MIC5021YMTR [MICROCHIP]

BUF OR INV BASED MOSFET DRIVER, PDSO8, LEAD FREE, SOIC-8;
MIC5021YMTR
型号: MIC5021YMTR
厂家: MICROCHIP    MICROCHIP
描述:

BUF OR INV BASED MOSFET DRIVER, PDSO8, LEAD FREE, SOIC-8

驱动 光电二极管 接口集成电路 驱动器
文件: 总10页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5021  
High-Speed High-Side MOSFET Driver  
General Description  
Features  
The MIC5021 high-side MOSFET driver is designed to oper-  
ate at frequencies up to 100kHz (5kHz PWM for 2% to 100%  
duty cycle) and is an ideal choice for high speed applications  
such as motor control, SMPS (switch mode power supplies),  
andapplicationsusingIGBTs.TheMIC5021canalsooperate  
as a circuit breaker with or without automatic retry.  
• 12V to 36V operation  
• 550ns rise/fall time driving 2000pF  
• TTL compatible input with internal pull-down resistor  
• Overcurrent limit  
• Gate to source protection  
• Internal charge pump  
• 100kHz operation guaranteed over full temperature and  
operating voltage range  
• Compatible with current sensing MOSFETs  
• Current source drive reduces EMI  
Arising or falling edge on the input results in a current source  
pulse or sink pulse on the gate output. This output current  
pulsecanturnona2000pFMOSFETinapproximately550ns.  
The MIC5021 then supplies a limited current (< 2mA), if  
necessary, to maintain the output state.  
Applications  
• Lamp control  
• Heater control  
• Motor control  
• Solenoid switching  
• Switch-mode power supplies  
• Circuit breaker  
Anovercurrentcomparatorwithatripvoltageof50mVmakes  
theMIC5021idealforusewithacurrentsensingMOSFET.An  
external low value resistor may be used instead of a sensing  
MOSFET for more precise overcurrent control. An optional  
external capacitor placed from the C pin to ground may be  
T
used to control the current shutdown duty cycle (dead time)  
from 20% to < 1%. A duty cycle from 20% to about 75% is  
possible with an optional pull-up resistor from C to V  
.
T
DD  
Ordering Information  
The MIC5021 is available in 8-pin SOIC and plastic DIP  
packages.  
Part Number  
Temperature  
Range  
Package  
Standard Pb-Free  
Other members of the MIC502x family include the MIC5020  
low-side driver and the MIC5022 half-bridge driver with a  
cross-conduction interlock.  
MIC5021BM MIC5021YM –40ºC to +85ºC 8-pin SOIC  
MIC5021BN MIC5021YN –40ºC to +85ºC 8-pin Plastic DIP  
Typical Application  
+12V to +36V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
optional*  
V
V
DD  
BOOST  
Gate  
N-Channel  
Power MOSFET  
Input  
C
Sense-  
Sense+  
T
2.7  
nF  
Gnd  
RSENSE  
50mV  
ITRIP  
RSENSE  
=
Load  
* increases time before retry  
High-Side Driver with Overcurrent Trip and Retry  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
July 2005  
1
MIC5021  
MIC5021  
Micrel, Inc.  
Pin Configuration  
1
2
V
V
8
7
1
2
V
V
8
7
DD  
BOOST  
Gate  
DD  
BOOST  
Gate  
Input  
Input  
Sense-  
Sense+  
Sense-  
C
T
C
T
3
4
6
5
3
4
6
5
Gnd  
Gnd Sense+  
DIP Package  
(N)  
SOIC Package  
(M)  
Block Diagram  
6V Internal Regulator  
I1  
Fault  
CT  
CINT  
2I1  
Normal  
VDD  
CHARGE  
PUMP  
VBOOST  
Q1  
Sense+  
15V  
Sense-  
ON  
50mV  
OFF  
6V  
ONE-  
SHOT  
10I2  
I2  
Gate  
Input  
Transistor: 106  
Pin Description  
Pin Number  
Pin Name  
VDD  
Pin Function  
Supply: +12V to +36V. Decouple with ≥ 10µF capacitor.  
1
2
Input  
TTL Compatible Input: Logic high turns the external MOSFET on. An inter-  
nal pull-down returns an open pin to logic low.  
3
CT  
Retry Timing Capacitor: Controls the off time (tG(OFF)) of the overcurrent  
retry cycle. (Duty cycle adjustment.)  
• Open = approx. 20% duty cycle.  
• Capacitor to Ground = approx. 20% to < 1% duty cycle.  
• Pull-up resistor = approx. 20% to approx. 75% duty cycle.  
• Ground = maintained shutdown upon overcurrent condition.  
4
5
Gnd  
Circuit Ground  
Sense +  
Current Sense Comparator (+) Input: Connect to high side of sense resistor  
or current sensing MOSFET sense lead. A built-in offset in conjunction with  
RSENSE sets the load overcurrent trip point.  
6
7
Sense –  
Gate  
Current Sense Comparator (–) Input: Connect to the low side of the sense  
resistor (usually the high side of the load).  
Gate Drive: Drives the gate of an external power MOSFET. Also limits VGS  
to 15V max. to prevent Gate-to-Source damage. Will sink and source cur-  
rent.  
8
VBOOST  
Charge Pump Boost Capacitor: A bootstrap capacitor from VBOOST to the  
FET source pin supplies charge to quickly enhance the Gate output during  
turn-on.  
MIC5021  
2
July 2005  
MIC5021  
Micrel, Inc.  
Absolute Maximum Ratings  
Operating Ratings  
Supply Voltage (V )...................................................+40V  
Supply Voltage (V )..................................... +12V to +36V  
DD  
DD  
Input Voltage .................................................–0.5V to +15V  
Sense Differential Voltage ..........................................±6.5V  
Sense + or Sense – to Gnd...........................–0.5V to +36V  
Temperature Range  
.....................................................................  
PDIP  
–40°C to +85°C  
SOIC ...................................................... –40°C to +85°C  
Timer Voltage (C )......................................................+5.5V  
T
V
Capacitor..................................................... 0.01µF  
BOOST  
Electrical Characteristics  
TA = 25°C, Gnd = 0V, VDD = 12V, CT = Open, Gate CL = 1500pF (IRF540 MOSFET) unless otherwise specified  
Symbol  
Parameter  
Condition  
VDD = 12V, Input = 0V  
Min  
Typ  
1.8  
2.5  
1.7  
2.5  
1.4  
0.1  
20  
Max  
4
Units  
mA  
mA  
mA  
mA  
V
D.C. Supply Current  
VDD = 36V, Input = 0V  
VDD = 12V, Input = 5V  
VDD = 36V, Input = 5V  
6
4
6
Input Threshold  
0.8  
2.0  
Input Hysteresis  
V
Input Pull-Down Current  
Current Limit Threshold  
Gate On Voltage  
Input = 5V  
10  
30  
16  
46  
2
40  
70  
µA  
mV  
V
Note 1  
50  
VDD = 12V Note 2  
18  
21  
VDD = 36V Note 2  
50  
52  
V
tG(ON)  
tG(OFF)  
tDLH  
tR  
Gate On Time, Fixed  
Gate Off Time, Adjustable  
Gate Turn-On Delay  
Gate Rise Time  
Sense Differential > 70mV  
6
10  
µs  
Sense Differential > 70mV, CT = 0pF  
10  
20  
50  
µs  
Note 3  
Note 4  
Note 5  
Note 6  
Note 7  
500  
400  
800  
400  
150  
1000  
500  
1500  
500  
ns  
ns  
tDLH  
tF  
Gate Turn-Off Delay  
Gate Fall Time  
ns  
ns  
fmax  
Maximum Operating Frequency  
100  
kHz  
Note 1 When using sense MOSFETs, it is recommended that RSENSE < 50Ω. Higher values may affect the sense MOSFET’s current transfer ratio.  
Note 2 DC measurement.  
Note 3 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 0V to 2V.  
Note 4 Input switched from 0.8V (TTL low) to 2.0V (TTL high), time for Gate transition from 2V to 17V.  
Note 5 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 20V (Gate on voltage) to 17V.  
Note 6 Input switched from 2.0V (TTL high) to 0.8V (TTL low), time for Gate transition from 17V to 2V.  
Note 7 Frequency where gate on voltage reduces to 17V with 50% input duty cycle.  
July 2005  
3
MIC5021  
MIC5021  
Micrel, Inc.  
Typical Characteristics  
Gate Voltage Change  
vs. Supply Voltage  
Gate Turn-On Dalay vs.  
Supply Current vs.  
Supply Voltage  
Supply Voltage  
2.5  
25  
20  
15  
10  
5
900  
850  
800  
750  
700  
650  
VGATE = VSUPPLY + 4V  
CL = 1500pF(IRCZ34)  
CBOOST = 0.01µF  
VGATE = VGATE – VS U P P L Y  
VIN = 0V  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 5V  
INCLUDES PROPAGATION DELAY  
0
5
10 15 20 25 30 35 40  
VSUPPLY (V)  
5
10 15 20 25 30 35 40  
VSUPPLY (V)  
5
10 15 20 25 30 35 40  
VSUPPLY (V)  
Gate Turn-On Delay vs.  
Supply Voltage  
Gate Turn-On Delay vs.  
Gate Capacitance  
Gate Turn-Off Delay vs.  
Supply Voltage  
1000  
950  
900  
850  
800  
750  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2000  
1750  
1500  
1250  
1000  
750  
VGATE = VSUPPLY + 4V  
RL = 400  
VGATE = VSUPPLY + 4V  
VSUPPLY = 12V  
VGATE = VSUPPLY + 10V  
CL = 1500pF(IRCZ34)  
CBOOST= 0.01µF  
CGATE = 1500pF  
(IRCZ34)  
INCLUDES PROPAGATION DELAY  
INCLUDES PROPAGATION DELAY  
INCLUDES PROPAGATION DELAY  
1x100 1x101 1x102 1x103 1x104 1x105  
CGATE (pF)  
5
10 15 20 25 30 35 40  
VSUPPLY (V)  
5
10 15 20 25 30 35 40  
VSUPPLY (V)  
Overcurrent Retry Duty  
Cycle vs. Timing Capacitance  
Sense Threshold vs.  
Temperature  
Input Current vs.  
Input Voltage  
25  
100  
80  
70  
60  
50  
40  
30  
20  
VSUPPLY = 12V  
tON = 5µs  
VSUPPLY = 12V  
20  
15  
10  
5
80  
60  
40  
20  
0
NOTE:  
tON, tOFF TIME  
INDEPENDENT  
OF VSUPPLY  
0
0
5
10  
15  
20  
25  
-60 -30  
0
30 60 90 120 150  
0.1  
1
10  
100 1000 10000  
VIN (V)  
TEMPERATURE (°C)  
CT (pF)  
TTL (H)  
0V  
Input  
15V (max.)  
Source  
Gate  
Sense +,–  
50mV  
Differential  
0V  
Timing Diagram 1. Normal Operation  
6µs  
6µs  
20µs  
TTL (H)  
0V  
TTL (H)  
Input  
Input  
Gate  
0V  
Gate15V (max.)  
15V (max.)  
Source  
50mV  
Source  
Sense +,–  
Differential  
Sense +,–  
Differential  
50mV  
0V  
0V  
Timing Diagram 2. Fault Condition, C = Open  
Timing Diagram 3. Fault Condition, C = Grounded  
T
T
MIC5021  
4
July 2005  
MIC5021  
Micrel, Inc.  
An internal zener diode protects the external MOSFET by  
limiting the gate to source voltage.  
Functional Description  
Refer to the MIC5021 block diagram.  
Input  
Sense Inputs  
The MIC5021’s 50mV (nominal) trip voltage is created by  
internal current sources that force approximately 5µA out of  
SENSE + and approximately 15µA (at trip) out of SENSE –.  
When SENSE – is 50mV or more below SENSE +, SENSE –  
steals base current from an internal drive transistor shutting  
off the external MOSFET.  
A signal greater than 1.4V (nominal) applied to the MIC5021  
INPUT causes gate enhancement on an external MOSFET  
turning the MOSFET on.  
An internal pull-down resistor insures that an open INPUT  
remains low, keeping the external MOSFET turned off.  
Gate Output  
Overcurrent Limiting  
Rapid rise and fall times on the GATE output are possible  
because each input state change triggers a one-shot which  
Current source I charges C  
externalcapacitorconnectedtoC iskeptdischargedthrough  
a MOSFET Q1.  
upon power up. An optional  
INT  
1
T
activates a high-value current sink (10I ) for a short time.  
2
This draws a high current though a current mirror circuit  
causing the output transistors to quickly charge or discharge  
the external MOSFET’s gate.  
A fault condition (> 50mV from SENSE + to SENSE ) causes  
the overcurrent comparator to enable current sink 2I which  
overcomes current source I to discharge C  
1
in a short  
1
INT  
A second current sink continuously draws the lower value  
of current used to maintain the gate voltage for the selected  
state.  
time. When C is discharged, the INPUT is disabled, which  
INT  
turns off the gate output, and C  
charged.  
and C are ready to be  
INT  
T
Aninternalchargepumputilizesanexternalboostcapacitor  
When the gate output turns the MOSFET off, the overcurrent  
signal is removed from the sense inputs which deactivates  
connected between V  
and the source of the external  
BOOST  
MOSFET. (Refer to typical application.) The boost capacitor  
stores charge when the MOSFET is off. As the MOSFET  
turns on, its source to ground voltage increases and is added  
current sink 2I . This allows C  
and the optional capacitor  
1
INT  
connected to C to recharge. A Schmitt trigger delays the  
T
retrywhilethecapacitor(s)recharge. Retrydelayisincreased  
to the voltage across the capacitor, raising the V  
pin  
BOOST  
by connecting a capacitor to C (optional).  
T
voltage. The boost capacitor charge is directed through  
the GATE pin to quickly charge the MOSFET’s gate to 16V  
The retry cycle will continue until the fault is removed or the  
input is changed to TTL low.  
maximum above V . The internal charge pump maintains  
DD  
If C is connected to ground, the circuit will not retry upon a  
the gate voltage.  
T
Supply Voltage  
Applications Information  
The MIC5021’s supply input (V ) is rated up to 36V. The  
supply voltage must be equal to or greater than the voltage  
applied to the drain of the external N-channel MOSFET.  
The MIC5021 MOSFET driver is intended for high-side  
switching applications where overcurrent limiting and high  
speed are required. The MIC5021 can control MOSFETs  
that switch voltages up to 36V.  
DD  
A16V minimum supply is recommended to produce continu-  
ous on-state, gate drive voltage for standard MOSFETs (10V  
nominal gate enhancement).  
High-Side Switch Circuit Advantages  
High-side switching allows more of the load related com-  
ponents and wiring to remain near ground potential when  
compared to low-side switching. This reduces the chances  
of short-to-ground accidents or failures.  
When the driver is powered from a 12V to 16V supply, a  
logic-level MOSFET is recommended (5V nominal gate  
enhancement).  
PWMoperationmayproducesatisfactorygateenhancement  
at lower supply voltages. This occurs when fast switching  
repetition makes the boost capacitor a more significant volt-  
age supply than the internal charge pump.  
Speed Advantage  
The MIC5021 is about two orders of magnitude faster than  
the low cost MIC5014 making it suitable for high-frequency  
high-efficiency circuit operation in PWM (pulse width modu-  
lation) designs used for motor control, SMPS (switch mode  
power supply) and heating element control.  
Switched loads (on/off) benefit from the MIC5021’s fast  
switching times by allowing use of MOSFETs with smaller  
safe operating areas. (Larger MOSFETs are often required  
when using slower drivers.)  
July 2005  
5
MIC5021  
MIC5021  
Micrel, Inc.  
Logic-Level MOSFET Precautions  
A 0.01µF boost capacitor is recommended for best perfor-  
mance in the 12V to 20V range. Refer to figure 1. Larger  
Logic-level MOSFETs have lower maximum gate-to-source  
voltage ratings (typically ±10V) than standard MOSFETs  
(typically ±20V). When an external MOSFET is turned on,  
the doubling effect of the boost capacitor can cause the  
gate-to-source voltage to momentarily exceed 10V. Internal  
zener diodes clamp this voltage to 16V maximum which  
is too high for logic-level MOSFETs. To protect logic-level  
capacitors may damage the MIC5021.  
+12V to +36V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
VDD  
Input  
C T  
VBOOST  
TTL Input  
Gate  
MOSFETs, connect a zener diode (5V≤V  
gate to source.  
<10V) from  
2.7  
nF  
Zener  
Sense-  
Sense+  
Gnd  
Overcurrent Limiting  
A50mV comparator is provided for current sensing. The low  
2
level trip point minimizes I R losses when a power resistor  
is used for current sensing.  
Load  
The adjustable retry feature can be used to handle loads with  
high initial currents, such as lamps or heating elements, and  
can be adjusted from the C connection.  
T
Figure 2. 12V to 36V Configuration  
C to ground maintains gate drive shutdown following an  
T
If the full 12V to 36V voltage range is required, the boost  
capacitor value must be reduced to 2.7nF. Refer to Figure  
2. The recommended configuration for the 20V to 36V range  
is to place the capacitor is placed between V and V  
overcurrent condition.  
C open, or a capacitor to ground, causes automatic retry.  
T
Thedefaultdutycycle(C open)isapproximately20%. Refer  
T
DD  
BOOST  
to the electrical characteristics when selecting a capacitor for  
reduced duty cycle.  
as shown in Figure 3.  
+12V to +36V  
C through a pull-up resistor to V increases the duty cycle.  
T
DD  
0.01  
µF  
Increasing the duty cycle increases the power dissipation  
in the load and MOSFET under a “fault” condition. Circuits  
may become unstable at a duty cycle of about 75% or higher,  
depending on conditions. Caution: The MIC5021 may be  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
VDD  
VBOOST  
TTL Input  
Input  
C T  
Gate  
Sense-  
Sense+  
damaged if the voltage applied to C exceeds the absolute  
T
Gnd  
maximum voltage rating.  
Boost Capacitor Selection  
The boost capacitor value will vary depending on the supply  
voltage range.  
Load  
+12V to +20V  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
Figure 3. Preferred 20V to 36V Configuration  
Do not use both boost capacitor between V and the  
VDD  
Input  
C T  
VBOOST  
TTL Input  
Gate  
BOOST  
MOSFET source and V  
and V at the same time.  
BOOST  
DD  
0.01  
µF  
Sense-  
Sense+  
Current Sense Resistors  
Gnd  
Lead length can be significant when using low value (< 1Ω)  
resistors for current sensing. Errors caused by lead length  
can be avoided by using four-teminal current sensing re-  
sistors. Four-terminal resistors are available from several  
manufacturers.  
Load  
Figure 1. 12V to 20V Configuration  
MIC5021  
6
July 2005  
MIC5021  
Micrel, Inc.  
Circuits Without Current Sensing  
The diode should have a peak forward current rating greater  
than the load current. This is because the current through  
the diode is the same as the load current at the instant the  
V+  
MOSFET is turned off.  
MIC5021  
1
2
3
4
8
7
6
5
+20V to +36V  
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
(+24V)  
N-Channel  
Gate  
0.01  
µF  
Power MOSFET  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
Sense-  
Sense+  
0.01  
µF  
VDD  
VBOOST  
Gnd  
N-Channel  
Power MOSFET  
(IRF540)  
Input  
Gate  
Load  
Sense-  
Sense+  
C T  
Gnd  
RSENSE  
(< 0.08Ω)  
Figure 4a. Connecting Sense to Source  
V+  
Solenoid  
(24V, 47Ω)  
Schottky  
Diode  
(1N5822)  
MIC5021  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
N-Channel  
Power MOSFET  
Gate  
Sense-  
Sense+  
Figure 5. Solenoid Driver  
with Current Sensing  
0.01  
µF  
Gnd  
Load  
Sense Pin Considerations  
The sense pins of the MIC5021 are sensitive to negative volt-  
ages. Forcing the sense pins much below –0.5V effectively  
reverses the supply voltage on portions of the driver resulting  
Figure 4b. Connecting Sense to Supply  
Current sensing may be omitted by connecting the SENSE +  
and SENSE pins to the source of the MOSFETor to the sup-  
ply. Connecting the SENSE pins to the supply is preferred for  
inductive loads. Do not connect the SENSE pins to ground.  
in unpredictable operation or damage.  
MIC5021  
1
2
3
4
8
7
6
5
VDD  
Input  
CT  
Gate  
MOSFET  
Turnoff  
Inductive Load Precautions  
~V  
DD  
Circuitscontrollinginductiveloads,suchassolenoids(Figure  
5) and motors, require precautions when controlled by the  
MIC5021. Wire wound resistors, which are sometimes used  
to simulate other loads, can also show significant inductive  
properties.  
0V  
Negative  
Spike  
Forward drop across diodes  
allows leads to go negative.  
Inductive  
Load  
Current flows from ground (0V)  
through the diodes to the load  
during negative transcients.  
An inductive load releases stored energy when its current  
flow is interrupted (when the MOSFET is switched off). The  
voltage across the inductor reverses and the inductor at-  
tempts to force current flow. Since the circuit appears open  
(theMOSFETappears asaveryhigh resistance) averylarge  
negative voltage occurs across the inductor.  
Figure 6. Inductive Load Turnoff  
Figure 6 shows current flowing out of the sense leads of an  
MIC5021duringanegativetransient(inductivekick). Internal  
Schottky diodes attempt to limit the negative transient by  
maintaining a low forward drop.  
Limiting Inductive Spikes  
The voltage across the inductor can be limited by connect-  
ing a Schottky diode across the load. The diode is forward  
biasedonlywhentheloadisswitchedoff. TheSchottkydiode  
clamps negative transients to a few volts. This protects the  
MOSFET from drain-to-source breakdown and prevents the  
transientfromdamagingthechargepumpbywayoftheboost  
capacitor. Also see Sense Pin Considerations below.  
Although the internal Schottky diodes can protect the driver  
in low-current resistive applications, they are inadequate for  
inductive loads or the lead inductance in high-current resis-  
tive loads. Because of their small size, the diodes’ forward  
voltage drop quickly exceeds 0.5V as current increases.  
July 2005  
7
MIC5021  
MIC5021  
Micrel, Inc.  
External Protection  
High-Side Sensing  
Resistors placed in series with each SENSE connection limit  
the current drawn from the internal Schottky diodes during a  
negative transient. This minimizes the forward drop across  
Sensing the current on the high side of the MOSFET isolates  
the SENSE pins from the inductive spike.  
+12V to +20V  
(+12V)  
the diodes.  
MIC5021  
MIC5021  
1
2
3
4
8
7
6
5
RSENSE  
(< 0.01Ω)  
1
2
3
4
8
7
6
5
VDD  
Input  
C T  
VBOOST  
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
N-Channel  
Power MOSFET  
Gate  
N-Channel  
Power MOSFET  
(IRFZ44)  
Gate  
Sense-  
Sense+  
Sense-  
Sense+  
R1  
Gnd  
Gnd  
5µA  
VR1  
R2  
50mV nominal  
RS  
0.01  
µF  
(at trip)  
Wirewound  
Resistor  
(3Ω)  
VR1 = VR2  
to avoid skewing  
the 50mV trip point.  
(5mV suggested)  
15µA  
VR2  
Load  
R1 3 R2  
×  
Figure 9. High Side Sensing  
Figure 7. Resistor Voltage Drop  
Lamp Driver Application  
Duringnormaloperation,sensingcurrentfromthesensepins  
is unequal (5µAand 15µA). The internal Schottky diodes are  
reverse biased and have no effect. To avoid skewing the trip  
voltage, the current limiting resistors must drop equal volt-  
ages at the trip point currents. See Figure 7. To minimize  
resistor tolerance error, use a voltage drop lower than the  
trip voltage of 50mV. 5mV is suggested.  
Incandescent lamps have a high inrush current (low resis-  
tance) when turned on. The MIC5021 can perform a “soft  
start” by pulsing the MOSFET (overcurrent condition) until  
the filament is warm and its current decreases (resistance  
increases).Thesenseresistorvalueisselectedsothevoltage  
drop across the sense resistor decreases below the sense  
threshold (50mV) as the filament becomes warm. The FET  
External Schottky diodes are also recommended. See D2  
and D3 in Figure 8. The external diodes clamp negative  
transients better than the internal diodes because their larger  
is no longer pulsed and the lamp turns completely on.  
V+  
(+12V)  
size minimizes the forward voltage drop at higher currents.  
MIC5021  
+12V to +36V  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
CT  
VBOOST  
N-Channel  
Gate  
MIC5021  
Power MOSFET  
(IRF540)  
1
2
3
4
8
7
6
5
10µF  
VDD  
Input  
C T  
VBOOST  
Sense-  
Sense+  
0.01  
µF  
N-Channel  
Power MOSFET  
Gnd  
Gate  
TTL Input  
2.7  
nF  
RSENSE  
(0.041Ω)  
Sense-  
Sense+  
R1  
Gnd  
1.0k  
Incandescent  
Lamp (#1157)  
"( )" values apply to demo circuit.  
See text.  
D2  
11DQ03  
RSENSE  
R2  
330Ω  
D3  
11DQ03  
Figure 10. Lamp Driver with  
Current Sensing  
Inductive  
Load  
D1  
A lamp may not fully turn on if the filament does not heat up  
adequately. Changingthedutycycle,senseresistor,orbothto  
match the filament characteristics can correct the problem.  
Soft start can be demonstrated using a #1157 dual filament  
Figure 8. Protection from Inductive Kick  
automotive lamp. The value of R shown in Figure 10 allows  
S
for soft start of the higher-resistance filament (measures ap-  
prox. 2.1Ω cold or 21Ω hot).  
MIC5021  
8
July 2005  
MIC5021  
Micrel, Inc.  
+12V to +36V  
Remote Overcurrent Limiting Reset  
In circuit breaker applications where the MIC5021 maintains  
an off condition after an overcurrent condition is sensed, the  
MIC5021AJB  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
C pin can be used to reset the MIC5021.  
T
+12V to +20V  
Gate  
Sense-  
Sense+  
2.7  
nF  
MIC5021  
2.2M  
1
2
3
8
7
6
5
Gnd  
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
RSENSE  
N-Channel  
Power  
Gate  
10k to  
100k  
add resistor for  
–40 C to –55  
operation  
MOSFET  
Sense-  
Sense+  
°
°
C
0.01  
µF  
2N3904  
Q1  
4
Load  
Gnd  
74HC04  
(example)  
RSENSE  
Retry (H)  
Maintained (L)  
Figure 12a. Gate-to-Source Pull Down  
Load  
The gate-to-source configuration (refer to Figure 12a) is  
appropriateforresistiveandinductiveloads. Thisalsocauses  
the smallest decrease in gate output voltage.  
+12V to +36V  
Figure 11. Remote Control Circuit  
SwitchingQ1onpullsC lowwhichkeepstheMIC5021GATE  
T
MIC5021AJB  
output off when an overcurrent is sensed. Switching Q1 off  
causes C to appear open. The MIC5021 retries in about  
20µs and continues to retry until the overcurrent condition  
is removed.  
1
2
3
4
8
7
6
5
10µF  
TTL Input  
VDD  
Input  
C T  
VBOOST  
T
Gate  
Sense-  
Sense+  
2.7  
nF  
For demonstration purposes, a 680Ω load resistor and 3Ω  
senseresistorwillproduceanovercurrentconditionwhenthe  
load’s supply (V+) is approximately 12V or greater.  
Gnd  
RSENSE  
Low-Temperature Operation  
add resistor for  
–40 C to –55  
operation  
AsthetemperatureoftheMIC5021AJB(extendedtemperature  
range version—no longer available) approaches –55°C, the  
driver’s off-state, gate-output offset from ground increases.  
If the operating environment of the MIC5021AJB includes  
low temperatures (–40°C to –55°C), add an external 2.2MΩ  
resistor as shown in Figures 12a or 12b. This assures that  
the driver’s gate-to-source voltage is far below the external  
MOSFET’s gate threshold voltage, forcing the MOSFET  
fully off.  
Load  
2.2M  
°
°
C
Figure 12b. Gate-to-Ground Pull Down  
The gate-to-ground configuration (refer to Figure 12b) is ap-  
propriate for resistive, inductive, or capacitive loads. This  
configuration will decrease the gate output voltage slightly  
more than the circuit shown in Figure 12a.  
July 2005  
9
MIC5021  
MIC5021  
Micrel, Inc.  
Package Information  
PIN 1  
DIMENSIONS:  
INCH (MM)  
0.380 (9.65)  
0.370 (9.40)  
0.255 (6.48)  
0.245 (6.22)  
0.135 (3.43)  
0.125 (3.18)  
0.300 (7.62)  
0.013 (0.330)  
0.010 (0.254)  
0.380 (9.65)  
0.320 (8.13)  
0.018 (0.57)  
0.100 (2.54)  
0.130 (3.30)  
0.0375 (0.952)  
8-Pin Plastic DIP (N)  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°–8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Pin SOIC (M)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Inc.  
MIC5021  
10  
July 2005  

相关型号:

MIC5021YN

BUF OR INV BASED MOSFET DRIVER, PDIP8
MICROCHIP

MIC5021_05

High-Speed High-Side MOSFET Driver
MICREL

MIC5022

Half-Bridge MOSFET Driver
MICREL

MIC5022AJB

Half Bridge Based MOSFET Driver, BIMOS, CDIP14, CERDIP-14
MICREL

MIC5022AJBQ

Half Bridge Based MOSFET Driver, CDIP14, CERDIP-14
MICREL

MIC5022BN

Half-Bridge MOSFET Driver
MICREL

MIC5022BWM

Half-Bridge MOSFET Driver
MICREL

MIC5022_05

Half-Bridge MOSFET Driver
MICREL

MIC502BM

Fan Management IC Advance Information
MICREL

MIC502BM

Brushless DC Motor Controller, 0.025A, CMOS, PDSO8, SOIC-8
MICROCHIP

MIC502BN

Fan Management IC Advance Information
MICREL

MIC502BN

Brushless DC Motor Controller, 0.025A, CMOS, PDIP8, PLASTIC, DIP-8
MICROCHIP