 pulls  
low with a 10µA internal current sink for +1V < V < V . PO2 assuꢀes its prograꢀꢀed  
conditional output state when ABP exceeds UVLO.  
1
2
3
5
PO2  
ABP  
UVLO  
Prograꢀꢀable Output 3. Configurable active-high or active-low open-drain output. PO3 pulls  
low with a 10µA internal current sink for +1V < V < V . PO3 assuꢀes its prograꢀꢀed  
PO3  
ABP  
UVLO  
conditional output state when ABP exceeds UVLO.  
Prograꢀꢀable Output 4. Configurable active-high or active-low open-drain output. PO4 pulls  
low with a 10µA internal current sink for +1V < V < V . PO4 assuꢀes its prograꢀꢀed  
conditional output state when ABP exceeds UVLO.  
3
4
5
6
4
7
PO4  
GND  
PO5  
ABP  
UVLO  
Ground  
Prograꢀꢀable Output 5. Configurable active-high or active-low open-drain output. PO5 pulls  
low with a 10µA internal current sink for +1V < V < V . PO5 assuꢀes its prograꢀꢀed  
ABP  
UVLO  
conditional output state when ABP exceeds UVLO.  
Prograꢀꢀable Output 6. Configurable active-high or active-low open-drain output. PO6 pulls  
low with a 10µA internal current sink for +1V < V < V . PO6 assuꢀes its prograꢀꢀed  
conditional output state when ABP exceeds UVLO.  
6
7
8
PO6  
PO7  
PO8  
N.C.  
ABP  
UVLO  
Prograꢀꢀable Output 7. Configurable active-high or active-low open-drain output. PO7 pulls  
low with a 10µA internal current sink for +1V < V < V . PO7 assuꢀes its prograꢀꢀed  
ABP  
UVLO  
conditional output state when ABP exceeds UVLO.  
Prograꢀꢀable Output 8. Configurable active-high or active-low open-drain output. PO8 pulls  
low with a 10µA internal current sink for +1V < V < V . PO8 assuꢀes its prograꢀꢀed  
ABP  
UVLO  
conditional output state when ABP exceeds UVLO.  
1, 8, 9,10,  
16, 17,  
23–26, 32  
9, 10, 23,  
24  
No Connection. Not internally connected.  
Margin Input. Drive MARGIN low to hold PO_ in their existing states. Leave MARGIN  
11  
11  
MARGIN unconnected or connect to DBP if unused. MARGIN overrides MR if both assert at the saꢀe  
tiꢀe. MARGIN is internally pulled up to DBP through a 10µA current source.  
Manual Reset Input. MR to either assert PO_ into a prograꢀꢀed state or to have no effect on  
12  
12  
MR  
PO_ when driving MR low (see Table 6). Leave MR unconnected or connect to DBP if unused.  
MR is internally pulled up to DBP through a 10µA current source.  
13  
14  
13  
14  
SDA  
SCL  
Serial Data Input/Output (Open-Drain). SDA requires an external pullup resistor.  
Serial Clock Input. SCL requires an external pullup resistor.  
Address Input 0. Address inputs allow up to four MAX6874 or two MAX6875 connections on  
one coꢀꢀon bus. Connect A0 to GND or to the serial interface power supply.  
15  
16  
15  
A0  
A1  
Address Input 1 (MAX6874 only). Address inputs allow up to four MAX6874 connections on  
one coꢀꢀon bus. Connect A1 to GND or to the serial interface power supply.  
8
_______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6874 MAX6875  
General-Purpose Logic Input 4 (MAX6874 Only). An internal 10µA current source pulls GPI4 to  
GND. Configure GPI4 to control watchdog tiꢀer functions or the prograꢀꢀable outputs.  
17  
18  
19  
20  
18  
19  
20  
GPI4  
GPI3  
GPI2  
GPI1  
General-Purpose Logic Input 3. An internal 10µA current source pulls GPI3 to GND. Configure  
GPI3 to control watchdog tiꢀer functions or the prograꢀꢀable outputs.  
General-Purpose Logic Input 2. An internal 10µA current source pulls GPI2 to GND. Configure  
GPI2 to control watchdog tiꢀer functions or the prograꢀꢀable outputs.  
General-Purpose Logic Input 1. An internal 10µA current source pulls GPI1 to GND. Configure  
GPI1 to control watchdog tiꢀer functions or the prograꢀꢀable outputs.  
Internal Power-Supply Output. Bypass ABP to GND with a 1µF ceraꢀic capacitor. ABP powers  
the internal circuitry of the MAX6874/MAX6875. Do not use ABP to supply power to external  
circuitry.  
21  
22  
25  
26  
27  
28  
29  
21  
22  
27  
28  
29  
ABP  
DBP  
IN6  
IN5  
IN4  
IN3  
IN2  
Internal Digital Power-Supply Output. Bypass DBP to GND with a 1µF ceraꢀic capacitor. DBP  
supplies power to the EEPROM ꢀeꢀory and the internal logic circuitry. Do not use DBP to  
supply power to external circuitry.  
Voltage Input 6. Configure IN6 to detect voltage thresholds between +1V and +5.5V in 20ꢀV  
increꢀents, or +0.5V to +3.05V in 10ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN6  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
Voltage Input 5. Configure IN5 to detect voltage thresholds between +1V and +5.5V in 20ꢀV  
increꢀents, or +0.5V to +3.05V in 10ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN5  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
Voltage Input 4. Configure IN4 to detect voltage thresholds between +1V and +5.5V in 20ꢀV  
increꢀents, or +0.5V to +3.05V in 10ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN4  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
Voltage Input 3. Configure IN3 to detect voltage thresholds between +1V and +5.5V in 20ꢀV  
increꢀents, or +0.5V to +3.05V in 10ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN3  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
Voltage Input 2. Configure IN2 to detect voltage thresholds froꢀ +2.5V to +5.5V in 50ꢀV  
increꢀents or +1.25V to +3.05V in 25ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN2  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
High-Voltage Input 1. Configure IN1 to detect voltage thresholds froꢀ +2.5V to +13.2V in 50ꢀV  
increꢀents or +1.25V to +7.6V in 25ꢀV increꢀents. For iꢀproved noise iꢀꢀunity, bypass IN1  
to GND with a 0.1µF capacitor installed as close to the device as possible.  
30  
31  
32  
30  
31  
2
IN1  
I.C.  
PO1  
EP  
Internal Connection. Leave unconnected.  
Prograꢀꢀable Output 1. Configurable active-high or active-low open-drain output. PO1 pulls  
low with a 10µA internal current sink for +1V < V  
< V  
. PO1 assuꢀes its prograꢀꢀed  
UVLO  
ABP  
conditional output state when ABP exceeds UVLO.  
Exposed Paddle. Exposed paddle is internally connected to GND.  
_______________________________________________________________________________________  
9
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
EEPROM, and configuration registers through an  
Detailed Description  
SMBus/I2C-coꢀpatible serial interface (see Figure 1).  
The MAX6874/MAX6875 EEPROM-configurable, ꢀulti-  
voltage supply sequencers/supervisors ꢀonitor several  
voltage detector inputs and general-purpose logic  
inputs, and feature prograꢀꢀable outputs for highly  
configurable power-supply sequencing applications.  
The MAX6874 features six voltage detector inputs, four  
general-purpose logic inputs, and eight prograꢀꢀable  
outputs, while the MAX6875 features four voltage  
detector inputs, three general-purpose logic inputs,  
and five prograꢀꢀable outputs. Manual reset and ꢀar-  
gin disable inputs siꢀplify board-level testing during  
the ꢀanufacturing process. The MAX6874/MAX6875  
feature an accurate internal 1.25V reference.  
Prograꢀ the open-drain outputs as active-high or active-  
low. Prograꢀ each output to assert on any voltage detec-  
tor input, general-purpose logic input, watchdog tiꢀer,  
ꢀanual reset, or other output stages. Prograꢀꢀable tiꢀ-  
ing delay blocks configure each output to wait between  
25µs and 1600ꢀs before de-asserting.  
The MAX6874/MAX6875 feature a watchdog tiꢀer,  
adding flexibility. Prograꢀ the watchdog tiꢀer to assert  
one or ꢀore prograꢀꢀable outputs. Prograꢀ the watch-  
dog tiꢀer to clear on a coꢀbination of one GPI_ input  
and one prograꢀꢀable output, one of the GPI_ inputs  
only, or one of the prograꢀꢀable outputs only. The initial  
and norꢀal watchdog tiꢀeout periods are independently  
prograꢀꢀable froꢀ 6.25ꢀs to 102.4s.  
All voltage detectors provide configurable thresholds for  
undervoltage detection. One high-voltage input (IN1)  
provides detector threshold voltages froꢀ +1.25V to  
+7.625V in 25ꢀV increꢀents or +2.5V to +13.2V in 50ꢀV  
increꢀents. A positive input (IN2) provides detector  
threshold voltages froꢀ +1.25V to +3.05V in 25ꢀV incre-  
ꢀents or +2.5V to +5.5V in 50ꢀV increꢀents. Positive  
inputs (IN3–IN6) provide detector threshold voltages  
froꢀ +0.5V to +3.05V in 10ꢀV increꢀents or +1.0V to  
+5.5V in 20ꢀV increꢀents.  
A virtual diode-ORing scheꢀe selects the input that pow-  
ers the MAX6874/MAX6875. The MAX6874/MAX6875  
derive power froꢀ IN1 if V  
> +6.5V or froꢀ the highest  
IN1  
voltage on IN3–IN5 if V  
< +2.7V. The power source  
IN1  
cannot be deterꢀined if +4V < V  
< +6.5V and one  
IN1  
of V  
through V  
> +2.7V. The prograꢀꢀable out-  
IN3  
IN5  
puts ꢀaintain the correct prograꢀꢀed logic state for  
> V . One of IN3 through IN5 ꢀust be  
V
ABP  
UVLO  
greater than +2.7V or IN1 ꢀust be greater than +4V for  
device operation.  
The host controller coꢀꢀunicates with the MAX6874/  
MAX6875’s internal 4kb user EEPROM, configuration  
OUTPUT  
STAGES  
LOGIC NETWORK  
FOR PO_  
COMPARATORS  
PO_  
IN_  
GPI_, MR,  
MARGIN  
WATCHDOG  
TIMER  
GPI_  
SDA,  
SCL  
SERIAL  
INTERFACE  
REGISTER BANK  
CONTROLLER  
EEPROM  
(USER AND  
CONFIG)  
ANALOG  
BLOCK  
DIGITAL  
BLOCK  
Figure 1. Top-Level Block Diagram  
10 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Functional Diagram  
IN_ DETECTOR  
IN1  
PO1  
PO_ OUTPUT  
1.25V  
V
REF  
TIMING BLOCK 1  
PROGRAMMABLE  
IN2 DETECTOR  
IN3 DETECTOR  
IN4 DETECTOR  
IN5 DETECTOR  
IN6 DETECTOR  
TIMING BLOCK 2  
TIMING BLOCK 3  
TIMING BLOCK 4  
TIMING BLOCK 5  
TIMING BLOCK 6  
TIMING BLOCK 7  
TIMING BLOCK 8  
PO2  
IN2  
IN3  
IN4  
PO2 OUTPUT  
PO3 OUTPUT  
PO4 OUTPUT  
PO5 OUTPUT  
PO6 OUTPUT  
PO7 OUTPUT  
PO8 OUTPUT  
ARRAY  
PO3  
PO4  
PO5  
IN5  
(N.C.)  
PO6  
(N.C.)  
IN6  
(N.C.)  
PO7  
(N.C.)  
5.4V  
LDO  
PO8  
(N.C.)  
(VIRTUAL  
DIODES)  
MAIN  
OSCILLATOR  
EEPROM  
CHARGE PUMP  
SDA  
SCL  
A0  
2.55V  
LDO  
CONFIG  
CONFIG  
SERIAL  
INTERFACE  
REGISTERS EEPROM  
DBP  
1µF  
USER  
EEPROM  
MAX6874  
MAX6875  
A1  
(N.C.)  
ABP  
1µF  
( ) ARE FOR MAX6875 ONLY.  
GND  
______________________________________________________________________________________ 11  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
device as possible. The internal supply voltage, ꢀea-  
sured at ABP, equals the ꢀaxiꢀuꢀ of IN3–IN5  
(MAX6874)/IN3–IN4 (MAX6875) if V = 0, or equals  
Powering the MAX6874/MAX6875  
The MAX6874/MAX6875 derive power froꢀ the positive  
voltage-detector inputs: IN1 or IN3–IN5. A virtual diode-  
ORing scheꢀe selects the positive input that supplies  
power to the device (see the Functional Diagram). IN1  
ꢀust be at least +4V or one of IN3–IN5 (MAX6874)/  
IN3–IN4 (MAX6875) ꢀust be at least +2.7V to ensure  
device operation. An internal LDO regulates IN1 down  
to +5.4V.  
IN1  
+5.4V when V  
> +6.5V. Do not use ABP to provide  
IN1  
power to external circuitry.  
The MAX6874/MAX6875 also generate a digital supply  
voltage (DBP) for the internal logic circuitry and the  
EEPROM; bypass DBP to GND with a 1µF ceraꢀic  
capacitor installed as close to the device as possible.  
The noꢀinal DBP output voltage is +2.55V. Do not use  
DBP to provide power to external circuitry.  
The highest input voltage on IN3–IN5 (MAX6874)/  
IN3–IN4 (MAX6875) supplies power to the device, unless  
V
+6.5V, in which case IN1 supplies power to the  
IN1  
Inputs  
The MAX6874/MAX6875 contain ꢀultiple logic and volt-  
age-detector inputs. Table 1 suꢀꢀarizes these various  
inputs.  
device. For +4V < V  
< +6.5V and one of V  
through  
IN1  
IN3  
V
IN5  
> +2.7V, the input power source cannot be deter-  
ꢀined due to the dropout voltage of the LDO. Internal  
hysteresis ensures that the supply input that initially pow-  
ered the device continues to power the device when  
ꢀultiple input voltages are within 50ꢀV of each other.  
Set the threshold voltages for each voltage-detector  
input with registers 00h–05h. Each threshold voltage is  
an undervoltage threshold. Set the threshold range for  
each voltage detector with register 0Dh.  
ABP powers the analog circuitry; bypass ABP to GND  
with a 1µF ceraꢀic capacitor installed as close to the  
Table 1. Programmable Features  
FEATURE  
DESCRIPTION  
Undervoltage threshold  
+2.5V to +13.2V threshold in 50ꢀV increꢀents  
+1.25V to +7.625V threshold in 25ꢀV increꢀents  
High-Voltage Input  
(IN1)  
Undervoltage threshold  
+2.5V to +5.5V threshold in 50ꢀV increꢀents  
+1.25V to +3.05V threshold in 25ꢀV increꢀents  
Voltage Input (IN2)  
Voltage Input  
IN3–IN6 (MAX6874),  
IN3–IN4 (MAX6875)  
Undervoltage threshold  
+1V to +5.5V threshold in 20ꢀV increꢀents  
+0.5V to +3.05V threshold in 10ꢀV increꢀents  
Active high or active low  
Open-drain output  
Dependent on MR, MARGIN, IN_, GPI1–GPI4 , WD, and/or PO_  
Prograꢀꢀable tiꢀeout periods of 25µs, 1.5625ꢀs, 6.25ꢀs, 25ꢀs, 50ꢀs, 200ꢀs, 400ꢀs, or 1.6s  
Prograꢀꢀable Outputs  
PO1–PO8 (MAX6874),  
PO1–PO5 (MAX6875)  
General-Purpose  
Logic Inputs,  
GPI1–GPI4 (MAX6874),  
GPI1–GPI3 (MAX6875)  
Active-high or active-low logic levels  
Configure GPI_ as inputs to watchdog tiꢀers or prograꢀꢀable output stages  
Clear dependent on any coꢀbination of one GPI_ input and one prograꢀꢀable output, a GPI_ input  
only, or a prograꢀꢀable output only  
Watchdog Tiꢀer  
Initial watchdog tiꢀeout period of 6.25ꢀs, 25ꢀs, 100ꢀs, 400ꢀs, 1.6s, 6.4s, 25.6s, or 102.4s  
Norꢀal watchdog tiꢀeout period of 6.25ꢀs, 25ꢀs, 100ꢀs, 400ꢀs, 1.6s, 6.4s, 25.6s, or 102.4s  
Watchdog enable/disable  
12 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 1. Programmable Features (continued)  
FEATURE  
DESCRIPTION  
Forces PO_ into the active output state when MR = GND  
PO_ deassert after MR releases high and the PO_ tiꢀeout period expires  
PO_ cannot be a function of MR only  
Manual Reset Input  
(MR)  
Write Disable  
Locks user EEPROM based on PO_  
Locks configuration EEPROM  
Configuration Lock  
High-Voltage Input (IN1)  
V
1.25V  
0.025V  
TH  
IN1 offers threshold voltages of +2.5V to +13.2V in  
50ꢀV increꢀents, or +1.25V to +7.625V in 25ꢀV incre-  
ꢀents. Use the following equations to set the threshold  
voltages for IN1:  
x =  
for +1.25V to + 3.05V range  
where V is the desired threshold voltage and x is the  
TH  
deciꢀal code for the desired threshold (Table 3).  
For the +2.5V to +5.5V range, x ꢀust equal 60 or less,  
otherwise the threshold exceeds the ꢀaxiꢀuꢀ operat-  
ing voltage of IN2. For the +1V to +3.05V range, x ꢀust  
equal 72 or less.  
V
2.5V  
0.05V  
TH  
x =  
for + 2.5V to +13.2V range  
for +1.25V to + 7.625V range  
V
1.25V  
TH  
0.025V  
IN3–IN6  
IN3–IN6 offer positive voltage detectors ꢀonitor volt-  
ages froꢀ +1V to +5.5V in 20ꢀV increꢀents, or +0.5V  
to +3.05V in 10ꢀV increꢀents. Use the following equa-  
tions to set the threshold voltages for IN_:  
x =  
where V is the desired threshold voltage and x is the  
TH  
deciꢀal code for the desired threshold (Table 2). For  
the +2.5V to +13.2V range, x ꢀust equal 214 or less,  
otherwise the threshold exceeds the ꢀaxiꢀuꢀ operat-  
ing voltage of IN1.  
V
1V  
TH  
x =  
for +1V to + 5.5V range  
0.02V  
IN2  
IN2 offers thresholds froꢀ +2.5V to +5.5V in 50ꢀV  
increꢀents, or +1.25V to +3.05V in 25ꢀV increꢀents.  
Use the following equations to set the threshold volt-  
ages for IN2:  
V
0.5V  
0.01V  
TH  
x =  
for + 0.5V to + 3.05V range  
where V is the desired threshold voltage and x is the  
TH  
deciꢀal code for the desired threshold (Table 4). For  
the +1V to +5.5V range, x ꢀust equal 225 or less, oth-  
erwise the threshold exceeds the ꢀaxiꢀuꢀ operating  
voltage of IN3–IN6.  
V
2.5V  
TH  
x =  
for + 2.5V to + 5.5V range  
0.05V  
______________________________________________________________________________________ 13  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 2. IN1 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
00h  
0Dh  
8000h  
800Dh  
[7:0]  
[0]  
IN1 detector threshold (V1) (see equations in the High-Voltage Input (IN1) section).  
IN1 range selection:  
0 = 2.5V to 13.2V range in 50ꢀV increꢀents. 1 = 1.25V to 7.625V range in 25ꢀV increꢀents.  
Table 3. IN2 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
01h  
0Dh  
8001h  
[7:0]  
[7:6]  
IN2 detector threshold (V2) (see equations in the IN2 section).  
IN2 range selection:  
00 = Not used.  
01 = Not used.  
800Dh  
10 = +2.5V to +5.5V range in 50ꢀV increꢀents.  
11 = +1.25V to +3.05V range in 25ꢀV increꢀents.  
Table 4. IN3–IN6 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
02h  
03h  
8002h  
8003h  
[7:0]  
[7:0]  
IN3 detector threshold (V3) (see equations in the IN3–IN6 section).  
IN4 detector threshold (V4) (see equations in the IN3–IN6 section).  
IN5 (MAX6874 only) detector threshold (V5)  
(see equations in the IN3–IN6 section).  
04h  
05h  
8004h  
8005h  
[7:0]  
[7:0]  
[1]  
IN6 (MAX6874 only) detector threshold (V6)  
(see equations in the IN3–IN6 section).  
IN3 range selection:  
0 = +1V to +5.5V range in 20ꢀV increꢀents. 1 = +0.5V to +3.05V range in 10ꢀV increꢀents.  
IN4 range selection:  
[2]  
0 = +1V to +5.5V range in 20ꢀV increꢀents. 1 = +0.5V to +3.05V range in 10ꢀV increꢀents.  
0Dh  
800Dh  
IN5 (MAX6874 only) range selection:  
0 = +1V to +5.5V range in 20ꢀV increꢀents. 1 = +0.5V to +3.05V range in 10ꢀV increꢀents.  
[3]  
IN6 (MAX6874 only) range selection:  
0 = +1V to +5.5V range in 20ꢀV increꢀents. 1 = +0.5V to +3.05V range in 10ꢀV increꢀents.  
[4]  
[5]  
Not used.  
14 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
GPI1–GPI4 (MAX6874)/GPI1–GPI3 (MAX6875)  
MARGIN  
MARGIN allows systeꢀ-level testing while power supplies  
exceed the norꢀal ranges. Drive MARGIN low to hold the  
prograꢀꢀable outputs in their state while systeꢀ-level  
testing occurs. Leave MARGIN unconnected or connect  
to DBP if unused. An internal 10µA current source pulls  
MARGIN to DBP. The state of each prograꢀꢀable output  
does not change while MARGIN = GND. MARGIN over-  
rides MR if both assert at the saꢀe tiꢀe.  
The GPI1–GPI4 prograꢀꢀable logic inputs control  
power-supply sequencing (prograꢀꢀable outputs),  
reset/interrupt signaling, and watchdog functions (see  
the Configuring the Watchdog Timer (Registers  
3Ch–3Dh) section). Configure GPI1–GPI4 for active-low  
or active-high logic (Table 5). GPI1–GPI4 internally pull  
down to GND through a 10µA current sink.  
MR  
The ꢀanual reset (MR) input initiates a reset condition.  
Register 40h deterꢀines the prograꢀꢀable outputs that  
assert while MR is low (Table 6). All affected prograꢀ-  
ꢀable outputs reꢀain asserted (see the Programmable  
Outputs section) for their PO_ tiꢀeout periods after MR  
releases high. An internal 10µA current source pulls MR  
to DBP. Leave MR unconnected or connect to DBP if  
unused. A prograꢀꢀable output cannot depend solely  
on MR.  
Programmable Outputs  
The MAX6874 features eight prograꢀꢀable outputs  
while the MAX6875 features five prograꢀꢀable outputs.  
Prograꢀ the open-drain outputs as active-high or  
active-low. During power-up, the prograꢀꢀable outputs  
pull to GND with an internal 10µA current sink for 1V <  
V
< V  
. The prograꢀꢀable outputs reꢀain in  
UVLO  
ABP  
their active states until their respective tiꢀeout periods  
(PO_) expire and all of the prograꢀꢀed conditions are  
ꢀet for each output. Any output prograꢀꢀed to depend  
Table 5. GPI1–GPI4 Active Logic States  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
[0]  
[1]  
[2]  
[3]  
GPI1. 0 = active low. 1 = active high.  
GPI2. 0 = active low. 1 = active high.  
3Bh  
803Bh  
GPI3. 0 = active low. 1 = active high.  
GPI4 (MAX6874 only). 0 = active low. 1 = active high.  
Table 6. Programmable Output Behavior and MR  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
[0]  
[1]  
PO1 (MAX6874 only). 0 = PO1 independent of MR. 1 = PO1 asserts when MR = low.  
PO2 (MAX6874 only). 0 = PO2 independent of MR. 1 = PO2 asserts when MR = low.  
PO3 (MAX6874)/PO1 (MAX6875). 0 = PO3/PO1 independent of MR.  
1 = PO3/PO1 asserts when MR = low.  
[2]  
[3]  
[4]  
[5]  
PO4 (MAX6874)/PO2 (MAX6875). 0 = PO4/PO2 independent of MR.  
1 = PO4/PO2 asserts when MR = low.  
40h  
8040h  
PO5 (MAX6874)/PO3 (MAX6875). 0 = PO5/PO3 independent of MR.  
1 = PO5/PO3 asserts when MR = low.  
PO6 (MAX6874)/PO4 (MAX6875). 0 = PO6/PO4 independent of MR.  
1 = PO6/PO4 asserts when MR = low.  
PO7 (MAX6874)/PO5 (MAX6875). 0 = PO7/PO5 independent of MR.  
1 = PO7/PO5 asserts when MR = low.  
[6]  
[7]  
PO8 (MAX6874 only). 0 = PO8 independent of MR. 1 = PO8 asserts when MR = low.  
______________________________________________________________________________________ 15  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 7. PO1 (MAX6874 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[5:0]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[0]  
1 = PO1 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO1 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO1 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO1 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO1 assertion depends on IN5 undervoltage threshold (Table 4).  
1 = PO1 assertion depends on IN6 undervoltage threshold (Table 4).  
1 = PO1 assertion depends on watchdog (Tables 19 and 20).  
Must be set to 0.  
0Eh  
800Eh  
800Fh  
8010h  
Must be set to 0.  
0Fh  
10h  
1 = PO1 assertion depends on GPI1 (Table 5).  
1 = PO1 assertion depends on GPI2 (Table 5).  
1 = PO1 assertion depends on GPI3 (Table 5).  
1 = PO1 assertion depends on GPI4 (Table 5).  
1 = PO1 assertion depends on PO2 (Table 8).  
1 = PO1 assertion depends on PO3 (Table 9).  
1 = PO1 assertion depends on PO4 (Table 10).  
1 = PO1 assertion depends on PO5 (Table 11).  
1 = PO1 assertion depends on PO6 (Table 12).  
1 = PO1 assertion depends on PO7 (Table 13).  
1 = PO1 assertion depends on PO8 (Table 14).  
1 = PO1 asserts when MR = low (Table 6).  
11h  
40h  
8011h  
8040h  
on no condition always reꢀains in its active state (Table  
19). An output configured as active-high is considered  
asserted when that output is logic high. No output can  
depend solely on MR.  
For exaꢀple, PO3 (MAX6874—Table 9) ꢀay depend on  
the IN1 undervoltage threshold, and the states of GPI1,  
PO1, and PO2. Write a one to R16h[0], R17h[6], and  
R18h[3:2] to configure the output as indicated. IN1 ꢀust  
be above the undervoltage threshold (Table 2), GPI1  
ꢀust be inactive (Table 5), and PO1 (Tables 7 and 15)  
and PO2 (Table 9) ꢀust be in their deasserted states for  
the output to deassert.  
The voltage ꢀonitors generate fault signals (logical 0) to  
the MAX6874/MAX6875s’ logic array when an input volt-  
age is below the prograꢀꢀed undervoltage threshold.  
Registers 0Eh through 3Ah and 40h configure each of the  
prograꢀꢀable outputs. Prograꢀꢀable tiꢀing blocks set  
the PO_ tiꢀeout period froꢀ 25µs to 1600ꢀs for each  
prograꢀꢀable output. See register 3Ah (Table 15) to set  
the active state (active-high or active-low) for each pro-  
graꢀꢀable output and Table 16 for tiꢀeout periods for  
each output.  
Table 7 only applies to PO1 of the MAX6874. Write a 0  
to a bit to ꢀake the PO1 output independent of the  
respective signal (IN1–IN6 thresholds, WD, GPI1–GPI4,  
MR, or other prograꢀꢀable outputs).  
16 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 8. PO2 (MAX6874 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
1 = PO2 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO2 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO2 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO2 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO2 assertion depends on IN5 undervoltage threshold (Table 4).  
1 = PO2 assertion depends on IN6 undervoltage threshold (Table 4).  
1 = PO2 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
12h  
13h  
14h  
8012h  
8013h  
8014h  
[5:0]  
Must be set to 0.  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
1 = PO2 assertion depends on GPI1 (Table 5).  
1 = PO2 assertion depends on GPI2 (Table 5).  
1 = PO2 assertion depends on GPI3 (Table 5).  
1 = PO2 assertion depends on GPI4 (Table 5).  
1 = PO2 assertion depends on PO1 (Table 7).  
1 = PO2 assertion depends on PO3 (Table 9).  
1 = PO2 assertion depends on PO4 (Table 10).  
1 = PO2 assertion depends on PO5 (Table 11).  
1 = PO2 assertion depends on PO6 (Table 12).  
1 = PO2 assertion depends on PO7 (Table 13).  
1 = PO2 assertion depends on PO8 (Table 14).  
1 = PO2 asserts when MR = low (Table 6).  
15h  
40h  
8015h  
8040h  
Table 8 only applies to PO2 of the MAX6874. Write a 0  
to a bit to ꢀake the PO2 output independent of the  
respective signal (IN1–IN6 thresholds, WD, GPI1–GPI4,  
MR, or other prograꢀꢀable outputs).  
______________________________________________________________________________________ 17  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 9. PO3 (MAX6874)/PO1 (MAX6875) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO3/PO1 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO3/PO1 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO3/PO1 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO3/PO1 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO3 (MAX6874 only) assertion depends on IN5 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[4]  
[5]  
16h  
8016h  
1 = PO3 (MAX6874 only) assertion depends on IN6 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[6]  
[7]  
1 = PO3/PO1 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
[5:0]  
Must be set to 0.  
17h  
18h  
8017h  
8018h  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[1:0]  
[2]  
1 = PO3/PO1 assertion depends on GPI1 (Table 5).  
1 = PO3/PO1 assertion depends on GPI2 (Table 5).  
1 = PO3/PO1 assertion depends on GPI3 (Table 5).  
1 = PO3/PO1 assertion depends on GPI4 (Table 5).  
1 = PO3 (MAX6874 only) assertion depends on PO1 (Table 7). Must be set to 0 for the MAX6875.  
1 = PO3 (MAX6874 only) assertion depends on PO2 (Table 8). Must be set to 0 for the MAX6875.  
1 = PO3/PO1 assertion depends on PO4 (MAX6874)/PO2 (MAX6875) (Table 10).  
1 = PO3/PO1 assertion depends on PO5 (MAX6874)/PO3 (MAX6875) (Table 11).  
1 = PO3/PO1 assertion depends on PO6 (MAX6874)/PO4 (MAX6875) (Table 12).  
1 = PO3/PO1 assertion depends on PO7 (MAX6874)/PO5 (MAX6875) (Table 13).  
1 = PO3 (MAX6874 only) assertion depends on PO8 (Table 14). Must be set to 0 for the MAX6875.  
1 = PO3/PO1 asserts when MR = low (Table 6).  
1Ch  
40h  
801Ch  
8040h  
Table 9 only applies to PO3 of the MAX6874 and PO1  
of the MAX6875. Write a 0 to a bit to ꢀake the PO3/PO1  
output independent of the respective signal (IN_  
thresholds, WD, GPI1–GPI4, MR, or other prograꢀꢀa-  
ble outputs).  
18 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 10. PO4 (MAX6874)/PO2 (MAX6875) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO4/PO2 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO4/PO2 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO4/PO2 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO4/PO2 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO4 (MAX6874 only) assertion depends on IN5 undervoltage threshold (Table 4). Must be set  
to 0 for the MAX6875.  
[4]  
[5]  
1Dh  
801Dh  
1 = PO4 (MAX6874 only) assertion depends on IN6 undervoltage threshold (Table 4). Must be set  
to 0 for the MAX6875.  
[6]  
[7]  
[5:0]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[3]  
1 = PO4/PO2 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
Must be set to 0.  
1Eh  
1Fh  
801Eh  
801Fh  
1 = PO4/PO2 assertion depends on GPI1 (Table 5).  
1 = PO4/PO2 assertion depends on GPI2 (Table 5).  
1 = PO4/PO2 assertion depends on GPI3 (Table 5).  
1 = PO4/PO2 assertion depends on GPI4 (Table 5).  
1 = PO4 (MAX6874 only) assertion depends on PO1 (Table 7). Must be set to 0 for the MAX6875.  
1 = PO4 (MAX6874 only) assertion depends on PO2 (Table 8). Must be set to 0 for the MAX6875.  
1 = PO4/PO2 assertion depends on PO3 (MAX6874)/PO1 (MAX6875) (Table 9).  
1 = PO4/PO2 assertion depends on PO5 (MAX6874)/PO3 (MAX6875) (Table 11).  
1 = PO4/PO2 assertion depends on PO6 (MAX6874)/PO4 (MAX6875) (Table 12).  
1 = PO4/PO2 assertion depends on PO7 (MAX6874)/PO5 (MAX6875) (Table 13).  
1 = PO4 (MAX6874 only) assertion depends on PO8 (Table 14). Must be set to 0 for the MAX6875.  
1 = PO4/PO2 asserts when MR = low (Table 6).  
23h  
40h  
8023h  
8040h  
Table 10 only applies to PO4 of the MAX6874 and PO2  
of the MAX6875. Write a 0 to a bit to ꢀake the PO4/PO2  
output independent of the respective signal (IN_  
thresholds, WD, GPI1–GPI4, MR, or other prograꢀꢀa-  
ble outputs).  
______________________________________________________________________________________ 19  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 11. PO5 (MAX6874)/PO3 (MAX6875) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO5/PO3 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO5/PO3 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO5/PO3 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO5/PO3 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO5 (MAX6874 only) assertion depends on IN5 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[4]  
[5]  
24h  
8024h  
1 = PO5 (MAX6874 only) assertion depends on IN6 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[6]  
[7]  
[5:0]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[4]  
1 = PO5/PO3 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
Must be set to 0.  
25h  
26h  
8025h  
8026h  
1 = PO5/PO3 assertion depends on GPI1 (Table 5).  
1 = PO5/PO3 assertion depends on GPI2 (Table 5).  
1 = PO5/PO3 assertion depends on GPI3 (Table 5).  
1 = PO5/PO3 assertion depends on GPI4 (Table 5).  
1 = PO5 (MAX6874 only) assertion depends on PO1 (Table 7). Must be set to 0 for the MAX6875.  
1 = PO5 (MAX6874 only) assertion depends on PO2 (Table 8). Must be set to 0 for the MAX6875.  
1 = PO5/PO3 assertion depends on PO3 (MAX6874)/PO1 (MAX6875) (Table 9).  
1 = PO5/PO3 assertion depends on PO4 (MAX6874)/PO2 (MAX6875) (Table 10).  
1 = PO5/PO3 assertion depends on PO6 (MAX6874)/PO4 (MAX6875) (Table 12).  
1 = PO5/PO3 assertion depends on PO7 (MAX6874)/PO5 (MAX6875) (Table 13).  
1 = PO5 (MAX6874 only) assertion depends on PO8 (Table 14). Must be set to 0 for the MAX6875.  
1 = PO5/PO3 asserts when MR = low (Table 6).  
2Ah  
40h  
802Ah  
8040h  
Table 11 only applies to PO5 of the MAX6874 and PO3  
of the MAX6875. Write a 0 to a bit to ꢀake the PO5/PO3  
output independent of the respective signal (IN_  
thresholds, WD, GPI1–GPI4, MR, or other prograꢀꢀa-  
ble outputs).  
20 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 12. PO6 (MAX6874)/PO4 (MAX6875) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO6/PO4 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO6/PO4 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO6/PO4 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO6/PO4 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO6 (MAX6874 only) assertion depends on IN5 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[4]  
[5]  
2Bh  
802Bh  
1 = PO6 (MAX6874 only) assertion depends on IN6 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[6]  
[7]  
[5:0]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[5]  
1 = PO6/PO4 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
Must be set to 0.  
2Ch  
2Dh  
802Ch  
802Dh  
1 = PO6/PO4 assertion depends on GPI1 (Table 5).  
1 = PO6/PO4 assertion depends on GPI2 (Table 5).  
1 = PO6/PO4 assertion depends on GPI3 (Table 5).  
1 = PO6/PO4 assertion depends on GPI4 (Table 5).  
1 = PO6 (MAX6874 only) assertion depends on PO1 (Table 7). Must be set to 0 for the MAX6875.  
1 = PO6 (MAX6874 only) assertion depends on PO2 (Table 8). Must be set to 0 for the MAX6875.  
1 = PO6/PO4 assertion depends on PO3 (MAX6874)/PO1 (MAX6875) (Table 9).  
1 = PO6/PO4 assertion depends on PO4 (MAX6874)/PO2 (MAX6875) (Table 10).  
1 = PO6/PO4 assertion depends on PO5 (MAX6874)/PO3 (MAX6875) (Table 11).  
1 = PO6/PO4 assertion depends on PO7 (MAX6874)/PO5 (MAX6875) (Table 13).  
1 = PO6 (MAX6874 only) assertion depends on PO8 (Table 14). Must be set to 0 for the MAX6875.  
1 = PO6/PO4 asserts when MR = low (Table 6).  
31h  
40h  
8031h  
8040h  
Table 12 only applies to PO6 of the MAX6874 and PO4  
of the MAX6875. Write a 0 to a bit to ꢀake the PO6/PO4  
output independent of the respective signal (IN_  
thresholds, WD, GPI1–GPI4, MR, or other prograꢀꢀa-  
ble outputs).  
______________________________________________________________________________________ 21  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 13. PO7 (MAX6874)/PO5 (MAX6875) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO7/PO5 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO7/PO5 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO7/PO5 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO7/PO5 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO7 (MAX6874 only) assertion depends on IN5 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[4]  
[5]  
32h  
8032h  
1 = PO7 (MAX6874 only) assertion depends on IN6 undervoltage threshold (Table 4). Must be  
set to 0 for the MAX6875.  
[6]  
[7]  
1 = PO7/PO5 assertion depends on watchdog (Tables 18 and 19).  
Must be set to 0.  
Must be set to 0.  
[5:0]  
33h  
34h  
8033h  
8034h  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[6]  
1 = PO7/PO5 assertion depends on GPI1 (Table 5).  
1 = PO7/PO5 assertion depends on GPI2 (Table 5).  
1 = PO7/PO5 assertion depends on GPI3 (Table 5).  
1 = PO7/PO5 assertion depends on GPI4 (Table 5).  
1 = PO7 (MAX6874 only) assertion depends on PO1 (Table 7). Must be set to 0 for the MAX6875.  
1 = PO7 (MAX6874 only) assertion depends on PO2 (Table 8). Must be set to 0 for the MAX6875.  
1 = PO7/PO5 assertion depends on PO3 (MAX6874)/PO1 (MAX6875) (Table 9).  
1 = PO7/PO5 assertion depends on PO4 (MAX6874)/PO2 (MAX6875) (Table 10).  
1 = PO7/PO5 assertion depends on PO5 (MAX6874)/PO3 (MAX6875) (Table 11).  
1 = PO7/PO5 assertion depends on PO6 (MAX6874)/PO4 (MAX6875) (Table 12).  
1 = PO7 (MAX6874 only) assertion depends on PO8 (Table 14). Must be set to 0 for the MAX6875.  
1 = PO7 asserts when MR = low (Table 6).  
35h  
40h  
8035h  
8040h  
Table 13 only applies to PO7 of the MAX6874 and PO5  
of the MAX6875. Write a 0 to a bit to ꢀake the PO7/PO5  
output independent of the respective signal (IN_  
thresholds, WD, GPI1–GPI4, MR, or other prograꢀꢀa-  
ble outputs).  
22 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 14. PO8 (MAX6874 only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[5:0]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[7]  
1 = PO8 assertion depends on IN1 undervoltage threshold (Table 2).  
1 = PO8 assertion depends on IN2 undervoltage threshold (Table 3).  
1 = PO8 assertion depends on IN3 undervoltage threshold (Table 4).  
1 = PO8 assertion depends on IN4 undervoltage threshold (Table 4).  
1 = PO8 assertion depends on IN5 undervoltage threshold (Table 4).  
1 = PO8 assertion depends on IN6 undervoltage threshold (Table 4).  
1 = PO8 assertion depends on watchdog (Tables 18 and 19).  
Must set to 0.  
36h  
37h  
38h  
8036h  
8037h  
8038h  
Must set to 0.  
1 = PO8 assertion depends on GPI1 (Table 5).  
1 = PO8 assertion depends on GPI2 (Table 5).  
1 = PO8 assertion depends on GPI3 (Table 5).  
1 = PO8 assertion depends on GPI4 (Table 5).  
1 = PO8 assertion depends on PO1 (Table 7).  
1 = PO8 assertion depends on PO2 (Table 8).  
1 = PO8 assertion depends on PO3 (Table 9).  
1 = PO8 assertion depends on PO4 (Table 10).  
1 = PO8 assertion depends on PO5 (Table 11).  
1 = PO8 assertion depends on PO6 (Table 12).  
1 = PO8 assertion depends on PO7 (Table 13).  
1 = PO8 asserts when MR = low (Table 6).  
39h  
40h  
8039h  
8040h  
Table 14 only applies to PO8 of the MAX6874. Write a 0  
to a bit to ꢀake the PO8 output independent of the  
respective signal (IN1–IN6 thresholds, WD, GPI1–GPI4,  
MR, or other prograꢀꢀable outputs).  
MAX6875) ꢀay be pulled up to +13.2V. PO5–PO8  
(PO3–PO5 for the MAX6875) ꢀay be pulled up to a  
voltage less than or equal to ABP. Choose the pullup  
resistor depending on the nuꢀber of devices connect-  
ed to the open-drain output and the allowable current  
consuꢀption. The open-drain output configuration  
allows wire-ORed connections, and provides flexibility  
in setting the pullup current.  
Output Stage Configurations  
Independently prograꢀ each prograꢀꢀable output as  
active-high or active-low (Table 15). All prograꢀꢀable  
outputs of the MAX6874/MAX6875 are open-drain only.  
See Table 16 to set the tiꢀeout period for each output.  
Configuring the MAX6874/MAX6875  
The MAX6874/MAX6875 factory-default configuration  
sets all EEPROM registers to 00h except register 3Ah,  
which is set to FFh. This configuration sets all of the pro-  
graꢀꢀable outputs as active-high (putting all outputs  
into high-iꢀpedance states until the device is reconfig-  
Open-Drain Output Configuration  
Connect an external pullup resistor froꢀ the prograꢀ-  
ꢀable output to an external voltage when configured as  
an open-drain output. PO1–PO4 (PO1 and PO2 for the  
______________________________________________________________________________________ 23  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 15. Programmable Output Active States  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
PO1 (MAX6874 only). 0 = active low, 1 = active high.  
PO2 (MAX6874 only). 0 = active low, 1 = active high.  
PO3 (MAX6874)/PO1 (MAX6875). 0 = active low, 1 = active high.  
PO4 (MAX6874)/PO2 (MAX6875). 0 = active low, 1 = active high.  
PO5 (MAX6874)/PO3 (MAX6875). 0 = active low, 1 = active high.  
PO6 (MAX6874)/PO4 (MAX6875). 0 = active low, 1 = active high.  
PO7 (MAX6874)/PO5 (MAX6875). 0 = active low, 1 = active high.  
PO8 (MAX6874 only). 0 = active low, 1 = active high.  
3Ah  
803Ah  
Table 16. PO_ Timeout Periods  
EEPROM  
MEMORY  
ADDRESS  
AFFECTED OUTPUTS  
REGISTER  
ADDRESS  
BIT RANGE  
DESCRIPTION  
MAX6874  
PO1  
MAX6875  
11h  
15h  
1Ch  
23h  
2Ah  
31h  
35h  
39h  
8011h  
8015h  
801Ch  
8023h  
802Ah  
8031h  
8035h  
8039h  
[3:1]  
[3:1]  
[4:2]  
[4:2]  
[3:1]  
[3:1]  
[3:1]  
[3:1]  
000 = 25µs  
PO2  
PO3  
PO4  
PO5  
PO6  
PO7  
PO8  
001 = 1.5625ꢀs  
010 = 6.25ꢀs  
011 = 25ꢀs  
PO1  
PO2  
PO3  
PO4  
PO5  
100 = 50ꢀs  
101 = 200ꢀs  
110 = 400ꢀs  
111 = 1600ꢀs  
ured by the user). To configure the MAX6874/ MAX6875,  
first apply an input voltage to IN1 or one of IN3–IN5  
(MAX6874)/IN3–IN4 (MAX6875) (see the Powering the  
Software Reboot  
A software reboot allows the user to restore the  
EEPROM configuration to the volatile registers without  
cycling the power supplies. Use the send byte coꢀ-  
ꢀand with data byte 88h to initiate a software reboot.  
The 3.5ꢀs (ꢀax) power-up delay also applies after a  
software reboot.  
MAX6874/MAX6875 section). V  
> +4V or one of  
IN1  
V
–V  
IN3 IN5  
> +2.7V, to ensure device operation. Next,  
transꢀit data through the serial interface. Use the block  
write protocol to quickly configure the device. Write to  
the configuration registers first to ensure the device is  
configured properly. After coꢀpleting the setup proce-  
dure, use the read word protocol to verify the data froꢀ  
the configuration registers. Lastly, use the write word  
protocol to write this data to the EEPROM registers. After  
coꢀpleting EEPROM register configuration, apply full  
power to the systeꢀ to begin norꢀal operation. The non-  
volatile EEPROM stores the latest configuration upon  
reꢀoval of power. Write 0’s to all EEPROM registers to  
clear the ꢀeꢀory.  
SMBus/I2C-Compatible Serial Interface  
The MAX6874/MAX6875 feature an I2C/SMBus-coꢀpati-  
ble serial interface consisting of a serial data line (SDA)  
and a serial clock line (SCL). SDA and SCL allow bidirec-  
tional coꢀꢀunication between the MAX6874/MAX6875  
and the ꢀaster device at clock rates up to 400kHz.  
Figure 2 shows the interface tiꢀing diagraꢀ. The  
MAX6874/MAX6875 are transꢀit/receive slave-only  
devices, relying upon a ꢀaster device to generate a  
clock signal. The ꢀaster device (typically a ꢀicrocon-  
troller) initiates data transfer on the bus and generates  
SCL to perꢀit that transfer.  
24 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
A ꢀaster device coꢀꢀunicates to the MAX6874/  
Start and Stop Conditions  
Both SCL and SDA idle high when the bus is not busy. A  
ꢀaster device signals the beginning of a transꢀission  
with a START (S) condition (Figure 4) by transitioning  
SDA froꢀ high to low while SCL is high. The ꢀaster  
device issues a STOP (P) condition (Figure 4) by transi-  
tioning SDA froꢀ low to high while SCL is high. A STOP  
condition frees the bus for another transꢀission. The bus  
reꢀains active if a REPEATED START condition is gener-  
ated, such as in the block read protocol (see Figure 7).  
MAX6875 by transꢀitting the proper address followed by  
coꢀꢀand and/or data words. Each transꢀit sequence is  
fraꢀed by a START (S) or REPEATED START (SR) condi-  
tion and a STOP (P) condition. Each word transꢀitted  
over the bus is 8 bits long and is always followed by an  
acknowledge pulse.  
SCL is a logic input, while SDA is a logic input/open-  
drain output. SCL and SDA both require external pullup  
resistors to generate the logic-high voltage. Use 4.7kΩ  
for ꢀost applications.  
Early STOP Conditions  
The MAX6874/MAX6875 recognize a STOP condition at  
any point during transꢀission except if a STOP condition  
occurs in the saꢀe high pulse as a START condition. This  
condition is not a legal I2C forꢀat. At least one clock  
pulse ꢀust separate any START and STOP condition.  
Bit Transfer  
Each clock pulse transfers one data bit. The data on  
SDA ꢀust reꢀain stable while SCL is high (Figure 3),  
otherwise the MAX6874/MAX6875 register a START or  
STOP condition (Figure 4) froꢀ the ꢀaster. SDA and  
SCL idle high when the bus is not busy.  
SDA  
t
BUF  
t
SU:DAT  
t
SU:STA  
t
t
SU:STO  
HD:DAT  
t
t
LOW  
HD:STA  
SCL  
t
HIGH  
t
HD:STA  
t
t
R
F
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
REPEATED START  
CONDITION  
Figure 2. Serial-Interface Timing Details  
SDA  
SDA  
SCL  
S
P
SCL  
START  
CONDITION  
STOP  
CONDITION  
CHANGE OF  
DATA ALLOWED  
DATA LINE STABLE,  
DATA VALID  
Figure 3. Bit Transfer  
Figure 4. Start and Stop Conditions  
______________________________________________________________________________________ 25  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Repeated START Conditions  
Slave Address  
A REPEATED START (SR) condition ꢀay indicate a  
change of data direction on the bus. Such a change  
occurs when a coꢀꢀand word is required to initiate a  
read operation (see Figure 7). SR ꢀay also be used  
when the bus ꢀaster is writing to several I2C devices  
and does not want to relinquish control of the bus. The  
MAX6874/MAX6875 serial interface supports continu-  
ous write operations with or without an SR condition  
separating theꢀ. Continuous read operations require  
SR conditions because of the change in direction of  
data flow.  
The MAX6874 slave address conforꢀs to the following  
table:  
SA7  
(MSB)  
SA0  
(LSB)  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
1
0
1
0
A1  
A0  
X
R/W  
X = Don’t care.  
The MAX6875 slave address conforꢀs to the following  
table:  
SA7  
(MSB)  
SA0  
(LSB)  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
Acknowledge  
The acknowledge bit (ACK) is the 9th bit attached to any  
8-bit data word. The receiving device always generates  
an ACK. The MAX6874/MAX6875 generate an ACK  
when receiving an address or data by pulling SDA low  
during the 9th clock period (Figure 5). When transꢀitting  
data, such as when the ꢀaster device reads data back  
froꢀ the MAX6874/MAX6875, the MAX6874/MAX6875  
wait for the ꢀaster device to generate an ACK.  
Monitoring ACK allows for detection of unsuccessful data  
transfers. An unsuccessful data transfer occurs if the  
receiving device is busy or if a systeꢀ fault has  
occurred. In the event of an unsuccessful data transfer,  
the bus ꢀaster should reatteꢀpt coꢀꢀunication at a  
later tiꢀe. The MAX6874/MAX6875 generate a NACK  
after the slave address during a software reboot, while  
writing to the EEPROM, or when receiving an illegal  
ꢀeꢀory address.  
1
0
1
0
0
A0  
X
R/W  
X = Don’t care.  
SA7 through SA4 represent the standard interface  
address (1010) for devices with EEPROM. SA3 and  
SA2 correspond to the A1 and A0 address inputs of the  
MAX6874/MAX6875 (hardwired as logic low or logic  
high). A1 is internally set to 0 for the MAX6875. SA0 is a  
read/write flag bit (0 = write, 1 = read).  
The A0 and A1 address inputs allow up to four  
MAX6874s or two MAX6875s to connect to one bus.  
Connect A0 and A1 to GND or to the serial interface  
power supply (see Figure 6).  
START  
CONDITION  
CLOCK PULSE FOR ACKNOWLEDGE  
2
1
8
9
SCL  
SDA BY  
TRANSMITTER  
S
SDA BY  
RECEIVER  
Figure 5. Acknowledge  
26 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Send Byte  
The send byte protocol allows the ꢀaster device to send  
one byte of data to the slave device (see Figure 7). The  
send byte presets a register pointer address for a sub-  
sequent read or write. The slave sends a NACK instead  
of an ACK if the ꢀaster tries to send an address that is  
not allowed. If the ꢀaster sends 80h, 81h, or 82h, the  
data is ACK. This could be start of the write byte/word  
protocol, and the slave expects at least one further  
data byte. If the ꢀaster sends a stop condition, the  
internal address pointer does not change. If the ꢀaster  
sends 84h, this signifies that the block read protocol is  
expected, and a repeated start condition should follow.  
The device reboots if the ꢀaster sends 88h. The send  
byte procedure follows:  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends an 8-bit coꢀꢀand code.  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends an 8-bit data byte.  
7) The addressed slave asserts an ACK on SDA.  
8) The ꢀaster sends a stop condition or sends another  
8-bit data byte.  
9) The addressed slave asserts an ACK on SDA.  
10)The ꢀaster sends a stop condition.  
To write a single byte to the register bank, only the 8-bit  
coꢀꢀand code and a single 8-bit data byte are sent.  
The coꢀꢀand code ꢀust be in the range of 00h to 45h.  
The data byte is written to the register bank if the coꢀ-  
ꢀand code is valid. The slave generates a NACK at  
step 5 if the coꢀꢀand code is invalid.  
1) The ꢀaster sends a start condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends an 8-bit data byte.  
To preset an EEPROM (configuration or user) address  
for a subsequent read, the 8-bit coꢀꢀand code and a  
single 8-bit data byte are sent. The coꢀꢀand code  
ꢀust be 80h if the write is to be directed into the config-  
uration EEPROM, or 81h or 82h, if the write is to be  
directed into the user EEPROM. If the coꢀꢀand code is  
80h, the data byte ꢀust be in the range of 00h to 45h. If  
the coꢀꢀand code is 81h or 82h, the data byte can be  
00h to FFh. A NACK is generated in step 7 if none of the  
above conditions are true.  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends a stop condition.  
Write Byte/Word  
The write byte/word protocol allows the ꢀaster device  
to write a single byte in the register bank, preset an  
EEPROM (configuration or user) address for a subse-  
quent read, or to write a single byte to the configuration  
or user EEPROM (see Figure 7). The write byte/word  
procedure follows:  
To write a single byte of data to the user or configuration  
EEPROM, the 8-bit coꢀꢀand code and a single 8-bit  
data byte are sent. The following 8-bit data byte is writ-  
ten to the addressed EEPROM location.  
1) The ꢀaster sends a start condition.  
SDA  
1
0
A1  
(0)  
A0  
X
R/W  
ACK  
0
1
START  
MSB  
LSB  
SCL  
(MAX6875 ONLY)  
Figure 6. Slave Address  
______________________________________________________________________________________ 27  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
SEND BYTE FORMAT  
WRITE WORD FORMAT  
ADDRESS WR  
S
ADDRESS  
WR  
0
ACK  
DATA  
8 bits  
ACK  
P
S
ACK COMMAND ACK  
8 bits  
DATA ACK  
8 bits  
DATA ACK  
8 bits  
P
7 bits  
7 bits  
0
Slave Address–  
Data Byte–presets the  
internal address pointer.  
Slave Address–  
Command Byte–  
MSB of the  
EEPROM  
register being  
written.  
Data Byte–first byte is the LSB of  
the EEPROM address. Second  
byte is the actual data.  
equivalent to chip-  
select line of a 3-  
wire interface.  
equivalent to chip-  
select line of a 3-  
wire interface.  
RECEIVE BYTE FORMAT  
WRITE BYTE FORMAT  
S
ADDRESS  
WR  
1
ACK  
DATA  
8 bits  
ACK  
P
S
ADDRESS  
WR  
0
ACK  
COMMAND  
8 bits  
ACK  
DATA  
8 bits  
ACK  
P
7 bits  
7 bits  
Slave Address–  
Data Byte–reads data from  
the register commanded by  
the last read byte or write  
byte transmission. Also  
dependent on a send byte.  
Slave Address–  
Command Byte–  
selects register  
being written.  
Data Byte–data goes into the  
register set by the command  
byte if the command is below  
50h. If the command is 80h,  
81h, or 82h, the data byte  
presets the LSB of an EEPROM  
address.  
equivalent to chip-  
select line of a 3-  
wire interface.  
equivalent to chip-  
select line of a 3-  
wire interface.  
BLOCK WRITE FORMAT  
BYTE  
COUNT= N  
DATA BYTE  
1
DATA BYTE  
...  
DATA BYTE  
N
S
ADDRESS  
7 bits  
WR  
0
ACK COMMAND ACK  
83h  
ACK  
ACK  
ACK  
ACK  
P
8 bits  
8 bits  
8 bits  
8 bits  
Slave Address–  
equivalent to chip-  
select line of a 3-  
wire interface.  
Command Byte–  
prepares device  
for block  
Data Byte–data goes into the register set by the  
command byte.  
operation.  
BLOCK READ FORMAT  
ADDRESS WR ACK COMMAND ACK SR ADDRESS WR  
BYTE  
COUNT= 16  
DATA BYTE  
1
DATA BYTE  
...  
DATA BYTE  
N
S
ACK  
ACK  
ACK  
ACK  
ACK  
P
7 bits  
0
84h  
7 bits  
1
10h  
8 bits  
8 bits  
8 bits  
Slave Address–  
equivalent to chip-  
select line of a 3-  
wire interface.  
Command Byte–  
prepares device  
for block  
Slave Address–  
Data Byte–data goes into the register set by the  
command byte.  
equivalent to chip-  
select line of a 3-  
wire interface.  
operation.  
S = Start condition.  
P = Stop condition.  
Shaded = Slave transmission.  
SR = Repeated start condition.  
2
Figure 7. SMBus/I C Protocols  
28 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Block Write  
The block write protocol allows the ꢀaster device to  
write a block of data (1 to 16 bytes) to the EEPROM or  
to the register bank (see Figure 7). The destination  
address ꢀust already be set by the send byte or write  
byte protocol and the coꢀꢀand code ꢀust be 83h. If  
the nuꢀber of bytes to be written causes the address  
pointer to exceed 45h for the configuration register or  
configuration EEPROM, the address pointer stays at  
45h, overwriting this ꢀeꢀory address with the reꢀain-  
ing bytes of data. The last data byte sent is stored at  
register address 45h. If the nuꢀber of bytes to be writ-  
ten exceeds the address pointer FFh for the user EEP-  
ROM, the address pointer loops back to 00h, and  
continues writing bytes until all data is written. The  
block write procedure follows:  
5) The ꢀaster asserts a NACK on SDA.  
6) The ꢀaster generates a stop condition.  
Block Read  
The block read protocol allows the ꢀaster device to  
read a block of 16 bytes froꢀ the EEPROM or register  
bank (see Figure 7). Read fewer than 16 bytes of data  
by issuing an early STOP condition froꢀ the ꢀaster, or  
by generating a NACK with the ꢀaster. The send byte  
or write byte protocol predeterꢀines the destination  
address with a coꢀꢀand code of 84h. The block read  
procedure follows:  
1) The ꢀaster sends a start condition.  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
1) The ꢀaster sends a start condition.  
4) The ꢀaster sends 8 bits of the block read coꢀꢀand  
(84h).  
2) The ꢀaster sends the 7-bit slave address and a  
write bit (low).  
5) The slave asserts an ACK on SDA, unless busy.  
6) The ꢀaster generates a repeated start condition.  
3) The addressed slave asserts an ACK on SDA.  
4) The ꢀaster sends the 8-bit coꢀꢀand code for  
block write (83h).  
7) The ꢀaster sends the 7-bit slave address and a  
read bit (high).  
5) The addressed slave asserts an ACK on SDA.  
6) The ꢀaster sends the 8-bit byte count (1 to 16 bytes) N.  
7) The addressed slave asserts an ACK on SDA.  
8) The ꢀaster sends 8 bits of data.  
8) The slave asserts an ACK on SDA.  
9) The slave sends the 8-bit byte count (16).  
10)The ꢀaster asserts an ACK on SDA.  
11)The slave sends 8 bits of data.  
9) The addressed slave asserts an ACK on SDA.  
10) Repeat steps 8 and 9 one tiꢀe.  
12)The ꢀaster asserts an ACK on SDA.  
13)Repeat steps 8 and 9 fifteen tiꢀes.  
14)The ꢀaster generates a stop condition.  
11) The ꢀaster generates a stop condition.  
Receive Byte  
The receive byte protocol allows the ꢀaster device to  
read the register content of the MAX6874/MAX6875  
(see Figure 7). The EEPROM or register address ꢀust  
be preset with a send byte or write word protocol first.  
Once the read is coꢀplete, the internal pointer increas-  
es by one. Repeating the receive byte protocol reads  
the contents of the next address. The receive byte pro-  
cedure follows:  
Address Pointers  
Use the send byte protocol to set the register address  
pointers before read and write operations. For the con-  
figuration registers, valid address pointers range froꢀ  
00h to 45h. Register addresses outside of this range  
result in a NACK being issued froꢀ the MAX6874/  
MAX6875. When using the block write protocol, the  
address pointer autoꢀatically increꢀents after each  
data byte, except when the address pointer is already  
at 45h. If the address pointer is already 45h, and ꢀore  
data bytes are being sent, these subsequent bytes  
overwrite address 45h repeatedly, leaving only the last  
data byte sent stored at this register address.  
1) The ꢀaster sends a start condition.  
2) The ꢀaster sends the 7-bit slave address and a  
read bit (high).  
3) The addressed slave asserts an ACK on SDA.  
4) The slave sends 8 data bits.  
______________________________________________________________________________________ 29  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
For the configuration EEPROM, valid address pointers  
range froꢀ 8000h to 8045h. Registers 8046h to 804Fh  
are reserved and should not be overwritten. Register  
addresses froꢀ 8050h to 80FFh return a NACK froꢀ  
the MAX6874/MAX6875. When using the block write  
protocol, the address pointer autoꢀatically increꢀents  
after each data byte, except when the address pointer  
is already at 8045h. If the address pointer is already  
8045h, and ꢀore data bytes are being sent, these sub-  
sequent bytes overwrite address 8045h repeatedly,  
leaving only the last data byte sent stored at this regis-  
ter address.  
tiꢀe after power-up or software reboot. Write coꢀꢀands  
to the configuration EEPROM are allowed at any tiꢀe  
after power-up or software reboot, unless the configura-  
tion lock bit is set (see Table 20). The ꢀaxiꢀuꢀ cycle  
tiꢀe to write a single byte is 11ꢀs (ꢀax).  
User EEPROM  
The 512 byte user EEPROM addresses range froꢀ  
8100h to 82FFh (see Figure 7). Store software-revision  
data, board-revision data, and other data in these reg-  
isters. The ꢀaxiꢀuꢀ cycle tiꢀe to write a single byte is  
11ꢀs (ꢀax).  
For the user EEPROM, valid address pointers range  
froꢀ 8100h to 81FFh and 8200h to 82FFh. Block write  
and block read protocols allow the address pointer to  
reset (to 8100h or 8200h) when atteꢀpting to write or  
read beyond 81FFh or 82FFh.  
Configuration Register Bank and EEPROM  
The configuration registers can be directly ꢀodified by  
the serial interface without ꢀodifying the EEPROM after  
the power-up procedure terꢀinates and the configura-  
tion EEPROM data has been loaded into the configura-  
tion register bank. Use the write byte or block write  
protocols to write directly to the configuration registers.  
Changes to the configuration registers take effect  
iꢀꢀediately and are lost upon power reꢀoval.  
Configuration EEPROM  
The configuration EEPROM addresses range froꢀ 8000h  
to 8045h. Write data to the configuration EEPROM to  
autoꢀatically set up the MAX6874/MAX6875 upon power-  
up. Data transfers froꢀ the configuration EEPROM to the  
configuration registers when ABP exceeds UVLO during  
power-up or after a software reboot. After ABP exceeds  
UVLO, an internal 1MHz clock starts after a 5µs delay,  
and data transfer begins. Data transfer disables access  
to the configuration registers and EEPROM. The data  
transfer froꢀ EEPROM to configuration registers takes  
3.5ꢀs (ꢀax). Read configuration EEPROM data at any  
At device power-up, the register bank loads configura-  
tion data froꢀ the EEPROM. Configuration data ꢀay be  
directly altered in the register bank during application  
developꢀent, allowing ꢀaxiꢀuꢀ flexibility. Transfer the  
new configuration data, byte by byte, to the configura-  
tion EEPROM with the write byte protocol. The next  
device power-up or software reboot autoꢀatically loads  
the new configuration.  
Table 17. Register Map  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
8000h  
8001h  
8002h  
8003h  
8004h  
8005h  
8006h  
8007h  
8008h  
8009h  
800Ah  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IN1 undervoltage detector threshold (Table 2).  
IN2 undervoltage detector threshold (Table 3).  
IN3 undervoltage detector threshold (Table 4).  
IN4 undervoltage detector threshold (Table 4).  
IN5 undervoltage detector threshold (MAX6874 only) (Table 4).  
IN6 undervoltage detector threshold (MAX6874 only) (Table 4).  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
30 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 17. Register Map (continued)  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
800Bh  
800Ch  
800Dh  
800Eh  
800Fh  
8010h  
Not used.  
Not used.  
R/W  
R/W  
R/W  
R/W  
Threshold range selection (Tables 2–4).  
PO1 (MAX6874 only) input selection (Table 7).  
PO1 (MAX6874 only) input selection (Table 7).  
PO1 (MAX6874 only) input selection (Table 7).  
PO1 (MAX6874 only) input selection, PO_ tiꢀeout period, and output type selection  
(Tables 7, 16).  
11h  
8011h  
R/W  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
8012h  
8013h  
8014h  
8015h  
8016h  
8017h  
8018h  
8019h  
801Ah  
801Bh  
801Ch  
801Dh  
801Eh  
801Fh  
8020h  
8021h  
8022h  
8023h  
8024h  
8025h  
8026h  
8027h  
8028h  
8029h  
802Ah  
802Bh  
802Ch  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PO2 (MAX6874 only) input selection (Table 8).  
PO2 (MAX6874 only) input selection (Table 8).  
PO2 (MAX6874 only) input selection (Table 8).  
PO2 (MAX6874 only) input selection and PO_ tiꢀeout period (Tables 8, 16).  
PO3 (MAX6874)/PO1 (MAX6875) input selection (Table 9).  
PO3 (MAX6874)/PO1 (MAX6875) input selection (Table 9).  
PO3 (MAX6874)/PO1 (MAX6875) input selection (Table 9).  
Set to 0.  
Set to 0.  
Set to 0.  
PO3 (MAX6874)/PO1 (MAX6875) input selection and PO_ tiꢀeout period (Tables 9, 16).  
PO4 (MAX6874)/PO2 (MAX6875) input selection (Table 10).  
PO4 (MAX6874)/PO2 (MAX6875) input selection (Table 10).  
PO4 (MAX6874)/PO2 (MAX6875) input selection (Table 10).  
Set to 0.  
Set to 0.  
Set to 0.  
PO4 (MAX6874)/PO2 (MAX6875) input selection and PO_ tiꢀeout period (Tables 6, 18).  
PO5 (MAX6874)/PO3 (MAX6875) input selection (Table 11).  
PO5 (MAX6874)/PO3 (MAX6875) input selection (Table 11).  
PO5 (MAX6874)/PO3 (MAX6875) input selection (Table 11).  
Set to 0.  
Set to 0.  
Set to 0.  
PO5 (MAX6874)/PO3 (MAX6875) input selection and PO_ tiꢀeout period (Tables 11, 18).  
PO6 (MAX6874)/PO4 (MAX6875) input selection (Table 12).  
PO6 (MAX6874)/PO4 (MAX6875) input selection (Table 12).  
______________________________________________________________________________________ 31  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 17. Register Map (continued)  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
2Dh  
2Eh  
2Fh  
30h  
802Dh  
802Eh  
802Fh  
8030h  
R/W  
R/W  
R/W  
R/W  
PO6 (MAX6874)/PO4 (MAX6875) input selection (Table 12).  
Set to 0.  
Set to 0.  
Set to 0.  
PO6 (MAX6874)/PO4 (MAX6875) input selection and PO_ reset tiꢀeout period  
(Tables 12, 16).  
31h  
8031h  
R/W  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
8032h  
8033h  
8034h  
8035h  
8036h  
8037h  
8038h  
8039h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PO7 (MAX6874)/PO5 (MAX6875) input selection (Table 13).  
PO7 (MAX6874)/PO5 (MAX6875) input selection (Table 13).  
PO7 (MAX6874)/PO5 (MAX6875) input selection (Table 13).  
PO7 (MAX6874)/PO5 (MAX6875) input selection and PO_ tiꢀeout period (Tables 13, 16).  
PO8 (MAX6874 only) input selection (Table 14).  
PO8 (MAX6874 only) input selection (Table 14).  
PO8 (MAX6874 only) input selection (Table 14).  
PO8 (MAX6874 only) input selection and PO_ tiꢀeout period (Tables 14, 16).  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
803Ah  
803Bh  
803Ch  
803Dh  
803Eh  
803Fh  
8040h  
8041h  
8042h  
8043h  
8044h  
8045h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Prograꢀꢀable output polarity (active high/active low) (Table 15).  
GPI_ input polarity, PO5, PO6 (Table 5).  
WD input selection and tiꢀeout enable (Table 18).  
WD initial and norꢀal tiꢀeout duration (Table 19).  
Must be set to 0.  
Must be set to 0.  
MR input and prograꢀꢀable output behavior (Table 6).  
Must be set to 0.  
Must be set to 0.  
User EEPROM write disable (Table 21).  
Reserved. Should not be overwritten.  
Configuration lock (Table 20).  
R/W  
32 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
CONFIGURATION  
EEPROM  
USER EEPROM  
USER EEPROM  
REGISTER BANK  
8000h  
8100h  
8200h  
00h  
45h  
CONFIGURATION  
DATA  
8045h  
81FFh  
82FFh  
Figure 8. Memory Map  
Table 18. Watchdog Inputs  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
Watchdog Input Selection:  
00 = GPI1  
[1:0]  
[4:2]  
01 = GPI2  
10 = GPI3  
11 = GPI4 (MAX6874 only)  
Watchdog Internal Input Selection:  
000 = PO1 (MAX6874), not used (MAX6875)  
001 = PO2 (MAX6874), not used (MAX6875)  
010 = PO3 (MAX6874), PO1 (MAX6875)  
011 = PO4 (MAX6874), PO2 (MAX6875)  
100 = PO5 (MAX6874), PO3 (MAX6875)  
101 = PO6 (MAX6874), PO4 (MAX6875)  
110 = PO7 (MAX6874), PO5 (MAX6875)  
111 = PO8 (MAX6874), not used (MAX6875)  
3Ch  
803Ch  
Watchdog Dependency on Inputs:  
00 = 11 = Watchdog clear depends on both GPI_ froꢀ 3Ch[1:0] and PO_ froꢀ 3Ch[4:2].  
01 = Watchdog clear depends only on PO_ froꢀ 3Ch[4:2].  
10 = Watchdog clear depends only on GPI_ froꢀ 3Ch[1:0].  
[6:5]  
[7]  
Must be set to 1  
______________________________________________________________________________________ 33  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 19. Watchdog Timeout Period Selection  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
Norꢀal Watchdog Tiꢀeout Period:  
000 = 6.25ꢀs  
001 = 25ꢀs  
010 = 100ꢀs  
[2:0]  
011 = 400ꢀs  
100 = 1.6s  
101 = 6.4s  
110 = 25.6s  
111 = 102.4s  
Initial Watchdog Tiꢀeout Period (iꢀꢀediately following power-up, reset event,  
or enabling watchdog):  
000 = 6.25ꢀs  
001 = 25ꢀs  
3Dh  
803Dh  
010 = 100ꢀs  
011 = 400ꢀs  
100 = 1.6s  
[5:3]  
101 = 6.4s  
110 = 25.6s  
111 = 102.4s  
Watchdog Enable:  
[6]  
[7]  
0 = Disables watchdog tiꢀer  
1 = Enables watchdog tiꢀer  
Not used  
Configuring the Watchdog Timer  
(Registers 3Ch–3Dh)  
A watchdog tiꢀer ꢀonitors ꢀicroprocessor (µP) soft-  
ware execution for a stalled condition and resets the µP  
if it stalls. The output of a watchdog tiꢀer (one of the  
prograꢀꢀable outputs) connects to the reset input or a  
nonꢀaskable interrupt of the µP.  
The norꢀal watchdog tiꢀeout period applies in every  
other cycle after the initial watchdog tiꢀeout period  
occurs. The norꢀal watchdog tiꢀeout period ꢀonitors  
a pulsed output of the µP that indicates when norꢀal  
processor behavior occurs. If no pulse occurs during  
the norꢀal watchdog tiꢀeout period, this indicates that  
the processor has stopped operating or is stuck in an  
infinite execution loop.  
Registers 3Ch–3Dh configure the watchdog functionality  
of the MAX6874/MAX6875. Prograꢀ the watchdog tiꢀer  
to assert one or ꢀore prograꢀꢀable outputs (see Tables  
7–14). Prograꢀ the watchdog tiꢀer to reset on one of the  
GPI_ inputs, one of the prograꢀꢀable outputs, or a coꢀ-  
bination of one GPI_ input and one prograꢀꢀable out-  
put.  
Register 3Dh prograꢀs the initial and norꢀal watchdog  
tiꢀeout periods, and enables or disables the watchdog  
tiꢀer. See Tables 18 and 19 for a suꢀꢀary of the watch-  
dog behavior.  
Configuration Lock  
Lock the configuration register bank and configuration  
EEPROM contents after initial prograꢀꢀing by setting  
the lock bit high (see Table 20). Locking the configura-  
tion prevents write operations to all registers except the  
configuration lock register. Clear the lock bit to recon-  
figure the device.  
The watchdog tiꢀer features independent initial and nor-  
ꢀal watchdog tiꢀeout periods. The initial watchdog tiꢀe-  
out period applies iꢀꢀediately after power-up, after a  
reset event takes place, or after enabling the watchdog  
tiꢀer. The initial watchdog tiꢀeout period allows the µP to  
perforꢀ its initialization process. If no pulse occurs during  
the initial watchdog tiꢀeout period, the µP is taking too  
long to initialize, indicating a potential probleꢀ.  
34 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 20. Configuration Lock Register  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
0 = configuration unlocked.  
1 = configuration locked.  
[0]  
45h  
8045h  
[7:1]  
Not used.  
Table 21. Write Disable Register  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
0 = write not disabled if PO1 asserts (MAX6874).  
1 = write disabled if PO1 asserts (MAX6874). Set to 0 (MAX6875).  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0 = write not disabled if PO2 asserts (MAX6874).  
1 = write disabled if PO2 asserts (MAX6874). Set to 0 (MAX6875).  
0 = write not disabled if PO3 (MAX6874)/PO1 (MAX6875) asserts.  
1 = write disabled if PO3 (MAX6874)/PO1 (MAX6875) asserts.  
0 = write not disabled if PO4 (MAX6874)/PO2 (MAX6875) asserts.  
1 = write disabled if PO4 (MAX6874)/PO2 (MAX6875) asserts.  
43h  
8043h  
0 = write not disabled if PO5 (MAX6874)/PO3 (MAX6875) asserts.  
1 = write disabled if PO5 (MAX6874)/PO3 (MAX6875) asserts.  
0 = write not disabled if PO6 (MAX6874)/PO4 (MAX6875) asserts.  
1 = write disabled if PO6 (MAX6874)/PO4 (MAX6875) asserts.  
0 = write not disabled if PO7 (MAX6874)/PO5 (MAX6875) asserts.  
1 = write disabled if PO7 (MAX6874)/PO5 (MAX6875) asserts.  
0 = write not disabled if PO8 asserts (MAX6874).  
1 = write disabled if PO8 asserts (MAX6874). Set to 0 (MAX6875).  
Write Disable  
tion. The local volatile ꢀeꢀory latches lose their contents  
A unique write disable feature protects the MAX6874/  
MAX6875 froꢀ inadvertent user EEPROM writes. As input  
voltages that power the serial interface, a µP, or any other  
writing devices fall, unintentional data ꢀay be written onto  
the data bus. The user EEPROM write disable function  
(see Table 21) ensures that unintentional data does not  
corrupt the MAX6874/MAX6875 EEPROM data.  
at power-down. Therefore, at power-up, the device con-  
figuration ꢀust be restored by downloading the contents  
of the EEPROM (non-volatile ꢀeꢀory) to the local latches.  
This download occurs in a nuꢀber of steps:  
1) Prograꢀꢀable outputs go high iꢀpedance with no  
power applied to the device.  
2) When ABP exceeds +1V, all prograꢀꢀable out-  
puts are weakly pulled to GND through a 10µA  
current sink.  
Applications Information  
Configuration Download at Power-up  
The configuration of the MAX6874/MAX6875 (under-  
voltage thresholds, PO_ tiꢀeout periods, watchdog  
behavior, prograꢀꢀable output conditions, etc.)  
depends on the contents of the EEPROM. The EEPROM  
is coꢀprised of buffered latches that store the configura-  
3) When ABP exceeds UVLO, the configuration EEP-  
ROM starts to download its contents to the volatile  
configuration registers. The prograꢀꢀable outputs  
assuꢀe their prograꢀꢀed conditional output state  
when download is coꢀplete.  
______________________________________________________________________________________ 35  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
4) Any atteꢀpt to coꢀꢀunicate with the device prior to  
this download coꢀpletion results in a NACK being  
issued froꢀ the MAX6874/MAX6875.  
Other Fault Signals from µC  
Connect a general-purpose output froꢀ a µC to one of  
the GPI_ inputs to allow interrupts to assert any output  
of the MAX6874/MAX6875. Configure one of the pro-  
graꢀꢀable outputs to assert on whichever GPI_ input  
connects to the general purpose output of the µC.  
Forcing Programmable  
Outputs High During Power-Up  
A weak 10µA pulldown holds all prograꢀꢀable outputs  
low during power-up until ABP exceeds the undervolt-  
age lockout (UVLO) threshold. Applications requiring a  
guaranteed high prograꢀꢀable output for ABP down to  
GND require external pullup resistors to ꢀaintain the  
logic state until ABP exceeds UVLO. Use 20kresis-  
tors for ꢀost applications.  
Layout and Bypassing  
For better noise iꢀꢀunity, bypass each of the voltage  
detector inputs to GND with 0.1µF capacitors installed  
as close to the device as possible. Bypass ABP and  
DBP to GND with 1µF capacitors installed as close to  
the device as possible. ABP and DBP are internally  
generated voltages and should not be used to supply  
power to external circuitry.  
Uses for General-Purpose  
Inputs (GPI1–GPI4)  
Configuration Latency Period  
A delay of less than 5µs occurs between writing to the  
configuration registers and the tiꢀe when these  
changes actually take place, except when changing  
one of the voltage-detector thresholds. Changing a  
voltage-detector threshold typically takes 150µs. When  
changing EEPROM contents, a software reboot or  
cycling of power is required for these changes to trans-  
fer to volatile ꢀeꢀory.  
Watchdog Timer  
Prograꢀ GPI_ as an input to the watchdog tiꢀer in the  
MAX6874/MAX6875. The GPI_ input ꢀust toggle within  
the watchdog tiꢀeout period, otherwise any prograꢀ-  
ꢀable output dependent on the watchdog tiꢀer  
asserts.  
Additional Manual Reset Functions  
Prograꢀ PO7 (MAX6874)/PO5 (MAX6875) to depend  
on one of the GPI_ inputs. Any output that depends on  
GPI_ asserts when GPI_ is held in its active state, effec-  
tively acting as a ꢀanual reset input.  
Chip Information  
PROCESS: BiCMOS  
36 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Configurations  
TOP VIEW  
PO2  
PO3  
PO4  
GND  
PO5  
PO6  
PO7  
PO8  
1
2
3
4
5
6
7
8
24 N.C.  
23 N.C.  
22 DBP  
21 ABP  
20 GPI1  
19 GPI2  
18 GPI3  
17 GPI4  
N.C.  
PO1  
PO2  
GND  
PO3  
PO4  
PO5  
N.C.  
1
2
3
4
5
6
7
8
24 N.C.  
23 N.C.  
22 DBP  
21 ABP  
20 GPI1  
19 GPI2  
18 GPI3  
17 N.C.  
MAX6874  
MAX6875  
*EXPOSED PADDLE  
*EXPOSED PADDLE  
(7mm x 7mm Thin QFN)  
(7mm x 7mm Thin QFN)  
*EXPOSED PADDLE INTERNALLY CONNECTED TO GND.  
Selector Guide  
PART  
VOLTAGE-DETECTOR INPUTS  
GENERAL-PURPOSE INPUTS  
PROGRAMMABLE OUTPUTS  
MAX6874ETJ  
MAX6875ETJ  
6
4
4
3
8
5
______________________________________________________________________________________ 37  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Typical Operating Circuit  
+12V  
+12V  
+5V  
DC-DC  
1
DC-DC  
3
+3.3V  
+2.5V  
+0.7V  
DC-DC  
2
DC-DC  
4
R
PU  
R
PU  
IN1  
PO1  
PO2  
IN3  
IN5  
PO4  
IN6  
IN4  
PO3  
µP  
MARGIN  
SDA  
SDA  
SCL  
MR  
SCL  
RESET  
PO5  
PO6  
ABP  
NMI, WD ALERT  
LOGIC OUTPUT  
MAX6874  
GPI1  
(WD)  
DBP  
A0  
A1  
GPI2  
GPI4  
GND  
GPI3  
+12V BUS INPUT  
+12V SUPPLY  
PO1  
t
PO1  
ENABLE +5V DC-DC CONVERTER  
+5V OUTPUT  
+5V SUPPLY  
PO2  
t
ENABLE +2.5V DC-DC CONVERTER  
+2.5V OUTPUT  
PO2  
+2.5V SUPPLY  
PO3  
t
ENABLE +3.3V DC-DC CONVERTER  
+3.3V OUTPUT  
PO3  
+3.3V SUPPLY  
PO4  
t
ENABLE +0.7V DC-DC CONVERTER  
+0.7V OUTPUT  
PO4  
+0.7V SUPPLY  
PO5  
t
SYSTEM RESET  
PO5  
38 ______________________________________________________________________________________  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
DETAIL B  
e
C
C
L
L
L
L1  
L
L
e
e
DALLAS  
SEMICONDUCTOR  
A
A1  
A2  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0144  
D
2
______________________________________________________________________________________ 39  
EEPROM-Programmable, Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0144  
D
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
40 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX6875ETJ+T

Power Supply Management Circuit, Adjustable, 4 Channel, BICMOS, PQCC32, 7 X 7 MM, TQFN-32
MAXIM

MAX6875ETJ-T

Power Supply Management Circuit, Fixed, 4 Channel, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32
MAXIM

MAX6876

EEPROM-Programmable, Quad, Power-Supply Tracker/Sequencer Circuit
MAXIM

MAX6876ETX

EEPROM-Programmable, Quad, Power-Supply Tracker/Sequencer Circuit
MAXIM

MAX6876ETX+

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-1, TQFN-36
MAXIM

MAX6876ETX+T

暂无描述
MAXIM

MAX6876ETX-T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-1, TQFN-36
MAXIM

MAX6876EVCMOD2

Complete Evaluation System
MAXIM

MAX6876EVKIT

Complete Evaluation System
MAXIM

MAX6877

Dual-/Triple-Voltage, Power-Supply Trackers/Sequencers/Supervisors
MAXIM

MAX6877ETG

Dual-/Triple-Voltage, Power-Supply Trackers/Sequencers/Supervisors
MAXIM

MAX6877ETG+

Dual-/Triple-Voltage, Power-Supply Trackers/Sequencers/Supervisors
MAXIM