MIC5021BN [MICREL]

High-Speed High-Side MOSFET Driver; 高速高边MOSFET驱动器
MIC5021BN
型号: MIC5021BN
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

High-Speed High-Side MOSFET Driver
高速高边MOSFET驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总9页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5021  
High-Speed High-Side MOSFET Driver  
General Description  
Features  
The MIC5021 high-side MOSFET driver is designed to oper-  
ate at frequencies up to 100kHz (5kHz PWM for 2% to 100%  
duty cycle) and is an ideal choice for high speed applications  
such as motor control, SMPS (switch mode power supplies),  
and applications using IGBTs. The MIC5021 can also  
operate as a circuit breaker with or without automatic retry.  
• 12V to 36V operation  
• 550ns rise/fall time driving 2000pF  
• TTL compatible input with internal pull-down resistor  
• Overcurrent limit  
• Gate to source protection  
• Internal charge pump  
• 100kHz operation guaranteed over full temperature and  
operating voltage range  
• Compatible with current sensing MOSFETs  
• Current source drive reduces EMI  
A rising or falling edge on the input results in a current source  
pulse or sink pulse on the gate output. This output current  
pulse can turn on a 2000pF MOSFET in approximately  
550ns. TheMIC5021thensuppliesalimitedcurrent(< 2mA),  
if necessary, to maintain the output state.  
Applications  
Anovercurrentcomparatorwithatripvoltageof50mVmakes  
the MIC5021 ideal for use with a current sensing MOSFET.  
An external low value resistor may be used instead of a  
sensing MOSFET for more precise overcurrent control. An  
• Lamp control  
• Heater control  
• Motor control  
• Solenoid switching  
• Switch-mode power supplies  
• Circuit breaker  
optional external capacitor placed from the C pin to ground  
T
maybeusedtocontrolthecurrentshutdowndutycycle(dead  
time) from 20% to < 1%. A duty cycle from 20% to about 75%  
is possible with an optional pull-up resistor from C to V  
.
Ordering Information  
T
DD  
5
The MIC5021 is available in 8-pin SOIC and plastic DIP  
packages.  
Part Number  
MIC5021BM  
MIC5021BN  
Temperature Range  
–40°C to +85°C  
Package  
8-pin SOIC  
Other members of the MIC502x family include the MIC5020  
low-side driver and the MIC5022 half-bridge driver with a  
cross-conduction interlock.  
–40°C to +85°C  
8-pin Plastic DIP  
Typical Application  
+12V to +36V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
optional*  
VDD  
Input  
CT  
VBOOST  
Gate  
N-Channel  
Power MOSFET  
Sens
Sens
2.7  
nF  
Gnd  
RSENSE  
50mV  
ITRIP  
RSENSE  
=
* increases time before retry  
High-Side Driver with Overcurrent Trip and Retry  
October 1998  
5-169  
MIC5021  
Micrel  
Pin Configuration  
1 VDD  
VBOOST  
Gate  
8
7
1
2
VDD VBOOST  
Gate  
CT Sense  
8
7
2 Input  
Input  
CT  
Sense−  
Sense+  
3
6
5
3
4
6
5
4 Gnd  
Gnd  
Sense+  
DIP Package  
(N)  
SOIC Package  
(M)  
Block Diagram  
6V Internal Regulator  
I1  
Fault  
CT  
CINT  
2I1  
Normal  
VDD  
CHARGE  
PUMP  
VBOOST  
Q1  
Sense +  
15V  
Sense –  
ON  
50mV  
OFF  
6V  
ONE-  
SHOT  
10I2  
I2  
Gate  
Input  
Transistor: 106  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
VDD  
Supply: +12V to +36V. Decouple with 10µF capacitor.  
Input  
TTL Compatible Input: Logic high turns the external MOSFET on. An  
internal pull-down returns an open pin to logic low.  
3
CT  
Retry Timing Capacitor: Controls the off time (tG(OFF)) of the overcurrent  
retry cycle. (Duty cycle adjustment.)  
• Open = approx. 20% duty cycle.  
• Capacitor to Ground = approx. 20% to < 1% duty cycle.  
• Pull-up resistor = approx. 20% to approx. 75% duty cycle.  
• Ground = maintained shutdown upon overcurrent condition.  
4
5
Gnd  
Circuit Ground  
Sense +  
Current Sense Comparator (+) Input: Connect to high side of sense resistor  
or current sensing MOSFET sense lead. A built-in offset in conjunction with  
RSENSE sets the load overcurrent trip point.  
6
7
Sense –  
Gate  
Current Sense Comparator (–) Input: Connect to the low side of the sense  
resistor (usually the high side of the load).  
Gate Drive: Drives the gate of an external power MOSFET. Also limits VGS  
to 15V max. to prevent Gate-to-Source damage. Will sink and source  
current.  
8
VBOOST  
Charge Pump Boost Capacitor: A bootstrap capacitor from VBOOST to the  
FET source pin supplies charge to quickly enhance the Gate output during  
turn-on.  
5-170  
October 1998  
MIC5021  
Micrel  
Absolute Maximum Ratings  
Operating Ratings  
Supply Voltage (V ) ..................................................+40V  
Supply Voltage (V ) .................................... +12V to +36V  
DD  
DD  
Input Voltage ................................................ –0.5V to +15V  
Sense Differential Voltage..........................................±6.5V  
Sense + or Sense – to Gnd.......................... –0.5V to +36V  
Temperature Range  
PDIP ....................................................... –40°C to +85°C  
SOIC ...................................................... –40°C to +85°C  
Timer Voltage (C ) .....................................................+5.5V  
T
V
Capacitor .................................................... 0.01µF  
BOOST  
Electrical Characteristics  
TA = 25°C, Gnd = 0V, VDD = 12V, CT = Open, Gate CL = 1500pF (IRF540 MOSFET) unless otherwise specified  
Symbol  
Parameter  
Condition  
Min  
Typ  
1.8  
2.5  
1.7  
2.5  
1.4  
0.1  
20  
Max  
4
Units  
mA  
mA  
mA  
mA  
V
D.C. Supply Current  
VDD = 12V, Input = 0V  
VDD = 36V, Input = 0V  
VDD = 12V, Input = 5V  
VDD = 36V, Input = 5V  
6
4
6
Input Threshold  
0.8  
2.0  
Input Hysteresis  
V
Input Pull-Down Current  
Current Limit Threshold  
Gate On Voltage  
Input = 5V  
10  
30  
16  
46  
2
40  
70  
µA  
mV  
V
Note 1  
50  
VDD = 12V Note 2  
18  
21  
5
VDD = 36V Note 2  
50  
52  
V
tG(ON)  
tG(OFF)  
tDLH  
tR  
Gate On Time, Fixed  
Gate Off Time, Adjustable  
Gate Turn-On Delay  
Gate Rise Time  
Sense Differential > 70mV  
6
10  
µs  
Sense Differential > 70mV, CT = 0pF  
10  
20  
50  
µs  
Note 3  
Note 4  
Note 5  
Note 6  
Note 7  
500  
400  
800  
400  
150  
1000  
500  
1500  
500  
ns  
ns  
tDLH  
tF  
Gate Turn-Off Delay  
Gate Fall Time  
ns  
ns  
fmax  
Maximum Operating Frequency  
100  
kHz  
Note 1 When using sense MOSFETs, it is recommended that R  
Note 2 DC measurement.  
< 50. Higher values may affect the sense MOSFET’s current transfer ratio.  
SENSE  
Note 3 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 0V to 2V.  
Note 4 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 2V to 17V.  
Note 5 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 20V (Gate on voltage) to 17V.  
Note 6 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 17V to 2V.  
Note 7 Frequency where gate on voltage reduces to 17V with 50% input duty cycle.  
October 1998  
5-171  
MIC5021  
Micrel  
Typical Characteristics  
Gate Voltage Change  
vs. Supply Voltage  
Gate Turn-On Delay vs.  
Supply Voltage  
Supply Current vs.  
Supply Voltage  
2.5  
25  
20  
15  
10  
5
900  
850  
800  
750  
700  
650  
VGATE = VSUPPLY + 4V  
VGATE = VGATE – VSUPPLY  
VIN = 0V  
2.0  
CL = 1500pF (IRCZ34)  
CBOOST = 0.01µF  
1.5  
VIN = 5V  
1.0  
0.5  
0.0  
INCLUDES PROPAGATION DELAY  
0
5
10 15 20 25 30 35 40  
5
10 15 20 25 30 35 40  
(V)  
5
10 15 20 25 30 35 40  
V
(V)  
V
V
(V)  
SUPPLY  
SUPPLY  
SUPPLY  
Gate Turn-On Delay vs.  
Supply Voltage  
Gate Turn-On Delay vs.  
Gate Capacitance  
Gate Turn-Off Delay vs.  
Supply Voltage  
1000  
950  
900  
850  
800  
750  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2000  
1750  
1500  
1250  
1000  
750  
VGATE = VSUPPLY + 4V  
VGATE = VSUPPLY + 4V  
VSUPPLY = 12V  
VGATE = VSUPPLY + 10V  
RL = 400  
CL = 1500pF (IRCZ34)  
CBOOST = 0.01µF  
CGATE = 1500pF  
(IRCZ34)  
INCLUDES PROPAGATION DELAY  
INCLUDES PROPAGATION DELAY  
INCLUDES PROPAGATION DELAY  
5
10 15 20 25 30 35 40  
0
1
2
3
4
5
5
10 15 20 25 30 35 40  
1x10 1x10 1x10 1x10 1x10 1x10  
(pF)  
V
(V)  
V
(V)  
C
SUPPLY  
SUPPLY  
GATE  
Overcurrent Retry Duty  
Cycle vs. Timing Capacitance  
Sense Threshold vs.  
Temperature  
Input Current vs.  
Input Voltage  
25  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
VSUPPLY = 12V  
tON = 5µs  
V
SUPPLY = 12V  
20  
15  
10  
5
NOTE:  
tON, tOFF TIME  
INDEPENDENT  
OF VSUPPLY  
0
0
5
10  
V
15  
(V)  
20  
25  
-60 -30  
0
30 60 90 120 150  
0.1  
1
10  
C
100 1000 10000  
(pF)  
TEMPERATURE (°C)  
IN  
T
TTL (H)  
0V  
Input  
Gate  
15V (max.)  
Source  
50mV  
Sense +, –  
Differential  
0V  
Timing Diagram 1. Normal Operation  
6µs  
20µs  
6µs  
TTL (H)  
0V  
TTL (H)  
Input  
Gate  
Input  
Gate  
0V  
15V (max.)  
Source  
50mV  
15V (max.)  
Source  
50mV  
Sense +, –  
Differential  
Sense +, –  
Differential  
0V  
0V  
Timing Diagram 2. Fault Condition, C = Open  
Timing Diagram 3. Fault Condition, C = Grounded  
T
T
5-172  
October 1998  
MIC5021  
Micrel  
An internal zener diode protects the external MOSFET by  
limiting the gate to source voltage.  
Functional Description  
Refer to the MIC5021 block diagram.  
Input  
Sense Inputs  
The MIC5021’s 50mV (nominal) trip voltage is created by  
internal current sources that force approximately 5µA out of  
SENSE + and approximately 15µA (at trip) out of SENSE –.  
When SENSE – is 50mV or more below SENSE +, SENSE –  
steals base current from an internal drive transistor shutting  
off the external MOSFET.  
A signal greater than 1.4V (nominal) applied to the MIC5021  
INPUT causes gate enhancement on an external MOSFET  
turning the MOSFET on.  
An internal pull-down resistor insures that an open INPUT  
remains low, keeping the external MOSFET turned off.  
Gate Output  
Overcurrent Limiting  
Rapid rise and fall times on the GATE output are possible  
because each input state change triggers a one-shot which  
Current source I charges C  
externalcapacitorconnectedtoC iskeptdischargedthrough  
a MOSFET Q1.  
upon power up. An optional  
INT  
1
T
activatesahigh-valuecurrentsink(10I )forashorttime. This  
2
draws a high current though a current mirror circuit causing  
the output transistors to quickly charge or discharge the  
external MOSFET’s gate.  
A fault condition (> 50mV from SENSE + to SENSE –) causes  
the overcurrent comparator to enable current sink 2I which  
1
overcomescurrentsourceI todischargeC inashorttime.  
1
INT  
A second current sink continuously draws the lower value of  
current used to maintain the gate voltage for the selected  
state.  
When C  
is discharged, the INPUT is disabled, which turns  
INT  
off the gate output, and C and C are ready to be charged.  
INT  
T
When the gate output turns the MOSFET off, the overcurrent  
signal is removed from the sense inputs which deactivates  
Aninternalchargepumputilizesanexternalboostcapacitor  
connected between V  
and the source of the external  
current sink 2I . This allows C  
and the optional capacitor  
BOOST  
1
INT  
MOSFET. (Refer to typical application.) The boost capacitor  
stores charge when the MOSFET is off. As the MOSFET  
turns on, its source to ground voltage increases and is added  
connected to C to recharge. A Schmitt trigger delays the  
T
retry while the capacitor(s) recharge. Retry delay is in-  
creased by connecting a capacitor to C (optional).  
T
to the voltage across the capacitor, raising the V  
pin  
BOOST  
The retry cycle will continue until the fault is removed or the  
input is changed to TTL low.  
voltage. The boost capacitor charge is directed through the  
GATE pin to quickly charge the MOSFET’s gate to 16V  
5
If C is connected to ground, the circuit will not retry upon a  
T
maximum above V . The internal charge pump maintains  
DD  
fault condition.  
the gate voltage.  
Supply Voltage  
Applications Information  
The MIC5021’s supply input (V ) is rated up to 36V. The  
supply voltage must be equal to or greater than the voltage  
applied to the drain of the external N-channel MOSFET.  
DD  
The MIC5021 MOSFET driver is intended for high-side  
switching applications where overcurrent limiting and high  
speedarerequired. TheMIC5021cancontrolMOSFETsthat  
switch voltages up to 36V.  
A 16V minimum supply is recommended to produce continu-  
ous on-state, gate drive voltage for standard MOSFETs (10V  
nominal gate enhancement).  
High-Side Switch Circuit Advantages  
High-side switching allows more of the load related compo-  
nents and wiring to remain near ground potential when  
compared to low-side switching. This reduces the chances  
of short-to-ground accidents or failures.  
Whenthedriverispoweredfroma12Vto16Vsupply, alogic-  
level MOSFET is recommended (5V nominal gate enhance-  
ment).  
PWMoperationmayproducesatisfactorygateenhancement  
at lower supply voltages. This occurs when fast switching  
repetition makes the boost capacitor a more significant  
voltage supply than the internal charge pump.  
Speed Advantage  
The MIC5021 is about two orders of magnitude faster than  
the low cost MIC5014 making it suitable for high-frequency  
high-efficiency circuit operation in PWM (pulse width modu-  
lation) designs used for motor control, SMPS (switch mode  
power supply) and heating element control.  
Switched loads (on/off) benefit from the MIC5021’s fast  
switching times by allowing use of MOSFETs with smaller  
safe operating areas. (Larger MOSFETs are often required  
when using slower drivers.)  
October 1998  
5-173  
MIC5021  
Micrel  
Logic-Level MOSFET Precautions  
A 0.01µF boost capacitor is recommended for best perfor-  
mance in the 12V to 20V range. Refer to figure 1. Larger  
capacitors may damage the MIC5021.  
Logic-level MOSFETs have lower maximum gate-to-source  
voltage ratings (typically ±10V) than standard MOSFETs  
(typically±20V). WhenanexternalMOSFETisturnedon,the  
doubling effect of the boost capacitor can cause the gate-to-  
source voltage to momentarily exceed 10V. Internal zener  
diodes clamp this voltage to 16V maximum which is too high  
for logic-level MOSFETs. To protect logic-level MOSFETs,  
+12V to +36V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
VDD  
Input  
CT  
VBOOST  
Gate  
TTL Input  
connect a zener diode (5VV  
<10V) from gate to source.  
Zener  
2.7  
nF  
Sens
Sens
Overcurrent Limiting  
Gnd  
A 50mV comparator is provided for current sensing. The low  
2
level trip point minimizes I R losses when a power resistor is  
used for current sensing.  
The adjustable retry feature can be used to handle loads with  
high initial currents, such as lamps or heating elements, and  
can be adjusted from the C connection.  
T
C to ground maintains gate drive shutdown following an  
overcurrent condition.  
T
Figure 2. 12V to 36V Configuration  
If the full 12V to 36V voltage range is required, the boost  
capacitor value must be reduced to 2.7nF. Refer to Figure 2.  
The recommended configuration for the 20V to 36V range is  
C open, or a capacitor to ground, causes automatic retry.  
T
Thedefaultdutycycle(C open)isapproximately20%. Refer  
T
to the electrical characteristics when selecting a capacitor for  
reduced duty cycle.  
to place the capacitor is placed between V and V  
as  
DD  
BOOST  
shown in Figure 3.  
C through a pull-up resistor to V increases the duty cycle.  
T
DD  
+12V to +36V  
Increasing the duty cycle increases the power dissipation in  
the load and MOSFET under a “fault” condition. Circuits may  
become unstable at a duty cycle of about 75% or higher,  
depending on conditions. Caution: The MIC5021 may be  
0.1  
µF  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
VDD  
Input  
CT  
VBOOST  
Gate  
TTL Input  
damaged if the voltage applied to C exceeds the absolute  
T
maximum voltage rating.  
Sens
Sens
Boost Capacitor Selection  
Gnd  
The boost capacitor value will vary depending on the supply  
voltage range.  
+12V to +20V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
VDD  
Input  
CT  
VBOOST  
Gate  
Figure 3. Preferred 20V to 36V Configuration  
Do not use both boost capacitor between V and the  
TTL Input  
0.01  
µF  
BOOST  
Sens
Sens
MOSFET source and V  
and V at the same time.  
BOOST  
DD  
Gnd  
Current Sense Resistors  
Lead length can be significant when using low value (< 1)  
resistors for current sensing. Errors caused by lead length  
can be avoided by using four-teminal current sensing resis-  
tors. Four-terminal resistors are available from several  
manufacturers.  
Figure 1. 12V to 20V Configuration  
5-174  
October 1998  
MIC5021  
Micrel  
Circuits Without Current Sensing  
The diode should have a peak forward current rating greater  
thantheloadcurrent. Thisisbecausethecurrentthroughthe  
diode is the same as the load current at the instant the  
MOSFET is turned off.  
V+  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
+20V to +36V  
(+24V)  
VDD  
Input  
CT  
VBOOST  
Gate  
N-Channel  
Power MOSFET  
0.01  
µF  
MIC5021  
Sense  
Sense+  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
0.01  
µF  
VDD  
Input  
CT  
VBOOST  
Gate  
Gnd  
N-Channel  
Power MOSFET  
(IRF540)  
Load  
Sens
Sens
Gnd  
Figure 4a. Connecting Sense to Source  
RSENSE  
(< 0.08)  
V+  
Solenoid  
(24V, 47)  
Schottky  
Diode  
(1N5822)  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
N-Channel  
Power MOSFET  
Sense−  
Sense+  
Figure 5. Solenoid Driver  
with Current Sensing  
0.01  
µF  
Gnd  
Load  
Sense Pin Considerations  
The sense pins of the MIC5021 are sensitive to negative  
voltages. Forcing the sense pins much below –0.5V effec-  
tively reverses the supply voltage on portions of the driver  
resulting in unpredictable operation or damage.  
Figure 4b. Connecting Sense to Supply  
Current sensing may be omitted by connecting the SENSE +  
and SENSE – pins to the source of the MOSFET or to the  
supply. Connecting the SENSE pins to the supply is preferred  
forinductiveloads. DonotconnecttheSENSE pinstoground.  
MIC5021  
1
2
3
4
8
7
6
5
VDD  
Input  
CT  
5
Gate  
Inductive Load Precautions  
MOSFET  
Turnoff  
Circuitscontrollinginductiveloads,suchassolenoids(Figure  
5) and motors, require precautions when controlled by the  
MIC5021. Wire wound resistors, which are sometimes used  
to simulate other loads, can also show significant inductive  
properties.  
~V  
0V  
DD  
Negative  
Spike  
Forward drop across diodes  
allows leads to go negative.  
Inductive  
Load  
Current flows from ground (0V)  
through the diodes to the load  
during negative transcients.  
An inductive load releases stored energy when its current  
flow is interrupted (when the MOSFET is switched off). The  
voltage across the inductor reverses and the inductor at-  
tempts to force current flow. Since the circuit appears open  
(theMOSFETappearsasaveryhighresistance)averylarge  
negative voltage occurs across the inductor.  
Figure 6. Inductive Load Turnoff  
Figure 6 shows current flowing out of the sense leads of an  
MIC5021duringanegativetransient(inductivekick). Internal  
Schottky diodes attempt to limit the negative transient by  
maintaining a low forward drop.  
Limiting Inductive Spikes  
The voltage across the inductor can be limited by connecting  
aSchottkydiodeacrosstheload. Thediodeisforwardbiased  
only when the load is switched off. The Schottky diode  
clamps negative transients to a few volts. This protects the  
MOSFET from drain-to-source breakdown and prevents the  
transientfromdamagingthechargepumpbywayoftheboost  
capacitor. Also see Sense Pin Considerations below.  
Although the internal Schottky diodes can protect the driver  
in low-current resistive applications, they are inadequate for  
inductive loads or the lead inductance in high-current resis-  
tive loads. Because of their small size, the diodes’ forward  
voltage drop quickly exceeds 0.5V as current increases.  
October 1998  
5-175  
MIC5021  
Micrel  
External Protection  
High-Side Sensing  
Resistors placed in series with each SENSE connection limit  
the current drawn from the internal Schottky diodes during a  
negative transient. This minimizes the forward drop across  
the diodes.  
Sensing the current on the high side of the MOSFET isolates  
the SENSE pins from the inductive spike.  
+12V to +20V  
(+12V)  
MIC5021  
MIC5021  
RSENSE  
(< 0.01)  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
VDD  
Input  
CT  
VBOOST  
Gate  
N-Channel  
Power MOSFET  
N-Channel  
Power MOSFET  
(IRFZ44)  
Sense−  
Sense+  
Sens
Sens
R1  
Gnd  
Gnd  
5µA  
VR1  
R2  
0.01  
µF  
50mV nominal  
RS  
(at trip)  
Wirewound  
Resistor  
(3)  
VR1 = VR2  
to avoid skewing  
the 50mV trip point..  
15µA  
VR2  
(5mV suggested)  
R1 3 × R2  
Figure 9. High Side Sensing  
Lamp Driver Application  
Figure 7. Resistor Voltage Drop  
Duringnormaloperation,sensingcurrentfromthesensepins  
is unequal (5µA and 15µA). The internal Schottky diodes are  
reverse biased and have no effect. To avoid skewing the trip  
voltage, the current limiting resistors must drop equal volt-  
ages at the trip point currents. See Figure 7. To minimize  
resistor tolerance error, use a voltage drop lower than the trip  
voltage of 50mV. 5mV is suggested.  
Incandescent lamps have a high inrush current (low resis-  
tance) when turned on. The MIC5021 can perform a “soft  
start” by pulsing the MOSFET (overcurrent condition) until  
the filament is warm and its current decreases (resistance  
increases). The sense resistor value is selected so the  
voltage drop across the sense resistor decreases below the  
sense threshold (50mV) as the filament becomes warm. The  
FET is no longer pulsed and the lamp turns completely on.  
External Schottky diodes are also recommended. See D2  
and D3 in Figure 8. The external diodes clamp negative  
transients better than the internal diodes because their larger  
size minimizes the forward voltage drop at higher currents.  
V+  
(+12V)  
MIC5021  
+12V to +36V  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
N-Channel  
Power MOSFET  
(IRF540)  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
Sense−  
Sense+  
VDD  
Input  
CT  
VBOOST  
Gate  
0.01  
µF  
Gnd  
N-Channel  
Power MOSFET  
TTL Input  
2.7  
nF  
RSENSE  
(0.041)  
Sens
Sens
R1  
Gnd  
1.0k  
Incandescent  
Lamp (#1157)  
"( )" values apply to demo circuit.  
See text.  
D2  
RSENSE  
11DQ03  
R2  
330Ω  
D3  
11DQ03  
Figure 10. Lamp Driver with  
Current Sensing  
Inductive  
Load  
D1  
A lamp may not fully turn on if the filament does not heat up  
adequately. Changing the duty cycle, sense resistor, or both  
tomatchthefilamentcharacteristicscancorrecttheproblem.  
Soft start can be demonstrated using a #1157 dual filament  
Figure 8. Protection from Inductive Kick  
automotive lamp. The value of R shown in Figure 10 allows  
S
for soft start of the higher-resistance filament (measures  
approx. 2.1cold or 21hot).  
5-176  
October 1998  
MIC5021  
Micrel  
+12V to +36V  
Remote Overcurrent Limiting Reset  
In circuit breaker applications where the MIC5021 maintains  
an off condition after an overcurrent condition is sensed, the  
MIC5021AJB  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
C pin can be used to reset the MIC5021.  
T
+12V to +20V  
Sens
Sens
2.7  
nF  
2.2M  
MIC5021  
Gnd  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
RSENSE  
N-Channel  
Power  
add resistor for  
–40°C to –55°C  
operation  
10k to  
100k  
MOSFET  
Sens
Sens
0.01  
µF  
2N3904  
Q1  
Gnd  
74HC04  
(example)  
RSENSE  
Retry (H)  
Maintained (L)  
Figure 12a. Gate-to-Source Pull Down  
The gate-to-source configuration (refer to Figure 12a) is  
appropriate for resistive and inductive loads. This also  
causes the smallest decrease in gate output voltage.  
Figure 11. Remote Control Circuit  
+12V to +36V  
SwitchingQ1onpullsC lowwhichkeepstheMIC5021GATE  
T
MIC5021AJB  
output off when an overcurrent is sensed. Switching Q1 off  
causes C to appear open. The MIC5021 retries in about  
20µs and continues to retry until the overcurrent condition is  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
Gate  
T
removed.  
Sens
Sens
2.7  
nF  
For demonstration purposes, a 680load resistor and 3Ω  
senseresistorwillproduceanovercurrentconditionwhenthe  
load’s supply (V+) is approximately 12V or greater.  
Gnd  
RSENSE  
5
Low-Temperature Operation  
add resistor for  
–40°C to –55°C  
operation  
2.2M  
As the temperature of the MIC5021AJB (extended tempera-  
ture range version—no longer available) approaches –55°C,  
the driver’s off-state, gate-output offset from ground in-  
creases. If the operating environment of the MIC5021AJB  
includes low temperatures (–40°C to –55°C), add an external  
2.2Mresistor as shown in Figures 12a or 12b. This assures  
that the driver’s gate-to-source voltage is far below the  
external MOSFET’s gate threshold voltage, forcing the  
MOSFET fully off.  
Figure 12b. Gate-to-Ground Pull Down  
The gate-to-ground configuration (refer to Figure 12b) is  
appropriate for resistive, inductive, or capacitive loads. This  
configuration will decrease the gate output voltage slightly  
more than the circuit shown in Figure 12a.  
October 1998  
5-177  

相关型号:

MIC5021YM

BUF OR INV BASED MOSFET DRIVER, PDSO8
MICROCHIP

MIC5021YM-TR

BUF OR INV BASED MOSFET DRIVER, PDSO8
MICROCHIP

MIC5021YMTR

BUF OR INV BASED MOSFET DRIVER, PDSO8, LEAD FREE, SOIC-8
MICROCHIP

MIC5021YN

BUF OR INV BASED MOSFET DRIVER, PDIP8
MICROCHIP

MIC5021_05

High-Speed High-Side MOSFET Driver
MICREL

MIC5022

Half-Bridge MOSFET Driver
MICREL

MIC5022AJB

Half Bridge Based MOSFET Driver, BIMOS, CDIP14, CERDIP-14
MICREL

MIC5022AJBQ

Half Bridge Based MOSFET Driver, CDIP14, CERDIP-14
MICREL

MIC5022BN

Half-Bridge MOSFET Driver
MICREL

MIC5022BWM

Half-Bridge MOSFET Driver
MICREL

MIC5022_05

Half-Bridge MOSFET Driver
MICREL

MIC502BM

Fan Management IC Advance Information
MICREL