MT48V16M16LFFG [MICRON]

MOBILE SDRAM; 移动SDRAM
MT48V16M16LFFG
型号: MT48V16M16LFFG
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

MOBILE SDRAM
移动SDRAM

动态存储器
文件: 总58页 (文件大小:1441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE‡  
256Mb: x16  
MOBILE SDRAM  
MT48V16M16LFFG, MT48H16M16LFFG–  
4 Meg x 16 x 4 banks  
MOBILE SDRAM  
For the latest data sheet revisions, please refer to the Micron  
Website:www.micron.com/dramds  
FEATURES  
• Temperature Compensated Self Refresh (TCSR)  
• Fully synchronous; all signals registered on  
positive edge of system clock  
PINASSIGNMENT(TopView)  
54-BallFBGA  
• Internal pipelined operation; column address can  
be changed every clock cycle  
1
2
3
4
5
6
7
8
9
• Internal banks for hiding row access/precharge  
• Programmable burst lengths: 1, 2, 4, 8, or full page  
• Auto Precharge, includes CONCURRENT AUTO  
PRECHARGE and Auto Refresh Modes  
• Self Refresh Mode  
• 64ms, 8,192-cycle refresh  
• LVTTL-compatible inputs and outputs  
• Low voltage power supply  
A
B
C
D
E
V
SS  
DQ15  
V
SS  
Q
V
DDQ  
DQ0  
V
DD  
DQ14 DQ13  
DQ12 DQ11  
V
DD  
Q
VSSQ  
DQ2  
DQ4  
DQ6  
LDQM  
RAS\  
BA1  
A1  
DQ1  
DQ3  
DQ5  
DQ7  
WE\  
CS\  
V
SS  
Q
VDDQ  
DQ10  
DQ8  
DQ9  
NC  
V
DD  
Q
VSSQ  
V
SS  
VDD  
• Deep Power Down  
• Partial Array Self Refresh power-saving mode  
• Industrial operating temperature (-40oC to +85oC)  
F
UDQM  
NC/A12  
A8  
CK  
CKE  
A9  
CAS\  
BA0  
A0  
G
H
J
A11  
A7  
OPTIONS  
• VDD/VDDQ  
MARKING  
A6  
A10  
VDD  
2.5V/1.8V  
V
1.8V/1.8V  
H
V
SS  
A5  
A4  
A3  
A2  
• Configurations  
16 Meg x 16 (4 Meg x 16 x 4 banks)  
• WRITE Recovery (tWR/tDPL)  
tWR = 2 CLK  
16M16  
FG1  
• Plastic Packages – OCPL1  
54-ball FBGA (8mm x 14mm)  
• Timing (Cycle Time)  
8.0ns @ CL = 3 (125MHz)  
10ns @ CL = 3 (100MHz)  
16 Meg x 16  
4Megx16x4banks  
8K  
Configuration  
Refresh Count  
-8  
-10  
Row Addressing  
BankAddressing  
ColumnAddressing  
8K(A0–A12)  
4 (BA0, BA1)  
512(A0–A8)  
NOTE: 1. See page 58 for FBGA Device Marking Table.  
KEYTIMINGPARAMETERS  
256Mb SDRAM PART NUMBERS  
SPEED  
CLOCK  
ACCESSTIME  
SETUP HOLD  
PARTNUMBER  
ARCHITECTURE  
16 Meg x 16  
16 Meg x 16  
VDD  
2.5V  
1.8V  
GRADE FREQUENCY CL=1* CL=2* CL=3* TIME TIME  
MT48V16M16LFFG  
MT48H16M16LFFG  
-8  
-10  
-8  
125MHz  
100MHz  
100MHz  
83MHz  
50 MHz  
40 MHz  
7ns  
7ns  
2.5ns 1.0ns  
2.5ns 1.0ns  
2.5ns 1.0ns  
2.5ns 1.0ns  
2.5ns 1.0ns  
2.5ns 1.0ns  
8ns  
8ns  
-10  
-8  
19ns  
22ns  
-10  
*CL = CAS (READ) latency  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PUROPOSES ONLY AND ARE SUBJECT TO CHANGE BY  
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON'S PRODUCTION AND DATA SHEET SPECIFICATIONS.  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
256Mb SDRAM PART NUMBERS  
PART NUMBER  
VDD/VDDQ  
ARCHITECTURE  
16 Meg x 16  
16 Meg x 16  
16 Meg x 16  
16 Meg x 16  
PACKAGE  
MT48V16M16LFFG-10  
MT48V16M16LFFG-8  
MT48H16M16LFFG-10  
MT48H16M16LFFG-8  
2.5V / 1.8V  
2.5V / 1.8V  
1.8V / 1.8V  
1.8V / 1.8V  
54-BALL FBGA  
54-BALL FBGA  
54-BALL FBGA  
54-BALL FBGA  
GENERALDESCRIPTION  
The 256Mb SDRAM uses an internal pipelined ar-  
chitecture to achieve high-speed operation. This ar-  
chitecture is compatible with the 2n rule of prefetch  
architectures, but it also allows the column address to  
be changed on every clock cycle to achieve a high-  
speed, fully random access. Precharging one bank  
while accessing one of the other three banks will hide  
the precharge cycles and provide seamless, high-  
speed, random-access operation.  
The 256Mb SDRAM is designed to operate in 2.5V  
and 1.8V memory systems. An auto refresh mode is  
provided, along with a power-saving, power-down  
mode. All inputs and outputs are LVTTL-compatible.  
SDRAMs offer substantial advances in DRAM oper-  
ating performance, including the ability to synchro-  
nously burst data at a high data rate with automatic  
column-address generation, the ability to interleave  
between internal banks to hide precharge time and  
the capability to randomly change column addresses  
on each clock cycle during a burst access.  
The 256Mb SDRAM is a high-speed CMOS,  
dynamic random-access memory containing  
268,435,456 bits. It is internally configured as a quad-  
bank DRAM with a synchronous interface (all signals  
are registered on the positive edge of the clock signal,  
CLK). Each of the x16’s 67,108,864-bit banks is orga-  
nized as 8,192 rows by 512 columns by 16 bits.  
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and con-  
tinue for a programmed number of locations in a pro-  
grammed sequence. Accesses begin with the registra-  
tion of an ACTIVE command, which is then followed by  
a READ or WRITE command. The address bits regis-  
tered coincident with the ACTIVE command are used  
to select the bank and row to be accessed (BA0, BA1  
select the bank; A0–A12 select the row). The address  
bits registered coincident with the READ or WRITE com-  
mand are used to select the starting column location  
for the burst access.  
The SDRAM provides for programmable READ or  
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full  
page, with a burst terminate option. An auto precharge  
function may be enabled to provide a self-timed row  
precharge that is initiated at the end of the burst se-  
quence.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
2
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
TABLEOFCONTENTS  
Functional Block Diagram – 16 Meg x 16 ..................  
54-Ball FBGA Pin Description ....................................  
4
5
Truth Table 2 (CKE) ...................................................... 27  
Truth Table 3 (Current State, Same Bank) ...................... 28  
Truth Table 4 (Current State, Different Bank) ................. 30  
Absolute Maximum Ratings ....................................... 32  
DC Electrical Characteristics  
Functional Description ...............................................  
Initialization ...........................................................  
Register Definition ................................................  
Mode Register ...................................................  
Burst Length ................................................  
Burst Type ...................................................  
CAS Latency ................................................  
Operating Mode ..........................................  
Write Burst Mode ........................................  
Extended Mode Register ...........................  
Temperature Compensated Self Refresh  
6
6
6
6
6
7
8
8
8
9
9
and Operating Conditions ..................................... 32  
Capacitance.................................................................. 33  
AC Electrical Characteristics (Timing Table) ......... 33  
IDD Specifications and Conditions ............................. 35  
Timing Waveforms  
Initialize and Load mode register ........................ 37  
Power-Down Mode ................................................ 38  
Clock Suspend Mode ............................................ 39  
Auto Refresh Mode ................................................ 40  
Self Refresh Mode .................................................. 41  
Reads  
Partial Array Self Refresh ........................... 10  
Deep Power Down ...................................... 10  
Driver Strength ........................................... 10  
Commands ................................................................... 11  
TruthTable1(CommandsandDQMOperation) .............. 11  
Command Inhibit .................................................. 12  
No Operation (NOP) .............................................. 12  
Load mode register ................................................ 12  
Active ....................................................................... 12  
Read ....................................................................... 12  
Write ....................................................................... 12  
Precharge ................................................................ 12  
Auto Precharge ....................................................... 12  
Auto Refresh ........................................................... 12  
Self Refresh ............................................................. 13  
Operation ..................................................................... 14  
Bank/Row Activation ............................................. 14  
Reads ....................................................................... 15  
Writes ....................................................................... 21  
Precharge ................................................................ 23  
Power-Down ........................................................... 23  
Deep Power-Down ................................................ 24  
Clock Suspend........................................................ 24  
Burst Read/Single Write ....................................... 24  
Concurrent Auto Precharge ................................. 25  
Read – Without Auto Precharge ..................... 42  
Read – With Auto Precharge ........................... 43  
Single Read – Without Auto Precharge ......... 44  
Single Read – With Auto Precharge ............... 45  
Alternating Bank Read Accesses .................... 46  
Read – Full-Page Burst .................................... 47  
Read – DQM Operation ................................... 48  
Writes  
Write – Without Auto Precharge..................... 49  
Write – With Auto Precharge ........................... 50  
Single Write - Without Auto Precharge ......... 51  
Single Write - Without Auto Precharge ......... 52  
Alternating Bank Write Accesses ................... 53  
Write – Full-Page Burst .................................... 54  
Write – DQM Operation ................................... 55  
Package Dimensions  
54-pin FBGA ............................................................ 56  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
3
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
FUNCTIONALBLOCKDIAGRAM  
16 Meg x 16 SDRAM  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
BANK2  
CAS#  
RAS#  
BANK1  
REFRESH  
COUNTER  
13  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
2
2
8192  
DQML,  
DQMH  
13  
(8,192 x 512 x 16)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
8192  
16  
DQ0-  
16  
I/O GATING  
2
DQ15  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A12,  
BA0, BA1  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
16  
512  
(x16)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
9
9
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
4
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
BALLDESCRIPTIONS  
54-BALL FBGA  
SYMBOL  
TYPE  
DESCRIPTION  
F2  
CLK  
Input  
Clock: CLK is driven by the system clock. All SDRAM input signals are sampled  
on the positive edge of CLK. CLK also increments the internal burst counter  
and controls the output registers.  
F3  
CKE  
Input  
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal.  
DeactivatingtheclockprovidesPRECHARGEPOWER-DOWNandSELFREFRESH  
operation (all banks idle), ACTIVE POWER-DOWN (row active in any bank) or  
CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous except  
after the device enters power-down and self refresh modes, where CKE  
becomes asynchronous until after exiting the same mode. The input buffers,  
including CLK, are disabled during power-down and self refresh modes,  
providing low standby power. CKE may be tied HIGH.  
G9  
CS#  
Input  
Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the  
command decoder. All commands are masked when CS# is registered HIGH. CS#  
provides for external bank selection on systems with multiple banks. CS# is  
consideredpartofthecommandcode.  
F7, F8, F9  
E8, F1  
CAS#, RAS#,  
WE#  
Input  
Input  
Command Inputs: CAS#, RAS#, and WE#(along with CS#) define the  
commandbeingentered.  
LDQM,  
UDQM  
Input/Output Mask: DQM is sampled HIGH and is an input mask signal for  
write accesses and an output enable signal for read accesses. Input data is  
masked during a WRITE cycle. The output buffers are placed in a High-Z state  
(two-clocklatency)whenduringaREADcycle. LDQMcorrespondstoDQ0–DQ7,  
UDQM corresponds to DQ8–DQ15. LDQM and UDQM are considered same  
state when referenced as DQM.  
G7, G8  
BA0, BA1  
A0–A12  
Input  
Input  
BankAddressInput(s):BA0andBA1definetowhichbanktheACTIVE, READ,  
WRITEor PRECHARGE command is being applied. These pins also provide the  
op-codeduringaLOADMODEREGISTERcommand  
H7, H8, J8, J7, J3, J2,  
H3, H2, H1, G3, H9, G2,G1  
AddressInputs:A0–A12aresampledduringtheACTIVEcommand(row-  
addressA0–A12)andREAD/WRITEcommand(column-addressA0–A8;withA10  
defining auto precharge) to select one location out of the memory array in the  
respective bank. A10 is sampled during a PRECHARGE command to determine if  
all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW).  
The address inputs also provide the op-code during a LOAD MODE REGISTER  
command.  
A8, B9, B8, C9, C8, D9,  
D8, E9, E1, D2, D1, C2,  
C1, B2, B1, A2  
DQ0–DQ15  
I/O  
DataInput/Output:Databus  
E2,  
NC  
NoConnect:Thispinshouldbeleftunconnected.  
A7, B3, C7, D3  
VDDQ  
Supply DQ Power: Provide isolated power to DQs for improved noise immunity.  
Supply DQ Ground: Provide isolated ground to DQs for improved noise immunity.  
Supply PowerSupply:Voltagedependantonoption.  
A3, B7, C3, D7,  
A9, E7, J9  
VSSQ  
VDD  
A1, E3, J1  
VSS  
Supply Ground.  
256Mb: x16MobileSDRAM  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
MobileRamY26L_A.p65Pub.5/02  
©2002,MicronTechnology,Inc.  
5
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
FUNCTIONALDESCRIPTION  
REGISTERDEFINITION  
In general, the 256Mb SDRAMs (4 Meg x 16 x 4 banks)  
are quad-bank DRAMs that operate at 2.5V or 1.8V and  
include a synchronous interface (all signals are regis-  
tered on the positive edge of the clock signal, CLK).  
Each of the x16’s 67,108,864-bit banks is organized as  
8,192 rows by 512 columns by 16 bits.  
Mode Register  
The mode register is used to define the specific mode  
of operation of the SDRAM. This definition includes  
the selection of a burst length, a burst type, a CAS  
latency, an operating mode and a write burst mode, as  
shown in Figure 1. The mode register is programmed  
via the LOAD MODE REGISTER command and will re-  
tain the stored information until it is programmed again  
or the device loses power.  
Mode register bits M0–M2 specify the burst length,  
M3 specifies the type of burst (sequential or inter-  
leaved), M4–M6 specify the CAS latency, M7 and M8  
specify the operating mode, M9 specifies the write burst  
mode, and M10, M11, and M12 should be set to zero.  
M13and M14 should be set to zero to prevent extended  
mode reister.  
Read and write accesses to the SDRAM are burst  
oriented; accesses start at a selected location and con-  
tinue for a programmed number of locations in a pro-  
grammed sequence. Accesses begin with the registra-  
tion of an ACTIVE command, which is then followed by  
a READ or WRITE command. The address bits regis-  
tered coincident with the ACTIVE command are used  
to select the bank and row to be accessed (BA0 and BA1  
select the bank, A0–A12 select the row). The address  
bits ( x16: A0–A8) registered coincident with the READ  
or WRITE command are used to select the starting col-  
umn location for the burst access.  
The mode register must be loaded when all banks  
are idle, and the controller must wait the specified time  
before initiating the subsequent operation. Violating  
either of these requirements will result in unspecified  
operation.  
Prior to normal operation, the SDRAM must be ini-  
tialized. The following sections provide detailed infor-  
mation covering device initialization, register defini-  
tion, command descriptions and device operation.  
Burst Length  
Read and write accesses to the SDRAM are burst  
oriented, with the burst length being programmable,  
as shown in Figure 1. The burst length determines the  
maximum number of column locations that can be ac-  
cessed for a given READ or WRITE command. Burst  
lengths of 1, 2, 4 or 8 locations are available for both the  
sequential and the interleaved burst types, and a full-  
page burst is available for the sequential type. The  
full-page burst is used in conjunction with the BURST  
TERMINATE command to generate arbitrary burst  
lengths.  
Initialization  
SDRAMs must be powered up and initialized in a  
predefined manner. Operational procedures other  
than those specified may result in undefined opera-  
tion. Once power is applied to VDD and VDDQ (simulta-  
neously) and the clock is stable (stable clock is defined  
as a signal cycling within timing constraints specified  
for the clock pin), the SDRAM requires a 100µs delay  
prior to issuing any command other than  
a
COMMAND INHIBIT or NOP. CKE must be held high  
during the entire initialization period until the  
PRECHARGE command has been issued. Starting at  
some point during this 100µs period and continuing at  
least through the end of this period, COMMAND IN-  
HIBIT or NOP commands should be applied.  
Once the 100µs delay has been satisfied with at  
least one COMMAND INHIBIT or NOP command hav-  
ing been applied, a PRECHARGE command should be  
applied. All banks must then be precharged, thereby  
placing the device in the all banks idle state.  
Once in the idle state, two AUTO REFRESH cycles  
must be performed. After the AUTO REFRESH cycles  
are complete, the SDRAM is ready for mode register  
programming. Because the mode register will power  
up in an unknown state, it should be loaded prior to  
applying any operational command.  
Reserved states should not be used, as unknown  
operation or incompatibility with future versions may  
result.  
When a READ or WRITE command is issued, a block  
of columns equal to the burst length is effectively se-  
lected. All accesses for that burst take place within this  
block, meaning that the burst will wrap within the block  
if a boundary is reached. The block is uniquely se-  
lected by A1–A8 (x16) when the burst length is set to  
two; by A2–A8 (x16) when the burst length is set to four;  
and by A3–A8 (x16) when the burst length is set to  
eight. The remaining (least significant) address bit(s)  
is (are) used to select the starting location within the  
block. Full-page bursts wrap within the page if the  
boundary is reached.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
6
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Burst Type  
Accesses within a given burst may be programmed  
to be either sequential or interleaved; this is referred to  
as the burst type and is selected via bit M3.  
The ordering of accesses within a burst is deter-  
mined by the burst length, the burst type and the start-  
ing column address, as shown in Table 1.  
Table 1  
Burst Definition  
Burst  
Length  
Starting Column  
Address  
Order of Accesses Within a Burst  
Type = Sequential Type = Interleaved  
A0  
0
1
0-1  
1-0  
0-1  
1-0  
2
4
A1 A0  
Figure 1  
Mode Register Definition  
0
0
1
1
0
1
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
Address Bus  
A10  
A7  
A3 A2  
A0  
BA0  
A9  
A8  
A6 A5 A4  
A1  
BA1  
A12 A11  
A2 A1 A0  
14 13  
12  
11  
9
8
7
6
5
4
1
10  
3
2
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
Cn, Cn + 1, Cn + 2  
Cn + 3, Cn + 4...  
…Cn - 1,  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
Mode Register (Mx)  
Reserved**  
Reserved*  
WB Op Mode CAS Latency  
BT  
Burst Length  
8
Burst Length  
*Should program  
M12, M11, M10 = 0, 0, 0  
to ensure compatibility  
with future devices.  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
Full  
Page  
(y)  
n=A0-8  
8
** BA1, BA0 = 0, 0  
to prevent Extended  
Mode Register.  
NotSupported  
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
(location0-y)  
Cn…  
NOTE: 1. For full-page accesses: y = 512 (x16)  
2. For a burst length of two, A1-A8 (x16) select the  
block-of-two burst; A0 selects the starting column  
within the block.  
Burst Type  
M3  
0
Sequential  
Interleaved  
3. For a burst length of four, A2-A8 (x16) select the  
block-of-four burst; A0-A1 select the starting  
column within the block.  
4. For a burst length of eight, A3-A8 (x16) select the  
block-of-eight burst; A0-A2 select the starting  
column within the block.  
5. For a full-page burst, the full row is selected and  
A0-A8 (x16) select the starting column.  
6. Whenever a boundary of the block is reached  
within a given sequence above, the following  
access wraps within the block.  
7. For a burst length of one, A0-A8 (x16) select the  
unique column to be accessed, and mode register  
bit M3 is ignored.  
1
CAS Latency  
M6 M5 M4  
Reserved  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
Reserved  
Reserved  
Reserved  
Reserved  
M8  
0
M7  
0
M6-M0  
Defined  
-
Operating Mode  
Standard Operation  
All other states reserved  
-
-
Write Burst Mode  
M9  
0
Programmed Burst Length  
Single Location Access  
1
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
7
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
CAS Latency  
Reserved states should not be used as unknown  
operation or incompatibility with future versions may  
result.  
The CAS latency is the delay, in clock cycles, be-  
tween the registration of a READ command and the  
availability of the first piece of output data. The la-  
tency can be set to two or three clocks.  
Operating Mode  
If a READ command is registered at clock edge n,  
and the latency is m clocks, the data will be available by  
clock edge n + m. The DQs will start driving as a result of  
the clock edge one cycle earlier (n + m - 1), and provided  
that the relevant access times are met, the data will be  
valid by clock edge n + m. For example, assuming that  
the clock cycle time is such that all relevant access times  
are met, if a READ command is registered at T0 and the  
latency is programmed to two clocks, the DQs will start  
driving after T1 and the data will be valid by T2, as  
shown in Figure 2. Table 2 below indicates the operat-  
ing frequencies at which each CAS latency setting can  
be used.  
The normal operating mode is selected by setting  
M7 and M8 to zero; the other combinations of values for  
M7 and M8 are reserved for future use and/or test  
modes. The programmed burst length applies to both  
READ and WRITE bursts.  
Test modes and reserved states should not be used  
because unknown operation or incompatibility with  
future versions may result.  
Write Burst Mode  
When M9 = 0, the burst length programmed via M0-  
M2 applies to both READ and WRITE bursts; when M9  
= 1, the programmed burst length applies to READ  
bursts, but write accesses are single-location (nonburst)  
accesses.  
Figure 2  
CAS Latency  
Table 2  
T0  
T1  
T2  
T3  
T4  
T5  
CAS Latency  
CLK  
ALLOWABLE OPERATING  
FREQUENCY (MHz)  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
COMMAND  
X = 0 cycles  
CAS  
CAS  
CAS  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
SPEED LATENCY = 1 LATENCY = 2 LATENCY = 3  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
D
OUT  
n
n + 3  
b
- 8  
50  
40  
100  
83  
125  
100  
CAS Latency = 1  
T0  
- 10  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
D
OUT  
n
n + 2  
b
CAS Latency = 2  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
DOUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
DOUT  
b
n
n + 1  
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
8
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
EXTENDEDMODEREGISTER  
BA1 BA0 A12 A11A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Extended Mode  
Register (Ex)  
1
0
All have to be set to "0" DS TCSR  
PASR  
A4 A3 Maximum Case Temp  
1
0
1
0
85˚C  
70˚C  
A5 Driver Strength  
Half Strength  
Full Strength  
0
1
0
1
1
0
45˚C  
15˚C  
A2  
0
A1  
0
A0  
0
Self Refresh Coverage  
Four Banks  
0
0
1
Two Banks (BA1=0)  
One Bank (BA1=BA0=0)  
RFU  
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
RFU  
Half Bank (BA1=BA0=0)  
Quarter Bank (BA1=BA0=0)  
RFU  
1
1
1
NOTE: 1. E14 and E13 (BA1 and BA0) must be “1, 0” to select the  
Extended Mode Register (vs. the base Mode Register).  
TEMPERATURE COMPENSATED SELF REFRESH  
EXTENDED MODE REGISTER  
Temperature Compensated Self Refresh allows the  
controller to program the Refresh interval during SELF  
REFRESH mode, according to the case temperature of  
the BATRAM device. This allows great power savings  
during SELF REFRESH during most operating tempera-  
ture ranges. Only during extreme temperatures would  
the controller have to select a TCSR level that will guar-  
antee data during SELF REFRESH.  
Every cell in the DRAM requires refreshing due to  
the capacitor losing its charge over time. The refresh  
rate is dependent on temperature. At higher tempera-  
tures a capacitor loses charge quicker than at lower  
temperatures, requiring the cells to be refreshed more  
often. Historically, during Self Refresh, the refresh rate  
has been set to accomodate the worst case, or highest  
temperature range expected.  
The Extended Mode Register controls the functions  
beyond those controlled by the Mode Register. These  
additional functions are special features of the  
BATRAM device. They include Temperature Compen-  
sated Self Refresh (TCSR) Control, and Partial Array  
Self Refresh (PASR).  
The Extended Mode Register is programmed via  
the Mode Register Set command (BA1=1,BA0=0) and  
retains the stored information until it is programmed  
again or the device loses power.  
The Extended Mode Register must be programmed  
with M6 through M12 set to “0”. The Extended Mode  
Register must be loaded when all banks are idle and no  
bursts are in progress, and the controller must wait the  
specified time before before initiating any subsequent  
operation. Violating either of these requirements re-  
sults in unspecified operation.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
9
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Thus, during ambiant temperatures, the power con-  
sumed during refresh was unnecessarily high, because  
the refresh rate was set to accommodate the higher  
temperatures. Setting M4 and M3, allow the DRAM to  
accomodate more specific temperature regions during  
SELF REFRESH. There are four temperature settings,  
which will vary the SELF REFRESH current according to  
the selected temperature. This selectable refresh rate  
will save power when the DRAM is operating at normal  
temperatures.  
DEEP POWER DOWN  
Deep Power Down is an operating mode to achieve  
maximum power reduction by eliminating the power  
of the whole memory array of the devices. Data will not  
be retained once the device enters Deep Power Down  
Mode.  
This mode is entered by having all banks idle then  
/CS and /WE held low with /RAS and /CAS held high at  
the rising edge of the clock, while CKE is low. This mode  
is exited by asserting CKE high.  
PARTIAL ARRAY SELF REFRESH  
DRIVER STRENGTH  
For further power savings during SELF REFRESH,  
the PASR feature allows the controller to select the  
amount of memory that will be refreshed during SELF  
REFRESH. The refresh options are Four Bank;all four  
banks, Two Bank;banks 0 and 1, One Bank;bank 0, Half  
Bank; bank 0 with row address MSB 0; Quarter Bank;  
bank 0 with row address 2 MSB’s 0. WRITE and READ  
commands can still occur during standard operation,  
but only the selected banks will be refreshed during  
SELF REFRESH. Data in banks that are disabled will be  
lost.  
Bit A5 of the extended mode register can be used to  
select the driver strength of the DQ outputs. This value  
should be set according to the applications require-  
ments. Full drive strength is suitable to drive outputs  
on systems in which the SDRAM component is placed  
on a module. Full drive strength will drive loads up to  
50pF.  
The half-drive strength can be used for point-to-  
point applications. Point-to-point systems are usually  
lightly loaded with a memory controller accessing one  
to eight SDRAM components on the memory bus with  
module stubs between these devices. Driver strength  
chosen should be load dependent. The lighter the load,  
the less driver strength that is needed for the outputs.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
10  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Commands  
Truth Table 1 provides a quick reference of  
Truth Tables appear following the Operation section;  
these tables provide current state/next state  
information.  
available commands. This is followed by a written de-  
scription of each command. Three additional  
TRUTH TABLE 1 – COMMANDS AND DQM OPERATION  
(Notes: 1)  
NAME (FUNCTION)  
CS# RAS# CAS# WE# DQM  
ADDR  
X
DQs NOTES  
COMMAND INHIBIT (NOP)  
H
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
NO OPERATION (NOP)  
X
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
DEEP POWER DOWN  
X
Bank/Row  
Bank/Col  
X
X
3
4
8
8
H
H
H
L
L/H  
L/H  
X
L
Bank/Col Valid  
4
H
H
L
L
X
Code  
X
Active  
9
PRECHARGE (Deactivate row in bank or banks)  
L
X
X
X
5
AUTO REFRESH or SELF REFRESH  
(Enter self refresh mode)  
L
H
X
6, 7  
LOAD MODE REGISTER  
L
L
L
L
X
L
Op-Code  
X
2
8
8
Write Enable/Output Enable  
Write Inhibit/Output High-Z  
Active  
High-Z  
H
NOTE: 1. CKE is HIGH for all commands shown except SELF REFRESH.  
2. A0-A11 define the op-code written to the mode register, and A12 should be driven LOW.  
3. A0-A12 provide row address, and BA0, BA1 determine which bank is made active.  
4. A0-A8 (x16)provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW  
disables the auto precharge feature; BA0, BA1 determine which bank is being read from or written to.  
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are “Don’t  
Care.”  
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.  
8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).  
9. Standard SDRAM parts assign this command sequence as Burst Terminate. For Bat Ram parts, the Burst Terminate  
command is assigned to the Deep Power Down function.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
11  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
COMMAND INHIBIT  
inputs A0-A8 (x16) selects the starting column location.  
The value on input A10 determines whether or not  
auto precharge is used. If auto precharge is selected,  
the row being accessed will be precharged at the end of  
the WRITE burst; if auto precharge is not selected, the  
row will remain open for subsequent accesses. Input  
data appearing on the DQs is written to the memory  
array subject to the DQM input logic level appearing  
coincident with the data. If a given DQM signal is regis-  
tered LOW, the corresponding data will be written to  
memory; if the DQM signal is registered HIGH, the  
corresponding data inputs will be ignored, and a WRITE  
will not be executed to that byte/column location.  
The COMMAND INHIBIT function prevents new  
commands from being executed by the SDRAM, re-  
gardless of whether the CLK signal is enabled. The  
SDRAM is effectively deselected. Operations already  
in progress are not affected.  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to  
perform a NOP to an SDRAM which is selected (CS# is  
LOW). This prevents unwanted commands from being  
registered during idle or wait states. Operations already  
in progress are not affected.  
LOAD MODE REGISTER  
PRECHARGE  
The mode register is loaded via inputs A0-A12 (A13  
and A14 should be driven LOW to prevent Extended  
Mode Register.) See mode register heading in the Reg-  
ister Definition section. The LOAD MODE REGISTER  
command can only be issued when all banks are idle,  
and a subsequent executable command cannot be is-  
The PRECHARGE command is used to deactivate  
the open row in a particular bank or the open row in all  
banks. The bank(s) will be available for a subsequent  
row access a specified time (tRP) after the PRECHARGE  
command is issued. Input A10 determines whether  
one or all banks are to be precharged, and in the case  
where only one bank is to be precharged, inputs BA0,  
BA1 select the bank. Otherwise BA0, BA1 are treated as  
“Don’t Care.” Once a bank has been precharged, it is in  
the idle state and must be activated prior to any READ  
or WRITE commands being issued to that bank.  
t
sued until MRD is met.  
ACTIVE  
The ACTIVE command is used to open (or activate)  
a row in a particular bank for a subsequent access. The  
value on the BA0, BA1 inputs selects the bank, and the  
address provided on inputs A0-A12 selects the row.  
This row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A  
PRECHARGE command must be issued before open-  
ing a different row in the same bank.  
AUTO PRECHARGE  
Auto precharge is a feature which performs the  
same individual-bank PRECHARGE function de-  
scribed above, without requiring an explicit command.  
This is accomplished by using A10 to enable auto  
precharge in conjunction with a specific READ or WRITE  
command. A PRECHARGE of the bank/row that is ad-  
dressed with the READ or WRITE command is auto-  
matically performed upon completion of the READ or  
WRITE burst, except in the full-page burst mode, where  
AUTO PRECHARGE does not apply. Auto precharge is  
nonpersistent in that it is either enabled or disabled for  
each individual READ or WRITE command.  
Auto precharge ensures that the precharge is initi-  
ated at the earliest valid stage within a burst. The user  
must not issue another command to the same bank  
until the precharge time (tRP) is completed. This is  
determined as if an explicit PRECHARGE command  
was issued at the earliest possible time, as described  
for each burst type in the Operation section of this data  
sheet.  
READ  
The READ command is used to initiate a burst read  
access to an active row. The value on the BA0, BA1  
inputs selects the bank, and the address provided on  
inputs A0-A8 (x16) selects the starting column location.  
The value on input A10 determines whether or not auto  
precharge is used. If auto precharge is selected, the row  
being accessed will be precharged at the end of the  
READ burst; if auto precharge is not selected, the row  
will remain open for subsequent accesses. Read data  
appears on the DQs subject to the logic level on the  
DQM inputs two clocks earlier. If a given DQM signal  
was registered HIGH, the corresponding DQs will be  
High-Z two clocks later; if the DQM signal was regis-  
tered LOW, the DQs will provide valid data.  
WRITE  
AUTO REFRESH  
The WRITE command is used to initiate a burst write  
access to an active row. The value on the BA0, BA1  
inputs selects the bank, and the address provided on  
AUTO REFRESH is used during normal operation of  
the SDRAM and is analogous to CAS#-BEFORE-RAS#  
(CBR) REFRESH in conventional DRAMs. This  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
12  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
command is nonpersistent, so it must be issued each  
time a refresh is required. All active banks must be  
precharged prior to issuing an AUTO REFRESH com-  
mand. The AUTO REFRESH command should not be  
issued until the minimum RP has been met after the  
PRECHARGE command as shown in the operations sec-  
tion.  
The addressing is generated by the internal refresh  
controller. This makes the address bits “Don’t Care”  
during an AUTO REFRESH command. The 256Mb  
SDRAM requires 8,192 AUTO REFRESH cycles every  
64ms (tREF), regardless of width option. Providing a  
distributed AUTO REFRESH command every 7.81µs  
will meet the refresh requirement and ensure that each  
row is refreshed. Alternatively, 8,192 AUTO REFRESH  
commands can be issued in a burst at the minimum  
cycle rate (tRC), once every 64ms.  
The SELF REFRESH command is initiated like an AUTO  
REFRESH command except CKE is disabled (LOW).  
Once the SELF REFRESH command is registered, all  
the inputs to the SDRAM become “Don’t Care” with  
the exception of CKE, which must remain LOW.  
Once self refresh mode is engaged, the SDRAM pro-  
vides its own internal clocking, causing it to perform its  
own AUTO REFRESH cycles. The SDRAM must remain  
in self refresh mode for a minimum period equal to  
tRAS and may remain in self refresh mode for an indefi-  
nite period beyond that.  
The procedure for exiting self refresh requires a se-  
quence of commands. First, CLK must be stable (stable  
clock is defined as a signal cycling within timing con-  
straints specified for the clock pin) prior to CKE going  
back HIGH. Once CKE is HIGH, the SDRAM must have  
NOP commands issued (a minimum of two clocks) for  
tXSR because time is required for the completion of any  
internal refresh in progress.  
t
SELF REFRESH  
The SELF REFRESH command can be used to retain  
data in the SDRAM, even if the rest of the system is  
powered down. When in the self refresh mode, the  
SDRAM retains data without external clocking.  
Upon exiting the self refresh mode, AUTO REFRESH  
commands must be issued every 7.81µs or less as both  
SELF REFRESH and AUTO REFRESH utilize the row  
refresh counter.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
13  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Operation  
Figure 3  
Activating a Specific Row in a  
Specific Bank  
BANK/ROW ACTIVATION  
Before any READ or WRITE commands can be is-  
sued to a bank within the SDRAM, a row in that bank  
must be “opened.” This is accomplished via the AC-  
TIVE command, which selects both the bank and the  
row to be activated (see Figure 3).  
CLK  
After opening a row (issuing an ACTIVE command),  
a READ or WRITE command may be issued to that row,  
CKE  
CS#  
HIGH  
t
t
subject to the RCD specification. RCD (MIN) should  
be divided by the clock period and rounded up to the  
next whole number to determine the earliest clock edge  
after the ACTIVE command on which a READ or WRITE  
command can be entered. For example, a tRCD specifi-  
cation of 20ns with a 125 MHz clock (8ns period) results  
in 2.5 clocks, rounded to 3. This is reflected in Figure 4,  
RAS#  
t
which covers any case where 2 < RCD (MIN)/tCK 3.  
CAS#  
WE#  
(The same procedure is used to convert other specifi-  
cation limits from time units to clock cycles.)  
A subsequent ACTIVE command to a different row  
in the same bank can only be issued after the previous  
active row has been “closed” (precharged). The mini-  
mum time interval between successive ACTIVE com-  
ROW  
ADDRESS  
t
A0-A12  
mands to the same bank is defined by RC.  
A subsequent ACTIVE command to another bank  
can be issued while the first bank is being accessed,  
which results in a reduction of total row-access over-  
head. The minimum time interval between successive  
ACTIVE commands to different banks is defined by  
tRRD.  
BANK  
ADDRESS  
BA0, BA1  
DON’T CARE  
Figure 4  
Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK 3  
t
t
t
<
T0  
T1  
T2  
T3  
T4  
CLK  
READ or  
WRITE  
COMMAND  
ACTIVE  
NOP  
NOP  
t
RCD  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
14  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
READs  
READ bursts are initiated with a READ command,  
as shown in Figure 5.  
Upon completion of a burst, assuming no other com-  
mands have been initiated, the DQs will go High-Z. A  
full-page burst will continue until terminated. (At the  
end of the page, it will wrap to the start address and  
continue.)  
Data from any READ burst may be truncated with a  
subsequent READ command, and data from a fixed-  
length READ burst may be immediately followed by  
data from a READ command. In either case, a continu-  
ous flow of data can be maintained. The first data ele-  
ment from the new burst follows either the last ele-  
ment of a completed burst or the last desired data ele-  
ment of a longer burst that is being truncated. The new  
READ command should be issued x cycles before the  
clock edge at which the last desired data element is  
valid, where x equals the CAS latency minus one.  
The starting column and bank addresses are pro-  
vided with the READ command, and auto precharge is  
either enabled or disabled for that burst access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric READ commands used in the following illustra-  
tions, auto precharge is disabled.  
During READ bursts, the valid data-out element  
from the starting column address will be available fol-  
lowing the CAS latency after the READ command. Each  
subsequent data-out element will be valid by the next  
positive clock edge. Figure 6 shows general timing for  
each possible CAS latency setting.  
Figure 5  
READ Command  
Figure 6  
CAS Latency  
CLK  
CKE  
CLK  
CKE  
CS#  
HIGH  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
REFRESH  
COUNTER  
13  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
x 256 x 32)  
4
4
8192  
DQM0-  
DQM3  
13  
(8,192  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
8192  
RAS#  
32  
DQ0-  
DQ31  
I/O GATING  
2
32  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A12,  
BA0, BA1  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
32  
256  
(x32)  
CAS#  
WE#  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
8
8
COLUMN  
ADDRESS  
A0-A8: x16  
A9, A11: x16  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
BANK  
ADDRESS  
BA0,1  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
15  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
This is shown in Figure 7 for CAS latencies of two and  
three; data element n + 3 is either the last of a burst of  
four or the last desired of a longer burst. The 256Mb  
SDRAM uses a pipelined architecture and therefore  
does not require the 2n rule associated with a prefetch  
architecture. A READ command can be initiated on any  
clock cycle following a previous READ command. Full-  
speed random read accesses can be performed to the  
same bank, as shown in Figure 8, or each subsequent  
READ may be performed to a different bank.  
Figure 7  
Consecutive READ Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
COMMAND  
X = 0 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
D
OUT  
n
n + 3  
b
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
D
OUT  
n
n + 2  
b
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
DOUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
DOUT  
b
n
n + 1  
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
16  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Figure 8  
Random READ Accesses  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
17  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Data from any READ burst may be truncated with a  
subsequent WRITE command, and data from a fixed-  
length READ burst may be immediately followed by  
data from a WRITE command (subject to bus turn-  
around limitations). The WRITE burst may be initiated  
on the clock edge immediately following the last (or last  
desired) data element from the READ burst, provided  
that I/O contention can be avoided. In a given system  
design, there may be a possibility that the device driv-  
ing the input data will go Low-Z before the SDRAM DQs  
go High-Z. In this case, at least a single-cycle delay  
should occur between the last read data and the WRITE  
command.  
buffers) to suppress data-out from the READ. Once the  
WRITE command is registered, the DQs will go High-Z  
(or remain High-Z), regardless of the state of the DQM  
signal; provided the DQM was active on the clock just  
prior to the WRITE command that truncated the READ  
command. If not, the second WRITE will be an invalid  
WRITE. For example, if DQM was LOW during T4 in  
Figure 10, then the WRITEs at T5 and T7 would be  
valid, while the WRITE at T6 would be invalid.  
The DQM signal must be de-asserted prior to the  
WRITE command (DQM latency is zero clocks for input  
buffers) to ensure that the written data is not masked.  
Figure 9 shows the case where the clock frequency al-  
lows for bus contention to be avoided without adding a  
NOP cycle, and Figure 10 shows the case where the  
additional NOP is needed.  
The DQM input is used to avoid I/O contention, as  
shown in Figures 9 and 10. The DQM signal must be  
asserted (HIGH) at least two clocks prior to the WRITE  
command (DQM latency is two clocks for output  
Figure 10  
Figure 9  
READ to WRITE With  
Extra Clock Cycle  
READ to WRITE  
T0  
T1  
T2  
T3  
T4  
CLK  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
DQM  
DQM  
READ  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL b  
BANK,  
COL b  
BANK,  
COL n  
t
CK  
t
t
HZ  
HZ  
DOUT  
n
D
IN  
b
DQ  
D
OUT  
n
DIN b  
DQ  
t
DS  
t
DS  
DON’T CARE  
DON’T CARE  
NOTE:  
A CAS latency of three is used for illustration. The READ  
command may be to any bank, and the WRITE command  
may be to any bank. If a burst of one is used, then DQM is  
not required.  
NOTE:  
A CAS latency of three is used for illustration. The READ command  
may be to any bank, and the WRITE command may be to any bank.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
18  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
A fixed-length READ burst may be followed by, or  
truncated with, a PRECHARGE command to the same  
bank (provided that auto precharge was not acti-  
vated), and a full-page burst may be truncated with a  
PRECHARGE command to the same bank. The  
PRECHARGE command should be issued x cycles be-  
fore the clock edge at which the last desired data ele-  
ment is valid, where x equals the CAS latency minus  
one. This is shown in Figure 11 for each possible CAS  
latency; data element n + 3 is either the last of a burst of  
four or the last desired of a longer burst. Following the  
PRECHARGE command, a subsequent command to  
the same bank cannot be issued until RP is met. Note  
that part of the row precharge time is hidden during  
the access of the last data element(s).  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the  
optimum time (as described above) provides the same  
operation that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
t
Figure 11  
READ to PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n
n + 2  
n + 3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 2 cycles  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
D
OUT  
DOUT  
D
n + 3  
OUT  
n
n + 1  
n + 2  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
19  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropri-  
ate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to trun-  
cate fixed-length or full-page bursts.  
Full-page READ bursts can be truncated with the  
BURST TERMINATE command, and fixed-length READ  
bursts may be truncated with a BURST TERMINATE  
command, provided that auto precharge was not acti-  
vated. The BURST TERMINATE command should be  
issued x cycles before the clock edge at which the last  
desired data element is valid, where x equals the CAS  
latency minus one. This is shown in Figure 12 for each  
possible CAS latency; data element n + 3 is the last  
desired data element of a longer burst.  
Figure 12  
Terminating a READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
D
OUT  
DOUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
20  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
WRITEs  
WRITE bursts are initiated with a WRITE command,  
as shown in Figure 13.  
ample is shown in Figure 15. Data n + 1 is either the last  
of a burst of two or the last desired of a longer burst. The  
256Mb SDRAM uses a pipelined architecture and there-  
fore does not require the 2n rule associated with a  
prefetch architecture. A WRITE command can be initi-  
ated on any clock cycle following a previous WRITE  
command. Full-speed random write accesses within a  
page can be performed to the same bank, as shown in  
Figure 16, or each subsequent WRITE may be per-  
formed to a different bank.  
The starting column and bank addresses are pro-  
vided with the WRITE command, and auto precharge  
is either enabled or disabled for that access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric WRITE commands used in the following illustra-  
tions, auto precharge is disabled.  
During WRITE bursts, the first valid data-in ele-  
ment will be registered coincident with the WRITE com-  
mand. Subsequent data elements will be registered on  
each successive positive clock edge. Upon completion  
of a fixed-length burst, assuming no other commands  
have been initiated, the DQs will remain High-Z and  
any additional input data will be ignored (see Figure  
14). A full-page burst will continue until terminated.  
(At the end of the page, it will wrap to the start address  
and continue.)  
Figure 14  
WRITE Burst  
T0  
T1  
T2  
T3  
CLK  
Data for any WRITE burst may be truncated with a  
subsequent WRITE command, and data for a fixed-  
length WRITE burst may be immediately followed by  
data for a WRITE command. The new WRITE command  
can be issued on any clock following the previous WRITE  
command, and the data provided coincident with the  
new command applies to the new command. An ex-  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
D
IN  
DIN  
n + 1  
n
Figure 13  
WRITE Command  
Figure 15  
WRITE to WRITE  
CLK  
CKE HIGH  
T0  
T1  
T2  
CS#  
CLK  
RAS#  
WRITE  
NOP  
WRITE  
COMMAND  
ADDRESS  
DQ  
CAS#  
WE#  
BANK,  
COL n  
BANK,  
COL b  
DIN  
D
IN  
DIN  
b
COLUMN  
ADDRESS  
A0-A8: x16  
n
n + 1  
A9, A11: x16  
DON’T CARE  
ENABLE AUTO PRECHARGE  
NOTE: DQM is LOW. Each WRITE command may  
A10  
be to any bank.  
DISABLE AUTO PRECHARGE  
BANK  
ADDRESS  
BA0,1  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
21  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Data for any WRITE burst may be truncated with a  
subsequent READ command, and data for a fixed-  
length WRITE burst may be immediately followed by a  
READ command. Once the READ command is regis-  
tered, the data inputs will be ignored, and WRITEs will  
not be executed. An example is shown in Figure 17.  
Data n + 1 is either the last of a burst of two or the last  
desired of a longer burst.  
Data for a fixed-length WRITE burst may be fol-  
lowed by, or truncated with, a PRECHARGE command  
to the same bank (provided that auto precharge was  
not activated), and a full-page WRITE burst may be  
truncated with a PRECHARGE command to the same  
bank. The PRECHARGE command should be issued  
tWR after the clock edge at which the last desired input  
data element is registered. The auto precharge mode  
requires a tWR of at least one clock plus time, regardless  
of frequency. In addition, when truncating a WRITE  
burst, the DQM signal must be used to mask input data  
for the clock edge prior to, and the clock edge coinci-  
dent with, the PRECHARGE command. An example is  
shown in Figure 18. Data n + 1 is either the last of a burst  
of two or the last desired of a longer burst. Following the  
PRECHARGE command, a subsequent command to  
t
the same bank cannot be issued until RP is met. The  
precharge can be issued coincident with the first coin-  
cident clock edge (T2 in Figure 18) on an A1 Version and  
with the second clock on an A2 Version (Figure 18.)  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the  
optimum time (as described above) provides the same  
operation that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropri-  
ate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to trun-  
cate fixed-length or full-page bursts.  
Figure 16  
Random WRITE Cycles  
T0  
T1  
T2  
T3  
CLK  
Figure 18  
WRITE to PRECHARGE  
WRITE  
WRITE  
WRITE  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
t
t
WR @ CLK 15ns  
D
IN  
D
IN  
D
IN  
DIN  
x
m
n
a
DQM  
t
RP  
DON’T CARE  
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
NOTE: Each WRITE command may be to any bank. DQM is LOW.  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
D
n
IN  
DIN  
n + 1  
Figure 17  
DQ  
WRITE to READ  
t
t
WR = CLK < 15ns  
T0  
T1  
T2  
T3  
T4  
T5  
DQM  
CLK  
t
RP  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
BANK,  
COL n  
BANK,  
COL b  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
D
IN  
D
IN  
D
OUT  
DOUT  
b + 1  
n
n + 1  
b
DON’T CARE  
DON’T CARE  
NOTE: DQM could remain LOW in this example if the WRITE burst is a fixed length of two.  
NOTE:  
The WRITE command may be to any bank, and the READ command  
may be to any bank. DQM is LOW. CAS latency = 2 for illustration.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
22  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
Fixed-length or full-page WRITE bursts can be trun-  
cated with the BURST TERMINATE command. When  
truncating a WRITE burst, the input data applied coin-  
cident with the BURST TERMINATE command will be  
ignored. The last data written (provided that DQM is  
LOW at that time) will be the input data applied one  
clock previous to the BURST TERMINATE command.  
This is shown in Figure 19, where data n is the last  
desired data element of a longer burst.  
PRECHARGE  
The PRECHARGE command (see Figure 20) is used  
to deactivate the open row in a particular bank or the  
open row in all banks. The bank(s) will be available for  
a subsequent row access some specified time (tRP) af-  
ter the PRECHARGE command is issued. Input A10  
determines whether one or all banks are to be  
precharged, and in the case where only one bank is to  
be precharged, inputs BA0, BA1 select the bank. When  
all banks are to be precharged, inputs BA0, BA1 are  
treated as “Don’t Care.” Once a bank has been  
precharged, it is in the idle state and must be activated  
prior to any READ or WRITE commands being issued to  
that bank.  
Figure 19  
Terminating a WRITE Burst  
T0  
T1  
T2  
CLK  
POWER-DOWN  
Power-down occurs if CKE is registered LOW coinci-  
dent with a NOP or COMMAND INHIBIT when no ac-  
cesses are in progress. If power-down occurs when all  
banks are idle, this mode is referred to as precharge  
power-down; if power-down occurs when there is a row  
active in any bank, this mode is referred to as active  
power-down. Entering power-down deactivates the in-  
put and output buffers, excluding CKE, for maximum  
power savings while in standby. CKE must be held low  
during power down. The device may not remain in the  
power-down state longer than the refresh period  
(64ms) since no refresh operations are performed in  
this mode.  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
(ADDRESS)  
(DATA)  
DIN  
n
NOTE: DQMs are LOW.  
DON’T CARE  
The power-down state is exited by registering a NOP  
or COMMAND INHIBIT and CKE HIGH at the desired  
clock edge (meeting CKS). See Figure 21.  
Figure 20  
PRECHARGECommand  
t
CLK  
CKE  
CS#  
HIGH  
Figure 21  
Power-Down  
( (  
) )  
RAS#  
CLK  
( (  
) )  
> t  
CKS  
t
CKS  
CKE  
CAS#  
WE#  
( (  
) )  
( (  
) )  
( (  
) )  
COMMAND  
NOP  
NOP  
ACTIVE  
t
All banks idle  
RCD  
Input buffers gated off  
t
RAS  
A0-A9, A11, A12  
A10  
t
RC  
Enter power-down mode.  
Exit power-down mode.  
DON’T CARE  
All Banks  
Bank Selected  
BANK  
ADDRESS  
BA0, BA1  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
23  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
DEEP POWER-DOWN  
CLOCK SUSPEND  
Deep Power Down mode is a maximum power sav-  
ings feature achieved by shutting off the power to the  
entire memory array of the device. Data will not be  
retained once Deep Power Down mode is executed.  
Deep Power Down mode is entered by having all banks  
idle then /CS and /WE held low with /RAS and /CAS  
high at the rising edge of the clock, while CKE is low.CKE  
must be held low during Deep Power Down.  
In order to exit Deep Power Down mode, CKE must  
be asserted high. After exiting, the following sequence  
is needed in order to enter a new command. Maintain  
NOP input conditions for a minimum of 200us. Issue  
PRECHARGE commands for all banks. Issue eight or  
more AUTOREFRESH commands. Issue a MODE REG-  
ISTER set command to initialize mode register. Issue a  
EXTENDED MODE REGISTER set command to initial-  
ize the extended mode register. See Figure 21A.  
The clock suspend mode occurs when a column ac-  
cess/burst is in progress and CKE is registered LOW. In  
the clock suspend mode, the internal clock is deacti-  
vated, “freezing” the synchronous logic.  
For each positive clock edge on which CKE is  
sampled LOW, the next internal positive clock edge is  
suspended. Any command or data present on the in-  
put pins at the time of a suspended internal clock edge  
is ignored; any data present on the DQ pins remains  
driven; and burst counters are not incremented, as  
long as the clock is suspended. (See examples in Fig-  
ures 22 and 23.)  
Clock suspend mode is exited by registering CKE  
HIGH; the internal clock and related operation will re-  
sume on the subsequent positive clock edge.  
Figure 21A  
DeepPower-Down  
Figure 22  
Clock Suspend During WRITE Burst  
( (  
) )  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
( (  
) )  
CLK  
CKE  
( (  
) )  
( (  
) )  
CKE  
CS#  
( (  
) )  
( (  
) )  
( (  
) )  
RAS#  
( (  
) )  
INTERNAL  
CLOCK  
( (  
) )  
CAS#  
WE#  
( (  
) )  
( (  
) )  
( (  
) )  
NOP  
WRITE  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK,  
COL n  
Enter deep power-down mode.  
Exit deep power-down mode.  
D
n
IN  
D
n + 1  
IN  
DIN  
n + 2  
D
IN  
DON T CARE  
DON’T CARE  
NOTE: For this example, burst length = 4 or greater, and DM  
is LOW.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
24  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
BURST READ/SINGLE WRITE  
Figure 23  
Clock Suspend During READ Burst  
The burst read/single write mode is entered by pro-  
gramming the write burst mode bit (M9) in the mode  
register to a logic 1. In this mode, all WRITE commands  
result in the access of a single column location (burst of  
one), regardless of the programmed burst length. READ  
commands access columns according to the pro-  
grammed burst length and sequence, just as in the  
normal mode of operation (M9 = 0).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
DOUT  
DOUT  
n + 1  
DOUT  
n + 2  
DOUT  
n + 3  
n
DON’T CARE  
NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and  
DQM is LOW.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
25  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
CONCURRENT AUTO PRECHARGE  
An access command (READ or WRITE) to another  
bank while an access command with auto precharge  
enabled is executing is not allowed by SDRAMs,  
unless the SDRAM supports CONCURRENT AUTO  
PRECHARGE. Micron SDRAMs support CONCURRENT  
AUTO PRECHARGE. Four cases where CONCURRENT  
AUTO PRECHARGE occurs are defined below.  
on bank n, CAS latency later. The PRECHARGE to  
bank n will begin when the READ to bank m is regis-  
tered (Figure 24).  
2. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a READ  
on bank n when registered. DQM should be used  
two clocks prior to the WRITE command to prevent  
bus contention. The PRECHARGE to bank n will  
begin when the WRITE to bank m is registered (Fig-  
ure 25).  
READ with Auto Precharge  
1. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a READ  
Figure 24  
READ With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
t
Idle  
BANK n  
t
RP - BANK n  
RP - BANK m  
Internal  
States  
Precharge  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
a
OUT  
D
a + 1  
OUT  
D
OUT  
DOUT  
d + 1  
d
CAS Latency = 3 (BANK n)  
CAS Latency = 3 (BANK m)  
NOTE: DQM is LOW.  
DON’T CARE  
Figure 25  
READ With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
READ with Burst of 4  
Page Active  
Interrupt Burst, Precharge  
t
Idle  
WR - BANK m  
BANK n  
t
RP - BANK  
n
Internal  
States  
Write-Back  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
D
OUT  
DIN  
d
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
DQ  
a
CAS Latency = 3 (BANK n)  
OUT-a+1 from contending with DIN-d at T4.  
NOTE: 1. DQM is HIGH at T2 to prevent  
D
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
26  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
WRITE with Auto Precharge  
3. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a WRITE  
on bank n when registered, with the data-out ap-  
pearing CAS latency later. The PRECHARGE to bank  
n will begin after tWR is met, where tWR begins when  
the READ to bank m is registered. The last valid  
WRITE to bank n will be data-in registered one clock  
prior to the READ to bank m (Figure 26).  
4. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a  
WRITE on bank  
n
when registered. The  
t
PRECHARGE to bank n will begin after WR is met,  
t
where WR begins when the WRITE to bank m is  
registered. The last valid data WRITE to bank n will  
be data registered one clock prior to a WRITE to  
bank m (Figure 27).  
Figure 26  
WRITE With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
RP - BANK m  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
IN  
D
a + 1  
IN  
D
OUT  
DOUT  
d + 1  
a
d
CAS Latency = 3 (BANK m)  
NOTE: 1. DQM is LOW.  
DON’T CARE  
Figure 27  
WRITE With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
WR - BANK m  
Write-Back  
Page Active  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
a + 2  
IN  
DIN  
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
a
d
NOTE: 1. DQM is LOW.  
DON’T CARE  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
27  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
TRUTH TABLE 2 – CKE  
(Notes: 1-4)  
CKEn-1 CKEn  
CURRENT STATE  
COMMANDn  
ACTIONn  
NOTES  
L
L
L
Power-Down  
Self Refresh  
X
Maintain Power-Down  
Maintain Self Refresh  
Maintain Clock Suspend  
Exit Power-Down  
X
Clock Suspend  
Power-Down  
X
COMMAND INHIBIT or NOP  
X
H
5
8
6
7
Deep Power-Down  
Self Refresh  
Exit Deep Power-Down  
Exit Self Refresh  
COMMAND INHIBIT or NOP  
X
Clock Suspend  
All Banks Idle  
All Banks Idle  
All Banks Idle  
Reading or Writing  
Exit Clock Suspend  
H
L
COMMAND INHIBIT or NOP  
DEEP POWER DOWN  
AUTO REFRESH  
VALID  
Power-Down Entry  
Deep Power-Down Entry  
Self Refresh Entry  
8
Clock Suspend Entry  
H
H
See Truth Table 3  
NOTE: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge.  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of COMMANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n + 1 (provided  
t
that CKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state once tXSR is met. COMMAND INHIBIT  
or NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of two NOP  
commands must be provided duringtXSRperiod.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next command at clock  
edge n + 1.  
8. Deep Power-Down is a power savings feature of this Mobile SDRAM device. This command is Burst Terminate on  
traditional SDRAM components. For Bat Ram devices, this command sequence is assigned to Deep Power Down.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
28  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
TRUTH TABLE 3 – CURRENT STATE BANK n, COMMAND TO BANK n  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE#  
COMMAND (ACTION)  
NOTES  
Any  
Idle  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
ACTIVE (Select and activate row)  
L
AUTO REFRESH  
7
7
L
L
LOAD MODE REGISTER  
L
H
L
L
PRECHARGE  
11  
10  
10  
8
H
H
L
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Deactivate row in bank or banks)  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Truncate READ burst, start PRECHARGE)  
DEEP POWER DOWN  
Row Active  
L
H
L
L
Read  
(Auto  
H
H
L
H
L
10  
10  
8
L
Precharge  
Disabled)  
Write  
H
H
L
L
H
H
H
L
L
9
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE (Truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
10  
10  
8
(Auto  
L
Precharge  
Disabled)  
H
H
L
H
L
9
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been  
met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown  
are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
RowActive: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no  
register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or  
beenterminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP  
commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states.  
Allowable commands to the other bank are determined by its current state and Truth Table 3, and according to Truth  
Table 4.  
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met,  
the bank will be in the idle state.  
RowActivating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met,  
the bank will be in the row active state.  
Readw/Auto  
PrechargeEnabled: Starts with registration of a READ command with auto precharge enabled and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
Writew/Auto  
PrechargeEnabled: Starts with registration of a WRITE command with auto precharge enabled and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
29  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
NOTE(continued):  
5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP commands must  
be applied on each positive clock edge during these states.  
Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is  
met, the SDRAM will be in the all banks idle state.  
AccessingMode  
Register: Starts with registration of a LOAD MODE REGISTER command and ends when tMRD has been  
met. Once tMRD is met, the SDRAM will be in the all banks idle state.  
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is  
met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank-specific; requires that all banks are idle.  
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for precharging.  
9. Deep Power-Down is a power savings feature of this BAT-RAM device. This command is Burst Terminate on  
traditional SDRAM components. For Bat Ram devices, this command sequence is assigned to Deep Power Down.  
10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and  
READs or WRITEs with auto precharge disabled.  
11. Does not affect the state of the bank and acts as a NOP to that bank.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
30  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
TRUTH TABLE 4 – CURRENT STATE BANK n, COMMAND TO BANK m  
(Notes: 1-6; notes appear on next page)  
CURRENT STATE CS# RAS# CAS# WE#  
COMMAND (ACTION)  
NOTES  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
Any Command Otherwise Allowed to Bank m  
ACTIVE (Select and activate row)  
Idle  
Row  
Activating,  
Active, or  
Precharging  
Read  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7
7
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 10  
7, 11  
9
Precharge  
Disabled)  
Write  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 12  
7, 13  
9
Precharge  
Disabled)  
Read  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 8, 14  
7, 8, 15  
9
L
H
H
L
L
Write  
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 8, 16  
7, 8, 17  
9
L
H
L
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been met (if the  
previous state was self refresh).  
2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n and the  
commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given  
command is allowable). Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
RowActive: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no  
register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or  
beenterminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
Readw/Auto  
PrechargeEnabled: Starts with registration of a READ command with auto precharge enabled, and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
Writew/Auto  
PrechargeEnabled: Starts with registration of a WRITE command with auto precharge enabled, and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
31  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
NOTE:(continued)  
4. AUTO REFRESH, SELF REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle.  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state  
only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge  
enabled and READs or WRITEs with auto precharge disabled.  
8. CONCURRENT AUTO PRECHARGE: Bank nwill initiate the auto precharge command when its burst has been interrupted  
by bank m’s burst.  
9. Burst in bank n continues as initiated.  
10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the READ on bank n, CAS latency later (Figure 7).  
11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the READ on bank n when registered (Figures 9 and 10). DQM should be used one clock prior to the WRITE  
commandtopreventbuscontention.  
12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the WRITE on bank n when registered (Figure 17), with the data-out appearing CAS latency later. The last  
valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.  
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m  
will interrupt the WRITE on bank n when registered (Figure 15). The last valid WRITE to bank n will be data-in  
registered one clock prior to the READ to bank m.  
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is  
registered (Figure 24).  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent  
bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (Figure 25).  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to bank  
n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE to bank n  
will be data-in registered one clock prior to the READ to bank m (Figure 26).  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where tWR  
begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock prior  
to the WRITE to bank m (Figure 27).  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
32  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
*Stresses greater than those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions  
above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may  
affect reliability.  
ABSOLUTEMAXIMUMRATINGS*  
Voltage on VDD/VDDQ Supply  
Relative to VSS(2.5V) .......................... -0.5V to +3.6V  
Relative to VSS(1.8V) ....................... -0.35V to +2.8V  
Voltage on Inputs, NC or I/O Pins  
Relative to VSS(1.8V) ...................... -0.35V to +2.8V  
Operating Temperature,  
TA (industrial; IT parts) ..................... -40°C to +85°C  
Storage Temperature (plastic) ............ -55°C to +150°C  
Power Dissipation ........................................................ 1W  
DCELECTRICALCHARACTERISTICSANDOPERATINGCONDITIONS-Vversion  
(Notes: 1, 5, 6; notes appear on page 37; VDD = 2.5 0.2V, VDDQ = +1.8V 0.15V )  
PARAMETER/CONDITION  
SYMBOL MIN  
MAX UNITS NOTES  
SUPPLY VOLTAGE  
VDD  
VDDQ  
VIH  
2.3  
1.65  
1.25  
-0.3  
2.7  
1.95  
VDD + 0.3  
0.55  
V
V
I/O SUPPLY VOLTAGE  
INPUT HIGH VOLTAGE: Logic 1; All inputs  
INPUT LOW VOLTAGE: Logic 0; All inputs  
DATA OUTPUT HIGH VOLTAGE: Logic 1; All inputs  
DATA OUTPUT LOW VOLTAGE: LOGIC 0; All inputs  
INPUT LEAKAGE CURRENT:  
V
22  
22  
VIL  
V
VOH  
VOL  
II  
VDDQ -0.2  
V
0.2  
V
-1.0  
1.0  
µA  
Any input 0V VIN VDD (All other pins not under test = 0V)  
OUTPUT LEAKAGE CURRENT: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-1.5  
1.5  
µA  
DCELECTRICALCHARACTERISTICSANDOPERATINGCONDITIONS-Hversion  
(Notes: 1, 5, 6; notes appear on page 37; VDD = 1.8 0.15V, VDDQ = +1.8V 0.15V )  
PARAMETER/CONDITION  
SYMBOL MIN  
MAX UNITS NOTES  
SUPPLY VOLTAGE  
VDD  
VDDQ  
VIH  
1.65  
1.65  
1.95  
1.95  
V
V
I/O SUPPLY VOLTAGE  
INPUT HIGH VOLTAGE: Logic 1; All inputs  
INPUT LOW VOLTAGE: Logic 0; All inputs  
DATA OUTPUT HIGH VOLTAGE: Logic 1; All inputs  
DATA OUTPUT LOW VOLTAGE: LOGIC 0; All inputs  
INPUT LEAKAGE CURRENT:  
0.8*VDDQ VDD + 0.3  
V
22  
22  
VIL  
-0.3  
VDDQ -0.2  
0.3  
V
VOH  
VOL  
II  
V
0.2  
1.0  
V
-1.0  
µA  
Any input 0V VIN VDD (All other pins not under test = 0V)  
OUTPUT LEAKAGE CURRENT: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-1.5  
1.5  
µA  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
33  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
CAPACITANCE  
(Note: 2; notes appear on page 37)  
PARAMETER  
SYMBOL  
MIN  
1.5  
MAX UNITS NOTES  
Input Capacitance: CLK  
CI1  
CI2  
CIO  
3.0  
3.3  
5.0  
pF  
pF  
pF  
29  
30  
31  
Input Capacitance: All other input-only pins  
Input/Output Capacitance: DQs  
1.5  
3.0  
ELECTRICALCHARACTERISTICSANDRECOMMENDEDACOPERATINGCONDITIONS  
(Notes: 5, 6, 8, 9, 11; notes appear on page 37)  
ACCHARACTERISTICS  
PARAMETER  
Access time from CLK (pos. edge)  
-8  
-10  
SYMBOL MIN  
MAX  
MIN  
MAX  
UNITS NOTES  
t
CL = 3  
CL = 2  
CL = 1  
AC(3)  
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
27  
t
AC(2)  
8
8
t
AC(1)  
19  
22  
t
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
AH  
1
1
t
AS  
2.5  
3
2.5  
3
t
CH  
D
t
CL  
3
3
D
t
t
t
t
t
t
CL = 3  
CL = 2  
CL = 1  
CK(3)  
CK(2)  
CK(1)  
CKH  
CKS  
8
10  
12  
25  
1
23  
23  
10  
20  
1
CKE hold time  
CKE setup time  
2.5  
1
2.5  
1
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
CMH  
t
CMS  
2.5  
1
2.5  
1
t
DH  
t
Data-in setup time  
DS  
2.5  
2.5  
t
t
t
t
Data-out high-impedance time  
CL = 3  
CL = 2  
CL = 1  
HZ(3)  
HZ(2)  
HZ(1)  
7
7
10  
10  
8
8
19  
22  
Data-outlow-impedancetime  
Data-outholdtime(load)  
LZ  
1
1
t
OH  
2.5  
2.5  
1.8  
50  
ns  
t
Data-outholdtime(noload)  
ACTIVEtoPRECHARGE command  
ACTIVEtoACTIVEcommandperiod  
ACTIVEtoREADorWRITEdelay  
Refreshperiod(8,192rows)  
AUTOREFRESHperiod  
OH  
1.8  
ns  
28  
D
N
t
RAS  
48  
80  
20  
120,000  
64  
120,000  
64  
ns  
t
RC  
100  
20  
ns  
D,E  
D
t
RCD  
ns  
t
REF  
ms  
ns  
t
RFC  
80  
20  
100  
20  
D,E  
D
t
PRECHARGEcmdperiod  
RP  
ns  
ns  
ns  
ns  
t
ACTIVE bank a to bank b command  
Transition time  
RRD  
20  
20  
t
T
0.5  
1CLK+  
7ns  
15  
1.2  
0.5  
1.2  
7
t
WRITE recovery time  
WR  
1CLK+  
5ns  
24  
D,E  
25,D  
E
15  
t
Exit SELF REFRESH to ACTIVE command  
XSR  
80  
100  
ns  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
34  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
AC FUNCTIONAL CHARACTERISTICS  
(Notes: 5, 6, 7, 8, 9, 11; notes appear on page 37)  
PARAMETER  
SYMBOL -8  
-10 UNITS NOTES  
t
t
READ/WRITEcommandtoREAD/WRITEcommand  
CKE to clock disable or power-down entry mode  
CKE to clock enable or power-down exit setup mode  
DQM to input data delay  
CCD  
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
CK  
17  
14  
14  
17  
17  
17  
17  
t
t
CKED  
CK  
t
t
PED  
CK  
t
t
DQD  
CK  
t
t
DQM to data mask during WRITEs  
DQM  
CK  
t
t
DQMtodatahigh-impedanceduringREADs  
WRITE command to input data delay  
Data-intoACTIVEcommand  
DQZ  
CK  
t
t
DWD  
CK  
t
t
DAL  
CK 15, 21  
t
t
Data-intoPRECHARGEcommand  
DPL  
CK 16, 21  
t
t
Last data-in to burst STOP command  
Lastdata-intonewREAD/WRITEcommand  
Lastdata-intoPRECHARGEcommand  
LOADMODEREGISTERcommandtoACTIVEorREFRESHcommand  
Data-outtohigh-impedancefromPRECHARGEcommand  
BDL  
CK  
17  
17  
t
t
CDL  
CK  
t
t
RDL  
CK 16, 21  
t
t
MRD  
CK  
26  
17  
17  
17  
t
t
CL = 3 ROH(3)  
CK  
t
t
CL = 2 ROH(2)  
CK  
t
t
CL = 1 ROH(1)  
CK  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
35  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
IDD SPECIFICATIONSANDCONDITIONS  
(Notes: 1, 5, 6, 11, 13; notes appear on page 37;VDD = 2.5 0.2V or +1.8V 0.15V, VDDQ = +1.8V 0.15V )  
MAX  
PARAMETER/CONDITION  
SYMBOL -8  
-10 UNITS NOTES  
OPERATING CURRENT: Active Mode;  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD8  
78  
75  
mA  
19, 32  
3, 18,  
t
Burst = 2; READ or WRITE; tRC = RC (MIN)  
STANDBY CURRENT: Power-Down Mode;  
All banks idle; CKE = LOW  
350 350  
µA  
mA  
mA  
mA  
mA  
µA  
32  
STANDBY CURRENT: Active Mode; CKE = HIGH; CS# = HIGH;  
All banks active after tRCD met; No accesses in progress  
25  
90  
25  
80  
3, 12,  
19, 32  
OPERATING CURRENT: Burst Mode; Continuous burst;  
READ or WRITE; All banks active  
3, 18,  
19, 32  
t
AUTO REFRESH CURRENT  
CKE = HIGH; CS# = HIGH  
tRFC = RFC (MIN)  
160 150  
2.5 2.5  
3, 12,  
18, 19,  
32, 33  
tRFC = 7.8µs  
DEEP POWER DOWN  
10  
10  
IDD7 - SELF REFRESH CURRENT OPTIONS (Temperature Compensated Self Refresh)  
(Notes: 1, 6, 11, 13; notes appear on page 37) VDD = 2.5 0.2V or +1.8V 0.15V, VDDQ = +1.8V 0.15V  
Temperature Compensated Self Refresh  
Parameter/Condition  
Max  
Temperature  
-8  
-10  
UNITS NOTES  
Self Refresh  
Current:  
85°C  
70°C  
45°C  
15°C  
600  
350  
200  
160  
600  
350  
200  
160  
µA  
µA  
µA  
µA  
4
4
4
4
CKE < 0.2V  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
36  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
NOTES  
1. All voltages referenced to VSS.  
17. Required clocks are specified by JEDEC function-  
ality and are not dependent on any timing param-  
eter.  
18. The IDD current will increase or decrease propor-  
tionally according to the amount of frequency al-  
teration for the test condition.  
2. This parameter is sampled; f = 1 MHz, TJ = 25°C;  
0.9V bias, 200mV swing, VDD = +2.5V, VDDQ = +1.8V.  
3. IDD is dependent on output loading and cycle rates.  
Specified values are obtained with minimum cycle  
time and the outputs open.  
4. Enables on-chip refresh and address counters.  
5. The minimum specifications are used only to  
indicate cycle time at which proper operation over  
the full temperature range (0°C TA +70°C and  
- 40°C TA +85°C for IT parts) is ensured.  
6. An initial pause of 100µs is required after power-  
up, followed by two AUTO REFRESH commands,  
before proper device operation is ensured. (VDD  
and VDDQ must be powered up simultaneously. VSS  
and VSSQ must be at same potential.) The two  
AUTO REFRESH command wake-ups should be  
19. Address transitions average one transition every  
two clocks.  
20. CLK must be toggled a minimum of two times dur-  
ing this period.  
21. Based on tCK = 7.5ns for -75, tCK=8ns for -8,  
tCK=10ns for -10 .  
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse  
width 3ns, and the pulse width cannot be greater  
than one third of the cycle rate. VIL undershoot: VIL  
(MIN) = -2V for a pulse width 1/3 tCK.  
23. The clock frequency must remain constant (stable  
clock is defined as a signal cycling within timing  
constraints specified for the clock pin) during ac-  
cess or precharge states (READ, WRITE, including  
tWR, and PRECHARGE commands). CKE may be  
used to reduce the data rate.  
t
repeated any time the REF refresh requirement is  
exceeded.  
7. AC characteristics assume T = 1ns.  
t
8. In addition to meeting the transition rate specifi-  
cation, the clock and CKE must transit between VIH  
and VIL (or between VIL and VIH) in a monotonic  
manner.  
24. Auto precharge mode only. The precharge timing  
budget (tRP) begins 7.5ns after the first clock de-  
lay, after the last WRITE is executed. May not ex-  
ceed limit set for precharge mode.  
9. Outputs measured at 0.9V with equivalent load:  
Q
25. Precharge mode only.  
26. JEDEC and PC100 specify three clocks.  
30pF  
t
27. AC for -75 at CL = 3 with no load is 5.4ns and is  
guaranteed by design.  
28. Parameter guaranteed by design.  
A. Maximum capacitance can be 3.0 pF but not  
desired.  
t
10. HZ defines the time at which the output achieves  
the open circuit condition; it is not a reference to  
VOH or VOL. The last valid data element will meet  
tOH before going High-Z.  
B. Maximum capacitance can be 5.0pF but not  
desired.  
11. AC timing and IDD tests have VIL = 0.0V and VIH 1.65V,  
with timing referenced to VIH/2 crossover point. If  
the input transition time is longer than 1 ns, then  
the timing is referenced at VIL (MAX) and VIH (MIN)  
and no longer at the ISV crossover point.  
12. Other input signals are allowed to transition no  
more than once every two clocks and are otherwise  
at valid VIH or VIL levels.  
C. Maximum capacitance can be 3.3pF but not  
desired.  
D. Target values listed with alternative values in  
parantheses.  
t
E. tRFC must be less than or equal to RC+1CLK  
t
tXSR must be less than or equal to RC+1CLK  
F. For full I/V relationships see IBIS Section.  
29. PC100 specifies a maximum of 4pF.  
30. PC100 specifies a maximum of 5pF.  
31. PC100 specifies a maximum of 6.5pF.  
32. For -75, CL = 3 and tCK = 7.5ns; for -8, CL = 2 and tCK  
= 10ns.  
33. CKE is HIGH during refresh command period  
tRFC (MIN) else CKE is LOW. The IDD6 limit is actu-  
ally a nominal value and does not result in a fail  
value.  
13. IDD specifications are tested after the device is prop-  
erly initialized.  
t
14. Timing actually specified by CKS; clock(s) speci-  
fied as a reference only at minimum cycle rate.  
t
t
15. Timing actually specified by WR plus RP; clock(s)  
specified as a reference only at minimum cycle rate.  
t
16. Timing actually specified by WR.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
37  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
INITIALIZE AND LOAD MODE REGISTER  
T1  
T0  
T3  
T5  
T7  
T9  
T19  
T29  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CLK  
CKE  
t
CK  
t
t
CKS CKH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CMH CMS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
COMMAND6  
4
4
3
4
4
4
ACT  
NOP  
PRE  
LMR  
LMR  
PRE  
AR  
AR  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQML/U (x16)  
t
t
AS AH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11, A12  
A10  
CODE  
CODE  
CODE  
RA  
RA  
BA  
ALL BANKS  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
t
AS  
t
AH  
t
t
AH  
t
AH  
t
AS  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0 = L,  
BA1 = H  
BA0 = L,  
BA1 = L  
BA0, BA1  
DQ  
High-Z  
( (  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
)
)
T = 100µs  
t
t
t
t
RP  
t
t
RFC  
RP  
MRD  
MRD  
RFC  
Power-up:  
DD and  
CK stable  
Load Extended  
Mode Register  
Load Mode  
Register  
V
DON’T CARE  
NOTE:  
1. The two AUTO REFRESH commands at T9 and T19 may be applied before either LOAD MODE REGISTER (LMR) command.  
2. PRE = PRECHARGE command, LMR = LOAD MODE REGISTER command, AR = AUTO REFRESH command, ACT = ACTIVE command, RA = Row Address,  
BA = Bank Address  
3. Optional refresh command.  
4. The Load Mode Register for both MR/EMR and 2 Auto Refresh commands can be in any order. However, all must occur prior to an Active command.  
5. Device timing is -10 with 100MHz clock.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CKS  
2.5  
1
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
2
2.5  
2
t
t
t
t
3
t
CK (3)  
8
10  
12  
25  
MRD  
RFC  
CK  
t
CK (2)  
10  
20  
80  
20  
100  
20  
ns  
ns  
t
CK (1)  
RP  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
38  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
POWER-DOWNMODE  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
) )  
t
CK  
t
CL  
CLK  
CKE  
( (  
t
CH  
) )  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
( (  
) )  
COMMAND  
PRECHARGE  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
DQM/  
DQML, DQMU  
( (  
) )  
( (  
) )  
A0-A9, A11, A12  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK  
BANK(S)  
High-Z  
( (  
) )  
Two clock cycles  
Input buffers gated off while in  
power-down mode  
Precharge all  
active banks  
All banks idle  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DON’T CARE  
NOTE: 1. Violating refresh requirements during power-down may result in a loss of data.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
20  
MAX  
MIN  
25  
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
CK (1)  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKH  
1
2.5  
1
1
t
t
CH  
CKS  
2.5  
1
t
t
CL  
3
3
CMH  
t
t
CK (3)  
8
10  
12  
CMS  
2.5  
2.5  
t
CK (2)  
10  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
39  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
CLOCK SUSPEND MODE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
2
2
A0-A9, A11, A12  
COLUMN m  
COLUMN e  
t
t
AH  
AS  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
t
AC  
t
t
t
t
t
DH  
AC  
OH  
HZ  
DS  
DOUT  
m
D
OUT m + 1  
DOUT  
e
DOUT + 1  
DQ  
t
LZ  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 2, the CAS latency = 3, and auto precharge is disabled.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
MAX  
MIN  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
2.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
1
2.5  
1
t
t
AS  
DH  
t
t
CH  
DS  
2.5  
2.5  
t
t
CL  
3
3
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
t
t
CK (3)  
8
10  
12  
HZ (2)  
t
t
CK (2)  
10  
HZ (1)  
19  
22  
t
t
LZ  
1
1
CK (1)  
20  
25  
ns  
t
OH  
2.5  
2.5  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
40  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
AUTO REFRESH MODE  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
( (  
CK  
CH  
) )  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
DQM /  
DQML, DQMU  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11, A12  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BANK(S)  
BA0, BA1  
DQ  
BANK  
( (  
( (  
) )  
) )  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
RFC  
RP  
RFC  
Precharge all  
active banks  
DON’T CARE  
NOTE: 1. Each AUTO REFRESH command performs a refresh cycle. Back-to-back commands are not required.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
20  
1
MAX  
MIN  
25  
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
CK (1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKH  
1
t
t
CH  
CKS  
2.5  
1
2.5  
1
t
t
CL  
3
3
CMH  
t
t
CK (3)  
8
10  
12  
CMS  
2.5  
80  
20  
2.5  
100  
20  
t
t
CK (2)  
10  
RFC  
t
RP  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
41  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
SELFREFRESHMODE  
T0  
T1  
T2  
( (  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
) )  
( (  
) )  
CLK  
CKE  
t
t
CK  
CH  
t
CKS  
> t  
RAS  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM/  
DQML, DQMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A12  
A10  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL BANKS  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
( (  
) )  
t
t
RP  
XSR  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
DON’T CARE  
CLK stable prior to exiting  
self refresh mode  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
ns  
ns  
ns  
ns  
t
AS  
2.5  
3
2.5  
1
2.5  
1
t
CH  
CMH  
CMS  
RAS  
t
CL  
3
3
2.5  
48  
20  
80  
2.5  
50  
t
CK (3)  
8
10  
12  
25  
120,000  
120,000  
ns  
ns  
ns  
t
CK (2)  
10  
20  
RP  
20  
t
t
CK (1)  
XSR  
100  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
42  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
READ – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMH  
CMS  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
2
A0-A9, A11, A12  
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANK  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
t
BANK  
t
t
AC  
AC  
AC  
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
DOUT  
m
DOUT m + 1  
D
OUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by a “manual”  
PRECHARGE.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
t
t
AC (2)  
CMS  
2.5  
2.5  
t
t
AC (1)  
19  
22  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AH  
1
2.5  
3
1
2.5  
3
HZ (2)  
t
t
AS  
HZ (1)  
19  
22  
t
t
CH  
LZ  
1
1
2.5  
50  
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
43  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
READ – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
2
A0-A9, A11, A12  
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
BANK  
t
t
t
AC  
AC  
AC  
t
t
t
t
t
AC  
OH  
OH  
OH  
OH  
DOUT  
m
D
OUT m + 1  
D
OUT m + 2  
D
OUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
t
t
t
t
t
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
1
ns  
ns  
t
AC (2)  
2.5  
2.5  
t
AC (1)  
19  
22  
HZ (3)  
HZ (2)  
HZ (1)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
1
2.5  
3
1
2.5  
3
t
AS  
19  
22  
t
CH  
LZ  
1
1
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
2.5  
50  
70  
20  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
RC  
120,000  
120,000  
t
t
t
t
CK (2)  
10  
20  
1
t
CK (1)  
RCD  
t
CKH  
RP  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
44  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
SINGLE READ – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS CMH  
2
2
COMMAND  
PRECHARGE  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
ACTIVE  
ROW  
NOP  
t
t
CMS CMH  
DQM /  
DQML, DQMU  
t
t
AS  
AH  
COLUMN m3  
A0-A9, A11,A12  
ROW  
t
t
AS  
AH  
ALL BANKS  
ROW  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANKS  
BANK(S)  
t
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
OH  
AC  
D
OUT m  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 1, the CAS latency = 2, and the READ burst is followed by a “manual”  
PRECHARGE.  
2. PRECHARGEcommandnotallowedelsetRASwouldbeviolated.  
3. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
t
t
AC (2)  
CMS  
2.5  
2.5  
t
t
AC (1)  
19  
22  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AH  
1
2.5  
3
1
2.5  
3
HZ (2)  
t
t
AS  
HZ (1)  
19  
22  
t
t
CH  
LZ  
1
1
2.5  
50  
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
45  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
SINGLE READ – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
2
2
COMMAND  
ACTIVE  
NOP  
NOP  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
NOP  
t
CMS  
CMH  
DQM /  
DQML, DQMU  
t
t
AH  
AS  
3
A0-A9, A11  
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
BANK  
t
AC  
t
OH  
D
OUT  
m
DQ  
t
CAS Latency  
t
RCD  
HZ  
t
t
RP  
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 1, and the CAS latency = 2.  
2. READ command not allowed elsetRAS would be violated since AUTO PRECHARGE is enabled.  
3. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
t
t
AC (2)  
CMS  
2.5  
2.5  
t
t
AC (1)  
19  
22  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AH  
1
2.5  
3
1
2.5  
3
HZ (2)  
t
t
AS  
HZ (1)  
19  
22  
t
t
CH  
LZ  
1
1
2.5  
50  
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
46  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
ALTERNATING BANK READ ACCESSES  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
2
2
A0-A9, A11, A12  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK 0  
BANK 0  
BANK 3  
t
BANK 3  
BANK 0  
t
t
t
t
AC  
AC  
AC  
AC  
AC  
t
t
t
t
t
t
AC  
OH  
OH  
OH  
OH  
OH  
DOUT  
m
D
OUT m + 1  
D
OUT m + 2  
DOUT m + 3  
DOUT b  
DQ  
t
LZ  
t
t
RCD - BANK 0  
t
RCD - BANK 0  
CAS Latency - BANK 0  
RP - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
RCD - BANK 1  
CAS Latency - BANK 1  
RRD  
DON’T CARE  
UNDEFINED  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
2.5  
1
MAX  
MIN  
2.5  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
ns  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CMH  
t
t
AC (1)  
19  
22  
CMS  
2.5  
1
2.5  
1
t
t
AH  
1
2.5  
3
1
2.5  
3
LZ  
t
t
AS  
OH  
2.5  
48  
80  
20  
20  
20  
2.5  
50  
t
t
CH  
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CL  
3
3
RC  
100  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RCD  
t
t
CK (2)  
10  
20  
1
RP  
20  
t
t
CK (1)  
RRD  
20  
t
CKH  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
47  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
READ – FULL-PAGE BURST  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
NOP  
t
CMS  
CMH  
( (  
) )  
DQM/  
DQML, DQMH  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
2
A0-A9, A11, A12  
ROW  
COLUMN m  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
ROW  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
( (  
) )  
t
t
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
OH  
OH  
( (  
) )  
( (  
) )  
D
OUT  
m
D
OUT m+1  
D
OUT m+2  
D
OUT m-1  
Dout  
m
D
OUT m+1  
DQ  
t
LZ  
t
HZ  
512 (x16) locations within same row  
1,024 (x8) locations within same row  
2,048 (x4) locations within same row  
t
RCD  
CAS Latency  
Full page completed  
DON’T CARE  
UNDEFINED  
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command.  
3
NOTE: 1. For this example, the CAS latency = 2.  
2. x16: A9, A11 and A12 = “Don’t Care”  
3. Page left open; no tRP.  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
2.5  
t
t
AS  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
t
t
CH  
HZ (2)  
t
t
CL  
3
3
HZ (1)  
19  
22  
t
t
CK (3)  
8
10  
12  
25  
LZ  
1
1
t
t
CK (2)  
10  
20  
OH  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
48  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
READ – DQM OPERATION  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
2
A0-A9, A11, A12  
A10  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
t
AC  
t
t
t
t
t
OH  
AC  
OH  
AC  
OH  
D
OUT  
m
DOUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
t
t
HZ  
LZ  
HZ  
t
RCD  
CAS Latency  
DON’T CARE  
UNDEFINED  
NOTE:  
1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
2.5  
1
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
2.5  
t
t
AS  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
t
t
CH  
HZ (2)  
t
t
CL  
3
3
HZ (1)  
19  
22  
t
t
CK (3)  
8
10  
12  
25  
LZ  
1
1
t
t
CK (2)  
10  
20  
OH  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
49  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
WRITE – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
PRECHARGE  
ACTIVE  
t
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
t
t
AH  
AS  
2
A0-A9, A11, A12  
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ALL BANKs  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DQ  
3
t
t
t
RP  
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
NOTE: 1. For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. x16: A9, A11 and A12 = “Don’t Care”  
3. 14ns to 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MAX  
1
MIN  
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CMS  
2.5  
1
2.5  
1
t
t
CH  
DH  
t
t
CL  
3
3
DS  
2.5  
48  
80  
20  
20  
15  
2.5  
50  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
t
CKS  
2.5  
2.5  
WR  
15  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
50  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
WRITE – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AS  
AH  
2
A0-A9, A11, A12  
ROW  
ROW  
ROW  
BANK  
COLUMN  
m
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
DIN m + 3  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
SYMBOL*  
MIN  
2.5  
MAX  
MIN  
2.5  
1
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
DH  
1
t
t
CH  
DS  
2.5  
2.5  
50  
t
t
CL  
3
3
RAS  
48  
120,000  
120,000  
ns  
ns  
ns  
ns  
t
t
CK (3)  
8
10  
12  
25  
1
RC  
80  
100  
20  
t
t
CK (2)  
10  
20  
1
RCD  
20  
t
t
CK (1)  
RP  
20  
20  
t
t
CKH  
WR  
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CKS  
2.5  
1
2.5  
1
t
CMH  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
51  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
SINGLE WRITE – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
2
2
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMS  
CMH  
DQM /  
DQML, DQMU  
t
t
t
t
AH  
AS  
3
A0-A9, A11  
ROW  
t
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
DIN  
m
DQ  
t
t
RP  
4
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
NOTE: 1. For this example, the burst length = 1, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. PRECHARGEcommandnotallowedelsetRASwouldbeviolated.  
3. x16: A9, A11 and A12 = “Don’t Care”  
4. 14ns to 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency. With a single write  
tWR has been increased to meet minimum tRAS requirement.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CMS  
2.5  
1
2.5  
1
t
t
CH  
DH  
t
t
CL  
3
3
DS  
2.5  
48  
80  
20  
20  
15  
2.5  
50  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
t
CKS  
2.5  
2.5  
WR  
15  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
52  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
SINGLE WRITE – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
2
2
2
NOP  
COMMAND  
ACTIVE  
NOP  
ACTIVE  
NOP  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AS  
AH  
3
A0-A9, A11, A12  
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
D
IN m  
DQ  
t
4
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
NOTE: 1. For this example, the burst length = 1.  
2. Requires one clock plus time (5ns to 7ns) with auto precharge or 14ns to 15ns with PRECHARGE.  
3. x16: A9, A11 and A12 = “Don’t Care”  
4. WRITE command not allowed else tRAS would be violated.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
2.5  
MAX  
MIN  
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
2.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
DH  
1
t
t
CH  
DS  
2.5  
2.5  
t
t
CL  
3
3
RAS  
48  
120,000  
50  
120,000  
t
t
CK (3)  
8
10  
12  
25  
1
RC  
80  
100  
20  
t
t
CK (2)  
10  
20  
1
RCD  
20  
t
t
CK (1)  
RP  
20  
20  
t
t
CKH  
WR  
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CKS  
2.5  
1
2.5  
1
t
CMH  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
53  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
ALTERNATINGBANKWRITEACCESSES  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM/  
DQML, DQMU  
t
t
AH  
AS  
3
3
A0-A9, A11, A12  
ROW  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK 0  
BANK 0  
BANK 1  
t
BANK 1  
BANK 0  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
DIN m + 1  
DIN m + 2  
D
IN m + 3  
D
IN  
b
DIN b + 1  
DIN b + 2  
D
IN b + 3  
DQ  
t
t
t
t
RP - BANK 0  
RCD - BANK 0  
WR - BANK 0  
RCD - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
WR - BANK 1  
t
RCD - BANK 1  
RRD  
DON’T CARE  
NOTE: 1. For this example, the burst length = 4.  
2. Requires one clock plus time (5ns or 7ns) with auto precharge or 14ns to 15ns with PRECHARGE.  
3. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
2.5  
1
MAX  
MIN  
2.5  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
ns  
ns  
ns  
t
t
AS  
2.5  
3
DH  
t
t
CH  
DS  
2.5  
48  
2.5  
50  
t
t
CL  
3
3
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CK (3)  
8
10  
12  
25  
1
RC  
80  
100  
20  
t
t
CK (2)  
10  
20  
1
RCD  
20  
t
t
CK (1)  
RP  
20  
20  
t
t
CKH  
RRD  
20  
20  
t
t
CKS  
2.5  
1
2.5  
1
WR  
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CMH  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
54  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
WRITEFULL-PAGEBURST  
T0  
T1  
T2  
T3  
T4  
T5  
Tn + 1  
Tn + 2  
Tn + 3  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
t
CMH  
CMS  
( (  
) )  
DQM/  
DQML, DQMH  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
1
A0-A9, A11, A12  
ROW  
COLUMN  
m
t
t
AH  
AS  
( (  
) )  
( (  
) )  
ROW  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
( (  
) )  
D
IN  
m
D
IN m + 1  
DIN m + 2  
DIN m + 3  
DIN m - 1  
DQ  
( (  
) )  
t
RCD  
Full-page burst does  
not self-terminate.  
512 (x16) locations within same row  
1,024 (x8) locations within same row  
2,048 (x4) locations within same row  
Can use BURST TERMINATE  
command to stop.2, 3  
Full page completed  
DON’T CARE  
NOTE: 1. x16: A9, A11 and A12 = “Don’t Care”  
t
2. WR must be satisfied prior to PRECHARGE command.  
3. Page left open; no tRP.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CKS  
2.5  
1
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
1
2.5  
1
t
t
CK (3)  
8
10  
12  
25  
DH  
t
t
CK (2)  
10  
20  
DS  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
55  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
1
WRITE – DQM OPERATION  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQM/  
DQML, DQMU  
t
t
t
t
AH  
AS  
2
A0-A9, A11, A12  
ROW  
t
COLUMN m  
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DIN  
m
D
IN m + 2  
DIN m + 3  
DQ  
t
RCD  
DON’T CARE  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9, A11 and A12 = “Don’t Care”  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
2.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKS  
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
1
2.5  
1
t
t
CK (3)  
8
10  
12  
25  
DH  
t
t
CK (2)  
10  
20  
DS  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
56  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
FBGA “FG” PACKAGE  
54-pin, 8mm x 14mm  
0.700 0.075  
SEATING PLANE  
0.10 C  
0.155 0.013  
1.80 0.05  
C
6.40  
1.00 MAX  
CTR  
BALL A1 ID  
0.80 TYP  
54X 0.35  
SOLDER BALL DIAMETER  
REFERS TO POST REFLOW  
CONDITION. THE PRE-  
REFLOW DIAMETER IS Ø 0.33  
BALL A9  
BALL A1 ID  
BALL A1  
0.80 TYP  
C
6.40  
14.00 0.10  
L
3.20 0.05  
7.00 0.05  
C
L
3.20 0.05  
4.00 0.05  
8.00 0.10  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb or  
62% Sn, 36% Pb, 2%Ag  
SOLDER BALL PAD: Ø .27mm  
(BottomView)  
NOTE: 1. All dimensions are in millimeters.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
57  
ADVANCE  
256Mb: x16  
MOBILE SDRAM  
DBFCF  
FBGADEVICE MARKING  
Due to the size of the package, Micron’s standard  
part number is not printed on the top of each device.  
Instead, an abbreviated device mark comprised of a  
five-digit alphanumeric code is used. The abbreviated  
device marks are cross referenced to Micron part num-  
bers in Table 1.  
Speed Grade  
B = -10  
C = -8  
Width ( I/Os)  
D = x16  
Device Density  
H = 256  
Product Type  
R = 2.5V SDR SDRAM, Low Power version (54-ball, 8 x 14)  
S = 1.8V SDR SDRAM, Low Power version (54-ball, 8 x 14)  
Product Group  
D = DRAM  
Z = DRAM ENGINEERING SAMPLE  
CROSS REFERENCE FOR FBGA DEVICE MARKING  
ENGINEERING  
PRODUCTION  
MARKING  
DSHDC  
PART NUMBER  
MT48V16M16LFFG-8  
MT48V16M16LFFG-10  
MT48V16M16LFFG-10  
MT48H16M16LFF-8  
ARCHITECTURE  
16 Meg x 16  
16 Meg x 16  
16 Meg x 16  
16 Meg x 16  
FBGA  
SAMPLE  
ZSHDC  
ZRHDB  
ZSHDB  
ZRHDC  
54-ball, 8 x 14  
54-ball, 8 x 14  
54-ball, 8 x 14  
54-ball, 8 x 14  
DRHDB  
DSHDB  
DRHDC  
DATASHEETDESIGNATION  
Advance: This data sheet contains initial descriptions of products still under development.  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail:prodmktg@micron.com,Internet:http://www.micron.com,CustomerCommentLine:800-932-4992  
Micron is a registered trademark and the Micron logo and M logo are trademarks of Micron Technology, Inc.  
256Mb: x16MobileSDRAM  
MobileRamY26L_A.p65Pub.5/02  
MicronTechnology,Inc.,reservestherighttochangeproductsorspecificationswithoutnotice.  
©2002,MicronTechnology,Inc.  
58  

相关型号:

MT48V4M32LFFC

SYNCHRONOUS DRAM
MICRON

MT48V8M16LFFF

SYNCHRONOUS DRAM
MICRON

MT4936

N-Channel Enhancement Mode Field Effect Transistor
ETC

MT4953

N-Channel Enhancement Mode Field Effect Transistor
ETC

MT49H16M16

REDUCED LATENCY DRAM RLDRAM
MICRON

MT49H16M16FM

REDUCED LATENCY DRAM RLDRAM
MICRON

MT49H16M18

288Mb CIO Reduced Latency
MICRON

MT49H16M18C

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H16M18CFM-XX

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H32M9

288Mb CIO Reduced Latency
MICRON

MT49H32M9C

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H32M9CFM-XX

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON