MIC4682YM-TR [MICREL]

1.1A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8;
MIC4682YM-TR
型号: MIC4682YM-TR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1.1A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8

开关 光电二极管
文件: 总15页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4682  
Precision Current Limit SOIC-8  
SuperSwitcher™ Buck Regulator  
General Description  
Features  
The MIC4682 is an easy-to-use step-down (buck) switch-  
mode voltage regulator. It features a programmable  
current limit that allows 10% current limit accuracy over its  
full operating temperature range. The precision current  
limit makes the MIC4682 ideal for constant-voltage  
constant-current applications, such as simple battery  
chargers. The precision current limit also gives designers  
the ability to set the maximum output current below the  
saturation current rating of the inductor. This allows the  
use of the smallest possible inductors for a given  
application, saving valuable space and cost.  
Programmable output current limit  
10% accuracy over temperature  
Wide 4V to 34V operating input voltage range  
Fixed 200kHz PWM operation  
Power SOIC-8 package allows 2A continuous output  
current  
All surface mount solution  
Internally compensated  
Less than 1µA typical shutdown-mode current  
Thermal shutdown protection  
The MIC4682 is a very robust device. Its 4V to 34V input  
voltage range allows the MIC4682 to safely be used in  
applications where voltage transients may be present.  
Additional protection features include cycle-by-cycle  
current limiting and over-temperature shutdown. The  
MIC4682 is available in a thermally optimized power  
SOIC-8 package that allows it to achieve 2A of continuous  
output current.  
Applications  
Battery chargers  
White LED drivers  
Constant voltage constant current step-down  
converters  
The MIC4682 requires a minimum number of external  
components and can operate using a standard series of  
inductors. Compensation is provided internally for fast  
transient response and ease of use. The MIC4682 is  
available in the 8-pin power SOIC with a –40°C to +125°C  
junction temperature range.  
Simple step-down regulator with precise current limit  
USB power supplies  
Data sheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
___________________________________________________________________________________________________________  
Typical Application  
MIC4682 Current Limit  
Characteristics  
MIC4682  
L1  
+7.5V to +34V  
5V/1A  
5
8
1
IN  
SW  
6
5
4
3
2
1
0
C1  
10µF  
50V  
68µH  
R1  
C2  
220µF  
10V  
3.01k  
4
SHDN  
FB  
(x2)  
D1  
B240  
R2  
976  
R3  
10M  
ISET  
GND  
3
2, 6, 7  
R4  
16.2k  
VIN = 12V  
0
0.5  
1
1.5  
2
CURRENT LIMIT (A)  
Constant Current/Constant Voltage Li-Ion Battery Charger  
SuperSwitcher is a trademark of Micrel, Inc  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-061507  
June 2007  
Micrel, Inc.  
MIC4682  
Ordering Information  
Part Number  
Voltage  
Junction Temp. Range  
Package  
Standard  
Pb-Free  
MIC4682YM  
MIC4682BM  
Adj.  
–40° to +125°C  
8-Pin SOIC  
Note: Other Voltage available. Contact Micrel for details.  
Pin Configuration  
FB  
GND  
1
2
3
4
8
7
6
5
SW  
GND  
GND  
IN  
ISET  
SHDN  
8-Pin Power SOIC (M)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
FB  
Feedback (Input): Output voltage sense node. Connect to 1.23V-tap of the  
output voltage-divider network.  
2, 6, 7  
3
GND  
ISET  
Ground (Return): Ground.  
Current Limit Set (Input): Connect an external resistor to ground to set the  
current limit. Do not ground or float this pin.  
4
SHDN  
Shutdown (Input): Logic low (<0.8V) enables regulator. Logic high (>2V) shuts  
down regulator.  
5
8
IN  
Supply Voltage (Input): Unregulated +4V to +34V supply voltage.  
Switch (Output): Internal power emitter of NPN output switch.  
SW  
M9999-061507  
June 2007  
2
Micrel, Inc.  
MIC4682  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN)(3) ....................................................38V  
Shutdown Voltage (VSHDN)............................. –0.3V to +38V  
Steady-State Output Switch Voltage (VSW)....................–1V  
Feedback Voltage (VFB) .................................................12V  
Current Limit Set Voltage (VISET)....................... 1.23V to 7V  
Ambient Storage Temperature (Ts)...........65°C to +150°C  
ESD Rating(5)..................................................................2kV  
Supply Voltage (VIN)(4, 7) ....................................... 4V to 34V  
Junction Temperature Range (TJ).............40°C to +125°C  
Thermal Resistance Impedance  
SOIC (θJA)(6) .......................................................63°C/W  
SOIC (θJC)(6) .......................................................20°C/W  
Electrical Characteristics  
VIN = 12V; IOUT = 500mA; RISET = 16.2k (1A current limit); TJ = 25°C, bold values indicate –40°C< TJ < +125°C, unless noted.  
Symbol  
VIN  
Parameter  
Condition  
Min  
Typ  
Max  
34  
Units  
V
Supply Voltage Range  
Quiescent Current  
Standby Quiescent Current  
Note 4  
4
IIN  
VFB = 1.5V  
7
35  
12  
mA  
µA  
VSHDN = 5V (Regulator off)  
VSHDN = VIN  
100  
1
µA  
VFB  
Feedback Voltage  
(±1%)  
(±2%)  
1.217  
1.205  
1.230  
1.243  
1.255  
V
V
8V VIN 34V, 0.1A ILOAD 0.8A  
1.193  
1.180  
1.230  
1.267  
1.280  
V
V
ILIM  
Current Limit Accuracy, Note 7  
Oscillator Frequency  
See Test Circuit, VOUT = 3.6V  
0.9  
180  
93  
1
1.1  
A
kHz  
%
fSW  
200  
95  
220  
DMAX  
VSW  
ISW  
Maximum Duty Cycle  
VFB = 1.0V  
Switch Saturation Voltage  
Switch Leakage Current  
IOUT = 1A  
1.4  
2
1.8  
100  
10  
V
VIN = 34V, VSHDN = 5V, VSW = 0V  
VIN = 34V, VSHDN = 5V, VSW = –1V  
Regulator Off  
µA  
mA  
V
2
VSHDN  
Shutdown Input Logic Level  
Shutdown Input Current  
Thermal Shutdown  
2
1.4  
1.25  
–0.5  
–0.5  
160  
Regulator On  
0.8  
1
V
ISHDN  
VSHDN = 5V (Regulator Off)  
VSHDN = 0V (Regulator On)  
–10  
–10  
µA  
µA  
°C  
1
TJ  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Absolute maximum rating is intended for voltage transients only; prolonged DC operation is not recommended.  
4. VIN(MIN) = VOUT + 2.5V or 4V whichever is greater.  
5. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
6. Measured on 1.5” square of 1oz. copper FR4 printed circuit board connected to the device ground leads.  
7. Short circuit protection is guaranteed to VIN = 30V max.  
M9999-061507  
June 2007  
3
Micrel, Inc.  
MIC4682  
Test Circuit  
MIC4682  
VIN  
L1  
VOUT  
5
4
8
1
IN  
SW  
5.0  
3.6  
68µH  
C1 (x2)  
10µF  
50V  
R1  
C2  
220µF  
10V  
3.01k  
SHDN  
FB  
D1  
B240A  
R3  
10M  
R2  
ISET  
GND  
3
2, 6, 7  
10%  
RISET  
0
0.90  
OUTPUT CURRENT (A)  
1.10  
Current Limit Test Circuit  
Constant-Current Constant-Voltage Accuracy  
Shutdown Input Behavior  
OFF  
ON  
0.8V  
1.25V  
2V  
0V  
1.4V  
VIN(max)  
Shutdown Hysteresis  
M9999-061507  
June 2007  
4
Micrel, Inc.  
MIC4682  
Typical Characteristics  
TA = 25°C unless otherwise noted.  
Efficiency  
vs. Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6V  
VIN = 5V  
VIN = 12V  
VIN = 30V  
VOUT = 2.5V  
0.8 1.2 1.6 2  
0
0.4  
OUTPUT CURRENT (A)  
Short Circuit Current Limit  
Short Circuit Current Limit  
Current Limit  
vs. R  
at T = 125°C  
vs. Input Voltageat T = –40°C  
vs. Input Voltageat T = 25°C  
ISET  
J
J
J
2
2
2
1.8  
1.6  
1.4  
1.2  
1
RISET=10k  
RISET=10k  
VIN = 4V  
VIN = 5V  
VIN = 12V  
1.8  
1.6  
1.4  
1.2  
1
1.8  
RISET=15.8k  
1.6  
1.4  
1.2  
1
VIN = 24V  
IN = 30V  
VIN = 34V  
RISET=15.8k  
V
RISET=20k  
RISET=25k  
RISET=20k  
ISET=25k  
R
RISET=30k  
RISET=40k  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
RISET=30k  
RISET=40k  
R
ISET=50k  
L = 68µH  
R3 = 10M  
OUT~0V (Pulsed Load)  
L = 68µH  
R3 = 10M  
VOUT~0V (Pulsed Load)  
L = 68µH  
R3 = 10M  
VOUT = 1.0V (Pulsed Load)  
RISET=50k  
V
4
7 10 13 16 19 22 25 28 31 34  
INPUT VOLTAGE (V)  
4
8
12 16 20 24 28 32  
INPUT VOLTAGE (V)  
10 15 20 25 30 35 40 45 50  
RISET (k)  
M9999-061507  
June 2007  
5
Micrel, Inc.  
MIC4682  
Typical Characteristics (continued)  
Short Circuit Current Limit  
Short Circuit Current Limit  
Quiescent Current  
vs. Input Voltage  
vs. Input Voltageat T = 85°C  
vs. Input Voltageat T = 125°C  
J
J
2
2.0  
12  
10  
8
RISET=10k  
15.8k  
RISET=10k  
1.8  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
RISET=15.8k  
1.4  
RISET=20k  
1.2  
RISET=20k  
ISET=25k  
RISET=30k  
ISET=40k  
RISET=50k  
R
ISET=25k  
RISET=30k  
ISET=40k  
RISET=50k  
1
0.8  
0.6  
0.4  
0.2  
0
6
R
4
R
R
L = 68µH  
L = 68µH  
R3 = 10M  
VFB = 1.5V  
EN = 0V  
2
R3 = 10M  
V
VOUT~0V (Pulsed Load)  
VOUT~0V (Pulsed Load)  
0
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
4
8
12 16 20 24 28 32  
INPUT VOLTAGE (V)  
4
8
12 16 20 24 28 32  
INPUT VOLTAGE (V)  
Quiescent Current  
vs. Temperature  
Shutdown Current  
vs. Input Voltage  
12  
10  
8
140  
120  
100  
80  
= 24V  
6
= 12V  
60  
4
40  
VFB = 1.5V  
VEN = VIN  
VFB = 1.5V  
EN = 0V  
2
20  
V
0
0
-40 -20  
0
20 40 60 80 100120  
0
5 10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
TEMPERATURE°(C)  
Frequency  
vs. Temperature  
250  
245  
240  
235  
230  
225  
220  
215  
210  
VIN = 24V  
VIN = 12V  
VFB = 0V  
0 20 40 60 80 100120  
-40 -20  
TEMPERATURE°(C)  
Load Regulation  
5.016  
5.014  
5.012  
5.01  
5.008  
5.006  
5.004  
5.002  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6  
OUTPUT CURRENT (A)  
M9999-061507  
June 2007  
6
Micrel, Inc.  
MIC4682  
Typical Safe Operating Area (SOA)(1)  
5V Output SOA  
3.3V Output SOA  
2
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
TA = 25°C  
1.6  
TA = 25°C  
1.4  
1.2  
TA = 60°C  
TA = 60°C  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VOUT = 5V  
TJ = 125°C  
D = Max  
VOUT = 3.3V  
TJ = 125°C  
D = Max  
Peak ILIMIT= 2A  
Peak ILIMIT= 2A  
05  
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
05  
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
2.5V Output SOA  
1.8V Output SOA  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
TA = 25°C  
TA = 25°C  
TA = 60°C  
TA = 60°C  
0.8  
0.6  
0.4  
0.2  
0
VOUT = 1.8V  
TJ = 125°C  
D = Max  
VOUT = 2.5V  
TJ = 125°C  
D = Max  
Peak ILIMIT= 2A  
Peak ILIMIT= 2A  
05  
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
05  
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
Note 1. SOA measured on the MIC4682 evaluation board.  
Functional Characteristics  
M9999-061507  
June 2007  
7
Micrel, Inc.  
MIC4682  
Typical Bode Plots  
The following bode plots show that the MIC4682 is stable using a 68µH inductor (L) and a 220µF output capacitor  
(COUT).To assure stability, it is a good practice to maintain a phase margin of greater than 35°C.  
M9999-061507  
June 2007  
8
Micrel, Inc.  
MIC4682  
Functional Diagram  
VIN  
IN  
R1  
R2  
VOUT = VFB  
VFB = 1.23V  
+ 1  
SHDN  
Internal  
Regulator  
ISET  
VOUT  
VFB  
R1= R2  
1  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
R1  
R2 =  
VOUT  
VFB  
–1  
Com-  
parator  
VOUT  
COUT  
SW  
FB  
Driver  
2A  
Switch  
Reset  
R1  
R2  
Error  
Amp  
1.23V  
Bandgap  
Reference  
MIC4682  
GND  
Figure 1. MIC4682 Block Diagram  
the maximum duty cycle which turns the switch off. The  
external resistor at the ISET pin sets the peak current  
limit. The maximum duty cycle is controlled by the Reset  
circuitry. At this time, energy is stored in the inductor.  
The current charges the output capacitor and supplies to  
the load. The Schottky diode is reversed bias.  
Functional Description  
The MIC4862 is a constant frequency, voltage mode-  
switching regulator. Referring to the block diagram,  
regulation is achieved when the feedback voltage is  
equal to the band gap reference. The FB pin senses the  
output voltage and feeds into the input of the Error Amp.  
The output of the Error Amp produces a positive voltage  
to compare with the 200kHz saw-tooth waveform. These  
two signals are fed into the comparator to generate the  
Pulse Width Modulation (PWM) signal to turn on and off  
the internal switch. The duty cycle is defined as the time  
the switch turns on divided by the period of the saw-  
tooth oscillator. Initially, when power is applied to the IN  
pin, the duty cycle is high because the feedback is close  
to ground. As the output and feedback voltage start to  
rise, the duty cycle decreases.  
When the internal switch is off, the stored energy in the  
inductor starts to collapse. The voltage across the  
inductor reverses polarity and the inductor current starts  
to decrease. The Schottky diode clamps the switch  
voltage from going too negative and provides the path  
for the inductor current. During the off time, the inductor  
and the output capacitor provide current to the load.  
An internal regulator provides power to the control  
circuitry and the thermal protection circuitry turns off the  
internal switch when the junction temperature exceeds  
about 160°C.  
During the on time, current flows through the switch and  
into the inductor until it reaches the peak current limit or  
M9999-061507  
June 2007  
9
Micrel, Inc.  
MIC4682  
Inductor and Output Capacitor  
Application Information  
A 68µH inductor and a 220µF tantalum output capacitor  
are chosen because of their stability over the input  
voltage range with maximum output current listed in the  
SOA typical tables. The Sumida CDRH127-680 and  
Vishay Sprague 593D106X9050D2T are recommended.  
See “Bode Plots” for additional information. With the  
same conditions, a lower value inductor and a higher  
output capacitor can be used. The disadvantages for this  
combination are that the output ripple voltage will be  
higher and the output capacitor’s package size will be  
bigger. For example, a 47µH inductor and 330µF output  
capacitor are good combination. Another option is to use  
a higher value inductor and a lower output capacitor.  
The advantages of this combination are that the switch  
peak current and the output ripple voltage will be lower.  
The disadvantage is that the inductor’s package size will  
be bigger. Applications that have lower output current  
requirement can use lower inductor value and output  
capacitor. See “Typical Application Circuits” for an  
example. A 0.1µF ceramic capacitor is recommended in  
parallel with the tantalum output capacitor to reduce the  
high frequency ripple.  
Output Voltage  
The output voltage of the MIC4682 is determined by  
using the following formulas:  
R1  
R2  
VOUT = VFB  
+ 1  
R1  
R2 =  
VOUT  
1  
VFB  
VFB = 1.23V  
For most applications, a 3.01k resistor is recommended  
for R1 and R2 can be calculated.  
Input Capacitor  
Low ESR (Equivalent Series Resistance) capacitor  
should be used for the input capacitor of the MIC4862 to  
minimize the input ripple voltage. Selection of the  
capacitor value will depend on the input voltage range,  
inductor value, and the load. Two Vishay Sprague  
593D106X9050D2T (10µF/50V), tantalum capacitors are  
good values to use for the conditions listed in the SOA  
typical tables. A 0.1µF ceramic capacitor is recomm-  
ended in parallel with the tantalum capacitors to filter the  
high frequency ripple. The ceramic capacitor should be  
placed close to the IN pin of the MIC4682 for optimum  
result. For applications that are cost sensitive,  
electrolytic capacitors can be used but the input ripple  
voltage will be higher.  
Current Limit Set Resistor  
An external resistor connects between the ISET pin and  
ground to control the current limit of the MIC4682  
ranging from 400mA to 2A. For resistor value selections,  
see the “Typical Characteristics: Current Limit vs. RISET."  
In addition to the RISET, a resistor, ranging from 10Mto  
15M, between the ISET and IN pin is recommended for  
current limit accuracy over the input voltage range.  
When the MIC4682 is in current limit, the regulator is  
incurrent mode. If the duty cycle is equal or greater than  
50%, the regulator is in the sub-harmonic region. This  
lowers the average current limit. The below simplified  
equation determines at which input and output voltage  
the MIC4682 exhibits this condition.  
Diode  
A Schottky diode is recommended for the output diode.  
Most of the application circuits on this data sheet specify  
the Diode Inc. B340A or Micro Commercial SS34A  
surface mount Schottky diode. Both diodes have forward  
current of 3A and low forward voltage drop. These  
diodes are chosen to operate at wide input voltage range  
and at maximum output current. For lower output current  
and lower input voltage applications, a smaller Schottky  
diode such as B240A or equivalence can be used.  
(
VOUT + 1.4  
)
> 50%  
VIN  
Do not short or float the ISET pin. Shorting the ISET pin  
will set a peak current limit greater than 2.1A. Floating  
the ISET pin will exhibit unstable conditions. To disable  
the current limit circuitry, the voltage at the ISET pin has  
to be between 2V and 7V.  
M9999-061507  
June 2007  
10  
Micrel, Inc.  
MIC4682  
Thermal Considerations  
The MIC4682 SuperSwitcher™ features the power-  
SOIC-8.This package has a standard 8-pin small-outline  
package profile, but with much higher power dissipation  
than a standard SOIC-8. Micrel’s MIC4682 Super-  
Switcher™ family are the first DC-to-DC converters to  
take full advantage of this package.  
SOIC-8  
JA  
The reason that the power SOIC-8 has higher power  
dissipation (lower thermal resistance) is that pins 2, 6, 7  
and the die-attach paddle are a single piece of metal.  
The die is attached to the paddle with thermally  
conductive adhesive. This provides a low thermal  
resistance path from the junction of the die to the ground  
pins. This design significantly improves package power  
dissipation by allowing excellent heat transfer through  
the ground leads to the printed circuit board.  
ground plane  
heat sink area  
JC  
CA  
printed circuit board  
Figure 2. Power SOIC-8 Cross Section  
Minimum Copper/Maximum Current Method Using  
Figure 3, for a given input voltage range, determine the  
minimum ground-plane heat-sink area required for the  
application’s maximum continuous output current. Figure  
3 assumes a constant die temperature of 75°C above  
ambient.  
One limitation of the maximum output current on any  
MIC4682 design is the junction-to-ambient thermal  
resistance (θJA) of the design (package and ground  
plane).  
Examining θJA in more detail:  
1.5  
12V  
8V  
θ
JA = (θJC + θCA)  
where:  
θ
θ
JC = junction-to-case thermal resistance  
CA = case-to-ambient thermal resistance  
1.0  
0.5  
0
24V  
VIN = 30V  
θ
JC is a relatively constant 20°C/W for a power SOIC-8.  
θCA is dependent on layout and is primarily governed by  
the connection of pins 2, 6 and 7 to the ground plane.  
The purpose of the ground plane is to function as a heat  
sink.  
TA = 50°C  
20 25  
0
5
10  
15  
θ
JA is ideally 63°C/W, but will vary depending on the size  
AREA (cm2)  
of the ground plane to which the power SOIC-8 is  
attached.  
Figure 3. Output Current vs. Ground Plane Area  
When designing with the MIC4682, it is a good practice  
to connect pins 2, 6 and 7 to the largest ground plane  
that is practical for the specific design.  
Determining Ground-Plane Heat-Sink Area  
There are two methods of determining the minimum  
ground plane area required by the MIC4682.  
Checking the Maximum Junction Temperature  
Quick Method  
For this example, with an output power (POUT) of 5W, (5V  
output at 1A maximum with VIN = 12V) and 65°C  
maximum ambient temperature, what is the maximum  
junction temperature?  
Make sure that MIC4682 pins 2, 6 and 7 are connected  
to a ground plane with a minimum area of 6cm2. This  
ground plane should be as close to the MIC4682 as  
possible. The area may be distributed in any shape  
around the package or on any PCB layer as long as  
there is good thermal contact to pins 2, 6 and 7. This  
ground plane area is more than sufficient for most  
designs.  
Referring to the “Typical Characteristics: Efficiency vs.  
Output Current” graph, read the efficiency (η) for 1A  
output current at VIN = 12V or perform you own  
measurement.  
η = 81%  
The efficiency is used to determine how much of the  
output power (POUT) is dissipated in the regulator circuit  
(PD).  
M9999-061507  
June 2007  
11  
Micrel, Inc.  
MIC4682  
Calculating the maximum junction temperature given a  
maximum ambient temperature of 65°C:  
POUT  
PD  
PD  
=
POUT  
5W  
η
TJ = 0.936 × 20°C/W + (45°C – 25°C) + 65°C  
TJ = 103.7°C  
5W  
=
0.81  
This value is within the allowable maximum operating  
junction temperature of 125°C as listed in “Operating  
Ratings.” Typical thermal shutdown is 160°C and is  
listed in “Electrical Characteristics.”  
PD = 1.17W  
A worst-case rule of thumb is to assume that 80% of the  
total output power dissipation is in the MIC4682 (PD(IC)  
and 20%is in the diode-inductor-capacitor circuit.  
)
Layout Considerations  
P
P
P
D(IC) = 0.8 PD  
Layout is very important when designing any switching  
regulator. Rapidly changing currents through the printed  
circuit board traces and stray inductance can generate  
voltage transients which can cause problems.  
D(IC) = 0.8 × 1.17W  
D(IC) = 0.936W  
Calculate the worst-case junction temperature:  
TJ = P D(IC) θJC + (TC – TA) + TA(max)  
where:  
To minimize stray inductance and ground loops, keep  
trace lengths, indicated by the heavy lines in Figure 4, as  
short as possible. For example, D1 should be close to  
pin 7 and pin 8. CIN should be close to pin 5 and pin 6.  
See “Applications Information: Thermal Considerations”  
for ground plane layout.  
TJ = MIC4682 junction temperature  
P
D(IC) = MIC4682 power dissipation  
θ
JC = junction-to-case thermal resistance.  
The feedback pin should be kept as far way from the  
switching elements (usually L1 and D1) as possible.  
The θJC for the MIC4682’s power-SOIC-8 is  
approximately 20°C/W.  
A circuit with sample layouts are provided. See Figures  
5a though 5e. Gerber files are available upon request.  
TC = “pin” temperature measurement taken at  
the entry point of pins 6 or 7.  
TA = ambient temperature  
TA(max)  
=
maximum  
ambient  
operating  
temperature for the specific design.  
VIN  
MIC4682BM  
L1  
VOUT  
COUT R1  
+4V to +34V  
5
4
8
1
IN  
SW  
68µH  
CIN  
SHDN  
FB  
Power  
SOIC-8  
GND ISET  
D1  
R2  
2
6
7
3
GND  
Figure 4. Critical Traces for Layout  
L1  
U1 MIC4682BM  
68µH  
J1  
VIN  
J3  
VOUT  
5
8
1
2
IN  
SW  
1
1
4V to 34V  
JP1 1-2=OFF  
JP1 2-3-ON  
D1  
C4  
B340A  
C1  
C2  
10µF  
50V  
C3  
0.1µF  
50V  
OFF  
ON  
R1  
Option  
2
4
3
7
1
10µF  
50V  
SHDN  
ISET  
GND  
FB  
3.01k  
C5  
220µF  
10V  
C6  
Option  
C7  
0.1µF  
50V  
2
R9  
10M  
JP1  
3
J2  
GND  
R5  
R4  
2.94k  
R3  
1.78k  
R2  
976  
R8  
option  
R7  
16.2k  
R6  
25k  
6.49k  
GND  
2
GND  
6
2
1
2
1
8
7
JP3c4  
2.0A  
3
JP3b6  
1.0A  
5
JP3a  
0.6A  
JP2a4  
1.8V  
3
JP2b 6  
2.5V  
5
JP2c  
3.3V  
JP2d  
5.0V  
J4  
GND  
Figure 5a. Evaluation Board Schematic Diagram  
M9999-061507  
June 2007  
12  
Micrel, Inc.  
MIC4682  
Layout Example  
Figure 5b. Top Silkscreen  
Figure 5d. Bottom Silkscreen  
Figure 5c. Top Layer  
Figure 5e. Bottom Layer  
Bill of Materials  
Item  
C1, C2  
C3, C7  
C5  
Part Number  
Manufacturer  
Vishay Sprague(1)  
Vishay Vitramon(1)  
Vishay Sprague(1)  
Diodes, Inc(2)  
Description  
10µF/50V  
Qty.  
2
593D106X005D2T  
VJ0805Y104KXAMT  
593D227X0010D2T  
B340A  
0.1µF/50V  
2
220µF/10V  
1
D1  
Schottky 3A/40V  
1
L1  
CDRH127-680MC  
MIC4682BM  
Sumida(3)  
Micrel, Inc.(4)  
68µH, 2.1A ISAT  
1
U1  
Precision Circuit Limit Buck Regulator  
1
Notes:  
1. Vishay: www.vishay.com  
2. Diodes, Inc.: www.diodes.com  
3. Sumida: www.sumida.com  
4. Micrel, Inc.: www.website.com  
M9999-061507  
June 2007  
13  
Micrel, Inc.  
MIC4682  
Typical Application Circuits  
L1  
47H  
Sumida  
CDRH6D28-470NC  
MIC4682  
MIC79050  
BAT  
VIN  
5
3
8
1
2
1
3
4
VOUT  
IN  
SW  
FB  
IN  
11V to 24V  
4.2V 0.75%  
R1  
R3  
10M  
3.01k  
C1  
C2  
C3  
ISET  
EN  
FB  
10µF/25V  
Taiyo Yuden  
TMK432BJ106MM  
100µF  
10V(x2)  
AVX  
4.7µF/20V  
AVX  
TPSA475M020R1800  
GND  
5-8  
R2  
28k  
R4  
SHDN  
GND  
2,6,7  
4
TPSC107M010R0200  
GND  
GND  
D1  
1A/40V  
MBRX140  
Micro Commercial Components  
MIC4682 Current Limit  
Characteristics  
4.5  
4
3.5  
3
VIN = 12V  
2.5  
0
250  
500  
750  
1000  
OUTPUT CURRENT (mA)  
Typical  
Charging Characteristics  
Constant Current  
5
4.5  
4
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Constant Voltage  
3.5  
3
VIN = 12V  
Batt = 1.25Ah  
Cutoff Voltage = 3.0V  
2.5  
2
1.5  
1
0.5  
0
0
1
2
3
4
5
6
7
TIME (hrs)  
Figure 6.Low-Cost Li Ion Battery Charger with 0.75% Precision Output Voltage  
M9999-061507  
June 2007  
14  
Micrel, Inc.  
MIC4682  
Package Information  
8-Pin SOIC (M)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
M9999-061507  
June 2007  
15  

相关型号:

MIC4682YMTR

1.1A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, SOIC-8
MICREL

MIC4682_07

Precision Current Limit SOIC-8 SuperSwitcher⑩ Buck Regulator
MICREL

MIC4684

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4684BM

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4684BMTR

Switching Regulator, Voltage-mode, 225kHz Switching Freq-Max, PDSO8, SOP-8
MICREL

MIC4684YM

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4684YM-TR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PDSO8
MICREL

MIC4684YMTR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, SOP-8
MICREL

MIC4684_10

2A High-Efficiency SuperSwitcher Buck Regulator
MICREL

MIC4685

3A SPAK SuperSwitcher⑩ Buck Regulator
MICREL

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICREL