UPD160061NL-XXX [NEC]

384-OUTPUT TFT-LCD SOURCE DRIVER; 384输出TFT -LCD源极驱动器
UPD160061NL-XXX
型号: UPD160061NL-XXX
厂家: NEC    NEC
描述:

384-OUTPUT TFT-LCD SOURCE DRIVER
384输出TFT -LCD源极驱动器

显示驱动器 驱动程序和接口 接口集成电路 输出元件 CD
文件: 总18页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD160061  
384-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES)  
DESCRIPTION  
The µPD160061 is a source driver for TFT-LCD’s capable of dealing with displays with 64-gray scales. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by  
output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output  
dynamic range is as large as VSS2 + 0.2 V to VDD2 – 0.2 V, level inversion operation of the LCD’s common electrode is  
rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when  
mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins  
and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of  
65 MHz when driving at 2.7 V, this driver is applicable to XGA-standard TFT-LCD panels and SXGA TFT-LCD panels.  
FEATURES  
CMOS level input (2.3 to 3.6 V)  
384 outputs  
Input of 6 bits (gray-scale data) by 6 dots  
Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)  
Logic power supply voltage (VDD1): 2.3 to 3.6 V  
Driver power supply voltage (VDD2): 7.5 to 9.5 V  
High-speed data transfer: fCLK = 65 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.7 V)  
40 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.3 V)  
Output dynamic range: VSS2 + 0.2 V to VDD2 – 0.2 V  
Apply for dot-line inversion, n-line inversion and column line inversion  
Output voltage polarity inversion function (POL)  
Input data inversion function (capable of controlling by each input port) (POL21, POL22)  
Apply for heavy load, light load  
Semi slim-chip shaped  
ORDERING INFORMATION  
Part Number  
Package  
µPD160061N-xxx  
µPD160061NL-xxx  
TCP (TAB package)  
COF (COF package)  
Remark The TCP’s/COF’s external shape are customized. To order the required shape, so please contact one of our  
sales representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S15843EJ3V0DS00 (3rd edition)  
Date Published June 2004 NS CP (K)  
Printed in Japan  
The mark shows major revised points.  
2002  
µPD160061  
1. BLOCK DIAGRAM  
STHR  
STHL  
64-bit bidirectional shift register  
R,/L  
CLK  
STB  
VDD1  
VSS1  
C
1
C
2
C
3
- - - - - - - - - - - - - - - - - - - - - - C63 C64  
D00 toD05  
D10 toD15  
D20 toD25  
D30 to  
D35  
D40 toD45  
D50 to  
POL21  
POL22  
SRC  
D55  
Data register  
LPC  
HPC  
POL  
Latch  
VDD2  
Level shifter  
VSS2  
V0  
to V  
9
D/A converter  
Voltage follower output  
--------------------------------  
S1  
S2  
S3  
S384  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S1  
S2  
S
383  
S384  
5
5
V0  
:
V4  
Multi-  
Plexer  
6-bit D/A converter  
V5  
:
V9  
POL  
2
Data Sheet S15843EJ3V0DS  
µPD160061  
3. PIN CONFIGURATION (Copper foil surface) (µPD160061N-xxx: TCP (TAB package): Face-up/  
µPD160061NL-xxx: COF (COF package): Face-down)  
384  
383  
382  
381  
S
S
S
S
STHL  
55  
D
54  
D
53  
D
52  
D
51  
D
50  
D
45  
D
44  
D
43  
D
42  
D
41  
D
40  
D
35  
D
34  
D
33  
D
32  
D
31  
D
30  
D
DD1  
V
LPC  
R,/L  
9
V
8
V
7
V
6
V
5
V
DD2  
V
V
SS2  
IC Pad Surface  
4
V
3
V
2
V
1
V
0
V
HPC  
SS1  
V
SRC  
CLK  
STB  
POL  
POL21  
POL22  
25  
D
24  
D
23  
D
22  
D
21  
D
20  
D
15  
D
14  
D
13  
D
12  
D
11  
D
10  
D
05  
D
04  
D
03  
D
4
S
02  
D
3
S
2
1
01  
D
S
S
00  
D
STHR  
Remark This figure does not specify the TCP or COF package.  
3
Data Sheet S15843EJ3V0DS  
µPD160061  
4. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
S1 to S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Pin Name  
I/O  
Description  
Driver output  
Output The D/A converted 64-gray-scale analog voltage is output.  
Display data input  
Input The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2  
pixels).  
DX0: LSB, DX5: MSB  
Shift direction control  
Input These refer to the start pulse I/O pins when driver ICs are connected in cascade.  
Fetching of display data starts when H is read at the rising edge of CLK.  
R,/L = H (right shift): STHR input, S1S384, STHL output  
R,/L = L (left shift): STHL input, S384S1, STHR output  
STHR  
STHL  
Right shift start pulse  
input/output  
I/O  
These refer to the start pulse I/O pins when driver ICs are connected in cascade.  
Fetching of display data starts when H is read at the rising edge of CLK.  
When right shift: STHR input, STHL output  
When left shift: STHL input, STHR output  
A high level should be input as the pulse of one cycle of the clock signal.  
If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid.  
Left shift start pulse  
input/output  
CLK  
Shift clock input  
Input Refers to the shift register’s shift clock input. The display data is incorporated into the data  
register at the rising edge. At the rising edge of the 64th after the start pulse input, the start  
pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If  
66th clock pulses are input after input of the start pulse, input of display data is halted  
automatically. The contents of the shift register are cleared at the STB’s rising edge.  
Input The contents of the data register are transferred to the latch circuit at the rising edge. And, at  
the falling edge of the STB, the gray scale voltage is supplied to the driver. When STB = H  
period, driver output level is Hi-Z (High impedance).  
STB  
POL  
Latch input  
It is necessary to ensure input of one pulse per horizontal period.  
Polarity input  
Input POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output uses V5 to  
V9 as the reference supply.  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output uses V0 to  
V4 as the reference supply.  
S2n-1 indicates the odd output, and S2n indicates the even output. Input of the POL signal is  
allowed the setup time (tPOL-STB) with respect to STB’s rising edge.  
POL21,  
POL22  
Data inversion input  
Input Data inversion can invert when display data is loaded.  
POL21: D00 to D05, D10 to D15, D20 to D25, data inversion can invert display data  
POL22: D30 to D35, D40 to D45, D50 to D55, data inversion can invert display data  
POL21, POL22 = H: Data inversion loads display data after inverting it.  
POL21, POL22 = L: Data inversion does not invert input data.  
LPC,  
HPC  
Bias current control  
input  
Input Please refer to panel loads and driver power supply voltage (VDD2), when set up these pins.  
Refer to 10. BIAS CURRENT CONTROL BY LPC AND HPC. LPC pin is pulled down to the  
VSS1 inside the IC, HPC pin is pulled up to the VDD1 inside the IC.  
4
Data Sheet S15843EJ3V0DS  
µPD160061  
(2/2)  
Pin Symbol  
SRC  
Pin Name  
I/O  
Description  
High driving time  
control  
Input This pin is set up to high drive time of the output amplifier. Please decide the pin setting refer  
to panel loads and one horizontal period. SRC pin is pulled up to the VDD1 inside the IC.  
SRC = H or open: High drive time 64 CLK (Normally period mode)  
SRC = L: High drive time 128 CLK (Long time mode)  
Refer to 9. SRC AND HIGH DRIVE TIME.  
V0 to V9  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier.  
supplies  
Make sure to maintain the following relationships. During the gray scale voltage output, be  
sure to keep the gray scale level power supply at a constant level.  
VDD2 0.2 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
VDD2 0.3 V > V5 > V6 > V7 > V8 > V9 VSS2 + 0.2 V  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply  
Driver power supply  
Logic ground  
2.3 to 3.6 V  
7.5 to 9.5 V  
Grounding  
Grounding  
Driver ground  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut down.  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
VDD1 to VSS1 and VDD2 to VSS2. Furthermore, for increased precision of the D/A converter, insertion  
of a bypass capacitor of about 0.01 µF is also recommended between the γ -corrected power  
supply terminals (V0, V1, V2,....., V9) and VSS.  
5
Data Sheet S15843EJ3V0DS  
µPD160061  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
The µPD160061 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray  
scale voltages of differing polarity with respect to the LCD’s counter electrode voltage. The D/A converter consists of  
ladder resistors and switches.  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ-compensated voltages to V0’ to V63’ and V0”  
to V63” is almost equivalent, resistor ratio is shown in Figure 52. For the 2 sets of five γ-compensated power supplies, V0  
to V4 and V5 to V9, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When  
fine-gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ-  
compensated power supplies V1 to V3 and V6 to V8.  
Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2,  
common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage  
relationships of below.  
V
DD2 – 0.2 V V  
0
> V  
1
> V  
2
> V  
3
> V  
4
0.5 VDD2  
0.5 VDD2 – 0.3 V V  
5
> V  
6
> V  
7
> V  
8
> V  
9
> VSS2 + 0.2 V  
Figures 5–2 indicates γ -corrected voltages and ladder resistors ratio. Figures 5–3 indicates the relationship between the  
input data and output voltage.  
Figure 5–1. Relationship between Input Data and γ -corrected Power Supplies  
V
DD2  
0.2 V  
V
0
16  
V
1
16  
16  
15  
V
V
2
3
V
4
0.5 VDD2  
Split interval  
15  
0.3 V  
V
5
V
6
7
16  
16  
V
V
8
16  
V
9
0.2 V  
V
SS2  
00  
10  
20  
30  
3F  
Input data (HEX.)  
6
Data Sheet S15843EJ3V0DS  
µPD160061  
Figure 5–2. γ -corrected Voltages and Ladder Resistors Ratio  
V
5
V
63’’  
V
0
V
0
1
rn  
Ratio Value (TYP.)  
r
0
r
r
r
r
62  
61  
60  
59  
r0  
8.5  
7.5  
7.0  
6.5  
6.0  
5.5  
5.5  
5.0  
5.0  
4.0  
4.0  
3.5  
3.5  
3.5  
3.0  
3.0  
3.0  
2.5  
2.5  
2.5  
2.0  
2.0  
2.0  
1.5  
1.5  
1.5  
1.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
2.5  
2.5  
3.0  
5.0  
8.0  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
400  
350  
350  
350  
300  
300  
300  
250  
250  
250  
200  
200  
200  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
200  
200  
250  
250  
300  
500  
800  
r1  
V
V62’’  
V61’’  
V60’’  
r2  
r1  
r3  
V
2
3
r4  
r
2
3
r5  
r6  
V
r7  
r
r8  
r9  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r
r
r
49  
r
r
r
r
14  
V15  
V16  
V17  
V49’’  
V48’’  
V47’’  
15  
48  
47  
V1  
V6  
16  
17  
r46  
r
r
r
r
46  
47  
48  
49  
r
r
r
r
17  
V47  
V
17’’  
16’’  
16  
15  
14  
V48  
V
V3  
V8  
V49  
V15’’  
r
r
r
2
1
0
r
60  
V2  
’’  
’’  
V
V
V
61  
r
61  
62  
62  
63  
V1  
r
V9  
V4  
V0’’  
Cautions 1. There is no connection between V4 and V5 terminal in the IC.  
2. The resistance ratio is a relative ratio in the case of setting the resistance minimum value to 1.  
7
Data Sheet S15843EJ3V0DS  
µPD160061  
Figure 5–3. Relationship between Input Data and Output Voltage (POL21, POL22 = L)  
Output Voltage 1: VDD2 – 0.2 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
Output Voltage 2: 0.5 VDD2 – 0.3 V V5 > V6 > V7 > V8 > V9 VSS2 + 0.2 V  
Input Data  
00H  
Output Voltage 1  
Output Voltage 2  
V0' V0  
V0'' V9  
01H  
V1' V1+(V0-V1)×  
V2' V1+(V0-V1)×  
V3' V1+(V0-V1)×  
V4' V1+(V0-V1)×  
V5' V1+(V0-V1)×  
V6' V1+(V0-V1)×  
V7' V1+(V0-V1)×  
V8' V1+(V0-V1)×  
V9' V1+(V0-V1)×  
V10' V1+(V0-V1)×  
V11' V1+(V0-V1)×  
V12' V1+(V0-V1)×  
V13' V1+(V0-V1)×  
V14' V1+(V0-V1)×  
V15' V1+(V0-V1)×  
V16' V1  
7250 /  
6500 /  
5800 /  
5150 /  
4550 /  
4000 /  
3450 /  
2950 /  
2450 /  
2050 /  
1650 /  
1300 /  
950 /  
8050 V1'' V9+(V8-V9)×  
8050 V2'' V9+(V8-V9)×  
8050 V3'' V9+(V8-V9)×  
8050 V4'' V9+(V8-V9)×  
8050 V5'' V9+(V8-V9)×  
8050 V6'' V9+(V8-V9)×  
8050 V7'' V9+(V8-V9)×  
8050 V8'' V9+(V8-V9)×  
8050 V9'' V9+(V8-V9)×  
8050 V10'' V9+(V8-V9)×  
8050 V11'' V9+(V8-V9)×  
8050 V12'' V9+(V8-V9)×  
8050 V13'' V9+(V8-V9)×  
8050 V14'' V9+(V8-V9)×  
8050 V15'' V9+(V8-V9)×  
V16'' V8  
800  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
1550  
2250  
2900  
3500  
4050  
4600  
5100  
5600  
6000  
6400  
6750  
7100  
7450  
7750  
600 /  
300 /  
V17' V2+(V1-V2)×  
V18' V2+(V1-V2)×  
V19' V2+(V1-V2)×  
V20' V2+(V1-V2)×  
V21' V2+(V1-V2)×  
V22' V2+(V1-V2)×  
V23' V2+(V1-V2)×  
V24' V2+(V1-V2)×  
V25' V2+(V1-V2)×  
V26' V2+(V1-V2)×  
V27' V2+(V1-V2)×  
V28' V2+(V1-V2)×  
V29' V2+(V1-V2)×  
V30' V2+(V1-V2)×  
V31' V2+(V1-V2)×  
V32' V2  
2450 /  
2200 /  
1950 /  
1700 /  
1500 /  
1300 /  
1100 /  
950 /  
2750 V17'' V8+(V7-V8)×  
2750 V18'' V8+(V7-V8)×  
2750 V19'' V8+(V7-V8)×  
2750 V20'' V8+(V7-V8)×  
2750 V21'' V8+(V7-V8)×  
2750 V22'' V8+(V7-V8)×  
2750 V23'' V8+(V7-V8)×  
2750 V24'' V8+(V7-V8)×  
2750 V25'' V8+(V7-V8)×  
2750 V26'' V8+(V7-V8)×  
2750 V27'' V8+(V7-V8)×  
2750 V28'' V8+(V7-V8)×  
2750 V29'' V8+(V7-V8)×  
2750 V30'' V8+(V7-V8)×  
2750 V31'' V8+(V7-V8)×  
V32'' V7  
300  
550  
800  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
1050  
1250  
1450  
1650  
1800  
1950  
2100  
2250  
2350  
2450  
2550  
2650  
800 /  
650 /  
500 /  
400 /  
300 /  
200 /  
100 /  
V33' V3+(V2-V3)×  
V34' V3+(V2-V3)×  
V35' V3+(V2-V3)×  
V36' V3+(V2-V3)×  
V37' V3+(V2-V3)×  
V38' V3+(V2-V3)×  
V39' V3+(V2-V3)×  
V40' V3+(V2-V3)×  
V41' V3+(V2-V3)×  
V42' V3+(V2-V3)×  
V43' V3+(V2-V3)×  
V44' V3+(V2-V3)×  
V45' V3+(V2-V3)×  
V46' V3+(V2-V3)×  
V47' V3+(V2-V3)×  
V48' V3  
1500 /  
1400 /  
1300 /  
1200 /  
1100 /  
1000 /  
900 /  
800 /  
700 /  
600 /  
500 /  
400 /  
300 /  
200 /  
100 /  
1600 V33'' V7+(V6-V7)×  
1600 V34'' V7+(V6-V7)×  
1600 V35'' V7+(V6-V7)×  
1600 V36'' V7+(V6-V7)×  
1600 V37'' V7+(V6-V7)×  
1600 V38'' V7+(V6-V7)×  
1600 V39'' V7+(V6-V7)×  
1600 V40'' V7+(V6-V7)×  
1600 V41'' V7+(V6-V7)×  
1600 V42'' V7+(V6-V7)×  
1600 V43'' V7+(V6-V7)×  
1600 V44'' V7+(V6-V7)×  
1600 V45'' V7+(V6-V7)×  
1600 V46'' V7+(V6-V7)×  
1600 V47'' V7+(V6-V7)×  
V48'' V6  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
V49' V4+(V3-V4)×  
V50' V4+(V3-V4)×  
V51' V4+(V3-V4)×  
V52' V4+(V3-V4)×  
V53' V4+(V3-V4)×  
V54' V4+(V3-V4)×  
V55' V4+(V3-V4)×  
V56' V4+(V3-V4)×  
V57' V4+(V3-V4)×  
V58' V4+(V3-V4)×  
V59' V4+(V3-V4)×  
V60' V4+(V3-V4)×  
V61' V4+(V3-V4)×  
V62' V4+(V3-V4)×  
3350 /  
3250 /  
3150 /  
3050 /  
2950 /  
2800 /  
2650 /  
2500 /  
2300 /  
2100 /  
1850 /  
1600 /  
1300 /  
800 /  
3450 V49'' V6+(V5-V6)×  
3450 V50'' V6+(V5-V6)×  
3450 V51'' V6+(V5-V6)×  
3450 V52'' V6+(V5-V6)×  
3450 V53'' V6+(V5-V6)×  
3450 V54'' V6+(V5-V6)×  
3450 V55'' V6+(V5-V6)×  
3450 V56'' V6+(V5-V6)×  
3450 V57'' V6+(V5-V6)×  
3450 V58'' V6+(V5-V6)×  
3450 V59'' V6+(V5-V6)×  
3450 V60'' V6+(V5-V6)×  
3450 V61'' V6+(V5-V6)×  
100  
200  
300  
400  
500  
650  
800  
950  
1150  
1350  
1600  
1850  
2150  
2650  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
V62'' V6+(V5-V6)×  
3450  
V63' V4  
V63'' V5  
8
Data Sheet S15843EJ3V0DS  
µPD160061  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format : 6 bits x 2 RGBs (6 dots)  
Input width : 36 bits (2-pixel data)  
(1) R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
...  
D40 to D45  
D50 to D55  
(2) R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
...  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
S2n–1Note  
S2nNote  
POL  
L
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n–1 (Odd output), S2n (Even output)  
9
Data Sheet S15843EJ3V0DS  
µPD160061  
7. RELATIONSHIP BETWEEN STB CLK AND OUTPUT WAVEFORM  
Figure 7–1. Input Circuit Block Diagram  
Output AMP.  
-
+
DAC  
SW1  
Sn  
(V  
X
)
VAMP(IN)  
Figure 7–2. Output Circuit Timing Waveform  
[1]  
[1']  
CLK  
STB  
t
STB-CLK  
SW1: OFF  
V
AMP(IN)  
Hi-Z  
S
n
(VX)  
STB = H is loaded with the rising edge of CLK[1]. However, when not satisfying the specification of fSTB-CLK, STB = H is  
loaded with the rising edge of the next CLK[1]. Latch operation of display data is completed with the falling edge of the  
next CLK which loaded STB = H. Therefore, in order to complete latch operation of display data, it is necessary to input  
at least 2 CLK in STB = H period. Besides, after loading STB=H to the timing of [1], it is necessary to continue inputting  
CLK.  
10  
Data Sheet S15843EJ3V0DS  
µPD160061  
8. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
When the STB is high level, all outputs became Hi-Z and the gray-scale voltage is output to the LCD in synchronization  
with the falling edge of STB.  
Therefore, high drive time of the output amplifier as below is determined by the CLK number of the required SRC pin  
setting. Be sure to avoid using such as extremely changing the CLK frequency (ex. CLK stop).  
STB  
High drive time  
High drive time  
High drive time  
Inside bias current  
POL  
V
0
- V  
4
V
5
- V  
9
V
5
- V  
9
Vx (odd output)  
Vx (even output)  
V5  
- V9  
V0  
- V4  
V0  
- V4  
Hi-Z  
Hi-Z  
Hi-Z  
9. SRC AND HIGH DRIVE TIME  
The µPD160061 can control high drive time of the output amplifier by SRC pin logic (refer to below figure).  
SRC = H or open (high drive time: standard mode): High drive time (PWhp) of the output amplifier is in 64 CLK  
period from falling edge of the STB.  
SRC = L (high drive time: long-term mode): High drive time (PWhp) of the output amplifier is in 128 CLK period  
from falling edge of the STB.  
STB  
CLK  
PWhp  
Inside bias current  
We recommend a thorough simulation of the output amplifier in advance when set the SRC pin.  
11  
Data Sheet S15843EJ3V0DS  
µPD160061  
10. BIAS CURRENT CONTROL BY LPC AND HPC  
The µPD160061 can control the bias current of the output amplifier in high drive period and low drive period.  
Bias Current  
High  
LPC  
HPC  
Panel Load  
Heavy  
H
L
Middle  
Normal  
Low  
L or open  
L or open  
H
L
H or open  
H or open  
Light  
We recommend a thorough simulation of the output amplifier in advance, when set the LPC and HPC pins.  
Refer to the table below for the example of the combination of setting level and panel load, with driver part supply voltage.  
Example of Condition  
Load: RL = 5 k, CL = 75 pF  
LPC  
L or open  
Bias current mode: Middle  
HPC  
SRC  
Example 1  
Example 2  
Example 3  
L
H or open  
H or open  
L
Driver part supply voltage: VDD2 = 7.5 V  
Load: RL = 5 k, CL = 75 pF  
L or open  
H or open  
Driver part supply voltage: VDD2 = 9.0 V  
Load: RL = 40 k, CL = 80 pF  
Bias current mode: Normal  
H
L
Driver part supply voltage: VDD2 = 9.0 V  
Bias current mode: High  
12  
Data Sheet S15843EJ3V0DS  
µPD160061  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
Rating  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
VDD1  
–0.5 to +4.0  
VDD2  
VI1  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–10 to +75  
V
V
VI2  
V
VO1  
VO2  
V
V
Operating Ambient Temperature TA  
°C  
°C  
Storage Temperature  
Tstg  
–55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure that  
the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = –10 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
2.3  
TYP.  
8.5  
MAX.  
3.6  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
VDD1  
VDD2  
7.5  
9.5  
V
VIH  
0.7 VDD1  
0
VDD1  
V
VIL  
0.3 VDD1  
VDD2 – 0.2  
0.5 VDD2 – 0.3  
0.5 VDD2  
VDD2 – 0.2  
40  
V
V0 to V4  
V5 to V9  
7.5 V VDD1 9.5 V  
7.5 V VDD1 < 8.5 V  
8.5 V VDD1 9.5 V  
0.5 VDD2  
0.2  
V
V
0.2  
V
Driver Part Output Voltage  
Clock Frequency  
VO  
0.2  
V
fCLK  
2.3 V VDD1 < 2.7 V  
2.7 V VDD1 3.6 V  
MHz  
MHz  
65  
13  
Data Sheet S15843EJ3V0DS  
µPD160061  
Electrical Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 7.5 to 9.5 V, VSS1 = VSS2 = 0 V)  
Parameter  
Input Leak Current  
Symbol  
Condition  
Except LPC, HPC, SRC  
LPC, HPC, SRC  
MIN.  
TYP.  
MAX.  
1.0  
150  
Unit  
µA  
µA  
V
IIL  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Resistance  
Driver Output Current  
VOH  
VOL  
Rγ  
IVOH  
IVOL  
VO  
STHR (STHL), IOH = 0 mA  
VDD1 – 0.1  
7.9  
STHR (STHL), IOL = 0 mA  
0.1  
23.7  
– 20  
V
V0 to V4 = V5 to V9 = 4.0 V, VDD2 = 8.5 V  
VDD2 = 8.0 V, VX = 7.0 V, VOUT = 6.5 V Note1  
VDD2 = 8.0 V, VX = 1.0 V, VOUT = 1.5 V Note1  
TA = 25°C,  
VDD1 = 3.3 V, VDD2 = 8.5 V,  
VOUT = 2.0 V, 4.25 V, 6.5 V  
15.8  
kΩ  
µA  
µA  
mV  
20  
Output Voltage Deviation  
10  
3
20  
15  
Output Swing Difference  
Deviation  
VP–P  
mV  
Logic Part Dynamic Current  
IDD1  
VDD1  
4
12  
8
mA  
Consumption Note2, 3, 4  
Driver Part Dynamic Current IDD22  
Consumption Note2, 4  
VDD2, with no load  
3.5  
mA  
Notes 1. VX refers to the output voltage of analog output pins S1 to S384. VOUT refers to the voltage applied to analog  
output pins S1 to S384.  
2. Specified at fSTB = 65 kHz and fCLK = 54 MHz.  
3. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in  
the dot checkerboard input pattern.  
4. Refers to the current consumption per driver when cascades are connected under the assumption of XGA  
single-sided mounting (8 units).  
Switching Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 7.5 to 9.5 V, VSS1 = VSS2 = 0 V)  
Parameter  
Start Pulse Delay Time  
Symbol  
Condition  
MIN.  
TYP.  
MAX.  
20  
10.5  
20  
10.5  
5
Unit  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
pF  
tPLH1  
CL = 15 pF, 2.3 V VDD1 < 2.7 V  
CL = 10 pF, 2.7 V VDD1 3.6 V  
CL = 10 pF, 2.3 V VDD1 < 2.7 V  
CL = 10 pF, 2.7 V VDD1 3.6 V  
CL = 75 pF, RL = 5 k,  
tPLH1  
Driver Output Delay Time  
Input Capacitance  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
LPC = L or open,  
8
HPC = H or open,  
SRC = H or open  
5
8
Logic input of exclude STHR (STHL),  
TA = 25°C  
10  
CI2  
STHR (STHL), TA = 25°C  
5
pF  
<Measurement condition>  
RLn = 1 k, CLn = 15 pF  
The measurement point  
RL1  
RL2  
RL3  
RL4  
RL5  
Output  
CL1  
CL2  
CL3  
CL4  
CL5  
GND  
14  
Data Sheet S15843EJ3V0DS  
µPD160061  
Timing Requirements (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
Condition  
2.3 V VDD1 < 2.7 V  
2.7 V VDD1 3.6 V  
2.3 V VDD1 < 2.7 V  
2.7 V VDD1 3.6 V  
2.3 V VDD1 < 2.7 V  
2.7 V VDD1 3.6 V  
MIN.  
25  
15  
6
TYP.  
MAX.  
Unit  
ns  
PWCLK  
ns  
Clock Pulse High Period  
Clock Pulse Low Period  
PWCLK(H)  
PWCLK(L)  
ns  
4
ns  
6
ns  
4
ns  
Data Setup Time  
tSETUP1  
tHOLD1  
4
ns  
Data Hold Time  
0
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21, POL22 Setup Time  
POL21, POL22 Hold Time  
STB Pulse Width  
tSETUP2  
tHOLD2  
4
ns  
0
ns  
tSETUP3  
tHOLD3  
4
ns  
0
ns  
PWSTB  
tLDT  
2
CLK  
CLK  
ns  
Last Data Timing  
2
STB-CLK Time  
tSTB -CLK  
tSTB-STH  
tPOL-STB  
tSTB-POL  
STB ↑→ CLK ↑  
9
Time Between STB and Start Pulse  
POL-STB Time  
STB ↑ → STHR(STHL) ↑  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
2
CLK  
ns  
–5  
6
STB-POL Time  
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
15  
Data Sheet S15843EJ3V0DS  
CLK(H)  
r
f
PWCLK(L) PWCLK  
PW  
3
t
t
1
2
V
V
DD1  
SS1  
90%  
1
2
64  
65  
66  
CLK  
10%  
STB-CLK  
tSETUP2 tHOLD2  
t
V
V
DD1  
SS1  
STHR  
(1st Dr.)  
tSETUP1 tHOLD1  
t
STB-STH  
V
V
DD1  
SS1  
D373 to  
D378  
D379 to  
D385  
D
390  
Last  
Data  
to  
n0  
n5  
D
to D  
D1to D6  
INVALID  
INVALID  
D
1
to D  
6
D7toD12  
INVALID  
12  
D7to D  
384  
D
tSETUP3 tHOLD3  
V
V
DD1  
SS1  
POL21,  
POL22  
INVALID  
tPLH1  
V
V
DD1  
SS1  
STHL  
(1st Dr.)  
tLDT  
PWSTB  
V
V
DD1  
SS1  
STB  
POL  
tSTB-POL  
tPOL-STB  
V
V
DD1  
SS1  
tPLH3  
Hi-Z  
t
PLH2  
+
Target Voltage:  
10%  
Sn  
(VX)  
+
Target Voltage:  
2%  
µ
PHL2  
PHL3  
t
t
µPD160061  
12. RECOMMENDED MOUNTING CONDITIONS  
The following conditions must be met for mounting conditions of the µPD160061.  
For more details, refer to the Semiconductor Device Mount Manual  
(http://www.necel.com/pkg/en/mount/index.html).  
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under  
different conditions.  
µ PD160061N - ×××: TCP (TAB package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds, pressure 100 g (per  
solder)  
ACF  
Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5  
(Adhesive Conductive  
Film)  
seconds.  
Real bonding 165 to 180°C, pressure 25 to 45 kg/cm2, time 30 to 40  
seconds. (When using the anisotropy conductive film SUMIZAC1003 of  
Sumitomo Bakelite, Ltd.)  
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing  
company. Be sure to avoid using two or more mounting methods at a time.  
17  
Data Sheet S15843EJ3V0DS  
µPD160061  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
18  
Data Sheet S15843EJ3V0DS  

相关型号:

UPD160062

420-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160062N

420-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160062N-XXX

420-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160081

UPD160081 Data Sheet | Data Sheet[06/2003]
ETC

UPD160082NL-XXX

Liquid Crystal Driver, 384-Segment, DIE
NEC

UPD160083

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083N

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083N-XXX

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083NL

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083NL-XXX

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160903

UPD160903 Data Sheet | Data Sheet[06/2001]
ETC

UPD160903N-XXX

Liquid Crystal Driver, 402-Segment, MOS, TCP
NEC