MRFIC1806 [MOTOROLA]

1.8 GHz DRIVER AMPLIFIER AND RAMP CIRCUIT GaAs MONOLITHIC INTEGRATED CIRCUIT; 1.8 GHz的驱动器放大器和斜坡电路砷化镓单片集成电路
MRFIC1806
型号: MRFIC1806
厂家: MOTOROLA    MOTOROLA
描述:

1.8 GHz DRIVER AMPLIFIER AND RAMP CIRCUIT GaAs MONOLITHIC INTEGRATED CIRCUIT
1.8 GHz的驱动器放大器和斜坡电路砷化镓单片集成电路

驱动器 放大器
文件: 总12页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRFIC1806/D  
SEMICONDUCTOR TECHNICAL DATA  
The MRFIC Line  
Designed primarily for use in DECT, Japan Personal Handy System (PHS),  
and other wireless Personal Communication Systems (PCS) applications. The  
MRFIC1806 includes a two stage driver amplifier and transmit waveform  
shaping circuitry in a low–cost SOIC–16 package. The amplifier portion  
employs depletion mode power GaAs MESFETs to produce +21 dBm output  
with 0 dBm input. The ramping circuit controls the burst–mode transmit rise and  
fall time and is adjustable through external components. This circuitry also  
places the amplifier in standby during TDMA receive mode. The MRFIC1806 is  
sized to drive the MRFIC1807 PA/Switch.  
1.8 GHz DRIVER AMPLIFIER  
AND RAMP CIRCUIT  
GaAs MONOLITHIC  
INTEGRATED CIRCUIT  
Together with the rest of the MRFIC1800 GaAs ICs, this family offers the  
complete transmit and receive functions, less LO and filters, needed for a  
typical 1.8 GHz cordless telephone.  
Usable 15002500 MHz  
23 dB Typical Gain  
+21 dBm Typical 1.0 dB Compression  
Simple Off–Chip Matching for Maximum Flexibility  
3.0 to 5.0 Volt Supply  
Low Cost Surface Mount Plastic Package  
CASE 751B–05  
(SO–16)  
Order MRFIC1806R2 for Tape and Reel.  
R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.  
Device Marking = M1806  
C1/VRAMP  
TX RAMP  
1
2
3
4
5
6
7
8
16 VDR  
15 GND  
14 VD1  
13 GND  
12 GND  
20K  
RAMP  
LOGIC  
XLATOR  
REG V  
DD  
V
V
DD  
SS  
GND  
GND  
RF IN  
11 RF OUT  
10 GND  
V
DD  
GATE  
BIAS  
PCNTRL  
9
V
SS  
Figure 1. Pin Connections and Functional Block Diagram  
REV 2  
Motorola, Inc. 1997  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Symbol  
Limit  
6.0  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
dBm  
Vdc  
°C  
Supply Voltage  
Supply Voltage  
Supply Voltage  
Bias Control Voltage  
RF Input Power  
V
DD  
V
SS  
4.0  
REG V  
DD  
PCNTRL  
4.5  
3.0  
P
10  
IN  
Ramp Circuit Input Voltage (High)  
Storage Temperature Range  
TX RAMP  
6.0  
T
stg  
65 to +150  
–10 to +70  
100  
Ambient Operating Temperature  
Thermal Resistance, Junction to Case  
T
A
°C  
θ
°C/W  
JC  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Value  
1.52.5  
Unit  
GHz  
Vdc  
Vdc  
Vdc  
Vdc  
dBm  
Vdc  
Vdc  
RF Input Frequency  
f
RF  
Supply Voltage  
V
DD  
3.0 to 5.0  
Supply Voltage  
V
SS  
2.75 to 2.25  
2.9 to 3.1  
Supply Voltage  
REG V  
DD  
PCNTRL  
Bias Control Voltage  
0.5 to 1.5  
RF Input Power  
P
IN  
20 to +5  
2.8 to 3.5  
Transmit Burst Enable Voltage (High)  
Transmit Burst Enable Voltage (Low)  
TX RAMP  
TX RAMP  
0.2 to +0.2  
MOTOROLA  
MRFIC1806  
2
ELECTRICAL CHARACTERISTICS  
DECT Application with Internal Logic Translator (See Figure 2. V  
= 3.5 V, REG V  
= 3.0 V, T = 25°C, V  
= 2.5 V,  
SS  
DD  
DD  
A
TX RAMP = 3.0 V, PCNTRL set for Quiescent I  
= 120 mA, P = 3.0 dBm @ 1.9 GHz unless otherwise stated.)  
DD  
IN  
Characteristic  
Min  
21  
18  
40  
Typ  
23  
Max  
Unit  
dB  
Small Signal Gain (P = 7.0 dBm)  
IN  
Input Return Loss  
Reverse Isolation  
Output Power  
12  
dB  
36  
dB  
19.5  
36  
33  
dBm  
dBc  
dBm  
mA  
mA  
mA  
dB  
Harmonic Output  
Output Third Order Intercept  
Supply Current, I  
Supply Current, I  
(Pin 9)  
(Pin 7)  
0.35  
115  
0.6  
44  
0.6  
135  
0.9  
SS  
DD  
Supply Current, REG I  
(Pin 3)  
DD  
Ramp Circuit Dynamic Range  
STANDBY MODE (TX RAMP = 0 V)  
Characteristic  
Min  
Typ  
25  
0.4  
Max  
Unit  
dBm  
mA  
Output Power  
Supply Current, I  
(Pin 9)  
0.6  
0.4  
SS  
Supply Current, REG I  
(Pin 3)  
0.25  
mA  
DD  
C1  
330 pF  
C2  
330 pF  
R1  
22K  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
20K  
3 V (ON)  
TX RAMP  
0 V (OFF)  
R2  
2.2  
RAMP  
LOGIC  
XLATOR  
C3  
330 pF  
REG V  
3.0 V  
DD  
C4  
22 pF  
V
V
DD  
SS  
T1 (FR4)  
Z
= 100  
L = 20 mm  
o
T2 (FR4)  
Z
= 100  
o
L = 8.5 mm  
RF IN  
50 OHM  
RF OUT  
50 OHM  
C6  
1.5 pF  
C9  
1.5 pF  
V
3.5 V  
C5  
22 pF  
DD  
C7  
4700 pF  
GATE  
BIAS  
V
SS  
2.5 V  
PCNTRL  
1.4 V TYP  
Figure 2. Applications Circuit Details for DECT using Internal Logic Translator  
MOTOROLA  
MRFIC1806  
3
ELECTRICAL CHARACTERISTICS  
General Application without Internal Logic Translator (See Figure 3. V  
= 3.5 V, REG V  
(Pin 2) open, V  
= 2.5 V,  
SS  
A
DD  
DD  
TX RAMP (Pin 2) grounded, V  
stated.)  
= 3.0 V, PCNTRL set for Quiescent I  
= 120 mA, P = 0 dBm @ 1.9 GHz, T = 25°C unless otherwise  
RAMP  
DD  
IN  
Characteristic  
Min  
21  
20  
Typ  
23  
Max  
Unit  
dB  
Small Signal Gain (P = 7.0 dBm)  
IN  
Output Power (P = 0 dBm)  
IN  
Output Power (P = +4.0 dBm)  
22  
dBm  
dBm  
mA  
23  
IN  
Supply Current, I  
(Pin 9)  
(Pin 7)  
0.3  
130  
0.5  
145  
SS  
DD  
Supply Current, I  
mA  
STANDBY MODE (V  
= 2.4 V)  
RAMP  
Characteristic  
Min  
Typ  
25  
0.4  
Max  
Unit  
dBm  
mA  
Output Power  
Supply Current, I  
(Pin 9)  
0.6  
SS  
R1  
1K  
V RAMP  
1
16  
15  
14  
13  
12  
11  
10  
9
20K  
DD  
R2  
2.2  
2
3
4
5
6
7
8
RAMP  
LOGIC  
XLATOR  
C3  
330 pF  
N/C  
C4  
V
V
SS  
22 pF  
T1 (FR4)  
Z
= 100  
o
L = 20 mm  
T2 (FR4)  
= 100  
Z
o
L = 8.5 mm  
RF IN  
50 OHM  
RF OUT  
50 OHM  
C6  
1.5 pF  
C9  
1.5 pF  
C5  
22 pF  
V
DD  
C7  
4700 pF  
GATE  
BIAS  
V
SS  
2.5 V  
PCNTRL  
1.4 V TYP  
Figure 3. 1.9 GHz General Application Circuit Details (Internal Translator Disabled)  
Table 1. Small Signal SParameters  
(V  
DD  
= 3.5 V, I  
= 120 mA, T = 25°C, no matching circuit, reference plane at pins 6 and 11.)  
DQ A  
S
11  
S
21  
S
12  
S
22  
Freq (GHz)  
1.5  
Mag  
Angle  
76.8  
82.4  
72.6  
79.8  
80.6  
79.4  
79.4  
78.9  
79.1  
79.8  
80.1  
Mag  
13.11  
13.01  
11.17  
12.25  
10.77  
10.88  
9.64  
Angle  
87.9  
109.4  
117.4  
137.0  
151.3  
165.1  
174.9  
174.1  
Mag  
Angle  
176  
178  
152  
170  
169  
163  
163  
158  
157  
153  
154  
Mag  
Angle  
0.734  
0.654  
0.620  
0.636  
0.607  
0.592  
0.581  
0.571  
0.560  
0.541  
0.521  
0.009  
0.012  
0.011  
0.014  
0.017  
0.019  
0.024  
0.026  
0.029  
0.033  
0.042  
0.278  
0.326  
0.344  
0.423  
0.421  
0.427  
0.432  
0.429  
0.432  
0.442  
0.445  
98.9  
116.4  
109.8  
134.1  
147.7  
161.8  
172.3  
178.8  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
9.30  
2.3  
7.95  
166.9  
171.1  
2.4  
7.80  
155.7  
164.6  
2.5  
6.90  
147.2  
161.7  
MOTOROLA  
MRFIC1806  
4
DESIGN AND APPLICATIONS INFORMATION  
DESIGN PHILOSOPHY  
The MRFIC1806 is designed to drive the MRFIC1807  
Power Amplifier and Transmit/Receive Switch IC in Personal  
Communications System (PCS) applications such as  
Europe’s DECT and Japan’s Personal Handy System (PHS).  
The design incorporates not only a two–stage GaAs MESFET  
driver/exciter amplifier, but also externally controllable bias  
and ramping circuitry. The IC is designed to drive the  
MRFIC1807 with about +19 dBm which will, in turn, produce  
+26 dBm output, suitable for DECT. To reduce chip size (and  
cost) and to allow for flexibility of application, the amplifier  
has limited on–chip matching. The ramp circuitry is used to  
shape the drain voltage to the FETs for Time Domain Multiple  
Access (TDMA) applications and is comprised of a depletion  
mode pass device driven by a logic translator. Attack and  
release times are controllable through the use of external  
components. The IC is configured such that all, part or none  
of the ramping circuitry can be used, depending on the  
application.  
As with all RF circuits, board layout and grounding are  
important. All RF signal paths must be controlled impedance  
structures. RF chip components must be high quality.  
Bypassing capacitors must be close to the IC and to ground  
vias. Pins which are designated as ground connections must  
be as close as possible to ground vias.  
RAMPING CIRCUIT OPTIONS  
The on–chip ramp circuit can be used to control the  
amplifier attack and release time for DECT applications  
through the use of a few external components as shown in  
Figure 2. This ramping is required to control the burst signal  
rise and fall time to avoid adjacent channel interference. At  
the same time, system specifications require the transmitter  
to reach full power in a minimum time. For DECT, it has been  
shown that a rise time of not greater than 2 microseconds will  
produce acceptable adjacent channel performance. The  
system requires full power in not greater than 10 microseconds.  
A good compromise, and the timing implemented in Figure 2,  
is 7 microseconds.  
AMPLIFIER CIRCUIT APPLICATION  
As can be seen in Figures 2 and 3, the off–chip matching is  
straight forward. At frequencies near 1.9 GHz, the input  
requires 4.7 nH in series and 1.5 pF in shunt. The 4.7 nH  
series inductance may be implemented with a high–  
impedance transmission line as shown. The output, being  
close to 25 , requires only a shunt 1.5 pF capacitor. Drain  
voltage for stage 1 is supplied through pin 14 and for stage 2  
through pin 11, the RF output. Pin 8, PCNTRL is used to set  
The on–chip logic translator can be bypassed as shown in  
Figure 3 by applying a ramp voltage to Pin 1 through a 1.0 kΩ  
resistor. This configuration allows flexibility in ramping the  
amplifier. The regulated V  
voltage is not required so  
DD  
current consumption can be reduced. 2.3 V at Pin 1 turns  
the pass transistor, and the amplifier, off while a positive  
voltage will turn the pass transistor on. For full on state it is  
recommendedthatV  
be used to on–off key the amplifier for simple telemetry  
applications or as transmit/receive control.  
beclosetoV .V canalso  
RAMP  
DD RAMP  
the quiescent bias point for both stages. While nominal I  
DDQ  
is 120 mA, it can be set as high as 180 mA for better linearity  
or lower for better efficiency. 120 mA is a good compromise  
for DECT and PHS. DECT, which employs GMSK constant  
envelope modulation can use RF amplifiers close to or in  
saturation without experiencing spectral regrowth of the  
signal. PHS, on the other hand, employs π/4 DQPSK  
modulation which has some residual AM associated with the  
encoding. With AM present, RF amplifiers must be backed  
off from saturation so as not to regrow the filtered sidebands.  
The MRFIC1806 has plenty of backoff capability for PHS  
where the MRFIC1807 PA/switch must only produce about  
+21 dBm. With the 8.0 dB gain of the MRFIC1807, the  
MRFIC1806 need only produce +13 dBm output so the bias  
point can be reduced below the 120 mA suggested for DECT.  
For more complex modulation schemes such as π/4  
DQPSK used in PHS, burst ramping can be implemented  
with the burst mode logic. Referring to Figure 3, the V  
RAMP  
voltage should be set to V  
DD  
to leave the pass transistor on.  
The on–chip pass transistor can also be bypassed and V  
applied to Pins 11 and 14.  
DD  
EVALUATION BOARDS  
Evaluation boards are available for RF Monolithic  
Integrated Circuits by adding a “TF” suffix to the device  
type. For a complete list of currently available boards and  
ones in development for newly introduced product, please  
contact your local Motorola Distributor or Sales Office.  
MOTOROLA  
MRFIC1806  
5
22  
21  
20  
21  
20  
19  
18  
17  
16  
15  
14  
–10°C  
25°C  
–10  
°C  
25°C  
19  
18  
17  
T
= 70°C  
A
T
= 70  
2.1  
°
C
A
Pin = 0 dBm  
Pin = –3 dBm  
V
= 3.5 V  
= 120 mA  
DD  
V
= 3.5 V  
= 120 mA  
DD  
I
DDQ  
I
DDQ  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.5  
5
1.5  
1.7  
1.9  
2.3  
2.5  
2.5  
2
FREQUENCY (GHZ)  
FREQUENCY (GHz)  
Figure 4. Output Power versus Frequency  
With Internal Logic Translator  
Figure 5. Output Power versus Frequency  
Without Internal Logic Translator  
20  
23  
22  
5.0 V  
5 V  
Pin = 0 dBm  
= 25  
PCNTRL = 1.5 V  
3.5 V  
19  
18  
17  
T
°C  
A
3.5 V  
21  
20  
V
= 3.0 V  
DD  
V
= 3 V  
DD  
16  
15  
14  
Pin = 3 dBm  
= 25  
T
°C  
19  
18  
A
PCNTRL = 1.5 V  
1.5  
1.7  
1.9  
2.1  
2.3  
1.5  
1.7  
1.9  
2.1  
2.3  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Output Power versus Frequency  
With Internal Logic Translator  
Figure 7. Output Power versus Frequency  
Without Internal Translator  
25  
22  
18  
2.0 V  
1.0 V  
1.5 V  
20  
15  
10  
14  
10  
6
1.0 V  
PCNTRL = 0.5 V  
V
= 3.5 V  
DD  
f = 1.9 GHz  
= 25  
V
= 3.5 V  
DD  
f = 1.9 GHz  
= 25  
5
0
2
PCNTRL = 0.5 V  
T
°C  
A
T
°C  
A
12  
–10  
–2  
INPUT POWER (dBm)  
0
–8  
–6  
–4  
–10  
–5  
0
INPUT POWER (dBm)  
Figure 8. Output Power versus Input Power  
With Internal Logic Translator  
Figure 9. Output Power versus Input Power  
Without Internal Logic Translator  
MOTOROLA  
MRFIC1806  
6
24  
22  
22  
20  
–10°C  
–10°C  
20  
18  
70°C  
18  
16  
14  
12  
70°C  
16  
T
= 25°C  
f = 1.9 GHz  
A
f = 1.9 GHz  
T
= 25°C  
V
I
= 3.5 V  
= 120 mA  
V
I
= 3.5 V  
A
DD  
DD  
14  
12  
= 120 mA  
DDQ  
DDQ  
–10  
–5  
0
5
–10  
–8  
–6  
–4  
–2  
0
2
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 10. Output Power versus Input Power  
With Internal Logic Translator  
Figure 11. Output Power versus Input Power  
Without Internal Logic Translator  
22  
20  
18  
16  
26  
24  
5.0 V  
5.0 V  
3 V  
V
= 3.0 V  
DD  
22  
20  
18  
16  
3.5 V  
V
= 3.5 V  
DD  
f = 1.9 GHz  
= 25  
PCNTRL = 1.5  
f = 1.9 GHz  
= 25  
T
°C  
A
14  
12  
T
°C  
14  
12  
A
PCNTRL = 1.5 V  
–10  
–8  
–6  
–4  
–2  
0
2
–10  
–5  
0
5
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 12. Output Power versus Input Power  
With Internal Logic Translator  
Figure 13. Output Power versus Input Power  
Without Internal Logic Translator  
150  
140  
130  
120  
110  
100  
90  
200  
180  
160  
V
= 3.5 V  
V
= 3.5 V  
= 120 mA  
DD  
Pin = –3 dBm  
= 120 mA  
DD  
I
DDQ  
I
Pin = 0 dBm  
DDQ  
70°C  
70  
°C  
25°C  
25°C  
–10°C  
140  
120  
100  
–10°C  
T
= 10°C  
A
70°C  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Supply Current versus Frequency  
With Internal Logic Translator  
Figure 15. Supply Current versus Frequency  
Without Internal Logic Translator  
MOTOROLA  
MRFIC1806  
7
150  
140  
130  
120  
210  
190  
170  
Pin = 0 dBm  
= 25  
PCNTRL = 1.5 V  
Pin = –3 dBm  
= 25  
PCNTRL = 1.5 V  
T
°C  
A
T
°C  
A
5 V  
3.5 V  
3.5 V  
150  
130  
110  
90  
5.0 V  
110  
100  
90  
V
= 3.0 V  
DD  
V
= 3.0 V  
2.1  
DD  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.3  
2.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Supply Current versus Frequency  
With Internal Logic Translator  
Figure 17. Supply Current versus Frequency  
Without Internal Logic Translator  
126  
150  
140  
130  
120  
f = 1.9 GHz  
25°C  
124  
122  
120  
118  
116  
114  
112  
110  
108  
f = 1.9 GHz  
V
I
= 3.5 V  
DD  
V
= 3.5 V  
= 120 mA  
DD  
= 120 mA  
70  
°C  
DDQ  
T
= 25°C  
A
I
DDQ  
70°C  
T
= 10  
°C  
A
–10°C  
110  
100  
70°C  
–10  
–8  
–6  
–4  
–2  
0
2
4
–10  
–8  
–6  
–4  
–2  
0
2
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 18. Supply Current versus Input Power  
With Internal Translator  
Figure 19. Supply Current versus Input Power  
Without Internal Translator  
130  
125  
170  
160  
150  
f = 1.9 GHz  
PCNTRL = 1.5 V  
f = 1.9 GHz  
T
= 25°C  
A
T
= 25°C  
A
5 V  
PCNTRL = 1.5 V  
120  
115  
110  
140  
130  
120  
5.0 V  
3.5 V  
3.5 V  
= 3 V  
V
DD  
105  
110  
100  
V
= 3.0 V  
DD  
–4  
INPUT POWER (dBm)  
100  
–10  
–8  
–6  
–2  
0
2
–10  
–8  
–6  
–4  
–2  
0
2
4
INPUT POWER (dBm)  
Figure 20. Supply Current versus Input Power  
With Internal Translator  
Figure 21. Supply Current versus Input Power  
Without Internal Logic Translator  
MOTOROLA  
MRFIC1806  
8
23  
225  
200  
175  
150  
125  
f = 1.9 GHz  
Pin = 0 dBm  
21  
19  
17  
T
= 25°C  
A
70°C  
25°C  
15  
13  
100  
75  
–10°C  
70°C  
f = 1.9 GHz  
Pin = 0 dBm  
10°C  
11  
9
50  
25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0.5  
0.75  
1
1.25  
PCNTRL (Volts)  
1.5  
1.75  
2
PCNTRL (Volts)  
Figure 22. Supply Current versus PCNTRL  
Without Internal Logic Translator  
Figure 23. P  
versus PCNTRL Without  
out  
Internal Logic Translator  
25  
25  
24  
24  
23  
22  
21  
20  
–10°C  
–10°C  
23  
22  
T
= 70°C  
25°C  
A
21  
20  
19  
25°C  
T
= 70°C  
A
Pin = 7 dBm  
Pin = 7 dBm  
19  
18  
V
I
= 3.5 V  
DD  
V
= 3.5 V  
DD  
= 120 mA  
DDQ  
18  
17  
I
= 120 mA  
DDQ  
17  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 24. Small Signal Gain versus  
Frequency With Internal Logic Translator  
Figure 25. Small signal Gain versus  
Frequency Without Internal Logic Translator  
300  
250  
200  
55  
50  
f = 1.9 GHz  
P
V
= 3 dBm  
in  
V
= 3.5 V  
–10°C  
DD  
= 3.5 V  
DD  
I
= 120 mA  
DDQ  
T
= 25°C  
A
45  
40  
35  
150  
100  
50  
70  
°C  
70°  
C
T
= 25°C & –10°C  
A
0
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
f, FREQUENCY (GHz)  
PCNTRL (Volts)  
Figure 26. Dynamic Range versus Frequency  
With Internal Logic Translator  
Figure 27. Quiescent Supply Current versus  
PCNTRL With Internal Logic Translator  
MOTOROLA  
MRFIC1806  
9
22  
20  
24  
–45  
f = 1.9 GHz  
CW  
V
= 3.5 V  
= 120 mA  
= 25°C  
DD  
21  
18  
–50  
–55  
P
out  
I
T
DDQ  
A
Burst  
Mod = 384 kb/s π/4 DQPSK  
18  
16  
15  
12  
9
–60  
–65  
–70  
V
= 3.5 V  
DD  
Freq = 1.9 GHz  
600 kHz ACPR  
I
= 120 mA  
14  
12  
DDQ  
900 kHz ACPR  
6
–75  
–10  
–8  
–6  
–4  
–2  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
P
, INPUT POWER (DBM)  
P
, INPUT POWER (DBM)  
IN  
IN  
Figure 28. Output Power and Adjacent  
Channel Power Ratio versus Input Power  
Without Internal Logic Translator  
Figure 29. Continuous and Burst Mode Output  
Power versus Input Power With Internal  
Logic Translator  
MOTOROLA  
MRFIC1806  
10  
PACKAGE DIMENSIONS  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
D
16 PL  
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
CASE 751B–05  
ISSUE J  
MOTOROLA  
MRFIC1806  
11  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MRFIC1806/D  

相关型号:

MRFIC1806R1

Wide Band Low Power Amplifier, 1500MHz Min, 2500MHz Max,
MOTOROLA

MRFIC1806R2

Wide Band Low Power Amplifier, 1500MHz Min, 2500MHz Max, 1 Func, GAAS, PLASTIC, SOIC-16, 16 PIN
MOTOROLA

MRFIC1807

1.8 GHz POWER AMPLIFIER AND TRANSMIT/RECEIVE SWITCH GaAs MONOLITHIC INTEGRATED CIRCUIT
MOTOROLA

MRFIC1807R1

1500 MHz - 2200 MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER
MOTOROLA

MRFIC1807R2

Narrow Band Medium Power Amplifier, 1500MHz Min, 2200MHz Max, 1 Func, GAAS, PLASTIC, SOIC-16, 16 PIN
MOTOROLA

MRFIC1808

1.9 GHz GaAs LOW NOISE AMPLIFIER
MOTOROLA

MRFIC1808DMR2

1700 MHz - 2100 MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, PLASTIC, CASE 846A-02, MICRO-8, 8 PIN
NXP

MRFIC1813

1.9 GHz UPMIXER AND EXCITER AMPLIFIER
MOTOROLA

MRFIC1813

IC,UPCONVERTER,GAAS,TSSOP,16PIN,PLASTIC
NXP

MRFIC1813R2

1700 MHz - 2500 MHz RF/MICROWAVE UP CONVERTER, PLASTIC, TSSOP-16
MOTOROLA

MRFIC1813R2

1700MHz - 2500MHz RF/MICROWAVE UP CONVERTER, PLASTIC, TSSOP-16
ROCHESTER

MRFIC1813R2

1700 MHz - 2500 MHz RF/MICROWAVE UP CONVERTER, PLASTIC, CASE 948C-03, TSSOP-16
NXP