MC145406P [MOTOROLA]

Driver/Receiver(EIA 232-E and CCITT V.28(Formerly RS-232-D); 驱动器/接收器( EIA 232 - E和CCITT V.28 (前身为RS- 232 -D )
MC145406P
型号: MC145406P
厂家: MOTOROLA    MOTOROLA
描述:

Driver/Receiver(EIA 232-E and CCITT V.28(Formerly RS-232-D)
驱动器/接收器( EIA 232 - E和CCITT V.28 (前身为RS- 232 -D )

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总12页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC145406/D  
SEMICONDUCTOR TECHNICAL DATA  
EIA 232–E and CCITT V.28 (Formerly RS–232–D)  
P SUFFIX  
PLASTIC  
CASE 648  
The MC145406 is a silicon–gate CMOS IC that combines three drivers  
and three receivers to fulfill the electrical specifications of standards  
EIA 232–E and CCITT V.28. The drivers feature true TTL input  
compatibility, slew–rate–limited output, 300–power–off source imped-  
ance, and output typically switching to within 25% of the supply rails. The  
receivers can handle up to ± 25 V while presenting 3 to 7 kimpedance.  
Hysteresis in the receivers aids reception of noisy signals. By combining  
both drivers and receivers in a single CMOS chip, the MC145406 provides  
efficient, low–power solutions for EIA 232–E and V.28 applications.  
16  
1
DW SUFFIX  
SOG  
CASE 751G  
16  
Drivers  
± 5 V to ±12 V Supply Range  
300–Power–Off Source Impedance  
Output Current Limiting  
TTL Compatible  
Maximum Slew Rate = 30 V/µs  
1
SD SUFFIX  
SSOP  
CASE 940B  
Receivers  
± 25 V Input Voltage Range When V  
= 12 V, V  
= – 12 V  
DD  
SS  
3 to 7 kInput Impedance  
Hysteresis on Input Switchpoint  
PIN ASSIGNMENT  
BLOCK DIAGRAM  
V
V
1
2
16  
15  
CC  
DD  
RECEIVER  
V
DD  
V
DD  
R
R
R
DO1  
DI1  
Rx1  
Tx1  
V
CC  
V
CC  
*
3
4
5
6
7
14  
13  
12  
11  
10  
15 k  
D
D
D
Rx  
+
DO  
DO2  
5.4 k  
Rx2  
Tx2  
V
1.0 V  
1.8 V  
SS  
DI2  
DO3  
Rx3  
Tx3  
HYSTERESIS  
V
DI3  
V
DD  
DRIVER  
GND  
V
8
9
SS  
CC  
D = DRIVER  
R = RECEIVER  
300  
+
DI  
LEVEL  
SHIFT  
Tx  
1.4 V  
V
SS  
*Protection circuit  
REV 4  
1/95  
Motorola, Inc. 1995  
MAXIMUM RATINGS (Voltage polarities referenced to GND)  
This device contains protection circuitry to pro-  
tect the inputs against damage due to high static  
voltages or electric fields; however, it is advised  
that normal precautions be taken to avoid applica-  
tion of any voltage higher than maximum rated  
voltages to this high impedance circuit. For proper  
operation, it is recommended that the voltages at  
the DI and DO pins be constrained to the range  
Rating  
Symbol  
Value  
Unit  
DC Supply Voltages (V  
V  
)
V
DD  
– 0.5 to + 13.5  
+ 0.5 to – 13.5  
– 0.5 to + 6.0  
V
DD  
CC  
V
V
SS  
CC  
Input Voltage Range  
Rx1–3 Inputs  
V
IR  
V
(V  
SS  
– 15) to (V  
+ 15)  
DD  
+ 0.5)  
DI1–3 Inputs  
– 0.5 to (V  
CC  
GNDV V  
andGNDV  
V .Also,the  
DI CC  
DO CC  
voltage at the Rx pin should be constrained to  
(V – 15 V) V (V + 15 V), and Tx  
DC Current Per Pin  
Power Dissipation  
mA  
± 100  
SS Rx1–3 DD  
should be constrained to V V  
V .  
P
D
1.0  
W
°C  
°C  
SS  
Tx1–3  
DD  
Unused inputs must always be tied to an ap-  
Operating Temperature Range  
Storage Temperature Rate  
T
A
– 40 to + 85  
propriate logic voltage level (e.g., GND or V  
DI and Ground for Rx.)  
for  
CC  
T
stg  
– 85 to + 150  
DC ELECTRICAL CHARACTERISTICS (All polarities referenced to GND = 0 V, T = – 40 to +85°C)  
A
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
V
V
V
V
4.5  
– 4.5  
4.5  
5 to 12  
– 5 to – 12  
5.0  
13.2  
– 13.2  
5.5  
DD  
SS  
CC DD  
DD  
V
SS  
CC  
(V  
V  
)
V
CC  
Quiescent Supply Current (Outputs unloaded, inputs low)  
µA  
V
DD  
V
SS  
V
CC  
= + 12 V  
= – 12 V  
= + 5 V  
I
140  
340  
300  
400  
600  
450  
DD  
I
SS  
CC  
I
RECEIVER ELECTRICAL SPECIFICATIONS  
(Voltage polarities referenced to GND = 0 V, V  
= + 5 to + 12 V, V  
= – 5 to – 12 V, V  
V , T = – 40 to + 85°C)  
CC A  
DD  
SS  
DD  
Characteristic  
= 5.0 V ± 5%  
= 5.0 V ± 5%  
Symbol  
Min  
1.35  
Typ  
Max  
Unit  
Input Turn–on Threshold  
= V , V  
Rx1–Rx3  
Rx1–Rx3  
Rx1–Rx3  
Rx1–Rx3  
V
on  
1.80  
2.35  
V
V
DO1–DO3  
OL CC  
Input Turn–off Threshold  
= V , V  
V
off  
0.75  
0.6  
1.00  
0.8  
1.25  
V
V
V
DO1–DO3  
OH CC  
Input Threshold Hysteresis  
= 5.0 V ± 5%  
V
–V  
on off  
V
CC  
Input Resistance  
(V – 15 V) V  
R
3.0  
5.4  
7.0  
kΩ  
V
in  
(V + 15 V)  
DD  
SS  
Rx1–Rx3  
High–Level Output Voltage (V  
= – 3 V to (V  
– 15 V))*  
V
OH  
Rx1–Rx3  
SS  
DO1–DO3  
4.9  
3.8  
4.9  
4.3  
I
I
= – 20 µA, V  
= + 5.0 V  
CC  
= + 5.0 V  
OH  
OH  
= 1 mA, V  
CC  
Low–Level Output Voltage (V  
= + 3 V to (V  
+ 15 V))* DO1–DO3  
V
OL  
V
Rx1–Rx3  
= + 5.0 V  
DD  
I
I
I
= + 20 µA, V  
= + 2 mA, V  
0.01  
0.02  
0.5  
0.1  
0.5  
0.7  
OL  
OL  
OL  
CC  
CC  
= + 5.0 V  
= + 5.0 V  
= + 4 mA, V  
CC  
* This is the range of input voltages as specified by EIA 232–E to cause a receiver to be in the high or low logic state.  
MC145406  
2
MOTOROLA  
ELECTRICAL SPECIFICATIONS (Voltage polarities referenced to GND = 0 V, V  
= + 5 V ± 5%, T = – 40 to + 85°C)  
A
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Digital Input Voltage  
Logic 0  
DI1–DI3  
DI1–DI3  
V
V
2.0  
0.8  
IL  
Logic 1  
V
IH  
Input Current  
I
in  
± 1.0  
µA  
V
= V  
CC  
DI1–DI3  
Output High Voltage (V  
= Logic 0, R = 3.0 k)  
Tx1–Tx3  
= – 5.0 V  
= – 6.0  
SS  
= – 12.0 V  
V
OH  
V
DI1–3  
L
V
= + 5.0 V, V  
3.5  
4.3  
9.2  
3.9  
4.7  
9.5  
DD  
SS  
= + 6.0 V, V  
V
DD  
= + 12.0 V, V  
V
DD  
= Logic 1, R = 3.0 k)  
SS  
Output Low Voltage* (V  
Tx1–Tx3  
= – 5.0 V  
= – 6.0 V  
V
OL  
V
DI1–3  
L
V
V
= + 5.0 V, V  
= + 6.0 V, V  
= + 12.0 V, V  
– 4.0  
– 4.5  
– 10.0  
– 4.3  
– 5.2  
– 10.3  
DD  
DD  
SS  
SS  
SS  
V
= – 12.0 V  
DD  
Off Source Resistance (Figure 1)  
= V = GND = 0 V, V  
Tx1–Tx3  
300  
V
= ± 2.0 V  
DD  
SS  
Tx1–Tx3  
Output Short–Circuit Current (V  
= + 12.0 V, V  
= – 12.0 V)  
Tx1–Tx3  
I
SC  
mA  
DD  
SS  
Tx1–Tx3 shorted to GND**  
Tx1–Tx3 shorted to ± 15.0 V***  
± 22  
± 60  
± 60  
± 100  
*The voltage specifications are in terms of absolute values.  
**Specificationis for one Tx output pin to be shorted at a time. Should all three driver outputs be shorted simultaneously, device power dissipation  
limits will be exceeded.  
***This condition could exceed package limitations.  
SWITCHING CHARACTERISTICS (V  
= + 5 V ± 5%, T = – 40 to + 85°C; See Figures NO TAG and NO TAG)  
A
CC  
Drivers  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Propagation Delay Time  
Low–to–High  
Tx1–Tx3  
= 3 k, C = 50 pF  
ns  
R
t
t
300  
300  
500  
500  
L
L
PLH  
High–to–Low  
PHL  
R
= 3 kC = 50 pF  
L
L
Output Slew Rate  
Minimum Load  
Tx1–Tx3  
SR  
V/µs  
R
= 7 k, C = 0 pF, V  
= + 6 to + 12 V, V  
= – 6 to – 12 V  
± 9  
± 30  
L
L
DD  
SS  
Maximum Load  
R
= 3 k, C = 2500 pF  
L
L
V
= + 12 V, V  
= – 12 V  
4
DD  
V
SS  
= + 5 V, V  
= – 5 V  
SS  
DD  
Receivers (C = 50 pF)  
L
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Propagation Delay Time  
Low–to–High  
DO1–DO3  
ns  
t
t
150  
150  
250  
40  
425  
425  
400  
100  
PLH  
High–to–Low  
Output Rise Time  
Output Fall Time  
PHL  
DO1–DO3  
DO1–DO3  
t
r
ns  
ns  
t
f
MOTOROLA  
MC145406  
3
PIN DESCRIPTIONS  
1
16  
V
V
CC  
DD  
V
DD  
14  
3
Positive Power Supply (Pin 1)  
DI1  
Tx1  
The most positive power supply pin, which is typically + 5  
to + 12V.  
V
12  
10  
5
7
in =  
± 2 V  
DI2  
Tx2  
V
SS  
Negative Power Supply (Pin 8)  
The most negative power supply pin, which is typically – 5  
to – 12 V.  
DI3  
Tx3  
V
CC  
Digital Power Supply (Pin 16)  
V
8
V
in  
I
SS GND  
9
R
=
out  
The digital supply pin, which is connected to the logic  
power supply (maximum + 5.5 V). V  
must be less than  
CC  
or equal to V  
.
DD  
GND  
Figure 1. Power–Off Source Resistance (Drivers)  
Ground (Pin 9)  
Ground return pin is typically connected to the signal  
ground pin of the EIA 232–E connector (Pin 7) as well as to  
the logic power supply ground.  
DRIVERS  
Rx1, Rx2, Rx3  
3 V  
DI1–DI3  
50%  
Receive Data Input (Pins 2, 4, 6)  
These are the EIA 232–E receive signal inputs whose  
0 V  
voltages can range from (V  
+ 15 V) to (V  
– 15 V). A volt-  
DD  
+ 15 V) is decoded as a space  
SS  
t
t
f
r
age between + 3 and (V  
DD  
and causes the corresponding DO pin to swing to ground (0  
V); a voltage between – 3 and (V – 15 V) is decoded as a  
V
OH  
90%  
Tx1–Tx3  
DD  
10%  
t
V
mark and causes the DO pin to swing up to V . The actual  
CC  
OL  
turn–on input switchpoint is typically biased at 1.8 V above  
ground, and includes 800mV of hysteresis for noise rejec-  
tion. The nominal input impedance is 5 k. An open or  
grounded input pin is interpreted as a mark, forcing the DO  
t
PLH  
PHL  
RECEIVERS  
+ 3 V  
0 V  
pin to V  
.
CC  
Rx1–Rx3  
50%  
DO1, DO2, DO3  
Data Output (Pins 11, 13, 15)  
t
t
PLH  
PHL  
These are the receiver digital output pins, which swing  
V
OH  
90%  
DO1–DO3  
from V  
to GND. A space on the Rx pin causes DO to pro-  
CC  
50%  
10%  
duce a logic 0; a mark produces a logic 1. Each output pin is  
capable of driving one LSTTL input load.  
V
OL  
t
t
r
f
DI1, DI2, DI3  
Data Input (Pins 10, 12,14)  
Figure 2. Switching Characteristics  
These are the high–impedance digital input pins to the  
drivers. TTL compatibility is accomplished by biasing the in-  
put switchpoint at 1.4 V above GND. However, 5–V CMOS  
compatibility is maintained as well. Input voltage levels on  
these pins must be between V  
and GND.  
CC  
DRIVERS  
Tx1–Tx3  
Tx1, Tx2, Tx3  
Transmit Data Output(Pins 3, 5, 7)  
3 V  
3 V  
These are the EIA 232–E transmit signal output pins,  
which swing toward V  
causes the corresponding Tx output to swing toward V . A  
logic 0 causes the output to swing toward V  
– 3 V  
– 3 V  
t
and V . A logic 1 at a DI input  
DD  
SS  
t
SHL  
SLH  
SS  
– 3 V – (3 V)  
3 V – ( – 3 V)  
(the output  
or V dependingupon  
DD  
SLEW RATE (SR) =  
OR  
t
t
voltages will be slightly less than V  
SLH  
SHL  
DD  
SS  
the output load). Output slew rates are limited to a maximum  
of 30 V per µs. When the MC145406 is off (V = V = V  
DD  
= GND), the minimum output impedance is 300 .  
SS  
CC  
Figure 3. Slew–Rate Characterization  
MC145406  
MOTOROLA  
4
APPLICATIONS INFORMATION  
The MC145406 has been designed to meet the electrical  
bias forces the appropriate DO pin to a logic 1 when its Rx  
input is open or grounded as called for in the EIA 232–E  
specification. Notice that TTL logic levels can be applied to  
the Rx inputs in lieu of normal EIA 232–E signal levels. This  
might be helpful in situations where access to the modem or  
computer through the EIA 232–E connector is necessary  
with TTL devices. However, it is important not to connect the  
EIA 232–E outputs (Tx1–Tx3) to TTL inputs since TTL oper-  
ates off + 5 V only, and may be damaged by the high output  
voltage of the MC145406.  
specifications of standards EIA 232–E and CCITT V.28.  
EIA 232–E defines the electrical and physical interface be-  
tween Data Communication Equipment (DCE) and Data  
Terminal Equipment (DTE). A DCE is connected to a DTE  
using a cable that typically carries up to 25 leads. These  
leads, referred to as interchange circuits, allow the transfer  
of timing, data, control, and test signals. Electrically this  
transfer requires level shifting between the TTL/CMOS log-  
ic levels of the computer or modem and the high voltage lev-  
els of EIA 232–E, which can range from ± 3 to ± 25 V. The  
MC145406 provides the necessary level shifting as well as  
meeting other aspects of the EIA 232–E specification.  
The DO outputs are to be connected to a TTL or CMOS  
input (such as an input to a modem chip). These outputs  
will swing from V  
to ground, allowing the designer to op-  
CC  
erate the DO and DI pins from digital power supply. The Tx  
and Rx sections are independently powered by V and  
DRIVERS  
DD  
so that one may run logic at + 5 V and the EIA 232–E  
V
SS  
As defined by the specification, an EIA 232–E driver pres-  
ents a voltage of between ± 5 to ± 15 V into a load of be-  
tween 3 to 7 k. A logic 1 at the driver input results in a  
voltage of between – 5 to – 15 V. A logic 0 results in a voltage  
signals at ± 12 V.  
POWER SUPPLY CONSIDERATIONS  
between + 5 to + 15V. When operating V  
and V  
at ± 7 to  
Figure 4 shows a technique to guard against excessive  
device current.  
The diode D1 prevents excessive current from flowing  
DD  
SS  
± 12 V, the MC145406 meets this requirement. When operat-  
ing at ± 5 V, the MC145406 drivers produce less than  
± 5 V at the output (when terminated), which does not meet  
EIA 232–E specification. However, the output voltages when  
using a ± 5 V power supply are high enough (around  
± 4 V) to permit proper reception by an EIA 232–E receiver,  
and can be used in applications where strict compliance to  
EIA 232–E is not required.  
Another requirement of the MC145406 drivers is that  
they withstand a short to another driver in the EIA 232–E  
cable. The worst–case condition that is permitted by  
EIA 232–E is a ± 15 V source that is current limited to 500  
mA. The MC145406 drivers can withstand this condition  
momentarily. In most short circuit conditions the source  
driver will have a series 300 output impedance needed  
to satisfy the EIA 232–E driver requirements. This will re-  
duce the short circuit current to under 40 mA which is an  
acceptable level for the MC145406 to withstand.  
through an internal diode from the V  
pin to the V  
pin  
CC  
by approximately 0.6 V. This high current  
DD  
when V  
< V  
DD  
CC  
condition can exist for a short period of time during power  
up/down. Additionally, if the + 12 V supply is switched off  
while the + 5 V is on and the off supply is a low impedance  
to ground, the diode D1 will prevent current flow through  
the internal diode.  
The diode D2 is used as a voltage clamp, to prevent V  
SS  
from drifting positive to V , in the event that power is re-  
CC  
(Pin 12). If V  
moved from V  
power is removed, and the  
SS  
impedance from the V  
SS  
pin to ground is greater than  
SS  
approximately 3 k, this pin will be pulled to V  
circuitry causing excessive current in the V  
If by design, neither of the above conditions are allowed  
to exist, then the diodes D1 and D2 are not required.  
by internal  
CC  
pin.  
CC  
ESD PROTECTION  
Unlike some other drivers, the MC145406 drivers feature  
an internally–limited output slew–rate that does not exceed  
30 V per µs.  
ESD protection on IC devices that have their pins accessi-  
ble to the outside world is essential. High static voltages ap-  
plied to the pins when someone touches them either directly  
or indirectly can cause damage to gate oxides and transistor  
junctions by coupling a portion of the energy from the I/O pin  
to the power supply buses of the IC. This coupling will usually  
occur through the internal ESD protection diodes. The key to  
protecting the IC is to shunt as much of the energy to ground  
as possible before it enters the IC. Figure 4 shows a tech-  
nique which will clamp the ESD voltage at approximately ±  
15 V using the MMVZ15VDLT1. Any residual voltage which  
appears on the supply pins is shunted to ground through the  
capacitors C1–C3. This scheme has provided protection to  
the interface part up to ± 10 kV, using the human body model  
test.  
RECEIVERS  
The job of an EIA 232–E receiver is to level–shift voltages  
in the range of – 25 to + 25 V down to TTL/CMOS logic lev-  
els (0 to + 5 V). A voltage of between – 3 and – 25 V on Rx1  
is defined as a mark and produces a logic 1 at DO1. A volt-  
age between + 3 and + 25 V is a space and produces a logic  
zero. While receiving these signals, the Rx inputs must pres-  
ent a resistance between 3 and 7 k. Nominally, the input re-  
sistance of the Rx1–Rx3 inputs is 5.4 k.  
The input threshold of the Rx1–Rx3 inputs is typically  
biased at 1.8 V above ground (GND) with typically 800 mV of  
hysteresis included to improve noise immunity. The 1.8 V  
MOTOROLA  
MC145406  
5
V
DD  
D1  
MMBZ15VDLT  
× 6  
IN4001  
0.1  
V
CC  
µF  
0.1 µF  
C1  
C2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RxI  
TxO  
RxI  
TO  
MC145406  
CONNECTOR  
TxO  
RxI  
TxO  
IN5818  
D2  
C3  
V
0.1 µF  
SS  
Figure 4. ESD and Power Supply Networks  
MC145406  
MOTOROLA  
6
+ 5 V  
0.1  
16  
µF  
0.1 µF  
1
6
V
20 k  
9
V
V
CC  
TLA  
DSI  
DD  
DD  
MC145406  
X
in  
C
R
DSI  
TLA**  
3.579  
MHz  
R
DSI  
DTMF  
INPUT  
1
MC145442/3  
8
3
3
14  
15  
12  
Tx1  
8
X
out  
DI1  
20 k  
17  
15  
0.1  
µF  
TxA  
CD  
TxD  
RxD  
RxA2  
11  
5
2
5
4
DO1  
2
3
Rx1  
Tx2  
R
600  
Tx  
EIA 232–E  
DB–25  
CONNECTOR  
10 kΩ  
10 kΩ  
10  
µ
F
+
16  
DI2  
TIP  
RxA1  
14  
2
SQT  
LB  
*
7
600:600  
NC 13 DO2  
Rx2  
Tx3  
10 k  
RING  
18  
10  
10  
7 NC  
6
ExI  
FB  
V
DI3  
DD  
C
FB  
10 k  
10 k  
0.1  
µF  
DO3  
NC11  
Rx3  
13  
7
0.1  
µF  
MODE  
CDA  
19  
4
V
BYPASS  
DD  
V
AG  
V
CDT  
GND  
12  
GND  
9
SS  
C
CDA**  
0.1  
0.1  
µF  
0.1  
C
µ
CDT  
F
8
µF  
V
BYPASS  
SS  
0.1  
– 5 V  
µF  
*Line protection circuit  
**Refer to the applications information for values of C  
and R  
CDA  
TLA  
Figure 5. 5–V 300–Baud Modem with EIA 232–E Interface  
MOTOROLA  
MC145406  
7
1
4
7
*
2
5
8
0
3
6
9
#
MC34119  
SPEAKER  
DRIVER  
MC145412/13/16  
PULSE/TONE  
DIALER  
HOOKSWITCH  
LINE  
INTERFACE  
(TRANSFORMER  
AND  
RINGING  
MC145503  
FILTER/  
CODEC  
MC145426  
UDLT  
TWISTED  
PAIR  
PROTECTION)  
SYNC  
MC34129  
SWITCHING  
POWER  
SUPPLY  
(ISOLATED)  
+ 5 V  
GND  
– 5 V  
CONNECTION  
TO EXTERNAL  
TERMINAL  
OR PC  
MC145406  
RS–232  
DRIVER  
MC145428  
DATA  
SET  
LINE  
FILTER  
RECEIVER  
INTERFACE  
Figure 6. Line–Powered Voice/Data Telephone with Electrically Isolated EIA 232–E Interface  
MC145406  
8
MOTOROLA  
TR1  
Figure 7. 80–kbps Limited Distance Modem with EIA 232–E Interface (Master)  
MOTOROLA  
MC145406  
9
PACKAGE DIMENSIONS  
P SUFFIX  
CASE 648–08  
NOTES:  
-A-  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.070  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
2.54 BSC  
1.27 BSC  
0.21  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
C
L
0.740  
0.250  
0.145  
0.015  
0.040  
0.100 BSC  
0.050 BSC  
0.008  
S
SEATING  
PLANE  
-T-  
M
K
0.015  
0.130  
0.305  
0.38  
3.30  
7.74  
H
J
0.110  
0.295  
2.80  
7.50  
G
D 16 PL  
M
S
0°  
10°  
0°  
10°  
M
M
0.25 (0.010)  
T
A
0.020  
0.040  
0.51  
1.01  
STYLE 1:  
PIN 1. CATHODE  
2. CATHODE  
STYLE 2:  
PIN 1. COMMON DRAIN  
2. COMMON DRAIN  
3. COMMON DRAIN  
4. COMMON DRAIN  
5. COMMON DRAIN  
6. COMMON DRAIN  
7. COMMON DRAIN  
8. COMMON DRAIN  
9. GATE  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
7. CATHODE  
8. CATHODE  
9. ANODE  
10. ANODE  
11. ANODE  
12. ANODE  
13. ANODE  
14. ANODE  
15. ANODE  
16. ANODE  
10. SOURCE  
11. GATE  
12. SOURCE  
13. GATE  
14. SOURCE  
15. GATE  
16. SOURCE  
DW SUFFIX  
CASE 751G–02  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
16  
1
9
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
-B- P 8 PL  
M
M
0.25 (0.010)  
B
8
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
G 14 PL  
J
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
F
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45°  
F
1.27 BSC  
0.050 BSC  
G
J
K
M
P
R
C
0.25  
0.10  
0.32  
0.25  
0.010  
0.004  
0.012  
0.009  
-T-  
0°  
7
°
0°  
7°  
SEATING  
PLANE  
M
K
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
D 16 PL  
0.25 (0.010)  
M
S
S
T
A
B
MC145406  
10  
MOTOROLA  
SD SUFFIX  
CASE 940B–02  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION IS THE LENGTH OF TERMINAL  
FOR SOLDERING TO A SUBSTRATE.  
5. TERMINAL POSITIONS ARE SHOWN FOR  
REFERENCE ONLY.  
16  
8
7
L
B
-R-  
M
M
0.250 (0.010)  
R
1
6. THE LEAD WIDTH DIMENSION DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION.  
M
A
-P-  
J
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
L
MIN  
6.10  
5.20  
1.75  
0.25  
0.65  
MAX  
6.30  
5.38  
1.99  
0.38  
1.00  
MIN  
MAX  
0.248  
0.212  
0.078  
0.015  
0.039  
NOTE 4  
0.240  
0.205  
0.069  
0.010  
0.026  
C
-T-  
G
0.076 (0.003)  
N
D
H
0.65 BSC  
0.026 BSC  
0.73  
0.10  
7.65  
0
0.90  
0.20  
7.90  
8
0.029  
0.004  
0.301  
0
0.035  
0.008  
0.311  
8
M
S
0.120 (0.005)  
T P  
M
N
0.05  
0.21  
0.002  
0.008  
MOTOROLA  
MC145406  
11  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecificallydisclaimsanyandallliability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Literature Distribution Centers:  
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.  
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.  
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.  
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
CODELINE TO BE PLACED HERE  
MC145406/D  

相关型号:

MC145406PD

Line Driver/Receiver, 3 Driver
MOTOROLA

MC145406SD

Driver/Receiver(EIA 232-E and CCITT V.28(Formerly RS-232-D)
MOTOROLA

MC145407

5 Volt Only Driver / Recevier
MOTOROLA

MC145407DW

5 Volt Only Driver / Recevier
MOTOROLA

MC145407DW

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
LANSDALE

MC145407DW

IC,LINE TRANSCEIVER,CMOS,3 DRIVER,3 RCVR,SOP,20PIN,PLASTIC
NXP

MC145407DWR2

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, CMOS, PDSO20, SOG-20
MOTOROLA

MC145407DWR2

IC,LINE TRANSCEIVER,CMOS,3 DRIVER,3 RCVR,SOP,20PIN,PLASTIC
NXP

MC145407L

Line Driver/Receiver, 3 Driver, CMOS, CDIP20
MOTOROLA

MC145407P

5 Volt Only Driver / Recevier
MOTOROLA

MC145407P

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
LANSDALE

MC145408

DRIVER / RECEIVERS
MOTOROLA