MMBTA13LT1 [MOTOROLA]

Darlington Amplifier Transistors; 达林顿晶体管放大器
MMBTA13LT1
型号: MMBTA13LT1
厂家: MOTOROLA    MOTOROLA
描述:

Darlington Amplifier Transistors
达林顿晶体管放大器

晶体 放大器 小信号双极晶体管 达林顿晶体管 光电二极管
文件: 总8页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBTA13LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon  
COLLECTOR 3  
*Motorola Preferred Device  
BASE  
1
3
EMITTER 2  
1
MAXIMUM RATINGS  
2
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
Symbol  
Value  
30  
Unit  
Vdc  
V
CES  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
V
V
30  
Vdc  
CBO  
EmitterBase Voltage  
10  
Vdc  
EBO  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
300  
mAdc  
C
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
MMBTA13LT1 = 1M; MMBTA14LT1 = 1N  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
CollectorEmitter Breakdown Voltage  
V
30  
Vdc  
nAdc  
nAdc  
(BR)CES  
(I = 100 Adc, V  
C BE  
= 0)  
Collector Cutoff Current  
(V = 30 Vdc, I = 0)  
I
100  
100  
CBO  
CB  
Emitter Cutoff Current  
(V = 10 Vdc, I = 0)  
E
I
EBO  
EB  
1. FR5 = 1.0  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
C
0.75 0.062 in.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
(I = 10 mAdc, V  
C CE  
h
FE  
= 5.0 Vdc)  
MMBTA13  
MMBTA14  
5000  
10,000  
(I = 100 mAdc, V  
C CE  
= 5.0 Vdc)  
MMBTA13  
MMBTA14  
10,000  
20,000  
CollectorEmitter Saturation Voltage  
(I = 100 mAdc, I = 0.1 mAdc)  
V
1.5  
Vdc  
Vdc  
CE(sat)  
C
B
BaseEmitter On Voltage  
(I = 100 mAdc, V = 5.0 Vdc)  
V
BE  
2.0  
C
CE  
SMALLSIGNAL CHARACTERISTICS  
(4)  
CurrentGain — Bandwidth Product  
f
T
125  
MHz  
(I = 10 mAdc, V = 5.0 Vdc, f = 100 MHz)  
C
CE  
3. Pulse Test: Pulse Width  
4. f = |h | f  
300 s, Duty Cycle  
2.0%.  
.
T
fe test  
R
S
i
n
e
n
IDEAL  
TRANSISTOR  
Figure 1. Transistor Noise Model  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
500  
2.0  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
R
0  
S
1.0  
0.7  
0.5  
200  
100  
50  
I
= 1.0 mA  
C
0.3  
0.2  
10 µA  
100 µA  
100  
10  
µA  
0.1  
20  
0.07  
0.05  
µ
A
I
= 1.0 mA  
C
10  
0.03  
0.02  
5.0  
10 20  
50 100 200 500 1 k 2 k  
f, FREQUENCY (Hz)  
5 k 10 k 20 k 50 k 100 k  
10 20  
50 100 200 500 1 k 2 k  
5 k 10 k 20 k 50 k 100 k  
f, FREQUENCY (Hz)  
Figure 2. Noise Voltage  
Figure 3. Noise Current  
200  
14  
12  
BANDWIDTH = 10 Hz TO 15.7 kHz  
BANDWIDTH = 10 Hz TO 15.7 kHz  
100  
70  
10  
8.0  
6.0  
4.0  
2.0  
I
= 10  
µA  
10 µA  
C
50  
100 µA  
100  
µ
A
30  
20  
I
= 1.0 mA  
C
1.0 mA  
10  
0
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500  
100  
0
1.0  
2.0  
5.0  
10  
20  
50 100  
200  
500 100  
0
R
, SOURCE RESISTANCE (k  
)  
R
, SOURCE RESISTANCE (k)  
S
S
Figure 4. Total Wideband Noise Voltage  
Figure 5. Wideband Noise Figure  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
SMALL–SIGNAL CHARACTERISTICS  
20  
10  
4.0  
V
= 5.0 V  
CE  
f = 100 MHz  
T
= 25°C  
J
T
= 25°C  
J
2.0  
7.0  
5.0  
C
ibo  
1.0  
0.8  
C
obo  
0.6  
0.4  
3.0  
2.0  
0.04  
0.2  
0.5  
0.1  
0.2  
0.4  
1.0 2.0  
4.0  
10  
20  
40  
1.0  
2.0  
0.5  
I , COLLECTOR CURRENT (mA)  
C
10  
20  
50  
100 200  
500  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 6. Capacitance  
Figure 7. High Frequency Current Gain  
200 k  
3.0  
2.5  
2.0  
1.5  
T
= 125°C  
J
T
= 25°C  
J
100 k  
70 k  
50 k  
I
=
50 mA  
250 mA  
500 mA  
10 mA  
C
25°C  
30 k  
20 k  
10 k  
7.0 k  
5.0 k  
55°C  
1.0  
0.5  
V
= 5.0 V  
CE  
3.0 k  
2.0 k  
500  
0.1 0.2 0.5 1.0 2.0  
5.0 10 20  
50 100 200 500 1000  
I , BASE CURRENT (µA)  
B
5.0 7.0 10  
20  
30  
50 70 100  
200 300  
I
, COLLECTOR CURRENT (mA)  
C
Figure 8. DC Current Gain  
Figure 9. Collector Saturation Region  
1.6  
1.4  
1.0  
2.0  
3.0  
*APPLIES FOR I /I  
C B  
h
/3.0  
FE  
25°C TO 125°C  
T
= 25°C  
J
*R  
FOR V  
CE(sat)  
VC  
V
@ I /I = 1000  
C B  
55°C TO 25°C  
BE(sat)  
1.2  
1.0  
0.8  
0.6  
V
@ V = 5.0 V  
CE  
BE(on)  
25°C TO 125°C  
4.0  
5.0  
6.0  
FOR V  
BE  
VB  
55°C TO 25°C  
V
@ I /I = 1000  
C B  
CE(sat)  
5.0 7.0  
10  
20  
30  
50 70 100 200 300  
500  
5.0 7.0 10  
20 30  
I , COLLECTOR CURRENT (mA)  
C
50 70 100  
200 300  
500  
I
, COLLECTOR CURRENT (mA)  
C
Figure 10. “On” Voltages  
Figure 11. Temperature Coefficients  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
SINGLE PULSE  
0.05  
0.1  
0.1  
0.07  
SINGLE PULSE  
0.05  
0.03  
0.02  
Z
Z
= r(t)  
= r(t)  
R
R
T
T
– T = P  
Z
(pk) θJC(t)  
θ
θ
JC(t)  
JA(t)  
θ
JC  
J(pk)  
J(pk)  
C
– T = P  
Z
θ
JA  
A
(pk)  
θJA(t)  
0.01  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0 k  
2.0 k  
5.0 k  
10 k  
t, TIME (ms)  
Figure 12. Thermal Response  
1.0 k  
700  
FIGURE A  
1.0 ms  
100  
500  
t
P
T
= 25°C  
300  
200  
C
µs  
T
= 25°C  
A
P
P
P
P
1.0 s  
100  
70  
50  
t
1
30  
20  
CURRENT LIMIT  
THERMAL LIMIT  
SECOND BREAKDOWN LIMIT  
1/f  
DUTY CYCLE  
t
1
t
f
10  
0.4 0.6  
1
t
P
40  
1.0  
2.0  
4.0  
6.0  
10  
20  
PEAK PULSE POWER = P  
P
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 13. Active Region Safe Operating Area  
Design Note: Use of Transient Thermal Resistance Data  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBTA13LT1/D  

相关型号:

MMBTA13LT1G

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1G_09

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1_06

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1_16

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT3

300mA, 30V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

MMBTA13LT3G

NPN 双极达林顿晶体管
ONSEMI

MMBTA13_08

NPN Darlington Amplifier Transistor
MCC

MMBTA13_1

NPN SURFACE MOUNT DARLINGTON TRANSISTOR
DIODES

MMBTA13_11

DARLINGTON TRANSISTOR
UTC

MMBTA13_11

NPN Darlington Amplifier Transistor
MCC

MMBTA13_15

DARLINGTON TRANSISTOR
UTC

MMBTA13_15

Darlington Amplifier Transistor NPN Silicon
SECOS