MC33206P [MOTOROLA]

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS; 低电压轨到轨运算放大器
MC33206P
型号: MC33206P
厂家: MOTOROLA    MOTOROLA
描述:

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
低电压轨到轨运算放大器

运算放大器 光电二极管
文件: 总13页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC33206/D  
LOW VOLTAGE  
RAIL–TO–RAIL  
OPERATIONAL AMPLIFIERS  
SEMICONDUCTOR  
TECHNICAL DATA  
The MC33206/7 family of operational amplifiers provide rail–to–rail  
operation on both the input and output. The inputs can be driven as high as  
200 mV beyond the supply rails without phase reversal on the outputs and  
the output can swing within 50 mV of each rail. This rail–to–rail operation  
enables the user to make full use of the supply voltage range available. It is  
designed to work at very low supply voltages (±0.9 V) yet can operate with a  
single supply of up to 12 V and ground. Output current boosting techniques  
provide a high output current capability while keeping the drain current of the  
amplifier to a minimum.  
MC33206  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646  
14  
1
The MC33206/7 has an enable mode that can be controlled externally.  
D SUFFIX  
PLASTIC PACKAGE  
The typical supply current in the standby mode is <1.0 µA (V  
= Gnd).  
Enable  
14  
The addition of an enable function makes this amplifier an ideal choice for  
power sensitive applications, battery powered equipment (instrumentation and  
monitoring), portable telecommunication, and sample–and–hold applications.  
CASE 751A  
(SO–14)  
1
N.C.  
N.C.  
1
2
3
4
5
6
7
14 N.C.  
Standby Mode (I 1.0 µA, Typ)  
D
13  
12  
11  
10  
9
V
CC  
Output 2  
Low Voltage, Single Supply Operation  
Output 1  
(1.8 V and Ground to 12 V and Ground)  
1
2
Inputs 1  
Inputs 2  
Rail–to–Rail Input Common Mode Voltage Range  
Output Voltage Swings within 50 mV of both Rails  
No Phase Reversal on the Output for Over–Driven Input Signals  
Enable 1  
Enable 2  
N.C.  
8
V
EE  
(Dual, Top View)  
High Output Current (I  
SC  
= 80 mA, Typ)  
MC33207  
Low Supply Current (I = 0.9 mA, Typ)  
D
600 Output Drive Capability  
P SUFFIX  
PLASTIC PACKAGE  
CASE 648  
Typical Gain Bandwidth Product = 2.2 MHz  
16  
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B  
16  
ORDERING INFORMATION  
Operational  
Operating  
1
(SO–16)  
Amplifier Function  
Temperature Range  
Device  
MC33206D  
MC33206P  
MC33207D  
MC33207P  
Package  
SO–14  
Output 1  
Inputs 1  
1
16 Enable 1, 4  
15 Output 4  
14  
Dual  
2
3
4
5
6
7
8
Plastic DIP  
SO–16  
1
2
T = –40 ° to +105°C  
A
4
3
Inputs 4  
13  
12  
11  
10  
9
V
CC  
Quad  
Plastic DIP  
V
EE  
Inputs 2  
Inputs 3  
Output 2  
Enable 2, 3  
Output 3  
(Quad, Top View)  
This document contains information on a new product. Specifications and information herein  
Motorola, Inc. 1996  
Rev 0  
are subjecttochangewithout notice.
MC33206 MC33207  
MAXIMUM RATINGS  
Rating  
to V  
Symbol  
Value  
13  
Unit  
V
Supply Voltage (V  
)
V
S
CC  
EE  
ESD Protection Voltage at any Pin  
Human Body Model  
V
ESD  
2,000  
V
Voltage at any Device Pin  
V
V
± 0.5  
V
V
V
DP  
S
Input Differential Voltage Range  
Common Mode Input Voltage Range (Note 2)  
V
IDR  
(Note 1)  
V
CM  
V
+ 0.5 to  
– 0.5  
CC  
V
EE  
Output Short Circuit Duration (Note 3)  
Maximum Junction Temperature  
Storage Temperature Range  
t
(Note 3)  
+150  
sec  
°C  
s
T
J
T
stg  
–65 to +150  
(Note 3)  
°C  
Maximum Power Dissipation  
P
mW  
D
NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back  
diodes. For additional differential input voltage range, use current limiting resistors in series  
with the input pins.  
2. The common–mode input voltage range of each amplifier is limited by diodes connected from  
the inputs to both power supply rails. Therefore, the voltage on either input must not exceed  
either supply rail by more than 500 mV.  
3. Power dissipation must be considered to ensure maximum junction temperature (T ) is not  
J
exceeded.  
4. ESD data available upon request.  
DC ELECTRICAL CHARACTERISTICS (V  
= 5.0 V, V  
= 0 V, V  
= 5.0 V, T = 25°C, unless otherwise noted.)  
Enable A  
CC  
EE  
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (V  
0 to 0.5 V, V  
1.0 to 5.0 V)  
V
IO  
mV  
CM  
MC33206: T = 25°C  
CM  
0.5  
1.0  
0.5  
1.0  
8.0  
11  
10  
13  
A
MC33201: T = –40° to +105°C  
A
MC33207: T = 25°C  
A
MC33202: T = –40° to +105°C  
A
Input Offset Voltage Temperature Coefficient (R = 50 )  
V /T  
IO  
2.0  
µV/°C  
S
T
A
= –40° to +105°C  
Input Bias Current (V  
= 0 to 0.5 V, V  
= 1.0 to 5.0 V)  
I
IB  
nA  
CM  
CM  
T
T
= 25°C  
80  
100  
200  
250  
A
= –40° to +105°C  
A
Input Offset Current (V  
= 0 to 0.5 V, V  
= 1.0 to 5.0 V)  
I
IO  
nA  
CM  
CM  
T
T
= 25°C  
5.0  
10  
50  
100  
A
= –40° to +105°C  
A
Common Mode Input Voltage Range  
V
V
V
+ 0.2  
– 0.2  
V
V
ICR  
CC  
EE  
CC  
V
EE  
Large Signal Voltage Gain (V  
= 5.0 V, V  
= –5.0 V)  
A
VOL  
kV/V  
CC  
EE  
R
R
= 10 kΩ  
= 600 Ω  
50  
25  
300  
250  
L
L
Output Voltage Swing (V = ±0.2 V)  
ID  
V
R
L
R
L
R
L
R
L
= 10 kΩ  
= 10 kΩ  
= 600 Ω  
= 600 Ω  
V
V
4.85  
4.75  
4.95  
0.05  
4.85  
0.15  
0.15  
OH  
OL  
V
V
OH  
0.25  
OL  
Common Mode Rejection (V = 0 to 5.0 V)  
in  
CMR  
60  
90  
dB  
Power Supply Rejection Ratio  
PSRR  
PSR  
66  
25  
92  
500  
µV/V  
dB  
V /V  
CC EE  
= 5.0 V/Gnd to 3.0 V/Gnd  
Output Short Circuit Current (Source and Sink)  
I
50  
80  
mA  
SC  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
DC ELECTRICAL CHARACTERISTICS (continued) (V  
= 5.0 V, V  
= 0 V, V  
= 5.0 V, T = 25°C, unless otherwise noted.)  
A
CC  
EE  
Enable  
Symbol  
Characteristic  
Figure  
Min  
Typ  
Max  
Unit  
Power Supply Current (V = 2.5 V, T = 40° to +105°C,  
I
D
O
A
per Amplifier)  
MC33206: V  
MC33206: V  
MC33207: V  
MC33207: V  
= 5.0 Vdc  
= Gnd (Standby)  
= 5.0 Vdc  
0.8  
0.5  
1.5  
0.5  
1.125  
6.0  
2.25  
6.0  
mA  
µA  
mA  
µA  
Enable  
Enable  
Enable  
Enable  
= Gnd (Standby)  
Enable Input Voltage (per Amplifier)  
Enabled – Amplifier “On”  
Disabled – Amplifier “Off” (Standby)  
V
V
Enable  
V
EE  
V
EE  
+ 1.8  
+ 0.3  
Enable Input Current (Note 5) (per Amplifier)  
I
µA  
Enable  
V
V
V
V
= 12 V  
= 5.0 V  
= 1.8 V  
= Gnd  
2.5  
Enable  
Enable  
Enable  
Enable  
2.2  
0.8  
0
NOTE: 5. External control circuitry must provide for an initial turn–off transient of <10 µA.  
AC ELECTRICAL CHARACTERISTICS (V  
= 5.0 V, V  
= 0 V, V  
= 5.0 V, T = 25°C, unless otherwise noted.)  
A
CC  
EE  
Enable  
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate (V = ±2.5 V, V = 2.0 to +2.0 V,  
SR  
0.5  
1.0  
V/µs  
S
O
R
= 2.0 k, A = 1.0)  
V
L
Gain Bandwidth Product (f = 100 kHz)  
Phase Margin (R = 600 , C = 0 pF)  
GBW  
M
2.2  
65  
12  
90  
28  
MHz  
Deg  
dB  
L
L
Gain Margin (R = 600 , C = 0 pF)  
A
M
L
L
Channel Separation (f = 1.0 Hz to 20 kHz, A = 100)  
CS  
BW  
dB  
V
Power Bandwidth (V = 4.0 Vpp, R = 600 , THD 1%)  
kHz  
%
O
L
P
Total Harmonic Distortion (R = 600 , V = 1.0 Vpp, A = 1.0)  
THD  
L
O
V
f = 1.0 kHz  
f = 10 kHz  
0.002  
0.008  
Open Loop Output Impedance  
(V = 0 V, f = 2.0 MHz, A = 10)  
Z
O
100  
O
V
Differential Input Resistance (V  
CM  
= 0 V)  
= 0 V)  
R
in  
C
in  
e
n
200  
8.0  
kΩ  
Differential Input Capacitance (V  
pF  
CM  
Equivalent Input Noise Voltage (R = 100 )  
nV/  
Hz  
S
f = 10 Hz  
25  
20  
f = 1.0 kHz  
Equivalent Input Noise Current  
f = 10 Hz  
i
n
pA/  
Hz  
0.8  
0.2  
f = 1.0 kHz  
Time Delay for Device to Turn On  
Time Delay for Device to Turn Off  
t
t
10  
µs  
µs  
on  
2.0  
off  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 1. Circuit Schematic  
(Each Amplifier)  
V
CC  
V
CC  
V
CC  
V
CC  
V
+
in  
Enable  
V
in  
V
EE  
This device contains 96 active transistors (each amplifier).  
Figure 2. Maximum Power Dissipation  
versus Temperature  
Figure 3. Input Offset Voltage Distribution  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
40  
35  
30  
25  
20  
360 amplifiers tested  
from 3 wafer lots  
16 Pin DIP  
14 Pin DIP  
V
V
= 5.0 V  
= Gnd  
CC  
EE  
T
= 25  
°C  
A
DIP Package  
15  
10  
5.0  
0
SO–14/SO–1  
6
0
–60  
–30  
0
30  
60  
90  
C)  
120  
150  
–10 –8.0 –6.0 –4.0 –2.0  
0
2.0  
4.0  
6.0  
8.0  
10  
T , AMBIENT TEMPERATURE (  
°
V
IO  
, INPUT OFFSET VOLTAGE (mV)  
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 4. Input Offset Voltage  
Temperature Coefficient Distribution  
Figure 5. Input Bias Current  
versus Temperature  
50  
40  
200  
160  
120  
80  
V
V
= 5.0 V  
= Gnd  
360 amplifiers tested  
from 3 wafer lots  
CC  
EE  
V
V
= 5.0 V  
= Gnd  
CC  
EE  
T
= 25  
°C  
A
30  
20  
DIP Package  
V
= 0 V to 0.5 V  
CM  
V
> 1.0 V  
CM  
10  
0
40  
0
–55 –40 –25  
0
25  
70  
85  
125  
–50 –40 –30 –20  
–10  
0
10  
20  
30  
40  
50  
TC , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (  
µV/°C)  
V
T , AMBIENT TEMPERATURE (°C)  
IO  
A
Figure 6. Input Bias Current  
versus Common Mode Voltage  
Figure 7. Open Loop Voltage Gain  
versus Temperature  
150  
100  
50  
300  
260  
0
220  
–50  
–100  
–150  
–200  
–250  
180  
140  
100  
V
V
R
= 5.0 V  
= Gnd  
CC  
EE  
V
= 12 V  
= Gnd  
= 25°C  
CC  
V
T
= 600  
EE  
A
L
V
= 0.5 V to 4.5 V  
O
0
2.0  
V
4.0  
6.0  
8.0  
10  
12  
–55 –40 –25  
0
25  
70  
85  
105 125  
, INPUT COMMON MODE VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°C)  
CM  
A
Figure 8. Output Voltage Swing  
versus Supply Voltage  
Figure 9. Output Saturation Voltage  
versus Load Current  
V
V
12  
10  
CC  
R
= 600 Ω  
T
= –55°C  
L
A
T
= 25  
°C  
A
T
= 125°C  
A
CC  
T
= 25°C  
A
8.0  
6.0  
4.0  
2.0  
V
V
+
CC  
EE  
V
V
= 5.0 V  
= –5.0 V  
CC  
EE  
T
= 25°C  
A
V
+
EE  
T
= 125°C  
A
T
= –55°C  
A
0
V
EE  
±1.0  
±2.0  
±
3.0  
±
4.0  
±5.0  
±6.0  
0
5.0  
10  
I , LOAD CURRENT (mA)  
15  
20  
V
, V  
EE  
SUPPLY VOLTAGE (V)  
CC  
L
5
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 10. Output Voltage  
versus Frequency  
Figure 11. Common Mode Rejection  
versus Frequency  
12  
9.0  
6.0  
100  
80  
60  
40  
V
V
V
= 6.0 V  
= –6.0 V  
= 600 Ω  
= 1.0  
CC  
EE  
L
= 6.0 V  
= –6.0 V  
= –55° to +125°C  
CC  
R
A
3.0  
0
V
T
EE  
A
20  
V
A
T
= 25°C  
0
10  
1.0 k  
10 k  
100 k  
1.0 M  
1.0 M  
125  
100  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 12. Power Supply Rejection  
versus Frequency  
Figure 13. Output Short Circuit Current  
versus Output Voltage  
120  
100  
80  
100  
80  
60  
40  
20  
0
Source  
PSR+  
PSR–  
Sink  
60  
40  
20  
0
V
V
T
= 6.0 V  
= –6.0 V  
= 25  
V
V
T
= 6.0 V  
CC  
EE  
A
CC  
EE  
A
= –6.0 V  
to +125°C  
°C  
= –55  
°
10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
V
, OUTPUT VOLTAGE (V)  
out  
Figure 14. Output Short Circuit Current  
versus Temperature  
Figure 15. Supply Current per Amplifier  
versus Supply Voltage with No Load  
2.0  
1.6  
1.2  
0.8  
0.4  
0
150  
125  
V
V
= 5.0 V  
= Gnd  
CC  
EE  
T
= 125°C  
100  
A
Source  
Sink  
T
= 25°C  
75  
50  
25  
A
T
= –55  
°C  
A
0
–55 –40 –25  
0
25  
70  
85  
105  
±
0
±
1.0  
±
2.0  
±
3.0  
±
4.0  
±5.0  
± .0  
T , AMBIENT TEMPERATURE (  
°C)  
V
,
V
, SUPPLY VOLTAGE (V)  
A
CC  
EE  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 16. Slew Rate  
versus Temperature  
Figure 17. Gain Bandwidth Product  
versus Temperature  
2.0  
4.0  
V
V
V
= 2.5 V  
= –2.5 V  
V
V
= 2.5 V  
= –2.5 V  
CC  
EE  
O
CC  
EE  
=
±2.0 V  
f = 100 kHz  
3.0  
2.0  
1.0  
0
1.5  
1.0  
0.5  
0
+Slew Rate  
–Slew Rate  
–55 –40 –25  
0
25  
70  
85  
105  
125  
–55 –40 –25  
0
25  
70 85  
C)  
105  
125  
T , AMBIENT TEMPERATURE (  
°
C)  
T , AMBIENT TEMPERATURE (°  
A
A
Figure 18. Voltage Gain and Phase  
versus Frequency  
Figure 19. Voltage Gain and Phase  
versus Frequency  
70  
50  
40  
70  
50  
40  
V
=
= 25  
= 600  
±
6.0 V  
C = 0 pF  
L
S
T
°
C
T = 25°C  
A
A
R
R = 600 Ω  
L
80  
80  
L
30  
10  
120  
160  
200  
240  
30  
10  
120  
160  
1A  
1A  
2A  
2A  
2B  
1B  
1A – Phase, C = 0 pF  
L
1A – Phase, V  
=
±
6.0 V  
S
=
2B  
1B – Gain, C = 0 pF  
L
1B  
1B – Gain, V  
2A – Phase, V  
±6.0 V  
=
±
–10  
–30  
S
–10  
200  
240  
2A – Phase, C = 300 pF  
L
±1.0 V  
S
=
2B – Gain, C = 300 pF  
L
2B – Gain, V  
1.0 V  
S
–30  
10 k  
10 k  
100 k  
1.0 M  
10 M  
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
Figure 20. Gain and Phase Margin  
versus Temperature  
Figure 21. Gain and Phase Margin  
versus Differential Source Resistance  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
75  
60  
75  
60  
Phase Margin  
Phase Margin  
V
V
= 6.0 V  
= –6.0 V  
CC  
EE  
45  
30  
45  
30  
15  
V
V
R
C
= 6.0 V  
= –6.0 V  
CC  
EE  
L
L
T
= 25  
°C  
A
= 600  
= 100 pF  
15  
0
Gain Margin  
Gain Margin  
70 85  
T , AMBIENT TEMPERATURE ( C)  
0
–55 –40 –25  
0
25  
105  
125  
10  
100  
1.0 k  
10 k  
100 k  
°
R , DIFFERENTIAL SOURCE RESISTANCE ()  
A
T
7
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 23. Output Voltage  
versus Load Resistance  
Figure 22. Gain and Phase Margin  
versus Capacitive Load  
5.0  
4.0  
3.0  
2.0  
1.0  
0
80  
70  
60  
50  
40  
30  
20  
16  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
V
V
R
= 6.0 V  
= –6.0 V  
= 600 Ω  
= 100  
CC  
EE  
L
V
= 5.0 Vdc  
CC  
Phase Margin  
Gain Margin  
A
V
A
T
= 25°C  
V
= 2.0 Vdc  
V
= Gnd  
= 0 pF  
= 1.0  
CC  
EE  
L
C
A
10  
0
V
A
T
= 25°C  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
C , CAPACITIVE LOAD (pF)  
1.0 k  
R , LOAD RESISTANCE  
L
L
Figure 24. Channel Separation  
versus Frequency  
Figure 25. Total Harmonic Distortion  
versus Frequency  
10  
150  
120  
V
= 5.0 V  
V
R
= –5.0 V  
CC  
EE  
= 600  
T
= 25  
°C  
A
L
A
= 100  
V
V
= 2.0 Vpp  
O
1.0  
A
= 1000  
= 100  
V
90  
60  
30  
0
A
V
0.1  
0.01  
A
= 10  
V
A
= 10  
V
V
V
V
T
= 6.0 V  
= –6.0 V  
= 8.0 Vpp  
= 25°C  
CC  
EE  
O
A
= 1.0  
A
V
0.001  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 26. Equivalent Input Noise Voltage  
and Current versus Frequency  
50  
40  
5.0  
4.0  
V
V
= 6.0 V  
= –6.0 V  
CC  
EE  
T
= 25  
°C  
A
30  
20  
10  
3.0  
2.0  
1.0  
Noise Voltage  
Noise Current  
0
10  
0
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 28. t Response  
on  
GENERAL INFORMATION  
The MC33206/7 family of operational amplifiers are  
unique in their ability to swing rail–to–rail on both the input  
and the output with a completely bipolar design. This offers  
low noise, high output current capability and a wide common  
mode input voltage range even with low supply voltages.  
Operation is guaranteed over an extended temperature  
range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and  
ground.  
Since the common mode input voltage range extends from  
V
to V , it can be operated with either single or split  
CC  
EE  
voltage supplies. The MC33206/7 are guaranteed not to latch  
or phase reverse over the entire common mode range,  
however, the inputs should not be allowed to exceed  
maximum ratings.  
t
, TIME (2.0 µs/DIV)  
on  
CIRCUIT INFORMATION  
Figure 29. t  
off  
Response  
Rail–to–rail performance is achieved at the input of the  
amplifiers by using parallel NPN–PNP differential input  
stages. When the inputs are within 800 mV of the negative  
rail, the PNP stage is on. When the inputs are more than  
800 mV greater than V , the NPN stage is on. This  
EE  
switching of input pairs will cause a reversal of input bias  
currents (see Figure 6). Also, slight differences in offset  
voltage may be noted between the NPN and PNP pairs.  
Cross–coupling techniques have been used to keep this  
change to a minimum.  
In addition to its rail–to–rail performance, the output stage  
is current boosted to provide 80 mA of output current,  
enabling the op amp to drive 600 loads. Because of this  
high output current capability, care should be taken not to  
exceed the 150°C maximum junction temperature.  
t
, TIME (2.0 µs/DIV)  
off  
Low Voltage Operation  
Enable Function  
The MC33206/07 will operate at supply voltages down to  
1.8 V and ground. Since this device is a rail–to–rail on both  
the input and output, one can be assured of continued  
operation in battery applications when battery voltages drop  
to low voltage levels. This is called End of Discharge (see  
Figure 30). Now, the user can select a minimum quantity of  
batteries best suited for the particular design depending on  
the type of battery chosen. This will minimize part count in  
many designs.  
The MC33206/07 enable pins allow the user to externally  
control the device. (Refer to the Pin Diagram on the first page  
of this data sheet for enable pin connections.) If the enable  
pins are pulled low (Gnd) each amplifier (MC33206) and  
amplifier pair (MC33207) will be disabled. When the enable  
pins are at a logic high (V  
will turn “on”. Refer to the data sheet characteristics for the  
required levels needed to change logical state.  
V  
= 1.8 V) the amplifiers  
Enable  
EE  
The time to change states (from device “on” to “off” and  
“off” to “on”) is defined as the time delay. The Circuit in  
Figure 30. Typical Battery Characteristics  
Figure27isusedtomeasuret andt . Typicalt andt  
on off on  
off  
Type  
Operating Voltage  
End of Discharge  
measurements are shown in Figures 28 and 29. When the  
device is turned off (V = Gnd) an internal regulator is  
Alkaline  
NiCd  
NiMh  
Silver Oxide  
Lithium Ion  
1.5 V  
1.2 V  
1.2 V  
1.6 V  
3.6 V  
0.9 V  
1.0 V  
1.0 V  
1.3 V  
2.5 V  
Enable  
shut off disabling the amplifier.  
Figure 27. Test Circuit for t and t  
on  
off  
V
CC  
Compensating for Output Capacitance  
The combination of device output impedance and  
increasing capacitive loading will cause phase delay  
(reducing the phase margin) in any amplifier (Figure 22). If  
the loading is excessive, the resulting response can be circuit  
oscillation. In other words, an amplifier can become unstable  
when the phase becomes greater than 180 degrees before  
the open loop gain drops to unity gain. Figures 18 and 19  
show this situation as frequency increases for a given load.  
The MC33206/7 can typically drive up to 300 pF loads at  
unity gain without oscillating.  
V
MC33206  
out  
t
t
off  
on  
2.0 V  
2.0 k  
V
Enable  
t
t
off  
on  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
Figure 31. Capacitive Loads Compensation  
R
f
C
X
R
O
C
L
R
L
V
in  
There are several ways to compensate for this  
phenomena. Adding series resistance to the output is one  
way, but not an ideal solution. A dc voltage error will occur at  
the output. A better design solution to compensate for higher  
capacitive loads would be to use the circuit in Figure 31. This  
design helps to counteract the loss of phase margin by taking  
the high frequency output signal and feeding it back into the  
amplifier inverting input. This technique helps to overcome  
oscillation due to a highly capacitive load. Keep in mind that  
compensation will have the affect of lowering the Gain  
SPICE Model  
If a SPICE Macromodel is desired for the MC33206/07,  
the user can define the characteristics from the following  
information. Obtain the SPICE Macromodel for the MC33204  
Rail–to–Rail Operational Amplifier (device is the same as the  
MC33207). For the Enable feature of the MC33207, simulate  
it as a bipolar switch. The Macromodel does not include an  
input capacitance between the inverting and noninverting  
inputs. This capacitor is called C . Add 3.0 to 5.0 pF if  
stability analysis is required.  
in  
Bandwidth Product (GPW). The values of C and R0, are  
X
determined experimentally. Typical C and C will be the  
X
L
same value.  
Figure 32. Noninverting Amplifier Slew Rate  
Figure 33. Small Signal Transient Response  
V
V
R
C
= 6.0 V  
= –6.0 V  
V
V
R
C
= 6.0 V  
= –6.0 V  
CC  
EE  
L
L
CC  
EE  
L
L
= 600  
= 600  
= 100 pF  
= 100 pF  
T
= 25  
°C  
T
= 25  
°C  
A
A
t, TIME (5.0  
µs/DIV)  
t, TIME (10 µs/DIV)  
Figure 34. Large Signal Transient Response  
V
V
R
C
= 6.0 V  
= –6.0 V  
CC  
EE  
L
L
= 600  
= 100 pF  
= 1.0  
A
V
A
T
= 25°C  
t, TIME (10 µs/DIV)  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
ISSUE F  
–A–  
14  
1
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
7
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
P SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
9
B
S
1
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC33206 MC33207  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B–05  
(SO–16)  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
D
16 PL  
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola nd are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC33206/D  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

MC33207

Amplifiers and Comparators
MOTOROLA

MC33207

带使能特性的干线至干线运算放大器
ONSEMI

MC33207D

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
ONSEMI

MC33207D

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
MOTOROLA

MC33207DR2

QUAD OP-AMP, 13000uV OFFSET-MAX, 2.2MHz BAND WIDTH, PDSO16, PLASTIC, SO-16
MOTOROLA

MC33207DR2

QUAD OP-AMP, 13000uV OFFSET-MAX, 2.2MHz BAND WIDTH, PDSO16, PLASTIC, SO-16
ONSEMI

MC33207P

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
ONSEMI

MC33207P

LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
MOTOROLA

MC33215

Telephone Line Interface and Speakerphone Circuit
MOTOROLA

MC33215

Telephone Line Interface and Speakerphone Circuit
FREESCALE

MC33215B

Telephone Line Interface and Speakerphone Circuit
MOTOROLA

MC33215B

Telephone Line Interface and Speakerphone Circuit
FREESCALE