UPD16488AP [NEC]

1/92 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM; 1/92 DUTY LCD控制器/驱动器,四级灰度,片上RAM
UPD16488AP
型号: UPD16488AP
厂家: NEC    NEC
描述:

1/92 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM
1/92 DUTY LCD控制器/驱动器,四级灰度,片上RAM

显示驱动器 驱动程序和接口 接口集成电路 控制器 CD
文件: 总91页 (文件大小:2618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD16488A  
1/92 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM  
DESCRIPTION  
The µPD16488A is a controller/driver which includes display RAM for full-dot LCDs that can provide a four-level gray  
scale display. This IC is able to drive full-dot LCDs that contain up to 128 x 92 dots.  
FEATURES  
LCD controller/driver with on-chip display RAM  
Full dot outputs: 128 segment outputs and 92 common outputs  
Can operate using single power supply (logic system) in range from 1.7 to 3.6 V.  
Selection of four levels of gray scales from among 33 possible levels (four-frame rate control + 8 pulse width  
modulation)  
Serial data input and 8-bit parallel data input (i80 series interface and M68 series interface)  
Dot display RAM: 128 x 128 x 2 bits  
On-chip booster: Switchable from x2 to x9 modes  
Selectable bias levels: 1/12 to 1/7 bias (normal display), 1/6 or 1/5 bias (partial display)  
Duty settings: 1/92 to 1/1 duty  
On-chip voltage divider resistor  
On-chip oscillator  
ORDERING INFORMATION  
Part Number  
µPD16488AP  
µPD16488AW  
Package  
Chip  
Wafer  
Remark Purchasing the chip/wafer entails the exchange of documents such as a separate memorandum or product  
quality, so please contact one of our sales representative.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S15745EJ2V0DS00 (2nd Edition)  
Date Published December 2001 NS CP(K)  
2001  
The mark  shows major revised points.  
µPD16488A  
TABLE OF CONTENTS  
1. BLOCK DIAGRAM....................................................................................................................................... 5  
2. PIN CONFIGURATION (PAD LAYOUT) ..................................................................................................... 6  
3. PIN FUNCTIONS.......................................................................................................................................... 9  
3.1 Power Supply System Pins................................................................................................................................ 9  
3.2 Logic System Pins............................................................................................................................................ 10  
3.3 Driver-Related Pins........................................................................................................................................... 13  
3.4 Test Pins........................................................................................................................................................... 13  
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS...................................... 14  
5. DESCRIPTION OF FUNCTIONS............................................................................................................... 15  
5.1 CPU Interface.................................................................................................................................................... 15  
5.1.1 Selection of interface type ...................................................................................................................... 15  
5.1.2 Parallel interface..................................................................................................................................... 15  
5.1.3 Serial interface........................................................................................................................................ 16  
5.1.4 Chip select.............................................................................................................................................. 16  
5.1.5 Display data RAM and on-chip register access ...................................................................................... 16  
5.2 Display Data RAM............................................................................................................................................. 19  
5.2.1 Display data RAM................................................................................................................................... 19  
5.2.2 X address circuit..................................................................................................................................... 19  
5.2.3 Column address circuit........................................................................................................................... 21  
5.2.4 Y address circuit..................................................................................................................................... 21  
5.2.5 Common scan circuit.............................................................................................................................. 21  
5.2.6 Display start line set ............................................................................................................................... 21  
5.2.7 Display data latch circuit......................................................................................................................... 21  
5.3 Blink/Reverse Display Circuit.......................................................................................................................... 22  
5.4 Oscillator........................................................................................................................................................... 24  
5.5 Display Timing Generator................................................................................................................................ 28  
5.6 Power Supply Circuit ....................................................................................................................................... 30  
5.6.1 Booster ................................................................................................................................................... 30  
5.6.2 Voltage regulator .................................................................................................................................... 32  
5.6.3 Use of op amp for level power supply control......................................................................................... 35  
5.6.4 Application examples of power supply circuits........................................................................................ 36  
5.7 LCD Display Drivers......................................................................................................................................... 39  
5.7.1 Full-dot pulse width modulation .............................................................................................................. 39  
5.7.2 Full-dot frame rate control....................................................................................................................... 44  
2
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.7.3 Line shift driver ....................................................................................................................................... 45  
5.7.4 Display size settings............................................................................................................................... 47  
5.7.5 Setting of LCD AC driver's inversion cycle and AC driver's inversion position........................................ 47  
5.8 Display Modes .................................................................................................................................................. 49  
5.8.1 Partial display mode ............................................................................................................................... 49  
5.8.2 Monochrome (black/white) display ......................................................................................................... 51  
5.9 Reset.................................................................................................................................................................. 53  
6. COMMAND REGISTERS........................................................................................................................... 54  
6.1 Control Register 1 (R0)...................................................................................................................................... 55  
6.2 Control Register 2 (R1)...................................................................................................................................... 56  
6.3 Reset Command (R2)......................................................................................................................................... 57  
6.4 X Address Register (R3).................................................................................................................................... 57  
6.5 Y Address Register (R4).................................................................................................................................... 57  
6.6 Duty Setting Register (R5) ................................................................................................................................ 58  
6.7 AC Driver Inversion Cycle Register (R6).......................................................................................................... 59  
6.8 AC Driver Inversion Position Shift Register (R7) ............................................................................................ 59  
6.9 Partial AC Driver Inversion Cycle Register (R8).............................................................................................. 60  
6.10 Partial AC Driver Inversion Position Shift Register (R9) .............................................................................. 60  
6.11 Partial Display Mode Setting Register (R10) ................................................................................................. 61  
6.12 Display Memory Access Register (R11)......................................................................................................... 61  
6.13 Display Start Line Setting Register (R12) ...................................................................................................... 62  
6.14 Blink X Address Register (R13) ...................................................................................................................... 62  
6.15 Blink Start Line Address Register (R14)........................................................................................................ 62  
6.16 Blink End Line Address Register (R15) ......................................................................................................... 62  
6.17 Blink Data Memory Access Register (R16).................................................................................................... 63  
6.18 Inverted X Address Register (R17)................................................................................................................. 63  
6.19 Inversion Start Line Address Register (R18)................................................................................................. 63  
6.20 Inversion End Line Address Register (R19) .................................................................................................. 64  
6.21 Inverted Data Memory (R20)............................................................................................................................ 64  
6.22 Partial Start Line Address Register (R21)...................................................................................................... 64  
6.23 Gray Scale Data Registers 1 to 4 (R23 to R26).............................................................................................. 65  
6.24 Partial Gray Scale Data Registers 1 to 4 (R27 to R30) .................................................................................. 65  
6.25 Power System Control Register 1 (R32) ........................................................................................................ 66  
6.26 Power System Control Register 2 (R33) ........................................................................................................ 67  
6.27 Power System Control Register 3 (R34) ........................................................................................................ 68  
6.28 Electronic Volume Register (R35) .................................................................................................................. 69  
6.29 Partial Electronic Volume Register (R36) ...................................................................................................... 69  
6.30 Boost Adjustment Register (R37)................................................................................................................... 69  
6.31 RAM Test Mode Setting Register (R44).......................................................................................................... 70  
6.32 Signature Read Register (R45) ....................................................................................................................... 70  
3
Data Sheet S15745EJ2V0DS  
µPD16488A  
7. LIST OF µPD16488A REGISTERS ........................................................................................................... 71  
8. POWER SUPPLY SEQUENCE ................................................................................................................. 72  
8.1 Power ON Sequence (When Using On-Chip Power Supply, Power Supply ON ¡ Display ON) .................. 72  
8.2 Power OFF Sequence (When Using On-Chip Power Supply) ........................................................................ 73  
8.3 Power ON Sequence (When Using External Driver Power Supply, Power ON Display ON) ................... 73  
8.4 Power Supply OFF Sequence (When Using External Driver Power Supply) ................................................ 74  
8.5 VOUT, VLCD Voltage Sequence (Power ON Power OFF) ............................................................................... 75  
9. USE OF RAM TEST MODE....................................................................................................................... 76  
10. ELECTRICAL SPECIFICATIONS............................................................................................................ 77  
11. CPU INTERFACE (REFERENCE EXAMPLE) ........................................................................................ 87  
4
Data Sheet S15745EJ2V0DS  
µPD16488A  

1. BLOCK DIAGRAM  
SEG128  
SEG  
1
COM  
1
COM92  
Common driver  
Segment driver  
Data  
register  
Segment  
G/S and blink  
control  
/RES  
/CS1  
CS2  
C86  
Display data latch  
PSX  
/RD(E)  
/WR(R,/W)  
Common  
timing  
generator  
D
6
7
(SI)  
(SCL)  
to D  
Display data RAM  
(128 x 128 x 2 bits)  
D
D
I/O  
buffer  
5
0
RS  
M/S  
FR  
FRSYNC  
DOF  
Address decoder  
SIGIN1  
SIGIN2  
TSTIFS  
TSTRTST  
TSTVIHL  
TESTOUT  
Command decoder  
Register  
Segment  
G/S and blink  
timer  
OSCIN1  
OSCIN2  
OSCOUT  
OSCSYNC  
CLS  
Timing generator  
Oscillator  
circuit  
D/A converter  
-
+
C1 , C1  
DC/DC  
converter  
Op amp  
LCD voltage generator  
+
-
C9  
,
C9  
C1A  
V
OUT  
V
RS  
IRS  
V
R
AMPOUTP AMPOUT  
V
LCD  
V
LC1  
V
LC2  
V
LC3  
V
LC4  
V
DD1  
V
DD2  
VSS  
Remark /xxx indicates active low signals.  
5
Data Sheet S15745EJ2V0DS  
µPD16488A  

2. PIN CONFIGURATION (PAD LAYOUT)  
Chip size  
Chip  
: 3.0 x 11.4 mm2  
: 485 µm TYP.  
403  
372  
Pad type A : Pad size (AI) : 53 x 73 µm2  
Bump size  
: 45 x 60 µm2  
A4  
A1  
1
Bump height : 17 µm TYP.  
371  
Pad type B : Pad size (AI) : 118 x 73 µm2  
Bump size : 110 x 60 µm2  
Bump height : 17 µm TYP.  
Alignment Mark Coordinate  
Mark Center Coordinate  
X [µm]  
1200.00  
1200.00  
1275.00  
1275.00  
Y [µm]  
5300.00  
5300.00  
5475.00  
5475.00  
M1  
M2  
M3  
M4  
Shape of Alignment Mark (unit: µm)  
Y
A1,A2  
50 50  
A3  
A4  
X
50  
100  
100  
100  
163  
A1  
197  
A3  
164  
196  
6
Data Sheet S15745EJ2V0DS  
µPD16488A  
µPD16488A Pad Layout (1/2)  
Pad  
No.  
1
Pin Name  
Pad  
Type  
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Pad Coordinate  
Pad  
No.  
71 VDD1  
72 VDD1  
73 VSS  
74 VSS  
75 VSS  
76 CLS  
77 CLS  
78 VDD1  
79 M/S  
80 M/S  
81 VSS  
82 C86  
83 C86  
84 PSX  
85 PSX  
86 VDD1  
87 IRS  
88 IRS  
Pin Name  
Pad  
Type  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Pad Coordinate  
Pad  
No.  
141 DUMMY  
142 DUMMY  
143 VSS  
144 SIGIN1  
145 SIGIN1  
146 VDD1  
147 SIGIN2  
148 SIGIN2  
149 VSS  
150 TESTOUT  
151 TESTOUT  
152 TSTIFS  
153 TSTIFS  
154 TSTRTST  
155 TSTRTST  
156 TSTVIHL  
157 TSTVIHL  
158 VSS  
Pin Name  
Pad  
Type  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
Pad Coordinate  
µ
µ
µ
µ
µ
µ
X [ m]  
Y [ m]  
X [ m]  
Y [ m]  
X [ m]  
Y [ m]  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
VSS  
VRS  
VRS  
AMPOUTP  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
5284.00  
5154.00  
5024.00  
4894.00  
4796.50  
4590.00  
4530.00  
4470.00  
4410.00  
4350.00  
4290.00  
4230.00  
4170.00  
4110.00  
4050.00  
3990.00  
3930.00  
3870.00  
3810.00  
3750.00  
3690.00  
3630.00  
3570.00  
3510.00  
3450.00  
3390.00  
3330.00  
3270.00  
3210.00  
3150.00  
3090.00  
3030.00  
2970.00  
2910.00  
2850.00  
2790.00  
2730.00  
2670.00  
2610.00  
2550.00  
2490.00  
2430.00  
2370.00  
2310.00  
2250.00  
2190.00  
2130.00  
2070.00  
2010.00  
1950.00  
1890.00  
1830.00  
1770.00  
1710.00  
1650.00  
1590.00  
1530.00  
1470.00  
1410.00  
1350.00  
1290.00  
1230.00  
1170.00  
1110.00  
1050.00  
990.00  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
690.00  
630.00  
570.00  
510.00  
450.00  
390.00  
330.00  
270.00  
210.00  
150.00  
90.00  
30.00  
-30.00  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1383.50  
-1172.50  
-1075.00  
-965.00  
-905.00  
-845.00  
-785.00  
-725.00  
-665.00  
-605.00  
-545.00  
-485.00  
-425.00  
-365.00  
-305.00  
-245.00  
-185.00  
-125.00  
-65.00  
-3510.00  
-3570.00  
-3630.00  
-3690.00  
-3750.00  
-3810.00  
-3870.00  
-3930.00  
-3990.00  
-4050.00  
-4110.00  
-4170.00  
-4230.00  
-4290.00  
-4350.00  
-4410.00  
-4470.00  
-4530.00  
-4796.50  
-4894.00  
-5024.00  
-5154.00  
-5284.00  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5474.76  
-5257.50  
-5160.00  
-5100.00  
-5040.00  
-4980.00  
-4920.00  
-4860.00  
-4800.00  
-4740.00  
-4680.00  
-4620.00  
-4560.00  
-4500.00  
-4440.00  
2
3
4
5
6
7
8
9
10 AMPOUTP  
11 AMPOUT  
12 AMPOUT  
13 VR  
14 VR  
-90.00  
15 VLC4  
16 VLC4  
17 VLC3  
18 VLC3  
19 VLC2  
20 VLC2  
21 VLC1  
22 VLC1  
23 VLCD  
24 VLCD  
25 VSS  
26 VOUT  
27 VOUT  
28 VSS  
29 C9-  
-150.00  
-210.00  
-270.00  
-330.00  
-390.00  
-450.00  
-510.00  
-570.00  
-630.00  
-690.00  
-750.00  
-810.00  
-870.00  
-930.00  
-990.00  
-1050.00  
-1110.00  
-1170.00  
-1230.00  
-1290.00  
-1350.00  
-1410.00  
-1470.00  
-1530.00  
-1590.00  
-1650.00  
-1710.00  
-1770.00  
-1830.00  
-1890.00  
-1950.00  
-2010.00  
-2070.00  
-2130.00  
-2190.00  
-2250.00  
-2310.00  
-2370.00  
-2430.00  
-2490.00  
-2550.00  
-2610.00  
-2670.00  
-2730.00  
-2790.00  
-2850.00  
-2910.00  
-2970.00  
-3030.00  
-3090.00  
-3150.00  
-3210.00  
-3270.00  
-3330.00  
-3390.00  
-3450.00  
89 VSS  
90 /CS1  
91 /CS1  
92 CS2  
159 DUMMY  
160 DUMMY  
161 DUMMY  
162 DUMMY  
163 DUMMY  
164 DUMMY  
165 DUMMY  
166 COM47  
167 COM48  
168 COM49  
169 COM50  
170 COM51  
171 COM52  
172 COM53  
173 COM54  
174 COM55  
175 COM56  
176 COM57  
177 COM58  
178 COM59  
179 COM60  
180 COM61  
181 COM62  
182 COM63  
183 COM64  
184 COM65  
185 COM66  
186 COM67  
187 COM68  
188 COM69  
189 COM70  
190 COM71  
191 COM72  
192 COM73  
193 DUMMY  
194 DUMMY  
195 DUMMY  
196 DUMMY  
197 DUMMY  
198 DUMMY  
199 DUMMY  
200 COM74  
201 COM75  
202 COM76  
203 COM77  
204 COM78  
205 COM79  
206 COM80  
207 COM81  
208 COM82  
209 COM83  
210 COM84  
93 CS2  
94 VDD1  
95 /RES  
96 /RES  
97 RS  
98 RS  
99 VSS  
100 /WR (R,/W)  
101 /WR (R,/W)  
102 /RD (E)  
103 /RD (E)  
104 VDD1  
105 D7  
106 D7  
107 D6  
108 D6  
109 DUMMY  
110 D5  
111 D5  
112 D4  
113 D4  
114 DUMMY  
115 D3  
116 D3  
117 D2  
118 D2  
119 DUMMY  
120 D1  
121 D1  
122 D0  
123 D0  
124 DUMMY  
125 FRSYNC  
126 FRSYNC  
127 FR  
30 C9-  
31 C9+  
32 C9+  
33 C8-  
34 C8-  
35 C8+  
36 C8+  
37 C7-  
38 C7-  
39 C7+  
40 C7+  
41 C6-  
42 C6-  
-5.00  
55.00  
115.00  
175.00  
235.00  
295.00  
355.00  
415.00  
43 C6+  
44 C6+  
45 C5-  
46 C5-  
47 C5+  
48 C5+  
49 C4-  
50 C4-  
475.00  
535.00  
595.00  
655.00  
771.00  
906.00  
51 C4+  
52 C4+  
53 C3-  
54 C3-  
55 C3+  
56 C3+  
57 C2-  
1041.00  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
58 C2-  
128 FR  
59 C2+  
60 C2+  
61 C1-  
129 DUMMY  
130 DOF  
131 DOF  
132 OSCIN1  
133 OSCIN1  
134 OSCIN2  
135 OSCIN2  
136 OSCOUT  
137 OSCOUT  
138 DUMMY  
139 OSCSYNC  
140 OSCSYNC  
62 C1-  
63 C1+  
64 C1+  
65 C1A  
66 C1A  
67 VDD2  
68 VDD2  
69 VDD2  
70 VDD1  
930.00  
870.00  
810.00  
750.00  
7
Data Sheet S15745EJ2V0DS  
µPD16488A  
µPD16488A Pad Layout (2/2)  
Pad  
No.  
Pin Name  
Pad  
Type  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Pad Coordinate  
X [µ m] Y [µ m]  
Pad  
No.  
Pin Name  
Pad  
Type  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Pad Coordinate  
X [µ m] Y [µ m]  
Pad  
No.  
Pin Name  
Pad  
Type  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
Pad Coordinate  
X [µ m]  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1041.00  
906.00  
Y [µ m]  
211 COM85  
212 COM86  
213 COM87  
214 COM88  
215 COM89  
216 COM90  
217 COM91  
218 COM92  
219 DUMMY  
220 SEG128  
221 SEG127  
222 SEG126  
223 SEG125  
224 SEG124  
225 SEG123  
226 SEG122  
227 SEG121  
228 SEG120  
229 SEG119  
230 SEG118  
231 SEG117  
232 SEG116  
233 SEG115  
234 SEG114  
235 SEG113  
236 SEG112  
237 SEG111  
238 SEG110  
239 SEG109  
240 SEG108  
241 SEG107  
242 SEG106  
243 SEG105  
244 SEG104  
245 SEG103  
246 SEG102  
247 SEG101  
248 SEG100  
249 SEG99  
250 SEG98  
251 SEG97  
252 SEG96  
253 SEG95  
254 SEG94  
255 SEG93  
256 SEG92  
257 SEG91  
258 SEG90  
259 SEG89  
260 SEG88  
261 SEG87  
262 SEG86  
263 SEG85  
264 SEG84  
265 SEG83  
266 SEG82  
267 SEG81  
268 SEG80  
269 SEG79  
270 SEG78  
271 SEG77  
272 SEG76  
273 SEG75  
274 SEG74  
275 SEG73  
276 SEG72  
277 SEG71  
278 SEG70  
279 SEG69  
280 SEG68  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
-4380.00  
-4320.00  
-4260.00  
-4200.00  
-4140.00  
-4080.00  
-4020.00  
-3960.00  
-3900.00  
-3840.00  
-3780.00  
-3720.00  
-3660.00  
-3600.00  
-3540.00  
-3480.00  
-3420.00  
-3360.00  
-3300.00  
-3240.00  
-3180.00  
-3120.00  
-3060.00  
-3000.00  
-2940.00  
-2880.00  
-2820.00  
-2760.00  
-2700.00  
-2640.00  
-2580.00  
-2520.00  
-2460.00  
-2400.00  
-2340.00  
-2280.00  
-2220.00  
-2160.00  
-2100.00  
-2040.00  
-1980.00  
-1920.00  
-1860.00  
-1800.00  
-1740.00  
-1680.00  
-1620.00  
-1560.00  
-1500.00  
-1440.00  
-1380.00  
-1320.00  
-1260.00  
-1200.00  
-1140.00  
-1080.00  
-1020.00  
-960.00  
281 SEG67  
282 SEG66  
283 SEG65  
284 SEG64  
285 SEG63  
286 SEG62  
287 SEG61  
288 SEG60  
289 SEG59  
290 SEG58  
291 SEG57  
292 SEG56  
293 SEG55  
294 SEG54  
295 SEG53  
296 SEG52  
297 SEG51  
298 SEG50  
299 SEG49  
300 SEG48  
301 SEG47  
302 SEG46  
303 SEG45  
304 SEG44  
305 SEG43  
306 SEG42  
307 SEG41  
308 SEG40  
309 SEG39  
310 SEG38  
311 SEG37  
312 SEG36  
313 SEG35  
314 SEG34  
315 SEG33  
316 SEG32  
317 SEG31  
318 SEG30  
319 SEG29  
320 SEG28  
321 SEG27  
322 SEG26  
323 SEG25  
324 SEG24  
325 SEG23  
326 SEG22  
327 SEG21  
328 SEG20  
329 SEG19  
330 SEG18  
331 SEG17  
332 SEG16  
333 SEG15  
334 SEG14  
335 SEG13  
336 SEG12  
337 SEG11  
338 SEG10  
339 SEG9  
340 SEG8  
341 SEG7  
342 SEG6  
343 SEG5  
344 SEG4  
345 SEG3  
346 SEG2  
347 SEG1  
348 DUMMY  
349 DUMMY  
350 COM46  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
1274.76  
-180.00  
-120.00  
-60.00  
0.00  
60.00  
120.00  
180.00  
240.00  
300.00  
360.00  
420.00  
480.00  
540.00  
600.00  
660.00  
720.00  
780.00  
351 COM45  
352 COM44  
353 COM43  
354 COM42  
355 COM41  
356 COM40  
357 COM39  
358 COM38  
359 COM37  
360 COM36  
361 COM35  
362 COM34  
363 COM33  
364 COM32  
365 COM31  
366 COM30  
367 COM29  
368 COM28  
369 DUMMY  
370 DUMMY  
371 DUMMY  
372 DUMMY  
373 DUMMY  
374 DUMMY  
375 COM27  
376 COM26  
377 COM25  
378 COM24  
379 COM23  
380 COM22  
381 COM21  
382 COM20  
383 COM19  
384 COM18  
385 COM17  
386 COM16  
387 COM15  
388 COM14  
389 COM13  
390 COM12  
391 COM11  
392 COM10  
393 COM9  
394 COM8  
395 COM7  
396 COM6  
397 COM5  
398 COM4  
399 COM3  
400 COM2  
401 COM1  
402 DUMMY  
403 DUMMY  
4020.00  
4080.00  
4140.00  
4200.00  
4260.00  
4320.00  
4380.00  
4440.00  
4500.00  
4560.00  
4620.00  
4680.00  
4740.00  
4800.00  
4860.00  
4920.00  
4980.00  
5040.00  
5100.00  
5160.00  
5257.50  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
5474.76  
840.00  
900.00  
960.00  
1020.00  
1080.00  
1140.00  
1200.00  
1260.00  
1320.00  
1380.00  
1440.00  
1500.00  
1560.00  
1620.00  
1680.00  
1740.00  
1800.00  
1860.00  
1920.00  
1980.00  
2040.00  
2100.00  
2160.00  
2220.00  
2280.00  
2340.00  
2400.00  
2460.00  
2520.00  
2580.00  
2640.00  
2700.00  
2760.00  
2820.00  
2880.00  
2940.00  
3000.00  
3060.00  
3120.00  
3180.00  
3240.00  
3300.00  
3360.00  
3420.00  
3480.00  
3540.00  
3600.00  
3660.00  
3720.00  
3780.00  
3840.00  
3900.00  
3960.00  
771.00  
595.00  
535.00  
475.00  
415.00  
355.00  
295.00  
235.00  
175.00  
115.00  
55.00  
-5.00  
-65.00  
-125.00  
-185.00  
-245.00  
-305.00  
-365.00  
-425.00  
-485.00  
-545.00  
-605.00  
-665.00  
-725.00  
-785.00  
-845.00  
-905.00  
-965.00  
-1075.00  
-1172.50  
-900.00  
-840.00  
-780.00  
-720.00  
-660.00  
-600.00  
-540.00  
-480.00  
-420.00  
-360.00  
-300.00  
-240.00  
8
Data Sheet S15745EJ2V0DS  
µPD16488A  
3. PIN FUNCTIONS  
3.1 Power Supply System Pins  
Symbol  
Name  
Pad No.  
I/O  
Description  
Power supply pin for logic circuit  
VDD1  
VDD2  
VSS  
Logic power supply 70-72, 78, 86, 94,  
pin  
104, 146  
67-69  
Boost circuit  
power supply pin  
Logic and driver  
ground pin  
Driver power  
supply pin  
Power supply pin for booster  
6, 25, 28, 73 to 75, 81,  
89, 99, 143, 149, 158  
26, 27  
Ground pin for logic and driver circuits  
VOUT  
Power supply pin for driver. Output pin for on-chip booster.  
Connect a 1 µF boost capacitor between this pin and the GND  
pin.  
If not using the on-chip booster, a direct driver power supply can  
be input.  
VLCD,  
Reference power  
24, 23,  
22 to 15  
These are reference power supply pins for the LCD driver.  
Connect a capacitor between these pins and the GND pin if an  
internal bias has been selected.  
These are capacitor connection pins for the booster. When  
using the on-chip booster, connect a 1 µF capacitor between  
positive (+) and negative (-) pins.  
VLC1 to VLC4 supply pins for  
driver  
C1+, C1−  
C2+, C2−  
C3+, C3−  
C4+, C4−  
C5+, C5−  
C6+, C6−  
C7+, C7−  
C8+, C8−  
C9+, C9−  
C1A  
Boost capacitor  
connection pins (1)  
64, 63, 62, 61  
60, 59, 58, 57  
56, 55, 54, 53  
52, 51, 50, 49  
48, 47, 46, 45  
44, 43, 42, 41  
40, 39, 38, 37  
36, 35, 34, 33  
32, 31, 30, 29  
65, 66  
Boost capacitor  
connection pin (2)  
This is a capacitor connection pin for boost adjustment. When  
using the on-chip booster, connect a 1 µF capacitor between  
this pin and the GND pin.  
9
Data Sheet S15745EJ2V0DS  
µPD16488A  
3.2  
Logic System Pins  
(1/3)  
Symbol  
Name  
Pad No.  
84, 85  
I/O  
Description  
PSX  
Data transfer  
selection  
Input  
This pin is used to select between parallel data input and serial  
data input.  
PSX = H: Parallel data input  
PSX = L: Serial data input  
/CS1,  
CS2  
Chip select  
90, 91,  
92, 93  
Input  
Input  
These pins are used for chip select signals. When /CS1 = L  
(CS2 = H), the chip is active and can perform data input/output  
operations including command and data I/O.  
When i80 series parallel data transfer (/RD) has been selected,  
the signal at this pin is used to enable read operations. Data is  
output to the data bus only when this pin is L.  
When M68 series parallel data transfer (E) has been selected,  
the signal at this pin is used to enable write operations. Data is  
written at the falling edge of this signal.  
/RD  
(E)  
Read  
(enable)  
102, 103  
/WR  
(R,/W)  
Write  
(read/write)  
100, 101  
Input  
When i80 series parallel data transfer (/WR) has been selected,  
the signal at this pin is used to enable write operations. Data is  
written at the rising edge of this signal.  
When 68 series parallel data transfer (R,/W) has been selected,  
this pin is used to determine the direction of data transfer.  
L: Write  
H: Read  
C86  
Interface selection  
82, 83  
Input  
I/O  
This pin is used to switch between interface modes (i80 series  
CPU or M68 series CPU).  
L: Selects i80 series CPU mode  
H: Selects M68 series CPU mode  
D0 to D5,  
D6 (SCL)  
D7 (SI)  
Data bus  
(serial clock)  
(serial input)  
105 to 108, 110 to 113,  
115 to 118,  
These pins comprise an 8-bit bidirectional data bus that  
connects to an 8-bit or 16-bit standard CPU bus.  
When the serial interface has been selected (PSX = L), D6  
functions as a serial clock input pin (SCL) and D7 functions as a  
serial data input pin (SI). In either case, pins D0 to D5 are in  
high impedance mode.  
120 to 123  
When the chip is not selected, D0 to D7 are in high impedance  
mode.  
RS  
Index  
97, 98  
95, 96  
Input  
Input  
Usually, this pin is connected to the LSB of the standard CPU  
address bus and is used to distinguish between data from index  
registers and data/commands.  
RS = H: Indicates that data from D0 to D7 is data/command  
RS = L : Indicates that data from D0 to D7 is index register  
contents  
register/data,  
command  
selection  
/RES  
Reset  
When /RES is low, an internal reset is performed. The reset  
operation is executed at the /RES signal level.  
10  
Data Sheet S15745EJ2V0DS  
µPD16488A  
(2/3)  
Symbol  
CLS  
Name  
Pad No.  
76, 77  
I/O  
Description  
Select clock  
division  
Input  
This pin is used to select whether or not to use the divider within  
the display clock oscillator.  
CLS = H: Use divider  
CLS = L: Do not use divider  
When using an external clock, the CLS = L setting is input via  
the OSCIN1 and OSCIN2 pins as normal and partial clocks  
respectively.  
When CLS = H, clock input is via the OSCIN1 pin only.  
This pin is used as I/O pin for the LCD's AC conversion signal.  
M/S = H: Output  
FR  
Frame signal  
127, 128  
125, 126  
I/O  
I/O  
M/S = L: Input  
When using the µPD16488A in master/slave mode, both FR  
pins must be connected.  
This pin is used as I/O pin for the LCD's AC conversion  
synchronization signal.  
FRSYNC  
Frame  
synchronization  
signal  
M/S = H: Output  
M/S = L: Input  
When the µPD16488A is used in master/slave mode, both  
FRSYNC pins must be connected.  
This pin is used to control the LCD's display blink function.  
M/S = H: Output  
M/S = L: Input  
When the µPD16488A is used in master/slave mode, both DOF  
pins must be connected.  
This pin is used to select between master and slave operation  
modes. In master operation mode, it outputs the timing signal  
required by the LCD driver and in slave operation mode it inputs  
this timing signal from an external source for use in LCD display  
synchronization.  
DOF  
M/S  
Display blink  
Master/slave  
I/O  
130, 131  
79, 80  
Input  
M/S = H: Master operation mode  
M/S = L: Slave operation mode  
Settings dependent on the M/S mode are listed in the following  
chart.  
Power  
supply circuit  
M/S  
FR  
FRSYNC  
DOF  
H
L
Valid  
Invalid  
Output  
Input  
Output  
Input  
Output  
Input  
IRS  
VLCD regulation  
Input  
Input  
This pin is used to select the resistor that is used for VLCD  
voltage regulation.  
IRS = H: Uses internal resistor  
87, 88  
IRS = L: Does not use internal resistor. The VLCD voltage level  
is regulated using the external voltage division resistor that is  
connected to the VR pin.  
This pin is valid only in master operation mode. In slave  
operation mode, this pin is fixed high or low level.  
These pins can be used to set a unique signature for the IC. The  
signal set via these pins can subsequently be read from the  
signature read register (R45).  

SIGIN1,  
SIGIN2  
Signature setting  
pins  
144, 145,  
147, 148  
11  
Data Sheet S15745EJ2V0DS  
µPD16488A  
(3/3)  
Symbol  
OSCIN1  
Name  
Pad No.  
132, 133  
I/O  
Description  
Oscillation signal  
pins  
Input  
A resistor can be inserted between OSCIN1-OSCOUT, and  
OSCIN2-OSCOUT. When using an external oscillator, a clock  
signal is input via the OSCIN pins according to the CLS pin's  
status and the OSCOUT pin is left unconnected.  
The wiring between OSCIN1-OSCOUT and OSCIN2-OSCOUT must  
be as short as possible, and use after proper evaluation.  
OSCIN2  
Input  
134, 135  
136, 137  
139, 140  
OSCOUT  
OSCSYNC  
Output  
Display clock  
output  
Output Display clock output pin.  
See 5. 4 Oscillator concerning use or this pin when the  
µPD16488A is in master or slave operation mode.  
12  
Data Sheet S15745EJ2V0DS  
µPD16488A  
3.3  
Driver-Related Pins  
Symbol  
Name  
Segment  
Pad No.  
347-220  
I/O  
Description  
SEG1 to  
SEG128  
COM1 to  
COM92  
VRS  
Output Segment output pins  
Common  
166 to 192, 200 to 218, Output Common output pins  
350 to 368, 375 to 401  
Op amp input pin  
for regulating the  
driving voltage of  
the LCD  
7, 8  
Input  
VRS is an op amp input pin for regulating the driving voltage of  
the LCD. This is a reference voltage input for the LCD voltage  
regulation amplifier.  
When using the internal drive circuit (i.e., when OP1 = 1), we  
recommend inserting a 0.1 to 1 µF capacitor between this pin  
and GND.  
VR  
Input pin for the op  
amp's feedback  
connection  
13, 14  
Input  
VR is an input for the op amp's feedback connection. Insert this  
pin between GND and AMPOUT when using the feedback resistor  
for this input.  
This pin is valid only when not using an internal resistor for VLCD  
voltage regulation (i.e., when IRS = L). This pin cannot be used  
when using the internal resistor for VLCD voltage regulation (i.e.,  
when IRS = H).  
AMPOUT  
AMPOUTP  
DUMMY  
Op amp output  
9, 10  
Output These are op amp output pins for regulating the driving voltage  
of the LCD. When not using an internal resistor for VLCD voltage  
regulation (i.e., when IRS = L), these outputs are connected to  
the LCD drive voltage regulation resistor (see 5.6.2 Voltage  
regulator).  
11, 12  
We recommend inserting a 0.01 to 0.1 µF capacitor between  
these pins in order to stabilize the internal op amp's output.  
Dummy pin  
1 to 5, 109, 114, 119,  
124, 129, 138, 141,  
142, 159 to 165,  
193 to 199, 219, 348,  
349, 369 to 374, 402,  
403  
Dummy pin.  
These pins are not connected inside IC. Usually, leave these  
pins open.  
3.4  
Test Pins  
Symbol  
Name  
Pad No.  
I/O  
Description  
TSTIFS  
Test input  
152, 153,  
154, 155,  
156, 157  
150, 151  
Input  
These pins are used to set a test mode for the IC.  
Normally, connect these pins to VSS.  
TSTRTST  
TSTVIHL  
TESTOUT  
Test output  
Output These pins are used when the IC is in test mode.  
Usually, leave them open.  
13  
Data Sheet S15745EJ2V0DS  
µPD16488A  
4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS  
The I/O circuit type of each pin and recommended connection of unused pins are described below.  
Pin Name  
PSX  
/CS1  
CS2  
Input Type  
Schmitt trigger  
Filter  
Filter  
Filter  
Input/output  
Input  
Recommended Connection of Unused Pins  
Mode setting pin.  
Connect to VSS.  
Notes  
Note 1  
Input  
Input  
Input  
Connect to VDD1.  
/RD(E)  
Connect to VDD1 (i80 series interface), connect to VDD1  
or VSS (serial interface).  
Connect to VDD1 or VSS (serial interface).  
Mode setting pin.  
/WR(R,/W)  
C86  
D0 to D5  
D6(SCL)  
D7(SI)  
Filter  
Schmitt trigger  
Filter  
Filter  
Filter  
Input  
Input  
Input/output  
Input/output  
Input/output  
Input  
Note 1  
Leave open  
RS  
Filter  
Register setting pin.  
Note 2  
/RES  
CLS  
FR  
FRSYNC  
DOF  
Schmitt trigger  
Schmitt trigger  
CMOS  
CMOS  
CMOS  
Schmitt trigger  
Schmitt trigger  
Schmitt trigger  
Schmitt trigger  
Schmitt trigger  
Schmitt trigger  
Input  
Input  
Input/output  
Input/output  
Input/output  
Input  
Connect to VDD1.  
Mode setting pin  
Leave open (using master mode, M/S = H).  
Leave open (using master mode, M/S = H).  
Leave open (using master mode, M/S = H).  
Mode setting pin.  
Note 1  
M/S  
IRS  
Note 1  
Note 1  
Input  
Input  
Input  
Input  
Mode setting pin.  
SIGIN1  
SIGIN2  
OSCIN1  
OSCIN2  
OSCOUT  
OSCSYNC  
TSTIFS  
TSTRTST  
TSTVIHL  
TESTOUT  
Connect to VDD1 or VSS.  
Connect to VDD1 or VSS.  
Input  
Connect to VDD1 or VSS (CLS = H)  
Leave open (when using external clock)  
Leave open  
Connect to VSS (during normal use)  
Connect to VSS (during normal use)  
Connect to VSS (during normal use)  
Leave open  
Output  
Output  
Input  
Input  
Input  
Schmitt trigger  
Schmitt trigger  
Schmitt trigger  
Output  
Notes 1. Connect to either VDD1 or VSS, depending on the mode setting.  
2. Input either VDD1 or VSS output from CPU, depending on the mode setting.  
14  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5. DESCRIPTION OF FUNCTIONS  
5.1 CPU Interface  
5.1.1 Selection of interface type  
The µPD16488A chip transfers data using an 8-bit bidirectional data bus (D7 to D0) or a serial data input (SI). Setting the  
polarity of the PSX pin as either H (high) or L (low) selects between 8-bit parallel or serial data input, as shown in the  
following table.  
PSX  
CS  
CS  
CS  
RS  
RS  
RS  
/RD  
/RD  
/WR  
/WR  
C86  
C86  
D7  
D7  
SI  
D6  
D6  
SCL  
D5 to D0  
H: Parallel input  
L: Serial input  
D5 to D0  
Hi-Z Note2  
Note1 Note1 Note1  
Notes 1. Fixed as either High or Low.  
2. Hi-Z: High impedance  
5.1.2 Parallel interface  
When the parallel interface has been selected (PSX = H), setting the C86 pin as either H or L enables a direct connection  
to an i80 series or M68 series CPU (see table below).  
C86  
/CS1  
/CS1  
/CS1  
CS2  
CS2  
CS2  
RS  
RS  
RS  
/RD  
E
/RD  
/WR  
R,/W  
/WR  
D7 to D0  
D7 to D0  
D7 to D0  
H: M68 series CPU  
L: i80 series CPU  
The data bus signal is identified according to the combination of the RS, /RD(E), and /WR(R,/W) signals, as shown in the  
following table.  
Common  
M68  
i80  
Function  
RS  
1
1
0
0
R,/W  
/RD  
0
1
0
1
/WR  
1
0
1
0
1
0
1
0
Reads display data and registers  
Writes display data and registers  
Prohibited  

Writes to index register  
15  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.1.3 Serial interface  
When the serial interface has been selected (PSX = L), if the chip is active (/CS1 = L, CS2 = H), serial data input (SI) and  
serial clock input (SCL) can be received. Serial data is read from D7 and then from D6 to D0 on the rising edge of the serial  
clock, via the serial input pin. This data is synchronized on the eighth serial clock's rising edge and is then converted to  
parallel data for processing. RS input is used to judge serial input data as display data or command data: when RS = H the  
data is display/command data and when RS = L the data is index data. When the chip enters active mode, RS input is read  
at the rising edge after every eighth serial clock and is then used to judge the serial input data. The serial interface signal  
chart is shown below.  
Figure 5-1. Serial Interface Signal Chart  
CS2 = H  
/CS1  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
SI  
SCL  
RS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.  
2. The data read function is disabled during serial interface mode.  
3. When using SCL wiring, take care concerning the possible effects of terminating reflection and  
noise from external sources. We recommend checking operation with the actual device.  
5.1.4 Chip select  
The µPD16488A has two chip select pins (/CS1 and CS2). The CPU parallel interface or serial interface can be used only  
when /CS1 = L and CS2 = H. When chip select is inactive, P0 to P7 are set to high impedance (invalid) and input of RS, /RD,  
or /WR is not active. If serial interface mode has been set, the shift register and counter are both reset.  
5.1.5 Display data RAM and on-chip register access  
Because only the required cycle time (tcyc) is satisfied when accessing the µPD16488A from the CPU, high-speed data  
transfer is possible. There is no need to consider any wait time. No dummy data is needed when writing data. Even when  
data is read, there is no need for dummy data except in the display memory access register (R11).  
In other words, dummy data is required only when reading data from the display memory access register (R11).  
Figure 5-2 illustrates this relationship.  
16  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-2. Write and Read (1/2)  
Write  
<CPU>  
/WR  
DATA  
N
N + 1  
N + 2  
N + 3  
<Internal timing>  
Latch  
BUS  
holder  
N
N + 1  
N + 2  
N + 3  
Write  
signal  
Read (display memory access register (R11))  
<CPU>  
/WR  
/RD  
N
N
n
n + 1  
DATA  
<Internal timing>  
Address  
preset  
Read  
signal  
Column  
address  
N + 2  
Preset N  
Increment N + 1  
BUS  
holder  
N
n
n + 1  
n + 2  
Address set  
#n  
Dummy read  
Data read  
#n  
Data read  
#n + 1  
17  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-2. Write and Read (2/2)  
Read (other than display memory access register)  
<CPU>  
/WR  
/RD  
IRn + 1  
Data  
IRn  
IRn data  
IRn+1  
DATA  
IR address  
set #n  
IRn register  
data read  
IR address  
set #n + 1  
IRn + 1 register  
data read  
18  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.2  
Display Data RAM  
5.2.1 Display data RAM  
This is the RAM that is used to store the display's dot data. The RAM configuration is 256 bits (32 x 8 bits) x 128 bits. Any  
specified bit can be accessed by selecting the corresponding X address and Y address. D0 to D7 are the display data sent  
from the CPU, and correspond to SEGx on the LCD display (see Figure 5-3).  
The CPU writes data to and reads data from the display RAM via the I/O buffer, and these read/write operations are  
independent of the signal read operations for the LCD driver. Accordingly, there are no adverse effects (such as flicker) in  
the LCD display when display data RAM is accessed asynchronously.  
Figure 5-3. Display Data RAM  
MSB  
D7  
LSB  
D0  
D6  
D5  
D4  
D3  
D2 D1  
Pixel 1  
Pixel 2  
Pixel 3  
Pixel 4  
LCD panel  
Pixel 1  
Pixel 1  
Pixel 2  
Pixel 2  
Pixel 3  
Pixel 3  
Pixel 4  
Pixel 4  
Pixel 1  
Pixel 1  
Pixel 2  
Pixel 2  
Pixel 3  
Pixel 3  
Pixel 4  
Pixel 4  
X address 00H  
X address 01H  
D7 D6 D5 D4  
SEG1 SEG2  
COM0  
0
1
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
COM1  
COM2  
COM3  
COM4  
Display data  
LCD display  
5.2.2 X address circuit  
As shown in Figure 5-4, the display data RAM's X address is specified via the X address register (R3). When using X  
address increment mode (INC = 0: control register 2 (R1)), the specified X address is incremented (by 1) each time a  
display data read or write operation is executed. The CPU is able to continuously access the display data. The X address is  
incremented to 1FH, after which the Y address is incremented after each read or write operation and the X address is set  
back to 00H.  
For monochrome (black-and-white) display, the X address is incremented to 0FH, after which the Y address is  
incremented after each read or write operation and the X address is set back to 00H.  
19  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-4. Configuration of X Address Register  
D4  
D3  
D2  
D1  
0
0
0
1
1
1
1
1
0
0
0
0
0
COM output  
COM1  
D0  
0
1
Yaddress  
00H  
01H  
1FH  
Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
Start  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
92-line  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
76H  
77H  
78H  
79H  
7AH  
7BH  
7CH  
7DH  
COM89  
COM90  
COM91  
COM92  
7EH  
7FH  
20  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.2.3 Column address circuit  
When displaying the contents of the display data RAM, the column address corresponds to the SEG output, as shown in  
Figure 5-4.  
As is shown in Table 5-1, the correspondence between the display RAM's column address and segment output can be  
inverted using the ADC flag in control register 1 (R0) (segment driver direction selection flag). This reduces the constraints  
on chip layout when assembling the LCD module.  
Table 5-1. Relationship between Column Address and SEG Output  
SEG Output  
SEG1  
00H  
SEG128  
7FH  
0
1
Column address  
Column address  
ADC  
(D1)  
7FH  
00H  
5.2.4 Y address circuit  
As is shown in Figure 5-4, the Y address register (R4) is used to specify the display data RAM's Y address. When using  
Y address increment mode (INC = 1: control register 2 (R1)), the specified Y address is incremented (by 1) each time a  
display data read or write operation is executed. The CPU is able to continuously access the display data. The Y address  
is incremented to 7FH, after which the X address is incremented after each read or write operation and the Y address is set  
back to 00H.  
5.2.5 Common scan circuit  
The common scan circuit sets the scan lines for common signals. The scan direction is set using the COMR flag in control  
register 1 (R0), as shown in Table 5-2.  
For example, when using 1/80 duty, when COMR = L the scan direction is COM1 COM80 and when COMR = H,  
the scan direction is COM80 COM1 using the COM80 to COM1 pins.  

Table 5-2. Relationship between Common Scan Circuit and Scan Direction  
COMR  
(D0)  
0
1
COM1  
COM92  
COM92  
COM1  
5.2.6 Display start line set  
As is shown in Figure 5-4, display start line set specifies the Y address that corresponds to the COM1 output for displaying  
the contents of display data RAM. The display start line setting register (R12) is used to specify the top line in the display.  
The screen can be scrolled, overwritten, etc. A 7-bit display start address is set to the display start line setting register.  
5.2.7 Display data latch circuit  
The display data latch circuit is used for temporary storage of data that is output to the LCD driver from the display data RAM.  
The display scan command that sets normal or reverse display mode and the display ON/OFF command control latched  
data so that there is no effect on the data in the display data RAM.  
21  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.3  
Blink/Reverse Display Circuit  
The µPD16488A enables blinking display and reverse display in designated parts of the full dot display. A blinking display  
is achieved by cycling ON/OFF (level 0 when four-level gray scale mode has been selected) at approximately 1 Hz and  
reverse display is achieved by inverting the display level value.  
The area designated for blinking is specified via the blink start/end line address registers (R14 and R15), the blink X  
address register (R13), and the blink data memory access register (R16).  
First, the blinking display's start and end line addresses are selected via the blink start/end line address registers. Next,  
the blink X address register (R13) and the blink data memory (R16) are used to select the column for the blinking display.  
The inversion start/end line address registers (R18 and R19), the inverted X address register (R17), and the inverted data  
memory access register (R20) are used to select the reverse display area.  
First, the inversion start/end line address registers (R18 and R19) are set to select the line addresses where the reverse  
display will start and end. Next, the inverted X address register (R17) and the inverted data memory access register (R20)  
are used to select the column for the reverse display. The specified blink/inverted X address is incremented (by 1) with  
each input of blink/reverse display data.  
The blink RAM and inversion RAM, which have a 128 bit (16 x 8 bit) configuration, are used to store data for blinking  
display and reverse display respectively. To access the desired bit, simply specify the corresponding X address. The  
blink/reverse data (data bits D0 to D7 sent from the CPU) correspond to SEGx on the LCD display, as shown in Figure 5-5.  
After the area and data settings are complete, the BLD bit and IVD bit in the control register 1 (R0) are set to H, at which  
point the blinking and/or reverse display of data begins. Figure 5-6 illustrates the relationship between the start line address,  
end line address, blink/reverse data, and LCD display.  
Table 5-3. Inversion Manipulation and Display  
Original Level  
After Inversion  
Four-level gray scale display mode  
0, 0  
0, 1  
1, 0  
1, 1  
1, 1  
1, 0  
0, 1  
0, 0  
B/W display mode  
1
0
0
1
Figure 5-5. Correspondence Between Blink/Reverse Data and Segments  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
1
1
1
0
1
1
00H  
01H  
0FH  
Data  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
22  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-6. Setting Image of Blink/Reverse Display Area  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
Blink/revese  
data  
0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0  
Start line  
End line  
Blinking or reverse display pixels.  
Example of sequence for setting blink/reverse display  
Start  
Blink/inversion start line  
address register  
Blink/inversion end line  
address register  
Blink/inverted  
X address register  
Blink/inverted  
data memory access register  
Data  
No  
Write completed ?  
Yes  
Control register 1  
(BLD, IVD = H)  
End  
23  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.4  
Oscillator  
The µPD16488A include a CR-type oscillator (R external) for normal and partial display, which generates the display  
clocks.  
The clocks from this oscillator are controlled via the CLS pin and the DTY flag in the control register 2 (R1). The clock  
configuration for the display can be set to suit the target system.  
The functions of this circuit are described below.  
The oscillator for normal and partial display is enabled only when resistors RN and RP have been connected.  
The DTY flag in the control register 2 (R1) and the CLS pin status are used to switch between the oscillation  
clocks for normal display and partial display modes.  
The divider divides the external clock that has been input for the normal oscillator and the normal display into a  
clock for partial display. The external clock that is input for the partial oscillator and partial display is also  
divided for the partial display.  
The division level is automatically set for the divider based on the relationship between the ON/OFF status of  
the divider setting pin (CLS pin) and the duty of the specified partial display, as shown in Table 5-4.  
Figure 5-7. Oscillator Block  
Selected via DTY/CLS  
OSCIN1  
OSCIN2  
Normal display/  
Signal to select division level  
for partial display  
partial display  
oscillator  
OSCOUT  
MUX  
To graphic driver  
TOSCSYNC  
Partial display  
divider  
Normal/partial signal  
CLS  
The relationship between the frame frequency (fFRAME), oscillation frequency (fOSCIN1), and setting duty (in normal display  
mode) is described below.  
fFRAME = fOSCIN1 ÷ 8 ÷ N (in four-level gray scale display mode)  
fFRAME = fOSCIN1 ÷ 4 ÷ N (in B/W display mode)  
N = 1/N duty (setting duty)  
24  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-4. Setting of Division Level for Partial Display and Static Icon Display  
In four-level gray scale display mode (GRAY = L, control register 2 (R1))  
Division  
Normal  
Partial  
Divider  
ON/OFF  
CLS  
Partial  
Division  
Ratio  
Display  
Mode  
Source  
OSCIN1  
/OSCIN2  
Normal/Partial  
Select DTY  
Display  
Display  
Comments  
Duty Ratio  
Duty Ratio  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
L(OFF)  
H(ON)  
OSCIN1  
L (Normal)  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
1/1  
1/1  
1/2  
1/2  
1/2  
1/4  
Partial frame frequency: fOSCIN2 /8 /38  
Partial frame frequency: fOSCIN2 /8 /25  
1/1 to 1/80  
OSCIN2  
OSCIN1  
L(OFF)  
H(ON)  
Partial frame frequency: fOSCIN2 /2(division ratio) /8 /12  
Partial frame frequency: fOSCIN1 /2(division ratio) /8 /38  
Partial frame frequency: fOSCIN1 /2(division ratio) /8 /25  
Partial frame frequency: fOSCIN1 /4(division ratio) /8 /12  
H (Partial)  
L (Normal)  
H (Partial)  
Four-level  
gray scale  
GRAY = L  
L(OFF)  
H(ON)  
OSCIN1  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
1/1  
1/1  
1/2  
1/2  
1/4  
1/8  
Partial frame frequency: fOSCIN2 /8 /38  
1/81 to 1/92  
OSCIN2  
OSCIN1  
L(OFF)  
H(ON)  
Partial frame frequency: fOSCIN2 /8 /25  
Partial frame frequency: fOSCIN2 /2(division ratio) /8 /12  
Partial frame frequency: fOSCIN1 /2(division ratio) /8 /38  
Partial frame frequency: fOSCIN1 /4(division ratio) /8 /25  
Partial frame frequency: fOSCIN1 /8(division ratio) /8 /12  
In black/white display mode (GRAY = H, control register 2 (R1))  
Division  
Source  
OSCIN1  
/OSCIN2  
Normal  
Display  
Partial  
Display  
Divider  
ON/OFF  
CLS  
Partial  
Division  
Ratio  
Display  
Mode  
Normal/Partial  
Select DTY  
Comments  
Duty Ratio  
Duty Ratio  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
L(OFF)  
H(ON)  
OSCIN1  
L (Normal)  
H (Partial)  
1/38  
1/25  
1/12  
1/38  
1/25  
1/1  
1/1  
1/2  
1/2  
1/2  
1/4  
Partial frame frequency: fOSCIN2 /4 /38  
1/1 to 1/80  
OSCIN2  
OSCIN1  
L(OFF)  
H(ON)  
Partial frame frequency: fOSCIN2 /4 /25  
Partial frame frequency: fOSCIN2 /2(division ratio) /4 /12  
Partial frame frequency: fOSCIN1 /2(division ratio) /4 /38  
Partial frame frequency: fOSCIN1 /2(division ratio) /4 /25  
Partial frame frequency: fOSCIN1 /4(division ratio) /4 /12  
B/W  
1/12  
1/38  
1/25  
1/12  
1/38  
1/25  
1/12  
GRAY = H  
L(OFF)  
H(ON)  
OSCIN1  
L (Normal)  
H (Partial)  
1/38  
1/1  
1/1  
1/2  
1/2  
1/4  
1/8  
Partial frame frequency: fOSCIN2 /4 /38  
1/81 to 1/92  
OSCIN2  
OSCIN1  
L(OFF)  
H(ON)  
1/25  
1/12  
1/38  
1/25  
1/12  
Partial frame frequency: fOSCIN2 /4 /25  
Partial frame frequency: fOSCIN2 /2(division ratio) /4 /12  
Partial frame frequency: fOSCIN1 /2(division ratio) /4 /38  
Partial frame frequency: fOSCIN1 /4(division ratio) /4 /25  
Partial frame frequency: fOSCIN1 /8(division ratio) /4 /12  
25  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-5 shows the relationship between the CLS pin, resistors RN and RP, and the display clock circuit.  
Table 5-5. Relationship between CLS Pin/Resistors and Display Clock Circuit  
RN  
Connection  
RP  
Connection  
Use Example  
(Figure 5-8)  
CLS  
Clock for Normal Display  
Clock for Partial Display  
Connected  
Connected  
Not connected  
Not connected Not connected  
Not connected Not connected  
Connected  
Not connected  
Connected  
L
H
L
L
H
Internal oscillator  
Internal oscillator  
External clock  
External clock  
External clock  
Internal oscillator  
Divided from oscillator clock  
Internal oscillator  
External clock  
Divided from external clock  
(A)  
(B)  
(C)  
(D)  
(E)  
Figure 5-8. Clock Use Examples  
(A)  
(B)  
OSCIN1  
OSCIN2  
OSCIN1  
OSCIN2  
RN  
H or L  
RN  
RP  
OSCOUT  
OSCOUT  
(C)  
(D)  
f
N
f
N
OSCIN1  
OSCIN2  
OSCIN1  
OSCIN2  
f
P
RP  
Open  
OSCOUT  
OSCOUT  
(E)  
f
N
OSCIN1  
OSCIN2  
H or L  
Open  
OSCOUT  
26  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-9. Master/Slave Connection Examples  
(A)  
Master  
Slave  
(M/S = H)  
(M/S = L, CLS = L)  
OSCSYNC  
OSCIN1  
OSCIN2  
Open  
OSCOUT  
(B)  
Master  
Slave  
(M/S = H)  
(M/S = L, CLS = H)  
OSCIN1  
OSCIN2  
OSCSYNC  
H or L  
Open  
OSCOUT  
27  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.5  
Display Timing Generator  
The display clock generates timing signals for the line address circuit and the display data latch circuit.  
Display data is latched into the display data latch circuit in synch with the display clock and is output via segment driver  
output pins.  
Reading of the display data is completely independent of the CPU's accessing of the display data RAM. Consequently,  
there are no adverse effects (such as flicker) on the LCD panel even when the display data RAM is accessed  
asynchronously in relation to the LCD contents.  
The internal common timing is generated from the display clock. As shown in Figure 5-10, a driver waveform based on  
the frame AC drive method is generated for the LCD driver.  
If a multiple set of µPD16488A chips are used, the display timing signals (FR and FRSYNC) for the slave side must be  
supplied from the master side.  
Table 5-6. Relationship Between Operation Mode and FR, FRSYNC  
Operation Mode  
Master (M/S = H)  
Slave (M/S = L)  
FR  
FRSYNC  
Output  
Input  
Output  
Input  
28  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-10. Driver Waveform Based on Frame AC Drive Method  
1frame  
90 91 92  
90 91 92  
1
1 2 3 4 5 6 7 8  
2 3 4 5 6 7 8  
OSCSYNC  
FRSYNC  
FR  
RAM  
DATA  
V
V
V
LCD  
LC1  
LC2  
SEG  
1
V
V
V
LC3  
LC4  
SS  
V
V
V
LCD  
LC1  
LC2  
COM  
1
V
V
V
LC3  
LC4  
SS  
V
V
V
LCD  
LC1  
LC2  
COM  
2
V
V
V
LC3  
LC4  
SS  
V
V
V
LCD  
LC1  
LC2  
COM92  
V
V
V
LC3  
LC4  
SS  
29  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.6  
Power Supply Circuit  
The power supply circuit supplies the voltage needed to drive the LCD. It includes a booster, voltage regulator, and  
voltage follower.  
In the power supply circuit, the power system control register 1 (R32) is used to control the ON/OFF status of the power  
supply circuit's booster, voltage regulator (also called V regulator), and voltage follower (V/F). This makes it possible to  
jointly use an external power supply together with certain functions of the on-chip power supply. Table 5-7 shows the  
function that controls the 3-bit data in the power system control register 1 (R32) and Table 5-8 shows a reference chart of  
combinations.  
Table 5-7. Control Values of Bits in Power System Control 1  
Status  
Item  
1
0
OP2  
OP1  
OP0  
Booster control bit  
Voltage regulator (V regulator) control bit  
Voltage follower (V/F) control bit  
ON  
ON  
ON  
OFF  
OFF  
OFF  
Table 5-8. Reference Chart of Combinations  
External  
Power Supply  
Input  
Boost-Related Note  
System Pins  
Use Status  
OP2 OP1 OP0 Booster V Regulator  
V/F  
<1> Use on-chip power supply  
<2> Use V regulator and V/F only  
<3> Use V/F only  
1
0
0
0
1
1
0
0
1
1
1
0
enable  
disable  
disable  
disable  
enable  
enable  
disable  
disable  
enable  
enable  
enable  
disable  
VDD2  
VOUT  
VOUT, AMPOUT  
VOUT,  
Used  
Not connected  
Not connected  
Not connected  
<4> Use external power supply only  
VLCD to VLC4  
Note The boost-related system pins are indicated as pins C1+, C1to C9+, C9, and C1A.  
5.6.1 Booster  
A booster that boosts the LCD driving voltage by 2 to 9 times is incorporated in the power supply circuit.  
Since the booster uses signals from the on-chip oscillator, either the oscillator must be operating or a display clock must be  
input from an external source.  
The booster uses pins C1+, C1to C9+, C9for normal boost and pins C1A and VDD2 for boost regulation. The wire  
impedance should be kept as low as possible. The number of boost levels is set using the FBS2, FBS1, and FBS0 flags in  
the power system control 3 (R34), as shown in Table 5-9.  
Caution If a capacitor is connected to a boost-related system pin that is not for one of these set boost levels,  
current consumption may increase. Therefore, do not connect any capacitors beyond the number of  
set boost levels. This also applies for the CA1 pin, used to regulate the boost levels.  
Figure 5-11 describes the connection method for boost levels and capacitors.  
The partial booster is settings are made using the BST1 and BST0 flags in the power system control 3 (R34), as shown in  
Table 5-10.  
30  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-11. Connection Method for Boost Levels and Capacitors  
9x boost mode  
8x boost mode  
7x boost mode  
6x boost mode  
5x boost mode  
4x boost mode  
Table 5-9. Boost Level Settings for Normal Display's Booster  
FBS2  
FBS1  
FBS0  
Boost Level  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4x  
5x  
6x  
7x  
8x  
9x  
Prohibited  
Prohibited  
Table 5-10. Boost Level Settings for Partial Display's Booster  
BST1  
BST0  
Boost Level  
0
0
1
1
0
1
0
1
2x  
3x  
4x  
Prohibited  
31  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.6.2 Voltage regulator  
The boost voltage from VOUT is supplied to the voltage regulator and output as the LCD drive voltage VLCD.  
Since the µPD16488A has a 256-step electronic volume function and an on-chip resistor for VLCD voltage regulation, a  
small number of components can be used to configure a highly accurate voltage regulator.  
(1) When using an on-chip resistor for VLCD voltage regulation  
The on-chip resistor for VLCD voltage regulation and the electronic volume function can be used to regulate the contrast of  
the LCD contents by controlling the LCD drive voltage VLCD using commands only. In such cases, no external resistor is  
needed.  
If VLCD < VOUT, then the value for VLCD can be determined from the following equation.  
Example Equation VLCD < VOUT  
Rb  
Ra  
Rb  
Ra  
VLCD = (1 +  
VLCD = (1 +  
) VEV  
α
384  
) (1 −  
) VREG  
α
384  
Remark VEV = (1 −  
) VREG  
Figure 5-12. When Using On-Chip Resistor for VLCD Voltage Regulation  
+
V
EV (Constant voltage source +  
electronic volume)  
VLCD  
-
Rb  
Ra  
VREG is the IC's on-chip constant voltage source, for which three types of temperature characteristic curves are available.  
These temperature characteristic curves can be adjusted via settings in the power system control register 1 (R32) (TSC1,  
TCS0), as shown in Table 5-11.  
Table 5-11 shows the VREG voltage when TA = 25°C.  
Table 5-11. VREG Voltage When TA = 25°C  
Status  
TCS1  
TCS0  
Temperature Curve (%/°C)  
VREG (TYP.) (V)  
Internal power supply  
0
0
1
1
0
1
0
1
0.06  
0.08  
0.09  
0.12  
1.04  
0.98  
0.93  
0.85  
α is the electronic volume register (R35) value. Any of 256 statuses can be set as the fetched status for α corresponding  
to the data set to the 8-bit electronic control register. α values based on settings in the electronic volume register (R35:  
normal display mode) and the partial electronic volume register (R36: partial display mode) are listed in Table 5-12.  
32  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-12. α Values Based on Settings in Electronic Volume Register  
Register  
EV7  
EV6  
EV5  
EV4  
EV3  
EV2  
EV1  
EV0  
α
PEV7  
PEV6  
PEV5  
PEV4  
PEV3  
PEV2  
PEV1  
PEV0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
384  
254  
253  
252  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
2
1
0
Rb/Ra is an on-chip resistance factor used for the VLCD voltage regulator. This factor can be controlled at eight levels  
based on settings in power control register 2 (R33) (VRR2, VRR1, VRR0: normal display mode and PVR2, PVR1, PVR0:  
partial display mode). Reference voltage values (1 + Rb/Ra) are determined based on 4-bit data set to VLCD's on-chip  
resistance factor register, as shown in Table 5-13.  
Table 5-13. Determination of Reference Voltage Values Based on Settings of  
On-Chip Resistor for VLCD Voltage Regulation  
Register  
VRR2  
PVR2  
VRR1  
PVR1  
VRR0  
PVR0  
1+Rb/Ra  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
8
12  
13  
16  
19  
21  
24  
33  
Data Sheet S15745EJ2V0DS  
µPD16488A  
(2) When using an external resistor (instead of using the on-chip resistor for VLCD voltage regulation)  
Instead of using only the on-chip resistor setting for VLCD voltage regulation (IRS = L), resistors (Ra', Rb' and Rc') can be  
added between VSS and VR, between AMPOUTP and AMPOUT, and between VR and AMPOUT to set the LCD drive voltage  
VLCD. In such cases, the electronic volume function can be used to control the LCD drive voltage VLCD and to regulate the  
contrast of the LCD contents via commands.  
In addition, the µPD16488A enable selection between two display values (for normal display and partial display). The  
value is set using an external division resistor and is automatically selected by the DTY flag in the control register 2 (R1).  
The VLCD value can be determined using Example 1 (DTY = 0) and Example 2 (DTY = 1) if it is within the range of VLCD <  
VOUT.  
Example 1. DTY = 0, normal display mode  
Rb  
VLCD = (1 +  
VLCD = (1 +  
) VEV  
Ra  
Rb  
Ra  
α
384  
) (1 −  
) VREG  
α
384  
Remark VEV (1 −  
) VREG  
Example 2. DTY = 1, partial display mode  
Rb ×Rc  
VLCD = (1+  
VLCD = (1+  
) VEV  
Ra (Rb + Rc)  
α
384  
Rb ×Rc  
) (1 −  
) VREG  
(
Ra  
Rb + Rc  
)
α
384  
Remark VEV = (1 −  
) VREG  
Figure 5-13. When Using External Resistor  
+
VLCD  
-
Normal/partial VLC1 regulation  
select circuit  
A
B
V
R
AMPOUT  
AMPOUTP  
Rb'  
Rc  
Ra'  
Normal display mode  
A
A
B
B
(DTY = 0)  
Partial display mode  
(DTY = 1)  
34  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.6.3 Use of op amp for level power supply control  
Although the µPD16488A includes a circuit designed for low power consumption (HPM1, HPM0 = 0, 0), display quality  
problems may occur when a large-load LCD panel is used. In such cases, the display quality and power consumption  
level can be improved by setting. The HPM1 and HPM0 flags in the power system control register 1 (R32) to "0, 1" to  
"1, 1" to switch to the op amp driver capacity for mode settings shown in Table 5-14. Check the actual display quality before  
deciding which mode to set.  
If setting high power mode still does not sufficiently improve the display quality, the LCD drive voltage must be provided  
from an external power source.  
Table 5-14. Op Amp Mode Setting  
HPM1  
HPM0  
Mode Setting  
Normal mode  
Low power mode  
High power mode  
For power ON mode  
0
0
1
1
0
1
0
1
35  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.6.4 Application examples of power supply circuits  
Figures 5-14 to 5-19 show application examples of power supply circuits.  
Figure 5-14. IRS = H, [OP2, OP1, OP0] = [1, 1, 1]  
9x boost mode  
V
V
DD1  
DD2  
V
RS  
V
R
V
OUT  
Open  
AMPOUTP  
AMPOUT  
+
C1  
-
+
C1  
C2  
V
LCD  
-
C2  
C3  
+
V
V
LC1  
LC2  
-
+
C3  
C4  
V
V
LC3  
LC4  
-
C4  
+
C5  
-
+
C5  
C6  
-
+
C6  
C7  
C9  
+
-
C9  
-
+
C7  
C8  
C1A  
-
C8  
V
SS  
Figure 5-15. IRS = L, [OP2, OP1, OP0] = [1, 1, 1]  
9x boost mode  
V
RS  
V
V
DD1  
DD2  
V
OUT  
AMPOUTP  
Rc  
V
R
Rb'  
Ra'  
+
AMPOUT  
C1  
-
+
C1  
C2  
V
LCD  
-
C2  
C3  
+
V
V
LC1  
LC2  
-
+
C3  
C4  
V
V
LC3  
LC4  
-
C4  
+
C5  
-
+
C5  
C6  
-
+
+
C6  
C9  
C7  
-
C9  
-
+
C7  
C1A  
C8  
-
C8  
V
SS  
36  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-16. IRS = H, [OP2, OP1, OP0] = [0, 1, 1]  
V
RS  
V
V
DD1  
DD2  
V
R
Open  
V
OUT  
AMPOUTP  
AMPOUT  
+
C1  
-
+
C1  
C2  
V
LCD  
-
C2  
C3  
+
V
V
LC1  
LC2  
-
+
C3  
C4  
V
V
LC3  
LC4  
-
C4  
Open  
+
C5  
-
+
C5  
C6  
-
+
C6  
C7  
C9  
+
Open  
-
C9  
-
+
C7  
C8  
C1A  
-
C8  
V
SS  
Figure 5-17. IRS = L, [OP2, OP1, OP0] = [0, 0, 1]  
V
RS  
Open  
V
V
DD1  
DD2  
V
R
Open  
V
OUT  
+
C1  
AMPOUTP  
AMPOUT  
-
+
C1  
C2  
V
LCD  
-
C2  
C3  
+
V
V
LC1  
LC2  
-
+
C3  
C4  
V
V
LC3  
LC4  
-
+
C4  
C5  
Open  
-
+
C5  
C6  
-
+
C6  
C7  
C9  
+
Open  
-
C9  
-
+
C7  
C8  
C1A  
-
C8  
V
SS  
37  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-18. IRS = L, [OP2, OP1, OP0] = [0, 0, 0]  
V
RS  
V
V
DD1  
DD2  
V
R
Open  
V
OUT  
AMPOUTP  
AMPOUT  
+
C1  
-
+
C1  
C2  
V
LCD  
-
C2  
C3  
+
V
V
LC1  
LC2  
-
+
C3  
C4  
V
V
LC3  
LC4  
-
C4  
Open  
+
C5  
-
+
C5  
C6  
-
+
C6  
C7  
C9  
+
Open  
-
C9  
-
+
C7  
C8  
C1A  
-
C8  
V
SS  
Figure 5-19. Master/Slave Connection Example  
V
DD1  
DD2  
V
RS  
V
RS  
V
V
DD1  
DD2  
V
V
R
V
R
Open  
AMPOUTP  
AMPOUT  
V
OUT  
+
V
OUT  
AMPOUTP  
AMPOUT  
+
C1  
C1  
+
C1  
C2  
C1  
C2  
+
V
LCD  
V
LCD  
+
C2  
C3  
C2  
C3  
+
V
LC1  
V
LC1  
Master  
Slave  
+
V
V
V
LC2  
LC3  
C3  
C4  
V
V
V
LC2  
LC3  
C3  
C4  
+
+
C5+  
C4  
C4  
C5  
Open  
Open  
LC4  
LC4  
+
C5  
C6  
C5  
C6+  
+
+
+
+
C6  
C7  
C9  
C9  
C6  
C7  
Open  
C9  
C9  
+
C7  
C8  
C1A  
C7  
C8  
C1A  
+
C8  
V
C8  
V
SS  
SS  
38  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.7  
LCD Display Drivers  
µPD16488A includes a full dot driver. The full dot driver has a 33-level gray-scale palette (eight levels of pulse width  
modulation plus four-frame rate control), from which four levels of gray scale can be selected and registered as the IC's  
output gray-scale palette (refer to 6.23 Gary scale registers 1 to 4 (R23 to R26)).  
5.7.1 Full-dot pulse width modulation  
The µPD16488A's pulse width modulator divides the normal LCD display signal's segment pulse width by eight and  
outputs in synch with the dot output timing based on the ratio (1/8 to 8/8 pulses) for the gray-scale palette that has been  
selected via a command.  
Figure 5-20. Full-Dot Pulse Width Modulation  
1 frame  
90 91 92  
90 91 92  
1 2 3 4 5 6 7 8  
1 2 3 4 5 6 7 8  
V
LCD  
V
V
LC1  
LC2  
SEG  
1
V
V
LC3  
LC4  
V
SS  
V
LCD  
V
V
LC1  
LC2  
COM  
1
V
V
LC3  
LC4  
V
SS  
Enlarged section  
1
2
3
8/8  
6/8  
4/8  
1/8  
VLCD  
VLC1  
VLC2  
Caution There is no pulse width modulation for common outputs.  
39  
Data Sheet S15745EJ2V0DS  
µPD16488A  
The output pulses are output as odd-numbered lines/even-numbered lines or as even-numbered lines/odd-numbered lines,  
as shown in Figure 5-21. The pulse rising edge and falling edge combinations for each frame are listed in Table 5-15.  
Figure 5-21. Example of Pulse Width Modulated Output  
1 frame  
90 91 92  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
V
LCD  
V
V
LC1  
LC2  
V
V
LC3  
LC4  
V
SS  
1
2
3
8/8  
8/8  
8/8  
3/8  
4/8  
4/8  
40  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-15. Example of Pulse Width Modulated Output (1/3)  
1, 2 Frames 3, 4 Frames 5, 6 Frames  
SEG Odd SEG Even SEG Odd SEG Even SEG Odd SEG Even  
Gray-scale COM  
level  
7, 8 Frames  
SEG Odd SEG Even  
Numbered Numbered Numbered Numbered Numbered Numbered Numbered Numbered  
0
1
2
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
0
0
0
0
1  
0
0
0
1  
0
0
0
0
1  
0
0
0
1  
0
0
0
0
0
0
0
1  
0
0
0
0
0
0
0
0
1  
0
0
0
0
0
0
1  
0
0
0
0
0
0
0
1  
0
0
0
0
0
0
0
0
1  
0
0
0
0
0
0
0
1  
0
1  
1  
0
0
4n+2  
4n+3  
4n+4  
1  
0
0
1  
0
0
0
1  
1  
0
1  
1  
1  
0
0
1  
0
0
0
1  
1  
0
1  
1  
3
4
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
1  
1  
1  
0
1  
1  
1  
1  
1  
0
1  
1  
1  
0
1  
1  
1  
1  
1  
0
1  
1  
1  
1  
1  
1  
0
1  
1  
1  
1  
1  
0
1  
1  
1  
0
0
1  
1  
1  
1  
1  
1  
1  
1  
1  
1  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
1  
1  
2  
1  
1  
1  
2  
1  
1  
2  
1  
1  
1  
2  
1  
1  
1  
1  
1  
2  
1  
1  
1  
1  
1  
1  
2  
1  
1  
1  
1  
2  
1  
1  
2  
1  
1  
1  
2  
1  
1  
2  
1  
1  
1  
1  
2  
1  
1  
1  
1  
1  
1  
2  
1  
1  
5
6
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
2  
1  
1  
2  
2  
2  
1  
2  
2  
1  
1  
2  
2  
2  
1  
2  
1  
2  
2  
2  
1  
2  
2  
2  
1  
2  
2  
2  
1  
2  
2  
2  
2  
1  
1  
2  
2  
1  
2  
2  
2  
1  
1  
2  
2  
1  
2  
2  
1  
2  
2  
1  
2  
2  
2  
2  
1  
2  
2  
1  
2  
2  
2  
2  
7
8
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
2  
2  
2  
3  
2  
2  
2  
3  
3  
2  
2  
2  
2  
2  
3  
2  
2  
2  
3  
3  
2  
2  
2  
2  
2  
2  
2  
2  
3  
2  
2  
3  
3  
2  
2  
2  
2  
2  
2  
3  
2  
2  
3  
3  
2  
2  
2  
2  
3  
2  
2  
3  
3  
2  
2  
2  
2  
2  
2  
3  
2  
2  
3  
3  
2  
2  
2  
2  
2  
2  
2  
3  
2  
2  
2  
3  
3  
2  
2  
2  
2  
2  
3  
2  
2  
2  
3  
3  
9
10  
Remarks 1. n: Integer from 0 to 31.  
2. A: Rising edge of pulse during line A output.  
3. A: Rising edge of pulse at start of line A output.  
4. A: PWM pulse width (A/8)  
41  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-15. Example of Pulse Width Modulated Output (2/3)  
1, 2 Frames 3, 4 Frames 5, 6 Frames  
SEG Odd SEG Even SEG Odd SEG Even SEG Odd SEG Even  
Gray-scale COM  
level  
7, 8 Frames  
SEG Odd SEG Even  
Numbered Numbered Numbered Numbered Numbered Numbered Numbered Numbered  
11  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
3  
3  
3  
2  
3  
3  
3  
3  
4  
3  
3  
3  
2  
3  
3  
3  
3  
4  
3  
2  
3  
3  
3  
3  
3  
3  
3  
3  
2  
3  
3  
3  
3  
3  
3  
3  
3  
3  
2  
3  
3  
3  
3  
3  
3  
3  
3  
2  
3  
3  
3  
3  
3  
3  
2  
3  
3  
3  
3  
3  
3  
3  
3  
2  
3  
3  
3  
3  
3  
3  
3  
3  
12  
13  
14  
4n+2  
3  
3  
3  
3  
4  
4  
3  
3  
4n+3  
4n+4  
4n+1  
4n+2  
3  
3  
4  
4  
3  
3  
4  
4  
3  
4  
3  
3  
3  
4  
3  
3  
3  
3  
4  
4  
3  
3  
4  
4  
4  
3  
3  
3  
4  
3  
3  
3  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
3  
3  
4  
4  
4  
3  
4  
4  
4  
4  
5  
4  
3  
3  
4  
4  
4  
3  
4  
4  
4  
4  
5  
4  
4  
4  
4  
3  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
3  
4  
4  
4  
4  
4  
4  
4  
4  
3  
3  
4  
4  
3  
4  
4  
4  
4  
4  
4  
5  
3  
3  
4  
4  
3  
4  
4  
4  
4  
4  
4  
5  
4  
4  
3  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
4  
3  
4  
4  
4  
4  
4  
4  
4  
4  
4  
15  
16  
17  
18  
4n+3  
4n+4  
4n+1  
4n+2  
4  
4  
5  
5  
4  
4  
5  
5  
4  
5  
4  
4  
4  
5  
4  
4  
4  
4  
5  
5  
4  
4  
5  
5  
5  
4  
4  
4  
5  
4  
4  
4  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4  
4  
5  
5  
5  
4  
5  
5  
4  
4  
5  
5  
5  
4  
5  
5  
5  
5  
5  
4  
5  
5  
5  
5  
5  
5  
5  
4  
5  
5  
5  
5  
4  
4  
5  
5  
4  
5  
5  
5  
4  
4  
5  
5  
4  
5  
5  
5  
5  
5  
4  
5  
5  
5  
5  
5  
5  
5  
4  
5  
5  
5  
5  
5  
19  
20  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
5  
5  
6  
5  
5  
5  
5  
5  
6  
5  
5  
5  
5  
5  
5  
5  
5  
6  
5  
5  
5  
5  
5  
6  
5  
5  
5  
6  
5  
5  
5  
5  
5  
6  
5  
5  
5  
5  
5  
5  
6  
5  
5  
5  
5  
5  
6  
5  
21  
Remarks 1. n: Integer from 0 to 31.  
2. A: Rising edge of pulse during line A output.  
3. A: Rising edge of pulse at start of line A output.  
4. A: PWM pulse width (A/8)  
42  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-15. Example of Pulse Width Modulated Output (3/3)  
1, 2 Frames 3, 4 Frames 5, 6 Frames  
SEG Odd SEG Even SEG Odd SEG Even SEG Odd SEG Even  
Gray-scale COM  
level  
7, 8 Frames  
SEG Odd SEG Even  
Numbered Numbered Numbered Numbered Numbered Numbered Numbered Numbered  
22  
4n+1  
6  
6  
5  
5  
6  
6  
5  
5  
4n+2  
4n+3  
6  
5  
6  
5  
5  
6  
5  
6  
6  
5  
6  
5  
5  
6  
5  
6  
4n+4  
4n+1  
5  
6  
5  
6  
6  
6  
6  
6  
5  
6  
5  
6  
6  
5  
6  
5  
23  
24  
25  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
6  
6  
5  
6  
6  
6  
6  
7  
6  
6  
5  
6  
6  
6  
6  
7  
5  
6  
6  
6  
6  
6  
6  
6  
5  
6  
6  
6  
6  
6  
6  
6  
6  
5  
6  
6  
6  
6  
6  
6  
6  
5  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
6  
4n+2  
4n+3  
6  
6  
6  
6  
6  
6  
6  
6  
7  
6  
7  
6  
6  
7  
6  
7  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
6  
7  
7  
6  
6  
7  
7  
7  
6  
7  
7  
7  
6  
7  
7  
6  
6  
7  
7  
7  
6  
7  
7  
7  
7  
6  
6  
7  
7  
7  
6  
7  
7  
7  
7  
7  
7  
6  
6  
7  
7  
7  
6  
7  
7  
7  
7  
7  
6  
7  
7  
6  
6  
7  
7  
6  
7  
7  
7  
7  
6  
7  
7  
6  
6  
7  
7  
6  
7  
7  
7  
7  
6  
6  
6  
7  
7  
6  
7  
7  
7  
7  
7  
7  
6  
6  
6  
7  
7  
6  
7  
7  
7  
7  
7  
7  
26  
27  
28  
29  
4n+4  
4n+1  
4n+2  
7  
8
7  
7  
8
7  
7  
7  
7  
7  
7  
7  
7  
7  
8
7  
7  
8
7  
7  
7  
7  
7  
7  
4n+3  
7  
7  
7  
7  
7  
7  
8
8
4n+4  
4n+1  
4n+2  
4n+3  
4n+4  
4n+1  
4n+2  
4n+3  
7  
8
8
7  
7  
8
7  
8
8
7  
7  
8
8
7  
7  
8
8
8
8
7  
7  
8
8
8
7  
8
8
7  
7  
8
7  
8
8
7  
7  
8
7  
7  
7  
8
8
7  
7  
7  
7  
8
8
7  
30  
31  
8
8
8
8
7  
8
7  
8
8
7  
8
7  
8
8
8
8
4n+4  
4n+1  
7  
8
7  
8
8
8
8
8
8
8
8
8
8
8
8
8
32  
4n+2  
4n+3  
4n+4  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
Remarks 1. n: Integer from 0 to 31.  
2. A: Rising edge of pulse during line A output.  
3. A: Rising edge of pulse at start of line A output.  
4. A: PWM pulse width (A/8)  
43  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.7.2 Full-dot frame rate control  
When combined with pulse width modulation as described in Table 5-15, the µPD16488A's frame speed is based on 8-  
frame cycles. The subsampling pattern is output based on the palette stored in the IC.  
Full-Dot Gray-Scale Palette (Output Pulse Width: x/8 Pulses)  
Frames  
Gray Scale  
Comments  
1
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
2
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
3
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
4
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
5
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
6
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
7
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
Level 0  
OFF data  
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
Level 7  
Level 8  
Level 9  
Level 10  
Level 11  
Level 12  
Level 13  
Level 14  
Level 15  
Level 16  
Level 17  
Level 18  
Level 19  
Level 20  
Level 21  
Level 22  
Level 23  
Level 24  
Level 25  
Level 26  
Level 27  
Level 28  
Level 29  
Level 30  
Level 31  
Level 32  
50%  
100%  
Remark The gradation in the Comments column are images of the gray-scale level.  
44  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.7.3 Line shift driver  
If the frame rate control is performed with equal pulse widths and the same gray scale is displayed on the LCD's full  
screen, problems such as flickering may occur on the LCD panel. The µPD16488A provides a line shift driver as a  
countermeasure against such screen image problems.  
Using 8 frames per cycle, the segment PWM output timing is shifted among the common outputs, as shown in Table 5-16  
below.  
Table 5-16. Line Shift Driver  
Turn 1  
Turn 2  
Frame  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3  
F7  
F5  
F1  
F3  
F7  
F5  
F1  
F3  
F7  
F4  
F8  
F6  
F2  
F4  
F8  
F6  
F2  
F4  
F8  
F5 F6  
F1 F2  
F7 F8  
F3 F4  
F5 F6  
F1 F2  
F7 F8  
F3 F4  
F5 F6  
F1 F2  
F7  
F3  
F1  
F5  
F7  
F3  
F1  
F5  
F7  
F3  
F8  
F4  
F2  
F6  
F8  
F4  
F2  
F6  
F8  
F4  
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3  
F7  
F5  
F1  
F3  
F7  
F5  
F1  
F3  
F7  
F4  
F8  
F6  
F2  
F4  
F8  
F6  
F2  
F4  
F8  
F5 F6  
F1 F2  
F7 F8  
F3 F4  
F5 F6  
F1 F2  
F7 F8  
F3 F4  
F5 F6  
F1 F2  
F7  
F3  
F1  
F5  
F7  
F3  
F1  
F5  
F7  
F3  
F8  
F4  
F2  
F6  
F8  
F4  
F2  
F6  
F8  
F4  
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3 F4  
F7 F8  
F1 F2  
F5 F6  
F3  
F7  
F5  
F1  
F3  
F7  
F5  
F1  
F3  
F7  
F4  
F8  
F6  
F2  
F4  
F8  
F6  
F2  
F4  
F8  
Remark Fx: Pulse width modulated output frame (See 5.7.2 Full-dot frame rate control).  
Figure 5-22. Full Dot Frame Rate Control  
First frame  
Second frame  
1
2
3
4
5
1
2
91  
92  
ON  
OFF  
COM  
COM  
COM  
1
2
3
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
4
5
ON  
OFF  
COM  
ON  
COM91  
COM92  
OFF  
ON  
OFF  
SEG  
SEG  
1
8
8
1
1
5
5
3
3
7
7
1
1
5
5
3
3
7
7
2
2
6
6
2
3
4
5
8
8
1
1
5
5
3
3
7
7
1
1
5
5
3
3
7
7
2
2
6
6
SEG  
SEG  
SEG  
8
1
5
3
7
1
5
3
7
2
6
Remark Numerical values in the segment data correspond to the gray-scale palette's frame numbers.  
45  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-23. Line Shift Driver Image  
Turn 1, first frame  
SEG  
1
SEG  
3
SEG  
5
SEG  
7
SEG127  
SEG  
2
SEG  
4
SEG  
6
SEG  
8
SEG126  
SEG128  
COM  
1
2
F1  
F5  
F3  
F7  
F1  
COM  
COM  
3
4
COM  
COM  
5
COM90  
F5  
F3  
F7  
COM91  
COM92  
Turn 1, second frame  
SEG  
SEG  
1
SEG  
3
SEG  
5
7
SEG127  
SEG  
2
SEG  
4
SEG  
6
SEG  
8
SEG126  
SEG128  
COM  
1
2
F2  
F6  
F4  
F8  
F2  
COM  
COM  
3
4
COM  
COM  
5
COM90  
F6  
F4  
F8  
COM91  
COM92  
46  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.7.4 Display size settings  
The µPD16488A can be set for any duty value from 1/1 to 1/92. This duty setting can be made via bits DT6 to DT0 in the  
duty setting register (R5), as shown in Table 5-17.  
Table 5-17. Duty Settings  
DT6  
DT5  
DT4  
DT3  
DT2  
DT1  
DT0  
Duty  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
1/1  
1/2  
1/3  
1/4  
:
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
1/90  
1/91  
1/92  
prohibited  
Caution The duty setting can not be over 1/92 duty (5CH). If 1/92 duty is exceeded, operation is not guaranteed.  
5.7.5 Setting of LCD AC driver's inversion cycle and AC driver's inversion position  
The µPD16488A enable any setting to be made for the AC driver's inversion position and the inversion position shift  
amount for each displayed frame via settings made in the AC driver inversion cycle register (R6) and the AC driver  
inversion position shift register (R7) for normal display mode or via settings made in the partial AC driver inversion cycle  
register (R8) and the partial AC driver inversion position shift register (R9) for partial display mode.  
In normal display mode, the AC driver inversion cycle can be set for any number of inverted (reverse display) lines listed  
in Table 5-18, based on the NID6 to NID0 bit settings in the AC driver inversion cycle register (R6).  
If the screen display size has been changed via settings made in the duty setting register (R5), the NIDn values are  
automatically overwritten by values from the corresponding DTYn bits.  
The shift amount for each displayed frame can be set as shown in Table 5-19 via settings made to bits MSD6 to MSD0 in  
the AC driver inversion position shift register (R7).  
Table 5-18. Settings of AC Driver Inversion Cycle Register (R6)  
NID6  
NID5  
NID4  
NID3  
NID2  
NID1  
NID0  
Inverted Lines  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
2
3
4
:
90  
91  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
92  
prohibited  
Caution The inversion line can not be over 92-inversion line (5CH). If 92-inversion line is exceeded, operation is  
not guaranteed.  
47  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Table 5-19. Settings of AC Driver Inversion Position Shift Register  
MSD6  
MSD5  
MSD4  
MSD3  
MSD2  
MSD1  
MSD0  
Inversion Position Shift Amount  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
:
89  
90  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
91  
prohibited  
Caution The inversion position shift amount can not be over 91 (5CH). If 91 is exceeded, operation is not guaranteed.  
In partial display mode, the AC driver inversion cycle can be set for any number of inverted (reverse display) lines listed in  
Table 5-20, based on the PID5 to PID0 bit settings in the partial AC driver inversion cycle register (R8).  
The shift amount for each displayed frame can be set as shown in Table 5-21 via settings made to bits PSD5 to PSD0 in  
the partial AC driver inversion position shift register (R9).  
Table 5-20. Settings of Partial AC Driver Inversion Cycle Register (R8)  
PID5  
PID4  
PID3  
PID2  
PID1  
PID0  
Inverted Lines  
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
1
2
3
4
:
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
36  
37  
38  
Table 5-21. Setting of Partial AC Driver Inversion Position Shift Register (R9)  
PSD5  
PSD4  
PSD3  
PSD2  
PSD1  
PSD0  
Inversion Position Shift Amount  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
1
1
0
1
0
1
0
1
2
3
:
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
35  
36  
37  
Be sure to maintain the following relationship among the display size, AC inversion cycle, and AC inversion position.  
Display size (duty) AC inversion cycle AC inversion shift amount  
Caution Setting a small inversion cycle will cause a reduction in the IC's display drive capacity and an increase  
in the current consumption. We therefore recommend determining the inversion cycle after making a  
thorough evaluation of the actual LCD panel.  
48  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.8  
Display Modes  
5.8.1 Partial display mode  
The µPD16488A includes a function for outputting a display that uses only part of the LCD panel. The duty setting for  
partial display mode can be selected as 1/12, 1/25, or 1/38. Parts of the LCD panel that are outside of the specified display  
area are scanned with non-select waveforms. The partial start line address register (R21) is used to select which part of  
the LCD panel to use for the partial display. The display area starts from the start line address and includes the number of  
lines (12, 25, or 38 lines) that has been specified via the partial display mode setting (R10).  
When entering this mode, the booster is set to the boost level number that has been set via the power system control  
register 3 (partial display boost register) (R34) and the display start line is fixed as 00H. In addition, the bias level is  
automatically changed to the value that has been set via the partial display mode setting (R10). The relationship between  
the oscillator's frequency and the frame frequency in partial mode is also automatically changed.  
Figure 5-24 shows the mutual relationship between the partial line start address and the LCD display.  
When using the partial display mode, the blinking and reverse display functions can be used in the same way as during  
full-dot display mode.  
Caution The LCD driver voltage is lower in partial display mode, because the duty is lower than in normal display  
mode. There may be restrictions on the usable duty depending on the LCD panel characteristics.  
We recommend determining the partial duty after making a thorough evaluation of the actual LCD panel.  
Figure 5-24. Relationship Between Partial Line Start Address and LCD Display  
(in Partial Display Mode)  
...  
00H  
01H  
02H  
03H  
1DH  
1EH  
1FH  
Display start line  
(00H)  
Partial display  
start line  
Non-display areas  
Caution In partial display mode, the display start line setting register (R12) command is ignored.  
When switching from normal display mode to partial display mode or from partial display mode to normal display mode, if  
an electric charge remains in the smoothing capacitor that is connected between the LCD drive voltage pins (VLCD, VLC1 to  
VLC4) and the VSS pin, troubles such as a brief all-black display may occur during the mode switching operation. To avoid  
such troubles, we recommend using the following power-on sequence.  
49  
Data Sheet S15745EJ2V0DS  
µPD16488A  
(1) Normal display partial display switch sequence  
DISP = 0  
R0  
Display OFF  
HPM1 = 1, HPM0 = 0  
R32  
R1  
High power mode settings  
Control register 2: switch DTY flag  
Switch display mode  
700 ms (stabilization time for LCD drive voltage and  
booster)Note  
Wait time  
HPM1 = X, HPM0 = X  
R32  
R0  
High power mode settings  
(to mode used during normal display)  
Display ON, internal operations status  
DISP = 1  
Note This 700ms wait time indicates the time for the VLCD level to change from 15V to 6V and thus varies according to  
the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend  
determining the wait time after making a thorough evaluation of the actual device.  
(2) Partial display Normal display switch sequence  
DISP = 0  
R0  
Display OFF  
HPM1 = 1, HPM0 = 1  
R32  
R1  
Power ON mode settings  
Control register 2: switch DTY flag  
Switch display mode  
400 ms (stabilization time for LCD drive voltage and  
booster)Note  
Wait time  
HPM1 = X, HPM0 = X  
R32  
R0  
High power mode settings  
(to mode used during normal display)  
Display ON, internal operations status  
DISP = 1  
Note This 400ms wait time indicates the time for the VLCD level to change from 6V to 15V and thus varies according to  
the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend  
determining the wait time after making a thorough evaluation of the actual device.  
50  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.8.2 Monochrome (black/white) display  
The µPD16488A provides both a four-level gray scale display mode and a monochrome display mode.  
To switch to the monochrome display mode, set GRAY = H. The display RAM for one screen of monochrome display  
mode contents is configured as 128 bits x 128 bits (16 x 8 bits). When using these IC's in monochrome display mode, two  
screens of data can be written to the display RAM and the two screens can be switched by setting the DSEL bit in the  
control register 2 (R1). Screen 1 is displayed on the LCD panel when DSEL = L and screen 2 is displayed when DSEL = H.  
When writing data, the display RAM uses the same X address (00H to 0FH) and Y address and the BWW bit value in the  
control register 2 (R1) determines which of the two screens the data will be written to: when BWW = L, data is written to  
screen 1 and when BWW = H, data is written to screen 2, as shown in Figure 5-25.  
When accessing a specified bit, specify both the X address and Y address. The display data in D0 to D7 (sent from the  
CPU) corresponds to the SEGx portions of the LCD display, as shown in Figure 5-26. Figure 5-27 shows the relationship  
between the display data in monochrome display mode and the page/column addresses.  
Figure 5-25. Display RAM Image in Monochrome (Black/White) Mode  
00H  
0FH  
00H  
0FH  
Screen 1  
Screen 2  
DSEL = L (during display)  
BWW = L (during write)  
DSEL = H (during display)  
BWW = H (during write)  
Figure 5-26. Relationship Between Display Data and LCD Display  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1  
0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0  
0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0  
0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0  
0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0  
0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0  
0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Data  
Display data  
LCD display  
51  
Data Sheet S15745EJ2V0DS  
µPD16488A  
Figure 5-27. Relation Between the Display Data and X/Y Address  
(in Monochrome Display Mode)  
D4  
D3  
D2  
D1  
0
0
0
0
1
1
1
1
0
0
0
0
0
COM output  
COM1  
D0  
0
1
Yaddress  
00H  
01H  
0FH  
Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
Start  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
92-line  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
76H  
77H  
78H  
79H  
7AH  
7BH  
7CH  
7DH  
COM89  
COM90  
COM91  
COM92  
7EH  
7FH  
52  
Data Sheet S15745EJ2V0DS  
µPD16488A  
5.9  
Reset  
In the µPD16488A, a reset is executed when the /RES input is at low level or when a reset command is entered. The IC  
is reset to its default settings. These default settings are listed in the table below.  
Register  
Number  
R0  
R1  
/RES  
Reset Command  
Enabled  
Control register 1  
Control register 2  
X address register  
Y address register  
Duty setting register  
AC driver inversion cycle register  
AC driver inversion position shift register  
Partial AC driver inversion cycle register  
Partial AC driver inversion position shift register  
Partial display mode setting register  
Display memory access registerNote1  
Display start line setting register  
Blink X address register  
Enabled (DISP flag only)  
Enabled (IDIS flag only)  
Disabled  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
EnabledNote2  
Enabled  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R32  
R33  
R34  
R35  
R36  
R37  
R44  
R45  
Disabled  
Enabled  
Blink start line address register  
Blink end line address register  
Blink data memory access registerNote1  
Inverted X address register  
Disabled  
Enabled  
Inversion start line address register  
Inversion end line address register  
Inverted data memory access registerNote1  
Partial start line address register  
Gray scale data register 1 (0, 0)  
Gray scale data register 2 (0, 1)  
Gray scale data register 3 (1, 0)  
Gray scale data register 4 (1, 1)  
Partial gray scale data register 1 (0, 0)  
Partial gray scale data register 2 (0, 1)  
Partial gray scale data register 3 (1, 0)  
Partial gray scale data register 4 (1, 1)  
Power system control register 1  
Power system control register 2  
Power system control register 3  
Electronic volume register  
Disabled  
Enabled  
Partial electronic volume register  
Boost adjustment register  
RAM test mode setting register  
Signature read register  
Disabled  
Enabled: Default value is input, Disabled: Default value is not input  
Notes 1. When using the /RES pin to reset, the contents of memory are not retained. Use the reset command to reset  
if the memory contents need to be retained.  
2. Be sure to set this register again after input the reset command.  
Cautions 1. Using the /RES pin to reset initializes the shift clock counter.  
2. Always input the reset command as the first command after power ON.  
53  
Data Sheet S15745EJ2V0DS  
µPD16488A  
6. COMMAND REGISTERS  
The µPD16488A uses a combination of RS, /RD (E), and /WR (R,/W) signals to identify data bus signals. Command  
interpretation and execution is performed using internal timing that does not depend on any external clock. Therefore,  
processing is very fast and there is usually no need to check for a busy status.  
The i80 series CPU interface activates read commands using a low pulse input to the /RD pin and activates write  
commands using a low pulse input to the /WR pin. The M68 series CPU interface sets read mode using a high level input  
to the R,/W pin and sets write mode using a low level input to the same pin. It activates both read and write commands  
using a high-level pulse input to the E pin.  
Command descriptions using an i80 series CPU interface are shown as follows. The M68 series CPU interface differs  
from the i80 series CPU interface in that /RD (E) is at high level during status read and display data read operations, as  
shown in the following command descriptions and command table.  
If the serial interface has been selected, data is input sequentially starting from D7.  
Data Sheet S15745EJ2V0DS  
54  
µPD16488A  
6.1 Control Register 1 (R0)  
This command specifies the µPD16488A's general operation modes.  
E
/RD  
1
R,/W  
/WR  
0
RS  
1
D7  
RMW  
D6  
DISP  
D5  
STBY  
D4  
BLD  
D3  
IVD  
D2  
HALT  
D1  
ADC  
D0  
COMR  
Flag  
Function  
RMW  
0: Address is incremented after both write access and read access.  
1: Read/modify/write mode  
(Address is incremented only after write access)  
DISP  
STBY  
BLD  
0: Display OFF (All LCD output pins output the VSS level and oscillator and DC/DC converter are operating)  
1: Display ON  
0: Normal operation  
1: Internal operation and oscillation are stopped. Display is OFF.  
The blinking dots are specified via the blink start/end line address registers and data is set to blink data RAM.  
0: Stop blinking  
1: Start blinking  
IVD  
The number of inverted dots is specified via the inversion start/end line address registers and data is set to  
inverted data RAM.  
0: Stop inversion  
1: Start inversion  
HALT  
0: Start internal operation  
1: Stop internal operation (since different display modes are used, when switching between partial and normal  
display modes, the LCD output pins all output the VSS level and the oscillator is operating, but the DC/DC  
converter is stopped)  
The column address corresponding to the SEG outputs (see Table 6-1) for displaying the contents of the display  
data RAM.  
ADC Note  
COMR Note  
This inverts (reverses) the scan direction for common outputs. (See Table 6-2)  
Note The reset command must be executed before changing this flag's setting.  
Table 6-1. Relationship between Display RAM Column Address and SEG Outputs  
SEG Output  
SEG1  
00H  
7FH  
SEG128  
7FH  
00H  
0
1
Column addresses  
Column addresses  
ADC  
(D1)  
Table 6-2. Relationship between Common Scan Circuit and Scan Direction  
COM Output  
Scan Direction  
0
1
COM1  
COM92  
COM92  
COM1  
COMR  
(D0)  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
55  
µPD16488A  
6.2 Control Register 2 (R1)  
This command specifies the µPD16488A's general operation modes.  
E
/RD  
1
R,/W  
/WR  
0
RS  
1
D7  
FDM  
D6  
D5  
D4  
DSEL  
D3  
BWW  
D2  
GRAY  
D1  
DTY  
D0  
INC  
Flag  
Function  
FDM  
Settings for full screen display mode  
0: Normal operation  
1: Full screen display (set entire screen to ON) (When using four-level gray scale, gray-scale level 32 is output  
for full screen display).  
DSEL  
BWW  
Selects display screen during monochrome display mode.  
0: Screen 1  
1: Screen 2  
Selects data write screen during monochrome display mode.  
0: Screen 1  
1: Screen 2  
0: 4-level gray scale display mode  
1: Monochrome display mode  
0: Normal display mode (1/1 to 1/128 duty)  
1: Partial display mode (1/12, 1/25, or 1/38 duty, 1/5 or 1/6 bias)  
0: Increments X address at each access  
1: Increments Y address at each access  
GRAY Note  
DTY Note  
INC  
Note The HALT command must be executed before changing this flag's setting.  
Table 6-3. Relationship between IC's Functions and Display Modes  
Item  
Normal Display Mode (DTY = 0)  
1/1 to 1/92 duty  
×4, ×5, ×6, ×7, ×8, ×9  
1/11, 1/12, 1/10, 1/9, 1/8, 1/7  
Uses levels set to the gray scale data  
registers (R23 to R26)  
Uses values of VRR2 to VRR0 in the power  
system control register 2 (R33)  
Partial Display Mode (DTY = 1)  
1/12, 1/25, or 1/38 duty  
×2, ×3, ×4  
Duty  
Booster  
Bias level  
1/5, 1/6  
Gray scale data  
Uses levels set to the partial gray scale  
data registers (R27 to R30)  
Uses values of PVR2 to PVR0 in the power  
system control register 2 (R33)  
(1+Rb/Ra)  
VLCD regulator resistance  
factor  
Electronic volume  
Uses value from the electronic volume  
register (R35)  
Uses value from the partial electronic  
volume register (R36)  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
56  
µPD16488A  
6.3 Reset Command (R2)  

When this command is input, the IC's registers (R0 to R44) are reset to their initial values. However, the contents of  
memory are retained.  
Always input the reset command as the first command after power application.  
RS  
1
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
6.4 X Address Register (R3)  
The X address register specifies the X address in the display RAM accessed by the CPU. This address is automatically  
incremented each time the display RAM is accessed (INC = 0, RMW = 0).  
RS  
1
D7  
D6  
D5  
D4  
XA4  
D3  
XA3  
D2  
XA2  
D1  
XA1  
D0  
XA0  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.5 Y Address Register (R4)  
The Y address register specifies the Y address in the display RAM accessed by the CPU. This address is automatically  
incremented each time the display RAM is accessed (INC = 1, RMW = 0).  
RS  
1
D7  
D6  
YA6  
D5  
YA5  
D4  
YA4  
D3  
YA3  
D2  
YA2  
D1  
YA1  
D0  
YA0  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
57  
µPD16488A  
6.6 Duty Setting Register (R5)  
The display duty can be set to any duty ratio between 1/1 and 1/92, as is shown in Table 6-4.  
Before modifying this register, be sure to use the HALT command (control register 1 (R0)) to stop internal operations.  
Also, be sure to set this register again after input the reset command.  
RS  
1
D7  
D6  
DT6  
D5  
DT5  
D4  
DT4  
D3  
DT3  
D2  
DT2  
D1  
DT1  
D0  
DT0  
Table 6-4. Duty Setting Register (R5) Settings  
DT6  
DT5  
DT4  
DT3  
DT2  
DT1  
DT0  
Duty  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
1/1  
1/2  
1/3  
1/4  
:
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
0
1/90  
1/91  
1/92  
inhibited  
Caution The display size can not be over 1/92 duty ( 5CH). If 1/92 duty is exceeded, operation is not guaranteed.  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data Sheet S15745EJ2V0DS  
58  
µPD16488A  
6.7 AC Driver Inversion Cycle Register (R6)  
The AC driver's line position for normal display mode can be set as shown in Table 6-5.  
When a DTYn value is changed in the duty setting register (R5), the NIDn value is automatically overwritten by the DTYn value.  
Be sure to set this register again after input the reset command.  
RS  
1
D7  
D6  
NID6  
D5  
NID5  
D4  
NID4  
D3  
NID3  
D2  
NID2  
D1  
NID1  
D0  
NID0  
Table 6-5. AC Driver Inversion Cycle Register (R6) Settings  
NID6  
NID5  
NID4  
NID3  
NID2  
NID1  
NID0  
Inversion Line  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
2
3
4
:
90  
91  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
92  
Inhibited  
Caution The inversion line can not be over 92 (5CH). If 92-line is exceeded, operation is not guaranteed.  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
6.8 AC Driver Inversion Position Shift Register (R7)  
This register shifts the inversion position for each frame in normal display mode by the shift amount shown in Table 6-6.  
RS  
1
D7  
D6  
MSD6  
D5  
MSD5  
D4  
MSD4  
D3  
MSD3  
D2  
MSD2  
D1  
MSD1  
D0  
MSD0  
Table 6-6. AC Driver Inversion Position Shift Register (R7) Settings  
MSD5  
MSD5  
MSD4  
MSD3  
MSD2  
MSD1  
MSD0  
Inversion Position Shift Amount  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
:
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
89  
90  
91  
92  
Caution The inversion position shift amount can not be over 91 (5CH). If 91 is exceeded, operation is not guaranteed.  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
59  
µPD16488A  
6.9 Partial AC Driver Inversion Cycle Register (R8)  
The AC driver's line position can be set as shown in Table 6-7.  
When a PDTn value is changed in the partial display mode setting register (R10), the PIDn value is automatically  
overwritten by the PDTn value.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PID5  
PID4  
PID3  
PID2  
PID1  
PID0  
Table 6-7. Partial AC Driver Inversion Cycle Register (R8) Settings  
PID5  
PID4  
PID3  
PID2  
PID1  
PID0  
Inversion Line  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
1
1
0
1
0
1
1
2
3
4
:
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
36  
37  
38  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
6.10 Partial AC Driver Inversion Position Shift Register (R9)  
This register shifts the inversion position for each frame by the shift amount shown in Table 6-8.  
RS  
1
D7  
D6  
D5  
PSD5  
D4  
PSD4  
D3  
PSD3  
D2  
PSD2  
D1  
PSD1  
D0  
PSD0  
Table 6-8. Partial AC Driver Inversion Position Shift Register (R9) Settings  
PSD5  
PSD4  
PSD3  
PSD2  
PSD1  
PSD0  
Inversion Position Shift Amount  
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
1
1
0
1
0
1
0
1
2
3
:
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
35  
36  
37  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
60  
µPD16488A  
6.11 Partial Display Mode Setting Register (R10)  
This command specifies the operation mode to be used in the µPD16488A's partial display mode.  
Before modifying this register, be sure to use the HALT command (control register 1 (R0)) to stop internal operations.  
RS  
1
D7  
D6  
D5  
D4  
D3  
PBIS  
D2  
D1  
PDT1  
D0  
PDT0  
Flag  
Function  
PBIS  
Sets bias level for partial display mode  
0: 1/5 bias  
1: 1/6 bias  
PDT1, PDT0  
PDT1  
PDT0  
Duty in partial display mode  
1/38 duty  
0
0
1
1
0
1
0
1
1/25 duty  
1/12 duty  
Prohibited  

Caution With the setting of 1/12 duty, the level voltage (VLCn) for driving liquid crystal pannel may not reach the  
set value depending on the panel used. Thoroughly evaluate the relationship between the duty and  
driving voltage with the actual system.  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
0
D0  
0
6.12 Display Memory Access Register (R11)  
The display memory access register is used when accessing the display RAM. When this register is write-accessed, data  
is written directly to the display RAM. When this register is read-accessed, data from the display RAM is first latched to this  
register before being sent to the bus during the next read operation. Accordingly, one dummy read access is required after  
display RAM access has been set.  

When using reset command to reset, the contents of memory are retained.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data Sheet S15745EJ2V0DS  
61  
µPD16488A  
6.13 Display Start Line Setting Register (R12)  
Display start line set specifies the top line in the display.  
RS  
1
D7  
D6  
DSL6  
D5  
DSL5  
D4  
DSL4  
D3  
DSL3  
D2  
DSL2  
D1  
DSL1  
D0  
DSL0  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.14 Blink X Address Register (R13)  
The blink X address register specifies the X address of the blink data RAM accessed by the CPU. This address is  
automatically incremented each time the blink data RAM is accessed.  
RS  
1
D7  
D6  
D5  
D4  
D3  
BXA3  
D2  
BXA2  
D1  
BXA1  
D0  
BXA0  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
6.15 Blink Start Line Address Register (R14)  
The blink start line address register specifies the start line address of the display RAM accessed when the CPU uses blink  
display mode. The range of blinking lines is determined based on the contents of this register and the blink end line  
address register.  
RS  
1
D7  
D6  
BSL6  
D5  
BSL5  
D4  
BSL4  
D3  
BSL3  
D2  
BSL2  
D1  
BSL1  
D0  
BSL0  
Setting  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.16 Blink End Line Address Register (R15)  
The blink end line address register specifies the end line address of the display RAM accessed when the CPU uses blink  
display mode. The range of blinking lines is determined based on the contents of this register and the blink start line  
address register.  
RS  
1
D7  
D6  
BEL6  
D5  
BEL5  
D4  
BEL4  
D3  
BEL3  
D2  
BEL2  
D1  
BEL1  
D0  
BEL0  
Setting  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
62  
µPD16488A  
6.17 Blink Data Memory Access Register (R16)  
The blink data memory access register is used to access the blink data RAM. When this register is write-accessed, data  
is written directly to the blink data RAM.  

When using reset command to reset, the contents of memory are retained.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Data  
Status  
0
1
Normal  
Blink  
Default settings (initial values set by reset command, all data)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.18 Inverted X Address Register (R17)  
The inverted X address register specifies the X address in the inverted data RAM accessed by the CPU. This address is  
incremented each time the inversion RAM is accessed.  
RS  
1
D7  
D6  
D5  
D4  
D3  
IXA3  
D2  
IXA2  
D1  
IXA1  
D0  
IXA0  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
6.19 Inversion Start Line Address Register (R18)  
The inversion start line address register specifies the start line address in the display RAM accessed by the CPU when  
using reverse (inverted) display mode. The range of inverted lines is determined based on the contents of this register and  
the inversion end line address register.  
RS  
1
D7  
D6  
ISL6  
D5  
ISL5  
D4  
ISL4  
D3  
ISL3  
D2  
ISL2  
D1  
ISL1  
D0  
ISL0  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
63  
µPD16488A  
6.20 Inversion End Line Address Register (R19)  
The inversion end line address register specifies the end line address in the display RAM accessed by the CPU when  
using reverse (inverted) display mode. The range of inverted lines is determined based on the contents of this register and  
the inversion start line address register.  
RS  
1
D7  
D6  
IEL6  
D5  
IEL5  
D4  
IEL4  
D3  
IEL3  
D2  
IEL2  
D1  
IEL1  
D0  
IEL0  
Setting  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.21 Inverted Data Memory Access Register (R20)  
The inverted data memory access register is used when accessing the inverted data RAM. When this register is  
accessed, the data is written directly to the inverted data RAM.  

When using reset command to reset, the contents of memory are retained.  
RS  
1
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Setting  
Data  
Status  
0
1
Normal  
Inverted  
Default settings (initial values set by reset command, all data)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.22 Partial Start Line Address Register (R21)  
The partial start line address register specifies the start line address in the display RAM accessed by the CPU when using  
partial display mode. The partial display area is determined as the number of lines specified in the partial display mode  
setting register (R10), starting from this start line address.  
RS  
1
D7  
D6  
PSL6  
D5  
PSL5  
D4  
PSL4  
D3  
PSL3  
D2  
PSL2  
D1  
PSL1  
D0  
PSL0  
Setting  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
64  
µPD16488A  
6.23 Gray Scale Data Registers 1 to 4 (R23 to R26)  
The gray scale data registers specify the gray scale level when using normal four-level gray scale display mode. Use of  
this register optimizes the gray scale display.  
Rx  
Data  
0, 0  
0, 1  
1, 0  
1, 1  
RS  
1
1
1
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R23  
R24  
R25  
R26  
GD5  
GD5  
GD5  
GD5  
GD4  
GD4  
GD4  
GD4  
GD3  
GD3  
GD3  
GD3  
GD2  
GD2  
GD2  
GD2  
GD1  
GD1  
GD1  
GD1  
GD0  
GD0  
GD0  
GD0  
D7  
D6  
D5  
0
0
0
0
D4  
0
0
0
0
:
D3  
0
0
0
0
D2  
0
0
0
0
D1  
0
0
1
1
D0  
0
1
0
1
Gray scale level  
Level 0  
Level 1  
Level 2  
Level 3  
:
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
Disable  
0
1
1
0
1
0
1
0
1
0
1
0
Level 31  
Level 32  
Default settings (initial values set by reset command, for all gray scale data registers)  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.24 Partial Gray Scale Data Registers 1 to 4 (R27 to R30)  
The partial gray scale data registers specify the gray scale level when using partial four-level gray scale display mode.  
Use of this register optimizes the gray scale display.  
Rx  
Data  
0, 0  
0, 1  
1, 0  
1, 1  
RS  
1
1
1
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
R27  
R28  
R29  
R30  
PGD5  
PGD5  
PGD5  
PGD5  
PGD4  
PGD4  
PGD4  
PGD4  
PGD3  
PGD3  
PGD3  
PGD3  
PGD2  
PGD2  
PGD2  
PGD2  
PGD1  
PGD1  
PGD1  
PGD1  
PGD0  
PGD0  
PGD0  
PGD0  
D7  
D6  
D5  
0
0
0
0
D4  
0
0
0
0
:
D3  
0
0
0
0
D2  
0
0
0
0
D1  
0
0
1
1
D0  
0
1
0
1
Gray scale level  
Level 0  
Level 1  
Level 2  
Level 3  
:
Disable Disable  
Disable Disable  
Disable Disable  
Disable Disable  
Disable Disable  
Disable Disable  
0
1
1
0
1
0
1
0
1
0
1
0
Level 31  
Level 32  
Default settings (initial values set by reset command, for all partial gray scale data registers)  
D7  
D6  
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
65  
µPD16488A  
6.25 Power System Control Register 1 (R32)  
This command sets the µPD16488A's power system mode.  
E
/RD  
1
R,/W  
/WR  
0
RS  
1
D7  
HPM1  
D6  
HPM0  
D5  
D4  
TCS1  
D3  
TCS0  
D2  
OP2  
D1  
OP1  
D0  
OP0  
Flag  
Function  
HPM1, HPM0  
TCS1, TCS0  
OP2 to OP0  
These flags set the driver mode as shown in Table 6-9.  
These flags set the value for selecting the VREG voltage's temperature curve, as shown in Table 6-10.  
These flags control the booster's ON/OFF status, the voltage regulator (V regulator) and voltage follower (V/F).  
The functions controlled via these three bits by the power control setting command are listed in Table 6-11.  
Table 6-9. Driver Mode Setting  
HPM1  
HPM0  
Mode Setting  
Normal mode  
Low-power mode  
High-power mode  
Power activation mode  
0
0
1
1
0
1
0
1
Table 6-10. Selection VREG Voltage's Temperature Curve Value  
TCS1  
TCS0 Temperature gradient (%/°C)  
VREG (TYP.) (V)  
0
0
1
1
0
1
0
1
0.06  
0.08  
0.09  
0.12  
1.04  
0.98  
0.93  
0.85  
Table 6-11. Detailed Description of Functions Controlled by Flags of Power System Control 1  
Status  
Item  
1
0
OP2  
OP1  
OP0  
Booster control flag  
V regulator control flag  
Voltage follower control flag  
ON  
ON  
ON  
OFF  
OFF  
OFF  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
1
D1  
1
D0  
1
Data Sheet S15745EJ2V0DS  
66  
µPD16488A  
6.26 Power System Control Register 2 (R33)  
This command is used to control the on-chip register for VLCD voltage regualation.  
E
/RD  
1
R,/W  
/WR  
0
RS  
1
D7  
D6  
VRR2  
D5  
VRR1  
D4  
VRR0  
D3  
D2  
PVR2  
D1  
PVR1  
D0  
PVR0  
Setting  
Flag  
Function  
VRR2 to VRR0  
When using normal display mode, power system control 2 (VLCD regulator resistance factor setting command) can  
be used to change the resistance factor at 8 levels. The three flags in power system control 2 set the values shown  
in Table 6-12 as reference values for (1 + Rb/Ra).  
PVR2 to PVR0  
When using partial display mode, power system control 2 (VLCD regulator resistance factor setting command) can  
be used to change the resistance factor at 8 levels. The three flags in power system control 2 set the values shown  
in Table 6-12 as reference values for (1 + Rb/Ra).  
Table 6-12. Reference Values for VLCD Internal Resistance Factor Regulator Register  
Register  
VRR2  
PVR2  
VRR1  
PVR1  
VRR0  
PVR0  
1+Rb/Ra  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
8
12  
13  
16  
19  
21  
24  
Default settings (initial values set by reset command)  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
67  
µPD16488A  
6.27 Power System Control Register 3 (R34)  
This command sets the power system mode, including the bias setting for the µPD16488A's normal display mode and the  
number of boost levels for partial display mode.  
RS  
1
D7  
BIS2  
D6  
BIS1  
D5  
BIS0  
D4  
FBS2  
D3  
FBS1  
D2  
FBS0  
D1  
BST1  
D0  
BST0  
Setting  
Flag  
Function  
BIS2 to BIS0Note These three flags select the bias ratio as shown below.  
BIS2  
BIS1  
BIS0  
Bias ratio  
1/12 bias  
1/11 bias  
1/10 bias  
1/9 bias  
1/8 bias  
1/7 bias  
Prohibited  
Prohibited  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
When partial display mode is set, the bias ratio set by the partial mode setting register (R10) is automatically  
selected.  
FBS2 to FBS0Note The number of boost levels in booster for normal display mode is selected as shown below.  
FBS2  
FBS1  
FBS0  
Boost level  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
x4  
x5  
x6  
x7  
x8  
x9  
Prohibited  
Prohibited  
BST1, BST0  
The number of boost levels in the booster for partial display mode is selected as shown below.  
BST1  
BST0  
Boost level  
0
0
1
1
0
1
0
1
x2  
x3  
x4  
Prohibited  
Note Be sure to execute the HALT command before changing these flag settings.  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
68  
µPD16488A  
6.28 Electronic Volume Register (R35)  
The electronic volume register specifies the electronic volume value for adjusting the contrast when using normal display  
mode. Any value among 256 steps can be selected.  
RS  
1
D7  
EV7  
D6  
EV6  
D5  
EV5  
D4  
EV4  
D3  
EV3  
D2  
EV2  
D1  
EV1  
D0  
EV0  
Setting  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.29 Partial Electronic Volume Register (R36)  
The partial electronic volume register specifies the electronic volume value for adjusting the contrast when using partial  
display mode. Any value among 256 steps can be selected.  
RS  
1
D7  
PEV7  
D6  
PEV6  
D5  
PEV5  
D4  
PEV4  
D3  
PEV3  
D2  
PEV2  
D1  
PEV1  
D0  
PEV0  
Setting  
Default settings (initial values set by reset command)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
6.30 Boost Adjustment Register (R37)  
The voltage (range: 1/8 VDD2 to 7/8 VDD2) set to this register is applied to the boost level set for the booster.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
DDC2  
D1  
DDC1  
D0  
DDC0  
Setting  
Table 6-13. Boost Adjustment Register (R37) Settings  
DDC2  
DDC1  
DDC0  
Boost Adjustment Voltage  
Regulator Circuit Stopped  
1/8 VDD2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2/8 VDD2  
3/8 VDD2  
4/8 VDD2  
5/8 VDD2  
6/8 VDD2  
7/8 VDD2  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
0
D1  
0
D0  
0
Data Sheet S15745EJ2V0DS  
69  
µPD16488A  
6.31 RAM Test Mode Setting Register (R44)  
The RAM test mode setting register directly writes the data for each type of display mode to the display RAM, as shown in  
Table 6-15.  
RS  
1
D7  
D6  
D5  
D4  
D3  
RTS3  
D2  
RTS2  
D1  
RTS1  
D0  
RTS0  
Table 6-15. RAM Test Mode Setting Register (R44) Setting  
RTS3  
RTS2  
RTS1  
RTS0  
Write Data  
0
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
Normal operation  
Displays list of gray scales  
all 00/pixel  
all 11/pixel  
Checker pattern: 00/11  
Checker pattern: 11/00  
Checker pattern: 01/10  
Checker pattern: 10/01  
Vertical striped pattern: 00/11  
Horizontal striped pattern: 00/11  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
6.32 Signature Read Register (R45)  
This command is used to read the IC signature set via the SIGIN1 and SIGIN2 pins. This is a read-only register.  
RS  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SIGIN2  
D0  
SIGIN1  
Default settings (initial values set by reset command)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data Sheet S15745EJ2V0DS  
70  
µPD16488A  
7. LIST OF µPD16488A REGISTERS  
Index Register  
Data Bits  
Register Name  
R/W  
W
CS RS  
1
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IR5  
IR4  
IR3  
IR2  
IR1  
IR0  
IR  
Index Register  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Control register 1  
R/W RMW DISP STBY BLD IVD HALT ADC COMR  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R/W FDM  
DSEL BWW GRAY DTY INC  
CRES  
XA4 XA3 XA2 XA1 XA0  
Control register 2  
Reset command  
X address register  
W
R/W  
R/W  
R/W  
R/W  
W
W
W
R/W  
YA6 YA5 YA4 YA3 YA2 YA1 YA0  
DT6 DT5 DT4 DT3 DT2 DT1 DT0  
NID6 NID5 NID4 NID3 NID2 NID1 NID0  
MSD6 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0  
PID4 PID3 PID2 PID1 PID0  
Y address register  
Duty setting register  
AC driver inversion cycle register  
AC driver inversion position shift register  
Partial AC driver inversion cycle register  
R7  
R8  
R9  
PSD4 PSD3 PSD2 PSD1 PSD0  
Partial AC driver inversion potision shift register  
Partial display mode setting register  
PBIS  
PDT1 PDT0  
R10  
R/W  
W
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D0  
R11 Display memory access register  
Display start line setting register  
Blink X address register  
DSL6 DSL5 DSL4 DSL3 DSL2 DSL1 DSL0  
BXA3 BXA2 BXA1 BXA0  
BSL6 BSL5 BSL4 BSL3 BSL2 BSL1 BSL0  
BEL6 BEL5 BEL4 BEL3 BEL2 BEL1 BEL0  
R12  
R13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
R14 Blink start line address register  
R15  
R16 Blink data memory access register  
Blink end line address register  
D
D
7
7
D
6
D
5
D
4
D
3
D
2
D
1
D0  
IXA3 IXA2 IXA1 IXA0  
ISL6 ISL5 ISL4 ISL3 ISL2 ISL1 ISL0  
IEL6 IEL5 IEL4 IEL3 IEL2 IEL1 IEL0  
Inverted X address register  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
Inversion start line address register  
Inversion end line address register  
Inverted data memory access register  
Partial start line address register  
D
6
D
5
D
4
D
3
D
2
D
1
D0  
PSL6 PSL5 PSL4 PSL3 PSL2 PSL1 PSL0  
Gray scale data register 1 (0, 0)  
Gray scale data register 2 (0, 1)  
Gray scale data register 3 (1, 0)  
W
W
W
W
W
W
W
W
GD5 GD4 GD3 GD2 GD1 GD0  
GD5 GD4 GD3 GD2 GD1 GD0  
GD5 GD4 GD3 GD2 GD1 GD0  
GD5 GD4 GD3 GD2 GD1 GD0  
PGD5 PGD4 PGD3 PGD2 PGD1 PGD0  
PGD5 PGD4 PGD3 PGD2 PGD1 PGD0  
PGD5 PGD4 PGD3 PGD2 PGD1 PGD0  
PGD5 PGD4 PGD3 PGD2 PGD1 PGD0  
Gray scale data register 4 (1, 1)  
Patial gray scale data register 1 (0, 0)  
Patial gray scale data register 2 (0, 1)  
Patial gray scale data register 3 (1, 0)  
Patial gray scale data register 4 (1, 1)  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
Power system control register 1  
Power system control register 2  
Power system control register 3  
W
W
W
W
W
W
HPM1 HPM0  
TCS1 TSC0 OP2 OP1 OP0  
PVR2 PVR1 PVR0  
BIS2 BIS1 BIS0 FBS2 FBS1 FBS0 BST1 BST0  
EV7 EV6 EV5 EV4 EV3 EV2 EV1 EV0  
PEV7 PEV6 PEV5 PEV4 PEV3 PEV2 PEV1 PEV0  
DDC2 DDC1 DDC0  
VRR2 VRR1 VRR0  
R35 Electronic volume register  
Partial electronic volume register  
R36  
R37 Boost adjustment register  
R38  
R39  
R40  
R41  
R42  
R43  
W
R
RTS3 RTS2 RTS1 RTS0  
SIG2 SIG1  
R44 RAM test mode setting register  
R45  
Signature read register  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
Remark  
: Not to use these registers.  
Data Sheet S15745EJ2V0DS  
71  
µPD16488A  
8. POWER SUPPLY SEQUENCE  
The µPD16488A includes power supply circuitry, such as a booster and a voltage follower. When a reset is performed  
using the /RES pin, the reset function is restricted so as to prevent operation faults that may occur due to noise effects, etc.  
When electric charge remains in the smoothing capacitor that is connected between the VSS pin and the voltage pins  
related to the LCD driver (VLCD, VLC1 to VLC4), troubles such as a brief all-black display screen may occur when the power is  
switched ON or OFF. The following power-on sequence is recommended as a means to avoid such troubles when  
switching the power ON or OFF.  
8.1 Power ON Sequence (When Using On-Chip Power Supply, Power Supply ON ¡ Display ON)  
Turn power ON when /RES pin = L  
Power supply stabilization  
/RES pin = H  

Wait at least 50 µs before command input  
Command reset  
R2  
R0  
Register reset  
Control register 1  
DISP = 0, HALT = 1  
Display OFF, internal operations stopped  
IC functions set via command input  
Control register 1  
(DISP = 0, HALT = 1 status is retained)  
Control register 2  
Power control register 1  
(HPM1, HPM0 = 1, 1)  
Specification of power activation mode  
Power control registers 2, 3  
Electronic volume register  
Partial electronic volume register  
Boost adjustment register  
User-specified settings via command input  
Duty setting register (R5)  
Make sure to set the duty setting register (R5) and AC  
driver inversion cycle register (R6)  
AC driver inversion cycle register (R6)  
Function settings for gray scale data, etc.  
Initialization complete  
Control register 1  
DISP = 0, HALT = 0  
Display OFF, internal operations started  
R0  
R0  
LCD display screen settings  
Display start line setting register  
Write screen data, etc. + wait time  
After internal operations are started, wait at least 400 ms  
before turning on the LCD displayNote  
.
Power system control register 1  
Cancels V/F mode for power activation  
(Mode except HPM1, HPM0 (1, 1))  
Control register 1  
DISP = 1, HALT = 0  
Display ON, internal operation start mode  
Note This 400ms wait time varies according to the panel characteristics and the capacitance value of the  
boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the  
actual device (refer to 8.5 VOUT, VLCD Voltage Sequence (Power ON Power OFF)).  
Data Sheet S15745EJ2V0DS  
72  
µPD16488A  
8.2 Power OFF Sequence (When Using On-Chip Power Supply)  
Operation mode  
Display OFF, internal operation start mode  
DISP = 0, HALT = 0  
R0  
Sets high power mode  
HPM1 = 1, HPM0 = 0  
R32  
[EV7, EV6, EV5, EV4, EV3, EV2, EV1, EV0]  
= [0, 0, 0, 0, 0, 0, 0, 0]  
Set electronic volume register  
R35  
R36  
[PEV7, PEV6, PEV5, PEV4, PEV3, PEV2, PEV1, PEV0]  
= [0, 0, 0, 0, 0, 0, 0, 0]  
Set partial electronic volume register  
Wait at least 1200ms before power OFFNote  
.
Power supply OFF  
Note This 1200ms wait time varies according to the panel characteristics and the capacitance value of the  
boost/smoothing capacitor. NEC recommends determining the wait time after making a thorough evaluation of the  
actual device (refer to 8.5 VOUT, VLCD Voltage Sequence (power ON power OFF)).  
8.3 Power ON Sequence (When Using External Driver Power Supply, Power ON Display ON)  
Logic power ON when /RES pin = L  
VDD1, VDD2 power ON, VOUT = Hi-Z  
Power supply stabilization  
/RES pin = H  
Command reset  

Wait at least 50 µs befor command input  
R2  
R0  
Register reset  
Display OFF, internal operations stopped  
DISP = 0, HALT = 1  
Initialization via command input (user-specified)  
Selection of IC functions, etc.  
Power system control register 1 (R32) :  
[OP2, OP1, OP0] = [0 ,0 ,X]  
DISP = 0, HALT = 0  
R0  
R0  
Display OFF, internal operations started  
VOUT power supply ON  
External LCD driver power supply ON  
Stabilization of external LCD driver power supply  
Display ON, internal operations started  
DISP = 1, HALT = 0  
Data Sheet S15745EJ2V0DS  
73  
µPD16488A  
8.4 Power Supply OFF Sequence (When Using External Driver Power Supply)  
Operation mode  
DISP = 0, HALT = 0  
Display OFF, internal operation start mode  
VOUT = Hi-Z  
R0  
R0  
External driver power supply OFF  
DISP = 0, HALT = 1  
Display OFF, internal operations stopped  
VDD1, VDD2, power supply OFF  
Logic power supply OFF  
Data Sheet S15745EJ2V0DS  
74  
µPD16488A  
8.5 VOUT, VLCD Voltage Sequence (Power ON Power OFF)  
0 VDD  
V
OUT  
/RES pin = 0  
Power ON  
/RES pin = 1  
DISP = 0, HALT = 1  
Default settings  
HPM = 3  
HALT = 0  
400 ms  
Select HPM = 0 to 2  
DISP = 1  
Normal display  
DISP = 0  
HPM = 2  
DTY = 1  
700 ms  
LCD = 15V 6V  
V
Select HPM = 0 to 2  
DISP = 1  
Partial display  
DISP = 0  
HPM = 3  
DTY = 0  
400 ms  
Select HPM = 0 to 2  
DISP = 1  
Normal display  
DISP = 0  
HPM = 2  
EV = 0  
1200 ms  
Power OFF  
Dotted line: VOUT  
Solid line: VLCD  
Conditions:  
VDD: VDD1 = VDD2 = 3.0 V  
Boost levels: x6 (in normal display mode), x3 (in partial display mode)  
Capacitors: VLCn pin to Cn+/pin = 1 µF,  
AMPOUT pin, AMPOUTP pin, VRS pin = 0.1µF  
Caution Connect a capacitor of less than 0.1µF to both AMPOUT and AMPOUTP pins.  
Data Sheet S15745EJ2V0DS  
75  
µPD16488A  
9. USE OF RAM TEST MODE  
The µPD16488A has a test mode for writing nine types of screen data to display RAM. When using the test mode, be sure  
to execute via the sequence shown below. If executing the test mode by some other sequence, troubles may appear in the  
screen display.  
Operation mode  
Control register 1  
DISP = 0, STBY = 1  
Display OFF, set to standby  
R0  
Set RAM test mode  
R44  
R0  
Select RAM write data  
Control register 1  
Display OFF, cancel standby  
DISP = 0, STBY = 0  
After internal operations are started, wait at least 1sec  
Wait time  
before turning on the LCD displayNote  
.
Control register 1  
Display ON  
R0  
DISP = 1  
Settings complete  
Note This 1sec wait time varies according to the panel characteristics and the capacitance value of the  
boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the  
actual device.  
Data Sheet S15745EJ2V0DS  
76  
µPD16488A  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = +25°C, VSS = 0 V)  
Parameter  
Logic system supply voltage  
Booster supply voltage  
Symbol  
Ratings  
Unit  
V
V
V
V
V
V
V
V
VDD1  
VDD2  
VOUT  
0.3 to +4.0  
0.3 to +4.0  
Driver supply voltage  
0.3 to +20.0  
0.3 to VOUT+0.3  
0.3 to VDD1+0.3  
0.3 to VDD1+0.3  
0.3 to VDD1+0.3  
0.3 to VOUT+0.3  
0.3 to VOUT+0.3  
40 to +85  
Driver reference supply input voltage  
Logic system input voltage  
Logic system output voltage  
Logic system input/output voltage  
Driver system input voltage  
Driver system output voltage  
Operating ambient temperature  
Storage temperature  
VLCD, VLC1 to VLC4  
VIN1  
VOUT1  
VI/O1  
VIN2  
VOUT2  
TA  
V
°C  
°C  
Tstg  
55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure  
that the absolute maximum ratings are not exceeded.  
Recommended Operating Range  
Parameter  
Logic system supply voltage  
Booster supply voltage  
Driver system supply voltage  
Logic system input voltage  
Driver system supply voltage  
Symbol  
MIN.  
1.7  
2.4  
5.5  
0
TYP.  
MAX.  
3.6  
3.6  
18.0  
VDD1  
Unit  
V
V
V
V
VDD1  
VDD2  
VOUT  
VIN  
Note1  
Note2  
Note2  
VLCD, VLC1 to VLC4  
0
VOUT  
VOUT 0.5  
V
V
Note3  
Maximum setting for LCD driver voltage VLCD  
Notes 1. VDD1 must be less than or equal to VDD2  
2. This item is the recommended parameter when the LCD has an external driver.  
3. This item is the recommended parameter when an on-chip power supply circuit drives the LCD.  
Cautions 1. When using an external LCD driver, be sure to maintain these relations:  
VSS < VLC4 < VLC3 < VLC2 < VLC1 < VLCD VOUT.  
2. Maintain the relations shown in 8. POWER SUPPLY SEQUENCE when turning the power ON or OFF.  
3. When using an external resister (when not using an on-chip resister for VLCD adjustment), maintain  
supply of a voltage between 1.0 V and the VDD1 voltage to the VR and VRS pins.  
Data Sheet S15745EJ2V0DS  
77  
µPD16488A  
Electrical Characteristics 1  
(Unless Otherwise Specified, TA = 40 to +85°C, VDD1 = 1.7 to 3.6 V, VDD2 = 2.4 to 3.6 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.Note1  
MAX.  
Unit  
V
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
Low-level output voltage  
High-level leakage current  
VIH  
VIL  
0.8 VDD1  
0.2 VDD1  
V
IIH1  
IIL1  
VOH  
VOL  
ILOH  
Except for D7 (SI), D6 (SCL) and D5 to D0  
Except for D7 (SI), D6 (SCL) and D5 to D0  
IOUT = 1 mA except OSCOUT  
IOUT = 1 mA except OSCOUT  
D7 (SI), D6 (SCL) and D5 to D0,  
VIN/OUT = VDD1  
1
1  
µA  
µA  
V
V
µA  
VDD1 0.5  
0.5  
10  
Low-level leakage current  
ILOL  
D7 (SI), D6 (SCL) and D5 to D0,  
VIN/OUT = VSS  
VLCn COMn, VOUT = 15 V, VLCD = 12 V,  
1/10 bias, |IO| = 50 µA  
VLCn SEGn, VOUT = 15 V, VLCD = 12 V,  
1/10 bias, |IO| = 50 µA  
In x5 boost mode, VDD = 3.0 V,  
Checker pattern display  
In x6 boost mode, VDD = 3.0 V,  
Checker pattern display  
VDD = 3.0 V, TA = 85°C, TSC1,TSC0 = 1,1  
(temperature characteristic curves:0.12%/°C)  
VDD1 = 3.0 V, TA = 25°C, 1/92 duty,  
in B/W mode, R = 1100 kΩ  
10  
4
µA  
kΩ  
kΩ  
V
Common output ON resistance RCOM  
Segment output ON resistance RSEG  
Driver voltage (boost voltage) VOUT  
4
13.8  
16.6  
V
Note2  

Reference voltage  
VREG  
0.720  
0.790  
26.9  
10.6  
0.860  
V
Note3  
Oscillation frequency  
fOSC  
kHz  
kHz  
VDD1 = 3.0 V, TA = 25°C, 1/38 duty,  
in B/W mode, R = 3 MΩ  
Notes 1. TYP. values are reference values when TA = 25°C (except VREG).  
2. The reference voltage values when TA = 25°C are shown below:  
MIN. = 0.775 V, TYP.= 0.850 V, MAX. = 0.925 V  

3. The oscillation frequency varies according to the parasitic capacitance of the wiring capacitance. We therefore  

recommend determining the oscillation resister’s value after making a thorough evaluation of the actual device.  
Data Sheet S15745EJ2V0DS  
78  
µPD16488A  
Electrical Characteristics 2  
(Unless Otherwise Specified, TA = 40 to +85°C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.Note  
160  
MAX.  
Unit  
Current consumption  
(normal mode)  
IDD11  
Frame frequency = 70 Hz,  
220  
310  
390  
480  
155  
230  
140  
160  
10  
µA  
B/W all display OFF data output,  
1/92 duty, VDD1 = VDD2 = 3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
210  
270  
325  
115  
165  
95  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
B/W checker pattern display data output,  
1/92 duty, VDD1 = VDD2 = 3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
B/W all display OFF data output,  
1/92 duty, VDD1 = VDD2 =3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
B/W checker pattern display data output,  
1/92 duty, VDD1 = VDD2 = 3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
B/W all display OFF data output,  
1/92 duty, VDD1 = VDD2 =3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
B/W checker pattern display data output,  
1/92 duty, VDD1 = VDD2 = 3.0 V,  
in x5 boost mode, VLCD = 12 V  
Frame frequency = 70 Hz,  
B/W all display OFF data output,  
1/38 duty, VDD1 = VDD2 =3.0 V,  
in x3 boost mode, VLCD = 7.0 V, normal mode  
Frame frequency = 70 Hz,  
B/W checker pattern display data output,  
1/38 duty, VDD1 = VDD2 = 3.0 V,  
VLCD = 7.0 V, in x3 boost mode, normal mode  
VDD1 = VDD2 = 3.0 V  
Current consumption  
(high-power mode)  
IDD12  
IDD13  
IDD21  
IDD22  
Current consumption  
(low-power mode)  
Current consumption  
(partial display mode)  
105  
Current consumption  
(standby mode)  
Note TYP. values are reference values when TA = 25°C.  
Data Sheet S15745EJ2V0DS  
79  
µPD16488A  
Required Timing Conditions (Unless Otherwise Specified, TA = 30 to +85°C)  
(1) i80 CPU interface  
RS  
t
AH8  
t
AS8  
t
f
t
r
/CS1  
(CS2 = H)  
t
CYC8  
t
CCLW, tCCLR  
/WR, /RD  
t
CCHR, tCCHW  
t
DS8  
t
DH8  
D0  
to D  
7
(Write)  
t
OH8  
t
ACC8  
D0 to D7  
(Read)  
When VDD1 = 1.7 V to 2.0 V  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Control low-level pulse width (/WR) tCCLW  
Control low-level pulse width (/RD) tCCLR  
Control high-level pulse width (/WR) tCCHW  
Control high-level pulse width (/RD) tCCHR  
Data setup time  
Data hold time  
/RD access time  
Output disable time  
Symbol  
tAH8  
tAS8  
Conditions  
MIN.  
0
0
1000  
160  
430  
160  
160  
160  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
tCYC8  
/WR  
/RD  
/WR  
/RD  
D0 to D7  
D0 to D7  
tDS8  
tDH8  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
D0 to D7, CL = 5 pF, R = 3 kΩ  
0
0
470  
170  
Note TYP. values are reference values when TA = 25°C.  
Data Sheet S15745EJ2V0DS  
80  
µPD16488A  
When VDD1 = 2.0 to 2.5 V  
Parameter  
Symbol  
tAH8  
tAS8  
Conditions  
MIN.  
0
0
600  
120  
240  
120  
120  
120  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
Address setup time  
System cycle time  
Control low-level pulse width (/WR) tCCLW  
Control low-level pulse width (/RD) tCCLR  
Control high-level pulse width (/WR) tCCHW  
Control high-level pulse width (/RD) tCCHR  
Data setup time  
Data hold time  
/RD access time  
Output disable time  
RS  
RS  
tCYC8  
/WR  
/RD  
/WR  
/RD  
D0 to D7  
D0 to D7  
tDS8  
tDH8  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
D0 to D7, CL = 5 pF, R = 3 k  
0
0
280  
170  
Note TYP. values are reference values when TA = 25°C.  
When VDD1 = 2.5 to 3.6 V  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Control low-level pulse width (/WR) tCCLW  
Control low-level pulse width (/RD) tCCLR  
Control high-level pulse width (/WR) tCCHW  
Control high-level pulse width (/RD) tCCHR  
Data setup time  
Data hold time  
/RD access time  
Output disable time  
Symbol  
tAH8  
tAS8  
Conditions  
MIN.  
0
0
250  
60  
120  
60  
60  
60  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
tCYC8  
/WR  
/RD  
/WR  
/RD  
D0 to D7  
D0 to D7  
tDS8  
tDH8  
tACC8  
tOH8  
D0 to D7, CL = 100 pF  
D0 to D5, CL = 5 pF, R = 3 kΩ  
0
0
140  
70  
Note TYP. values are reference values when TA = 25°C.  
/CS1  
(CS2 = H)  
t
RD  
/RD  
(VDD1 = 1.8 to 3.6 V)  
Parameter  
Symbol  
tRD  
Conditions  
MIN.  
10  
TYP.Note  
MAX.  
Unit  
ns  
Chip select disable time  
/RD-CS  
Note TYP. values are reference values when TA = 25°C.  
Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less.  
2. All timing is rated based on 20% or 80% of VDD1.  
Data Sheet S15745EJ2V0DS  
81  
µPD16488A  
(2) M68 CPU interface  
RS  
R,/W  
t
AH6  
t
AS6  
t
f
tr  
/CS1  
(CS2 = H)  
t
CYC6  
t
EWHR, tEWHW  
E
t
EWLR, tEWLW  
t
DS6  
t
DH6  
D0  
to D  
7
(Write)  
t
ACC6  
t
OH6  
D0 to D7  
(Read)  
When VDD1 = 1.7 to 2.0 V  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Symbol  
tAH6  
tAS6  
tCYC6  
tDS6  
tDH6  
Conditions  
MIN.  
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
0
0
1000  
160  
0
D0 to D7  
D0 to D7  
Data hold time  
Access time  
tACC6  
tOH6  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
D0 to D7, CL = 100 pF  
D0 to D7, CL = 5 pF, R = 3 kΩ  
E
E
E
E
0
0
430  
160  
160  
160  
470  
170  
Output disable time  
Enable high pulse width Read  
Write  
Enable low pulse width  
Read  
Write  
Note TYP. values are reference values when TA = 25°C.  
Data Sheet S15745EJ2V0DS  
82  
µPD16488A  
When VDD1 = 2.0 to 2.5 V  
Parameter  
Symbol  
tAH6  
tAS6  
tCYC6  
tDS6  
tDH6  
tACC6  
tOH6  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
Conditions  
MIN.  
0
0
600  
120  
0
0
0
240  
120  
120  
120  
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
Access time  
Output disable time  
Enable high pulse width Read  
Write  
RS  
RS  
D0 to D7  
D0 to D7  
D0 to D7, CL = 100 pF  
D0 to D7, CL = 5 pF, R = 3 kΩ  
280  
170  
E
E
E
E
Enable low pulse width  
Read  
Write  
Note TYP. values are reference values when TA = 25°C.  
When VDD1 = 2.5 to 3.6 V  
Parameter  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
Symbol  
tAH6  
tAS6  
tCYC6  
tDS6  
tDH6  
Conditions  
MIN.  
0
0
250  
60  
0
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RS  
RS  
D0 to D7  
D0 to D7  
Access time  
tACC6  
tOH6  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
D0 to D7, CL = 100 pF  
D0 to D7, CL = 5 pF, R = 3 kΩ  
E
E
E
E
0
0
120  
60  
60  
60  
140  
70  
Output disable time  
Enable high pulse width Read  
Write  
Enable low pulse width  
Read  
Write  
Note TYP. values are reference values when TA = 25°C.  
Cautions 1. The rise and fall times of input signals (tr and tf) are rated at 15 ns or less. When using a fast system  
cycle time, the rated value range is either (tr + tf) (tCYC6 tEWLW tEWHW) or (tr + tf) (tCYC6 tEWLR −  
tEWHR).  
2. All timing is rated based on 20% or 80% of VDD1.  
Data Sheet S15745EJ2V0DS  
83  
µPD16488A  
(3) Serial interface  
t
CSS  
t
CSH  
/CS1  
(CS2 = H)  
t
SAS  
t
SAH  
RS  
t
SCYC  
t
SLW  
SCL  
t
f
t
SHW  
t
r
t
SDS  
tSDH  
SI  
When VDD1 = 1.7 to 2.5 V  
Parameter  
Symbol  
tSCYC  
Conditions  
MIN.  
250  
100  
100  
150  
150  
100  
100  
150  
150  
TYP.Note  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock cycle  
SCL  
SCL  
SCL  
RS  
RS  
SI  
SI  
CS  
CS  
SCL high-level pulse width  
SCL low-level pulse width  
Address hold time  
Address setup time  
Data setup time  
tSHW  
tSLW  
tSAH  
tSAS  
tSDS  
tSDH  
tCSS  
tCSH  
Data hold time  
CS-SCL time  
Note TYP. values are reference values when TA = 25°C.  
When VDD1 = 2.5 to 3.6 V  
Parameter  
Symbol  
tSCYC  
Conditions  
MIN.  
TYP.Note  
MAX.  
Unit  
Serial clock cycle  
SCL  
SCL  
SCL  
RS  
RS  
SI  
SI  
CS  
CS  
150  
60  
60  
90  
90  
60  
60  
90  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL high-level pulse width  
SCL low-level pulse width  
Address hold time  
Address setup time  
Data setup time  
tSHW  
tSLW  
tSAH  
tSAS  
tSDS  
tSDH  
tCSS  
tCSH  
Data hold time  
CS-SCL time  
Note TYP. values are reference values when TA = 25°C.  
Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less.  
2. All timing is rated based on 20% or 80% of VDD1.  
Data Sheet S15745EJ2V0DS  
84  
µPD16488A  
(4) Common  
Parameter  
Symbol  
fN  
Conditions  
MIN.  
TYP.Note  
26.9  
MAX.  
150  
Unit  
kHz  
Clock input 1  
When using OSCIN1, external clock, and  
on-chip divider, 1/92 duty, B/W mode  
When using OSCIN1, external clock, and  
on-chip divider, 1/92 duty,  
53.8  
150  
kHz  
four-level gray scale mode  
Clock input 2  
fP  
When using OSCIN2, external clock for  
partial display mode, but not using on-chip  
divider, B/W mode  
10.6  
21.3  
50  
50  
kHz  
kHz  
When using OSCIN2, external clock for  
partial display mode, but not using on-chip  
divider, four-level gray scale mode  
Note TYP. values are reference values when frame frequency = 70 Hz.  
Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less.  
2. All timing is rated based on 20% or 80% of VDD1.  
(a) Display control output timing  
OSCSYNC  
t
DFR  
FR  
(VDD1 = 1.7 to 2.5 V)  
Parameter  
Symbol  
tDFR  
Conditions  
MIN.  
MIN.  
TYP.Note  
50  
MAX.  
200  
Unit  
ns  
FR delay time  
FR, CL = 50 pF  
Note TYP. values are reference values when TA = 25°C.  
(VDD1 = 2.5 to 3.6 V)  
Parameter  
Symbol  
tDFR  
Conditions  
TYP.Note  
20  
MAX.  
80  
Unit  
ns  
FR delay time  
FR, CL = 50 pF  
Note TYP. values are reference values when TA = 25°C.  
Caution All timing is rated based on 20% or 80% of VDD1.  
Data Sheet S15745EJ2V0DS  
85  
µPD16488A  
(b) Reset timing  
t
RW  
/RES  
t
R
Internal  
status  
During reset  
Reset complete  
When VDD1 = 1.7 to 2.5 V  
Parameter  
Reset time  
Symbol  
tR  
tRW  
Conditions  
MIN.  
50  
TYP.Note  
MAX.  
50  
Unit  
µs  
Reset low pulse width  
/RES  
µs  
Note TYP. values are reference values when TA = 25°C.  
When VDD1 = 2.5 to 3.6 V  
Parameter  
Reset time  
Reset low pulse width  
Symbol  
tR  
tRW  
Conditions  
MIN.  
50  
TYP.Note  
MAX.  
50  
Unit  
µs  
/RES  
µs  
Note TYP. values are reference values when TA = 25°C.  
Caution All timing is rated based on 20% or 80% of VDD1.  
Data Sheet S15745EJ2V0DS  
86  
µPD16488A  
11. CPU INTERFACE (REFERENCE EXAMPLE)  
The µPD16488A can be connected to either an i80 series CPU or an M68 series CPU. Also, if a serial interface  
connection is used, the number of signal lines can be reduced.  
If several µPD16488A chip is used, the display area can be enlarged. When using this method, use the chip select signal  
to select and access the ICs.  
(1) M68 series CPU  
V
CC  
VDD1  
A0  
RS  
A1 to A15  
VIMA  
C86  
/CS1  
Decoder  
D0  
to D  
7
D0 to D7  
CPU  
E
E
R/W  
R,/W  
/RES  
PSX  
/RES  
V
SS  
GND  
/RESET  
(2) i80 series CPU  
V
CC  
VDD1  
A0  
RS  
A1 to A7  
/IORQ  
C86  
/CS1  
Decoder  
D0  
to D  
7
D0 to D7  
CPU  
/RD  
/RD  
/WR  
/WR  
PSX  
/RES  
/RES  
V
SS  
GND  
/RESET  
Data Sheet S15745EJ2V0DS  
87  
µPD16488A  
(3) When using serial interface  
V
CC  
VDD1  
A0  
RS  
C86  
H or L  
/CS1  
Decoder  
Open  
A1 to A7  
D0 to D5  
CPU  
Port1  
SI(D7)  
/Port2  
SCL(D  
6)  
PSX  
/RES  
/RES  
V
SS  
GND  
/RESET  
Data Sheet S15745EJ2V0DS  
88  
µPD16488A  
[MEMO]  
Data Sheet S15745EJ2V0DS  
89  
µPD16488A  
[MEMO]  
Data Sheet S15745EJ2V0DS  
90  
µPD16488A  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Data Sheet S15745EJ2V0DS  
91  

相关型号:

UPD16488AW

1/92 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM
NEC

UPD16498

1/128 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM
NEC

UPD16498P

1/128 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM
NEC

UPD16498W

1/128 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM
NEC

UPD16502

CCD DRIVER CMOS IC
NEC

UPD16502GS

CCD DRIVER CMOS IC
NEC

UPD16502GS-A

Consumer Circuit, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
NEC

UPD16510

VERTICAL DRIVER FOR CCD SENSOR
NEC

UPD16510AGR-8JG-E1-A

SPECIALTY INTERFACE CIRCUIT, PDSO20, 5.72 MM, LEAD FREE, PLASTIC, SSOP-20
RENESAS
RENESAS

UPD16510GR-8JG

VERTICAL DRIVER FOR CCD SENSOR
NEC

UPD16520

VERTICAL DRIVER FOR CCD SENSORS
NEC