PSMN6R5-25YLC [NEXPERIA]

N-channel 25 V 6.5 mΩ logic level MOSFET in LFPAK using NextPower technologyProduction;
PSMN6R5-25YLC
型号: PSMN6R5-25YLC
厂家: Nexperia    Nexperia
描述:

N-channel 25 V 6.5 mΩ logic level MOSFET in LFPAK using NextPower technologyProduction

文件: 总15页 (文件大小:898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSMN6R5-25YLC  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using  
NextPower technology  
Rev. 2 — 31 October 2011  
Product data sheet  
1. Product profile  
1.1 General description  
Logic level enhancement mode N-channel MOSFET in LFPAK package. This product is  
designed and qualified for use in a wide range of industrial, communications and domestic  
equipment.  
1.2 Features and benefits  
High reliability Power SO8 package,  
Optimised for 4.5V Gate drive utilising  
qualified to 175°C  
NextPower Superjunction technology  
Low parasitic inductance and  
Ultra low QG, QGD, & QOSS for high  
system efficiencies at low and high  
loads  
resistance  
1.3 Applications  
DC-to-DC converters  
Load switching  
Synchronous buck regulator  
1.4 Quick reference data  
Table 1.  
Symbol  
VDS  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
Max  
25  
Unit  
V
drain-source voltage  
drain current  
25 °C Tj 175 °C  
-
-
-
-
-
ID  
Tmb = 25 °C; VGS = 10 V; see Figure 1  
Tmb = 25 °C; see Figure 2  
-
64  
A
Ptot  
total power dissipation  
junction temperature  
-
48  
W
Tj  
-55  
175  
°C  
Static characteristics  
RDSon drain-source on-state  
resistance  
VGS = 4.5 V; ID = 20 A; Tj = 25 °C;  
see Figure 12  
-
-
7.3  
5.5  
8.5  
6.5  
mΩ  
mΩ  
V
GS = 10 V; ID = 20 A; Tj = 25 °C;  
see Figure 12  
Dynamic characteristics  
QGD  
gate-drain charge  
total gate charge  
VGS = 4.5 V; ID = 20 A; VDS = 12 V;  
see Figure 14; see Figure 15  
-
-
2.8  
8.4  
-
-
nC  
nC  
QG(tot)  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
2. Pinning information  
Table 2.  
Pinning information  
Symbol Description  
Pin  
1
Simplified outline  
Graphic symbol  
S
S
S
G
D
source  
mb  
D
S
2
source  
3
source  
G
4
gate  
mbb076  
mb  
mounting base; connected to drain  
1
2 3 4  
SOT669 (LFPAK; Power-SO8)  
3. Ordering information  
Table 3.  
Ordering information  
Type number  
Package  
Name  
Description  
plastic single-ended surface-mounted package; 4 leads  
Version  
PSMN6R5-25YLC  
LFPAK; Power-SO8  
SOT669  
4. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDS  
Parameter  
Conditions  
Min  
Max  
25  
Unit  
V
drain-source voltage  
drain-gate voltage  
gate-source voltage  
drain current  
25 °C Tj 175 °C  
-
VDGR  
VGS  
25 °C Tj 175 °C; RGS = 20 kΩ  
-
25  
V
-20  
20  
V
ID  
VGS = 10 V; Tmb = 25 °C; see Figure 1  
VGS = 10 V; Tmb = 100 °C; see Figure 1  
-
-
-
64  
A
45  
A
IDM  
peak drain current  
pulsed; tp 10 µs; Tmb = 25 °C;  
256  
A
see Figure 4  
Ptot  
total power dissipation  
storage temperature  
Tmb = 25 °C; see Figure 2  
-
48  
W
°C  
°C  
°C  
V
Tstg  
Tj  
-55  
-55  
-
175  
175  
260  
-
junction temperature  
Tsld(M)  
VESD  
peak soldering temperature  
electrostatic discharge voltage  
MM (JEDEC JESD22-A115)  
240  
Source-drain diode  
IS  
source current  
peak source current  
Tmb = 25 °C  
-
-
44  
A
A
ISM  
pulsed; tp 10 µs; Tmb = 25 °C  
256  
Avalanche ruggedness  
EDS(AL)S  
non-repetitive drain-source  
avalanche energy  
VGS = 10 V; Tj(init) = 25 °C; ID = 64 A;  
Vsup 25 V; unclamped; RGS = 50 ;  
see Figure 3  
-
18  
mJ  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
2 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
003aag135  
03na19  
120  
80  
I
D
P
(%)  
der  
(A)  
60  
80  
40  
20  
40  
0
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
T
(°C)  
mb  
T
( C)  
°
mb  
Fig 1. Continuous drain current as a function of  
mounting base temperature  
Fig 2. Normalized total power dissipation as a  
function of mounting base temperature  
003aag136  
102  
I
AL  
(A)  
(1)  
(2)  
10  
1
10-3  
10-2  
10-1  
1
10  
t
(ms)  
AL  
Fig 3. Single pulse avalanche rating; avalanche current as a function of avalanche time  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
3 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
003aag137  
103  
I
D
(A)  
102  
Limit R  
= V / I  
DS D  
DSon  
t =10  
s
μ
p
100  
s
μ
10  
1
DC  
1 ms  
10 ms  
100 ms  
10-1  
10-2  
10-1  
1
10  
102  
V
(V)  
DS  
Fig 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
4 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
5. Thermal characteristics  
Table 5.  
Symbol  
Rth(j-mb)  
Thermal characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
thermal resistance from junction to mounting base  
see Figure 5  
-
2.9  
3.13  
K/W  
003aag138  
10  
Z
th(j-mb)  
(K/W)  
= 0.5  
δ
1
0.2  
0.1  
tp  
0.05  
P
δ =  
10-1  
T
0.02  
t
single shot  
tp  
T
10-2  
10-6  
10-5  
10-4  
10-3  
10-2  
10-1  
1
t (s)  
p
Fig 5. Transient thermal impedance from junction to mounting base as a function of pulse duration  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
5 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
6. Characteristics  
Table 6.  
Symbol  
Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Static characteristics  
V(BR)DSS drain-source breakdown  
voltage  
ID = 250 µA; VGS = 0 V; Tj = 25 °C  
ID = 250 µA; VGS = 0 V; Tj = -55 °C  
25  
-
-
V
V
V
22.5  
1.05  
-
-
VGS(th)  
gate-source threshold voltage ID = 1 mA; VDS = VGS; Tj = 25 °C;  
see Figure 10; see Figure 11  
1.54  
1.95  
ID = 10 mA; VDS = VGS; Tj = 150 °C  
ID = 1 mA; VDS = VGS; Tj = -55 °C  
0.5  
-
-
V
-
-
-
-
-
-
-
2.25  
1
V
IDSS  
drain leakage current  
gate leakage current  
VDS = 25 V; VGS = 0 V; Tj = 25 °C  
VDS = 25 V; VGS = 0 V; Tj = 150 °C  
VGS = 16 V; VDS = 0 V; Tj = 25 °C  
VGS = -16 V; VDS = 0 V; Tj = 25 °C  
-
µA  
µA  
nA  
nA  
mΩ  
-
100  
100  
100  
8.5  
IGSS  
-
-
RDSon  
drain-source on-state  
resistance  
VGS = 4.5 V; ID = 20 A; Tj = 25 °C;  
see Figure 12  
7.3  
V
GS = 4.5 V; ID = 20 A; Tj = 150 °C;  
-
-
-
-
-
13.6  
6.5  
mΩ  
mΩ  
mΩ  
see Figure 13; see Figure 12  
VGS = 10 V; ID = 20 A; Tj = 25 °C;  
see Figure 12  
5.5  
-
VGS = 10 V; ID = 20 A; Tj = 150 °C;  
10.3  
4.4  
see Figure 13; see Figure 12  
RG  
internal gate resistance (AC)  
f = 1 MHz  
2.2  
Dynamic characteristics  
QG(tot)  
total gate charge  
ID = 20 A; VDS = 12 V; VGS = 10 V; see  
Figure 14; see Figure 15  
-
-
17.5  
8.4  
-
-
nC  
nC  
ID = 20 A; VDS = 12 V; VGS = 4.5 V;  
see Figure 14; see Figure 15  
ID = 0 A; VDS = 0 V; VGS = 10 V  
-
-
-
16  
-
-
-
nC  
nC  
nC  
QGS  
gate-source charge  
ID = 20 A; VDS = 12 V; VGS = 4.5 V;  
see Figure 14; see Figure 15  
2.6  
1.7  
QGS(th)  
pre-threshold gate-source  
charge  
QGS(th-pl)  
post-threshold gate-source  
charge  
-
0.9  
-
nC  
QGD  
gate-drain charge  
-
-
2.8  
-
-
nC  
V
VGS(pl)  
gate-source plateau voltage  
ID = 20 A; VDS = 12 V; see Figure 14;  
see Figure 15  
2.71  
Ciss  
Coss  
Crss  
td(on)  
tr  
input capacitance  
output capacitance  
reverse transfer capacitance  
turn-on delay time  
rise time  
VDS = 12 V; VGS = 0 V; f = 1 MHz;  
Tj = 25 °C; see Figure 16  
-
-
-
-
-
-
-
1093  
282  
106  
15  
-
-
-
-
-
-
-
pF  
pF  
pF  
ns  
ns  
ns  
ns  
VDS = 12 V; RL = 0.6 ; VGS = 4.5 V;  
RG(ext) = 4.7 Ω  
8.6  
19  
td(off)  
tf  
turn-off delay time  
fall time  
5.7  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
6 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
Table 6.  
Symbol  
Qoss  
Characteristics …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
output charge  
VGS = 0 V; VDS = 12 V; f = 1 MHz  
-
5.7  
-
nC  
Source-drain diode  
VSD  
source-drain voltage  
IS = 20 A; VGS = 0 V; Tj = 25 °C;  
see Figure 17  
-
0.86  
1.1  
V
trr  
Qr  
ta  
reverse recovery time  
recovered charge  
IS = 20 A; dIS/dt = -100 A/µs;  
VGS = 0 V; VDS = 12 V  
-
-
-
-
24  
15  
14  
10  
-
-
-
-
ns  
nC  
ns  
ns  
reverse recovery rise time  
reverse recovery fall time  
VGS = 0 V; IS = 20 A;  
dIS/dt = -100 A/µs; VDS = 12 V;  
see Figure 18  
tb  
003aag139  
003aag140  
80  
60  
40  
20  
0
25  
5.0  
10  
4.5  
V
(V) = 3.5  
GS  
R
I
DSon  
D
(m  
)
Ω
(A)  
20  
15  
10  
5
3.0  
2.8  
2.6  
2.4  
2.2  
0
0
0.5  
1
1.5  
2
0
4
8
12  
16  
V
(V)  
V
(V)  
DS  
GS  
Fig 6. Output characteristics; drain current as a  
function of drain-source voltage; typical values  
Fig 7. Drain-source on-state resistance as a function  
of gate-source voltage; typical values  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
7 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
003aag141  
003aag142  
80  
80  
60  
40  
20  
0
I
g
D
fs  
(A)  
(S)  
60  
40  
20  
T = 150  
j
C
T = 25  
C
°
°
j
0
0
20  
40  
60  
80  
0
1
2
3
4
V
(V)  
I
(A)  
GS  
D
Fig 8. Forward transconductance as a function of  
drain current; typical values  
Fig 9. Transfer characteristics; drain current as a  
function of gate-source voltage; typical values  
003aag143  
003aag144  
10-1  
3
I
D
(A)  
10-2  
V
GS(th)  
(V)  
Max (1mA)  
I
=5mA  
D
2
1
0
1mA  
Min  
Typ Max  
10-3  
10-4  
10-5  
10-6  
Min (5mA)  
-60  
0
60  
120  
180  
0
1
2
3
V
(V)  
T (DC)  
j
GS  
Fig 10. Sub-threshold drain current as a function of  
gate-source voltage  
Fig 11. Gate-source threshold voltage as a function of  
junction temperature  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
8 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
003aag145  
003aag146  
20  
2
2.8  
3.0  
V
(V) = 3.5  
GS  
R
DSon  
a
(mΩ)  
4.5V  
16  
1.5  
1
12  
8
V
=10V  
GS  
4.5  
5.0  
10  
0.5  
0
4
0
0
20  
40  
60  
80  
100  
-60  
0
60  
120  
180  
I (A)  
D
T (DC)  
j
Fig 12. Drain-source on-state resistance as a function  
of drain current; typical values  
Fig 13. Normalized drain-source on-state resistance  
factor as a function of junction temperature  
003aag147  
10  
V
DS  
V
GS  
(V)  
I
D
20V  
8
6
4
2
0
V
GS(pl)  
5V  
V
= 12V  
DS  
V
GS(th)  
GS  
V
Q
Q
GS1  
GS2  
Q
Q
GD  
GS  
Q
G(tot)  
003aaa508  
0
5
10  
15  
20  
Q
(nC)  
G
Fig 14. Gate charge waveform definitions  
Fig 15. Gate-source voltage as a function of gate  
charge; typical values  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
9 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
003aag148  
003aag149  
104  
80  
I
S
C
(pF)  
(A)  
60  
103  
C
iss  
40  
20  
0
C
oss  
102  
C
rss  
T = 150  
C
°
T = 25 C  
°
j
j
10  
10-1  
1
10  
102  
0
0.3  
0.6  
0.9  
1.2  
V
(V)  
V
(V)  
SD  
DS  
Fig 16. Input, output and reverse transfer capacitances  
as a function of drain-source voltage; typical  
values  
Fig 17. Source current as a function of source-drain  
voltage; typical values  
003aaf 444  
ID  
(A)  
trr  
ta  
tb  
0
0.25 I  
RM  
IRM  
t (s)  
Fig 18. Reverse recovery timing definition  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
10 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
7. Package outline  
Plastic single-ended surface-mounted package (LFPAK; Power-SO8); 4 leads  
SOT669  
A
2
E
A
C
c
E
b
b
2
1
2
L
3
1
mounting  
base  
b
4
D
1
D
H
L
2
1
2
3
4
X
e
w
M
c
A
b
1/2 e  
A
(A )  
3
C
A
1
θ
L
detail X  
y
C
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
D
(1)  
D
(1)  
(1)  
1
A
A
A
H
L
L
L
2
w
y
θ
UNIT  
A
b
b
b
b
c
c
E
E
1
e
1
2
3
1
2
3
4
2
max  
1.20 0.15 1.10  
1.01 0.00 0.95  
0.50 4.41 2.2 0.9 0.25 0.30 4.10  
0.35 3.62 2.0 0.7 0.19 0.24 3.80  
5.0 3.3  
4.8 3.1  
6.2 0.85 1.3 1.3  
5.8 0.40 0.8 0.8  
8°  
0°  
mm  
0.25  
4.20  
1.27  
0.25 0.1  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
06-03-16  
11-03-25  
SOT669  
MO-235  
Fig 19. Package outline SOT669 (LFPAK; Power-SO8)  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
11 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
8. Revision history  
Table 7.  
Document ID  
PSMN6R5-25YLC v.2 20111031  
Revision history  
Release date  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PSMN6R5-25YLC v.1  
Modifications:  
Status changed from objective to product.  
Various changes to content.  
PSMN6R5-25YLC v.1 20110712  
Objective data sheet  
-
-
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
12 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
9. Legal information  
9.1 Data sheet status  
Document status [1] [2]  
Product status [3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term 'short data sheet' is explained in section "Definitions".  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product  
status information is available on the Internet at URL http://www.nexperia.com.  
Right to make changes — Nexperia reserves the right to make  
9.2 Definitions  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Preview — The document is a preview version only. The document is still  
subject to formal approval, which may result in modifications or additions.  
Nexperia does not give any representations or warranties as to  
the accuracy or completeness of information included herein and shall have  
no liability for the consequences of use of such information.  
Suitability for use — Nexperia products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of a Nexperia product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. Nexperia accepts no liability for inclusion and/or use of  
Nexperia products in such equipment or applications and  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Nexperia does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
therefore such inclusion and/or use is at the customer’s own risk.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local Nexperia sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Nexperia makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
Nexperia and its customer, unless Nexperia and  
Customers are responsible for the design and operation of their applications  
and products using Nexperia products, and Nexperia  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the Nexperia  
product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the Nexperia product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
9.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, Nexperia does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
Nexperia does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using Nexperia  
products in order to avoid a default of the applications and  
In no event shall Nexperia be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
the products or of the application or use by customer’s third party  
customer(s). Nexperia does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, Nexperia’s aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of Nexperia.  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
13 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
Terms and conditions of commercial sale — Nexperia  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without Nexperia’s warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Nexperia’s specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies Nexperia for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond Nexperia’s  
standard warranty and Nexperia’s product specifications.  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nexperia.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. Nexperia hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of Nexperia products by customer.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
9.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Export control — This document as well as the item(s) described herein may  
be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific Nexperia product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. Nexperia  
accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
10. Contact information  
For more information, please visit: http://www.nexperia.com  
For sales office addresses, please send an email to: salesaddresses@nexperia.com  
PSMN6R5-25YLC  
All information provided in this document is subject to legal disclaimers.  
©
Nexperia B.V. 2017. All rights reserved  
Product data sheet  
Rev. 2 — 31 October 2011  
14 of 15  
PSMN6R5-25YLC  
Nexperia  
N-channel 25 V 6.5 mlogic level MOSFET in LFPAK using NextPower technology  
11. Contents  
1
Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
General description . . . . . . . . . . . . . . . . . . . . . .1  
Features and benefits. . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Quick reference data . . . . . . . . . . . . . . . . . . . . .1  
1.1  
1.2  
1.3  
1.4  
2
3
4
5
6
7
8
Pinning information. . . . . . . . . . . . . . . . . . . . . . .2  
Ordering information. . . . . . . . . . . . . . . . . . . . . .2  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Thermal characteristics . . . . . . . . . . . . . . . . . . .5  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . .11  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . .12  
9
Legal information. . . . . . . . . . . . . . . . . . . . . . . .13  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . .13  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
9.1  
9.2  
9.3  
9.4  
10  
Contact information. . . . . . . . . . . . . . . . . . . . . .14  
© Nexperia B.V. 2017. All rights reserved  
For more information, please visit: http://www.nexperia.com  
For sales office addresses, please send an email to: salesaddresses@nexperia.com  
Date of release: 31 October 2011  

相关型号:

PSMN6R5-80BS

N-channel 80V 6.9mΩ standard level MOSFET in D2PAK
NXP

PSMN6R5-80BS

N-channel 80V 6.9mΩ standard level MOSFET in D2PAKProduction
NEXPERIA

PSMN6R5-80PS

N-channel 80V 6.9mΩ standard level MOSFET in TO220
NXP

PSMN6R5-80PS

N-channel 80V 6.9mΩ standard level MOSFET in TO220Production
NEXPERIA

PSMN6R5-80PS,127

PSMN6R5-80PS - N-channel 80V 6.9mΩ standard level MOSFET in TO220 TO-220 3-Pin
NXP

PSMN6R7-40MLD

N-channel 40 V, 6.7 mΩ, logic level MOSFET in LFPAK33 using NextPower-S3 technologyProduction
NEXPERIA

PSMN6R7-40MSD

N-channel 40 V, 6.7 mΩ, standard level MOSFET in LFPAK33 using NextPower-S3 technologyProduction
NEXPERIA

PSMN6R8-40HS

N-channel 40 V, 6.8 mOhm, standard level MOSFET in LFPAK56D using TrenchMOS technologyProduction
NEXPERIA

PSMN7R0-100BS

N-channel 100V 6.8 mΩ standard level MOSFET in D2PAK.
NXP

PSMN7R0-100BS

N-channel 100V 6.8 mΩ standard level MOSFET in D2PAK.Production
NEXPERIA

PSMN7R0-100ES

N-channel 100V 6.8 mΩ standard level MOSFET in I2PAK.
NXP

PSMN7R0-100ES,127

PSMN7R0-100ES - N-channel 100V 6.8 mΩ standard level MOSFET in I2PAK. TO-262 3-Pin
NXP