MIC2660 [MICREL]

IttyBitty Charge Pump; IttyBitty电荷泵
MIC2660
型号: MIC2660
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

IttyBitty Charge Pump
IttyBitty电荷泵

文件: 总8页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2660  
IttyBitty™ Charge Pump  
Not Recommended for New Designs  
General Description  
Features  
The MIC2660 IttyBitty™ charge pump functions as a low-  
current,step-upconverterwhereconventionalinductorbased,  
dc-to-dc converters are too complex and expensive. This  
device features a complete, self-contained charge pump in a  
tiny 5-lead SOT-23-5 package.  
• 3V input produces approx. 5V unregulated output*  
3.8mA with 1µF external output capacitor  
2.5mA without external capacitor  
• 5V input produces approx. 9V unregulated output*  
4.5mA output without external capacitor  
• CMOS-logic compatible enable  
The MIC2660 is powered from a 3V to 5V nominal supply and  
produces nominally 5V to 9V as a function of the input  
voltage. The output is unregulated and follows a load-line  
type function.  
• ESD protected  
Applications  
• Squib firing  
• Refresh  
• Burst/dump  
• Low duty cycle load  
• LCD bias generator  
• Local 5V logic supply  
• MOSFET driver  
• Battery or solarcell boost  
The MIC2660 can be used with or without external compo-  
nents. When used with two noncritical external capacitors, a  
3V input will produce 5V at 3.8mA. With no external compo-  
nents, a 3V input will produce 5V at 2.5mA.  
The MIC2660 charge pump consists of an approximately  
18MHz oscillator and a voltage tripler.  
The MIC2660 is available in the SOT-23-5 package and  
is rated for –40°C to +85°C ambient temperature range.  
Ordering Information  
Part Number  
Temperature Range  
Package  
MIC2660BM5  
–40°C to +85°C  
SOT-23-5  
Typical Application  
+3V Input  
MIC2660  
1
5
3
0.01µF  
+5V, 2.5mA*  
Output  
0.01µF  
IN  
OUT  
2
EN  
GND  
* The output is unregulated and  
follows a load-line type function  
Enable  
Disable  
Low-Current Unregulated Step-Up Supply  
Timing Diagram  
2V  
0V  
EN  
0.2  
µs  
1.3  
µs  
5V  
OUT  
1V  
0V  
Output vs. Enable Input  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
August 1999  
1
MIC2660  
MIC2660  
Micrel  
Pin Configuration  
OUT GND IN  
3
2
1
Part  
Identification  
C10  
4
5
NC  
EN  
SOT-23-5 (M5)  
Pin Description  
Pin Number  
Pin Name  
IN  
Pin Function  
1
2
3
4
5
Supply (Input): +3V to +5V supply.  
Ground: Power return.  
GND  
OUT  
NC  
Output: Charge pump output. Connect to load.  
Not internally connected.  
EN  
Enable (Input): CMOS compatible input. EN high (VEN = VIN) enables the  
charge pump . EN low (VIN = 0V) disables the charge pump.  
Absolute Maximum Ratings  
Input Voltage (V ) .....................................................+5.5V  
Lead Temperature, Soldering 10sec. ........................ 300°C  
IN  
Enable Voltage (V ) ......................................... V + 1.3V  
Package Thermal Resistance  
EN  
IN  
SOT-23-5 θ ....................................................220°C/W  
Ambient Temperature Range (T ) ............. –40°C to +85°C  
JA  
A
SOT-23-5 θ ....................................................130°C/W  
JC  
Electrical Characteristics  
Parameter  
Condition (Note 1)  
Min  
4.5  
8.1  
.9  
Typ  
5
Max  
Units  
V
Output Voltage, Enabled  
VIN = 3V, VEN = VIN, COUT = 1000pF, RL = 2kΩ  
VIN = 5V, VEN = VIN, COUT = 1000pF, RL = 2kΩ  
VIN = 3V, VEN = GND, COUT = 1000pF, RL = 2kΩ  
VIN = 5V, VEN = GND, COUT = 1000pF, RL = 2kΩ  
VIN = 3V, VEN = VIN, RL = 2kΩ  
VIN = 5V, VEN = VIN, RL = 2kΩ  
VIN = 3V, VEN < 0.4V  
9
V
Output Voltage, Disabled  
Input Current  
1.0  
3.0  
14.5  
28.5  
1.3  
3.3  
19.5  
38.5  
3
V
2.9  
V
mA  
mA  
µA  
µA  
mA  
mA  
V
Quiescent Current  
Output Current  
1.5  
3.5  
1.9  
3.4  
VIN = 5V, VEN < 0.4V  
5
VIN = 3V, VEN = VIN, VOUT = VOUT min  
VIN = 5V, VEN = VIN, VOUT = VOUT min  
VIN = 3V  
2.5  
4.5  
1.5  
2.5  
Enable Threshold  
VIN = 5V  
V
Enable Current  
Turn-On Time  
Turn-Off Time  
VIN = 5V, VEN = VIN  
10  
µA  
ns  
µs  
VIN = 3V  
VIN = 3V  
Load = 2k, COUT = 1000pF, Note 2  
Load = 2k, COUT = 1000pF, Note 3  
200  
1.3  
General Note: Devices are ESD protected, however handling precautions are recommended.  
Note 1: Typicals values at T = 25°C. Minimum and maximum values at –40°C T +85°C.  
A
A
Note 2: Turn-on time is the time between V = 0.5 × V and V  
= 0.9 (V  
– V  
) for a rising EN input.  
EN  
IN  
OUT  
OUTmax  
OUTmin  
Note 3: Turn-off time is the time between V = 0.5 × V and V  
= V – 1.9V for a falling EN input.  
EN  
IN  
OUT  
IN  
MIC2660  
2
August 1999  
MIC2660  
Micrel  
Typical Characteristics  
Output Voltage  
vs. Supply Voltage  
Output Voltage  
vs. Supply Voltage  
Output Voltage  
vs. Supply Voltage  
20  
20  
15  
10  
5
20  
15  
10  
5
COUT = NONE  
TA = -55° C  
COUT = NONE  
TA = 25° C  
COUT = NONE  
TA = 125° C  
15  
NO LOAD  
NO LOAD  
NO LOAD  
10  
3mA  
3mA  
3mA  
2mA  
2mA  
5
2mA  
1mA  
1mA  
1mA  
0
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Output Voltage  
vs. Supply Voltage  
Output Voltage  
vs. Supply Voltage  
Output Voltage  
vs. Supply Voltage  
20  
20  
20  
COUT = 1µF  
TA = 125° C  
COUT = 1µF  
TA = -55° C  
COUT = 1µF  
TA = 25° C  
15  
15  
10  
5
15  
10  
5
NO LOAD  
NO LOAD  
10  
NO LOAD  
3mA  
3mA  
3mA  
5
0
2mA  
2mA  
2mA  
1mA  
1mA  
1mA  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SUPPLY VOLTAGE (V)  
Efficiency  
vs. Output Voltage  
Efficiency  
vs. Output Voltage  
Efficiency  
vs. Output Voltage  
35  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
3mA  
3mA  
3mA  
2mA  
2mA  
1mA  
2mA  
1mA  
1mA  
COUT = NONE  
TA = -55° C  
COUT = NONE  
TA = 25° C  
COUT = NONE  
TA = 125° C  
0
0
0
0
2
4
6
8
10 12 14  
0
2
4
6
8
10 12 14  
0
2
4
6
8
10 12 14  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Efficiency  
vs. Output Voltage  
Efficiency  
vs. Output Voltage  
Efficiency  
vs. Output Voltage  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
3mA  
3mA  
3mA  
2mA  
2mA  
2mA  
1mA  
1mA  
1mA  
COUT = 1µF  
TA = -55° C  
COUT = 1µF  
TA = 25° C  
COUT = NONE  
TA = 125° C  
0
0
0
0
2
4
6
8
10 12 14  
0
2
4
6
8
10 12 14  
0
2
4
6
8
10 12 14  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
August 1999  
3
MIC2660  
MIC2660  
Micrel  
Block Diagram  
MIC2660  
2×  
3×  
IN  
D1  
OUT  
D2  
D3  
Q1  
Q2  
Q3  
EN  
XLO  
XLO  
C1  
C2  
OSC  
Q4  
GND  
Functional Description  
Refer to the block diagram.  
All formulas are simplified. Refer to the last paragraph of this  
subsection about the actual output voltage.  
The MIC2660 charge pump consists of an oscillator and a  
voltage tripler. A logic-high applied to EN activates the  
charge pump. The charge pump produces an output voltage  
that is higher than the input voltage.  
The following sequence describes the basic operation of the  
tripler by showing how the voltage at the “2×” and “3×” nodes,  
V
and V , increases.  
2×  
3×  
Supply Input  
Q2 turns on, completing the ground path to charge C1 (and  
the 2× node) to the supply voltage, less a diode voltage drop.  
IN (supply input) is rated for +2.7V to +5.5V.  
V
= V – V  
IN D1  
Ouput  
2× (charging)  
After Q2 turns off, Q1 turns on. The Q1-Q2 side of C1 is  
OUT is connected to IN, less 3 diode drops, at all times.  
switched (offset upward) from ground to V . The 2× node,  
IN  
Enable  
that was nominally at the supply voltage, becomes nominally  
twice the supply voltage.  
EN (enable) is a CMOS input. A logic low turns the oscillator  
off. The threshold is approximately half the supply voltage. A  
floating EN input may cause unpredictable operation.  
V
= V – V + V  
IN D1 IN  
2×  
While Q1 is on, Q4 is also on. When Q4 is on, the nominally  
doubled voltage at the 2× node is applied across C2, through  
D2.  
Oscillator  
The oscillator produces a square wave at approximately  
18MHz. It has a noninverting and an inverting output.  
V
= V – V + V – V  
IN D1 IN D2  
3× (charging)  
Crossover Lockout  
After Q4 turns off, Q3 turns on. The Q3-Q4 side of C2 is  
The charge pump contains two crossover lockout (XLO)  
circuits. Each crossover lockout circuit drives a totem pole,  
consisting of a P-channel MOSFET and an N-channel MOS-  
FET. The crossover lockout alternately switches the MOS-  
FETs with no significant transition current (shoot-through  
current from supply to ground).  
switched from ground to V . The 3× node, that was nomi-  
nally twice the supply voltage, becomes nominally three  
times the supply voltage.  
IN  
V
= V – V + V – V + V  
IN D1 IN D2 IN  
3×  
The tripled voltage is available at the output through D3.  
= V – V + V – V + V – V  
V
Tripler  
OUT  
IN  
D1  
IN  
D2  
IN  
D3  
The output is nominally 3 times the supply voltage less the  
voltage drop across three diodes.  
Voltage stepup is performed by charging an internal capaci-  
tor then switching the charged capacitor in series with the  
supply voltage to produce a higher voltage. A description of  
the nominal voltage tripler output is:  
The actual output is lower. These simplified formulas do not  
show that the voltage across the capacitors decreases when  
charge flows to the following stage or output. An actual  
device also has some internal loss.  
V
= 3V – 3V .  
IN D  
OUT  
where:  
ESD Protection  
V
V
= output voltage  
= supply voltage  
OUT  
Zener diodes are provided at IN, EN, and OUT to limit ESD  
voltage.  
IN  
V = voltage drop across forward biased diode  
D
MIC2660  
4
August 1999  
MIC2660  
Micrel  
Charge-Pump/Dump  
Applications Information  
A large capacitor can be charged to the unloaded tripled  
voltage output after a time based on the maximum current  
provided by the MIC2660. A 1000µF Capacitor can be  
charged from 2V to approximately 12V in less than 3 seconds  
by a 5V powered MIC2660. (i = C dv/dt).  
Electromagnetic Interference  
The 18MHz oscillator may cause interference to radio cir-  
cuits. 0.01µF bypass capacitors should be mounted close to  
the IN and OUT terminals.  
Low-Side MOSFET Charge-Pump Driver  
Once charged, a maximum current of 3mA may be drawn  
continuously at the 12V level. A high value bleeder resistor  
(100k) is not needed to prevent spikes from exceeding the  
capacitor voltage rating, since the MIC2660’s internal 15V  
ESD zener limits maximum output. A 68resistor in series  
with the output limits short-circuit current to 30mA.  
A standard MOSFET requires approximately 15V to fully  
enhance the gate for minimum RDS(on). Substituting a logic-  
level MOSFET reduces the required gate voltage, allowing  
an MIC2660 to be used as an low-side FET driver.  
A 3V powered MIC2660 will fully enhance a logic-level  
N-channel MOSFET low-side switch, with a 5k gate pull-  
down resistor, in less than 1ms after the enable pin rises  
above 1.5V. The 1nF MOSFET gate capacitance will be  
discharged to turn-off in less than 10ms after the enable pin  
goes below 1.5V.  
+5V  
MIC2660  
68  
1
5
3
2
100k  
+12V  
IN  
OUT  
1000µF  
EN  
GND  
Load  
Supply  
+3V to +5V  
0.1µF  
RLOAD  
MIC2660  
OUT  
1
3
2
100k  
IN  
Figure 2. Charge-Pump/Dump  
5-Volt Lamp Flasher  
5
Enable  
Disable  
EN  
GND  
1µF  
0.1µF  
An IttyBitty MIC1557 oscillator provides a short pulse once  
per second, enabling the CS pin of an MIC2660, which  
charges the gate-to-drain capacitance of a logic-level  
N-channel MOSFET to approximately 9V, which turns on a  
lamp. When the CS pin is low, a 2k resistor discharges the  
Figure 1. Charge-Pump Driver  
An MIC2660 boosts a 5V input to 9V–12V to fully enhance an  
N-channel MOSFET, which may have its drain connected to  
a higher voltage, through a high-side load. A TTL high signal  
applied to CS enables the internal oscillator, which quickly  
develops 9V–12V at the gate of the MOSFET, clamped by a  
zener diode. A resistor from the gate to ground ensures that  
the FET will turn off quickly when the MIC2660 is turned off.  
gate capacitance, turning off the lamp. A resistor (R ) in  
series with a diode determines the “on” time to approximately  
S
R ||R ×C ,while R and C set the “off” time to 1.1R ×C .  
S
T
T
T
T
T
T
+5V  
RS 470k  
RT1M  
MIC1557  
5V lamp  
2k  
4
1
3
5
VS  
CS  
MIC2660  
IRL3103  
N-channel  
FET  
1
5
3
2
0.1µF  
T/T  
IN  
OUT  
GND  
CT  
0.68µF  
2
GND  
OUT  
EN  
Figure 3. 5-Volt Lamp Flasher  
August 1999  
5
MIC2660  
MIC2660  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
MIC2660  
6
August 1999  
MIC2660  
Micrel  
August 1999  
7
MIC2660  
MIC2660  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 1999 Micrel Incorporated  
MIC2660  
8
August 1999  

相关型号:

MIC26600

7A Hyper Speed Control Synchronous DC-DC Buck Regulator
MICREL

MIC26600YJL

7A Hyper Speed Control Synchronous DC-DC Buck Regulator
MICREL

MIC26600YJL-TR

IC REG BUCK ADJ 7A SYNC 28-MLF
MICROCHIP

MIC26600_1107

7A Hyper Speed ControlTM Synchronous DC-DC Buck Regulator
MICREL

MIC26601

28V, 6A Hyper Speed Control™ Synchronous DC/DC Buck Regulator
MICREL

MIC26601YJL

28V, 6A Hyper Speed Control™ Synchronous DC/DC Buck Regulator
MICREL

MIC26603

28V, 6A Hyper Light Load Synchronous DC/DC Buck Regulator
MICREL

MIC26603-ZAYJL

28V, 6A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL

MIC26603-ZAYJL-TR

IC REG BUCK ADJ 6A SYNC 28MLF
MICROCHIP

MIC26603YJL

28V, 6A Hyper Light Load Synchronous DC/DC Buck Regulator
MICREL

MIC26603ZA

28V, 6A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL

MIC2660BM5

IttyBitty Charge Pump
MICREL