CLC416AJ [NSC]

Dual Low-Power, 120MHz Op Amp; 双路低功耗, 120MHz的运算放大器
CLC416AJ
型号: CLC416AJ
厂家: National Semiconductor    National Semiconductor
描述:

Dual Low-Power, 120MHz Op Amp
双路低功耗, 120MHz的运算放大器

运算放大器
文件: 总6页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 1998  
N
CLC416  
Dual Low-Power, 120MHz Op Amp  
Features  
General Description  
0.01%, 0.03° D , Dφ  
The CLC416 is a dual, wideband (120MHz) op amp. The  
CLC416 consumes only 39mW per channel and can source or  
sink an output current of 60mA. These features make the  
CLC416 a versatile, high-speed solution for demanding  
applications that are sensitive to both power and cost.  
G
Very low input bias current: 100nA  
High input impedance: 6MΩ  
120MHz -3dB bandwidth (A = +2)  
Low power  
High output current: 60mA  
Low-cost  
v
Utilizing National’s proven architectures, this dual current  
feedback amplifier surpasses the performance of alternative  
solutions and sets new standards for low power. This power-  
conserving dual op amp achieves low distortion with -80dBc and  
-80dBc second and third harmonics respectively. Many high  
source impedance applications will benefit from the CLC416’s  
6Minput impedance. And finally, designers will have a bipolar  
part with an exceptionally low 100nA non-inverting bias current.  
Applications  
Desktop video systems  
Video distribution  
Flash A/D driver  
High-speed driver  
High-source impedance applications  
Professional video processing  
High resolution monitors  
With 0.1dB flatness to 30MHz and low differential gain and phase  
errors, the CLC416 is an ideal part for professional video  
Frequency Response (Av = +2V/V)  
processing and distribution. The 120MHz -3dB bandwidth (A =  
v
+2) coupled with a 400V/µs slew rate also makes the CLC416  
a perfect choice in cost-sensitive applications such as video  
monitors, fax machines, copiers, and CATV systems.  
Typical Application Diagram  
Instrumentation Amplifier  
Pinout  
DIP & SOIC  
V1  
+
1/2  
CLC416  
-
Vo1  
inv1  
+VCC  
Vo2  
348  
348Ω  
348Ω  
348Ω  
Vout = 3(V2 - V1)  
V
-
348Ω  
CLC405  
+
348Ω  
Vnon-inv  
1
Vinv2  
-
-VCC  
Vnon-inv  
2
1/2  
R1  
348Ω  
CLC416  
+
V2  
© 1998 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(A = +2, R = 348: Vcc = + 5V, RL = 100unless specified)  
CLC416 Electrical Characteristics  
V
f
PARAMETERS  
CONDITIONS  
TYP  
MIN/MAX RATINGS  
0 to 70˚C -40 to 85˚C  
UNITS  
NOTES  
Ambient Temperature  
CLC416AJ  
+25˚C  
+25˚C  
FREQUENCY DOMAIN RESPONSE  
-3dB bandwidth  
V
V
out < 1.0Vpp  
out < 5.0Vpp  
120  
52  
30  
65  
40  
15  
45  
36  
45  
35  
MHz  
MHz  
MHz  
1
±0.1dB bandwidth  
Vout < 1.0Vpp  
gain flatness  
peaking  
V
out < 1.0Vpp  
DC to 200MHz  
<30MHz  
0.1  
0
0.7  
0.3  
0.8  
0.6  
1.0  
0.6  
dB  
dB  
rolloff  
linear phase deviation  
differential gain  
differential phase  
<20MHz  
4.43MHz, RL=150Ω  
4.43MHz, RL=150Ω  
0.3  
0.01  
0.03  
0.6  
0.04  
0.08  
0.7  
0.04  
0.11  
0.7  
0.04  
0.12  
deg  
%
deg  
TIME DOMAIN RESPONSE  
rise and fall time  
settling time to 0.05%  
overshoot  
2V step  
2V step  
2V step  
2V step  
1V step  
4.3  
22  
3
400  
700  
6.5  
30  
12  
7.2  
38  
12  
7.4  
41  
12  
ns  
ns  
%
V/µs  
V/µs  
slew rate  
AV = +2  
AV = -1  
300  
260  
250  
DISTORTION AND NOISE RESPONSE  
2
nd harmonic distortion  
2Vpp, 1MHz  
2Vpp, 1MHz  
2Vpp, 10MHz  
2Vpp, 10MHz  
-80  
-80  
-65  
-57  
dBc  
dBc  
dBc  
dBc  
3rd harmonic distortion  
2nd harmonic distortion  
3rd harmonic distortion  
equivalent input noise  
voltage  
-55  
-50  
-50  
-45  
-47  
-45  
>1MHz  
5
12  
3
6.3  
15  
3.8  
66  
6.6  
16  
4.0  
66  
6.7  
17  
4.2  
66  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
inverting current  
non-inverting current  
crosstalk, input referred  
>1MHz  
>1MHz  
2Vpp, 10MHz  
72  
STATIC DC PERFORMANCE  
input offset voltage  
average drift  
input bias current  
average drift  
input bias current  
1
30  
100  
3
5
900  
5
7
50  
1600  
8
8
50  
2800  
11  
mV  
µV/˚C  
nA  
nA/˚C  
µA  
A
A
A
non-inverting  
inverting  
1
6
8
average drift  
17  
52  
50  
3.9  
40  
47  
45  
4.6  
45  
45  
43  
4.9  
nA/˚C  
dB  
dB  
power supply rejection ratio  
common-mode rejection ratio  
supply current per channel  
DC  
DC  
RL= ∞  
47  
45  
4.5  
mA  
A
MISCELLANEOUS PERFORMANCE  
input resistance  
input capacitance  
non-inverting  
non-inverting  
6
1
2.2  
3
2
±1.8  
2.4  
2
±1.7  
+2.9/-2.7  
+3.8/-3.2  
38  
1
2
±1.5  
+2.4/-1.7  
+3.7/-2.8  
20  
MΩ  
pF  
V
V
V
common mode input range  
output voltage range  
output voltage range  
output current  
±
RL = 100Ω  
RL = ∞  
+3.5,-2.9 +3.1/-2.8  
+4.0,-3.4  
60  
+3.9/-3.3  
44  
mA  
output resistance, closed loop  
0.06  
0.2  
0.25  
0.4  
+
+
Recommended gain range 1 to 40V/V  
Transistor count = 110  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Absolute Maximum Ratings  
supply voltage  
Notes  
±
7V  
1) At temps < 0 C, spec is guaranteed for R = 500.  
˚
L
A) J-level: spec is 100% tested at +25 C.  
˚
I
out is short circuit protected to ground  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
±
Vcc  
˚
˚
+175 C  
-65 C to +150 C  
˚
lead temperature (soldering 10 sec)  
ESD rating (human body model)  
+300 C  
˚
1000V  
Ordering Information  
Package Thermal Resistance  
Model  
Temperature Range  
Description  
8-pin PDIP  
8-pin SOIC  
Package  
Plastic (AJP)  
Surface Mount (AJE)  
θJC  
θJA  
CLC416AJP  
CLC416AJE  
-40 C to +85 C  
˚
˚
80°C/W  
95°C/W  
95°C/W  
115°C/W  
-40 C to +85 C  
˚
˚
http://www.national.com  
2
(Vcc = ±5V, Av = +2, R = 348Ω, R = 100; unless specified)  
CLC416 Typical Performance Characteristics  
f
L
Inverting Frequency Response  
Frequency Response  
Frequency Response vs. RL  
Vo = 0.5Vpp  
Vo = 0.5Vpp  
Vo = 1Vpp  
Av = +2  
Av = 1  
Rf = 1.65k  
Av = -2  
Rf = 348Ω  
RL = 1kΩ  
RL = 100Ω  
RL = 50Ω  
Av = -1  
Rf = 2kΩ  
Av = 2  
Rf = 348Ω  
0
Av = -4  
Rf = 255Ω  
-90  
RL = 1kΩ  
-180  
-270  
-360  
-450  
-540  
-630  
0
0
-90  
-90  
RL = 100Ω  
RL = 50Ω  
-180  
-270  
-360  
-450  
-180  
-270  
-360  
-450  
Av = 10  
Av = -10  
Rf = 200Ω  
Rf = 100Ω  
Av = 4  
Rf = 200Ω  
1
10  
100  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Open Loop Transimpedance Gain, Z(s)  
Frequency Response vs. Vout  
Frequency Response vs. CL  
130  
110  
90  
200  
160  
120  
80  
Av = +2  
Vo = 1Vpp  
Rs = 107Ω  
CL = 10pF  
1Vpp  
Gain  
Rs = 39.25Ω  
CL = 47pF  
2Vpp  
Phase  
Rs = 27.4Ω  
5Vpp  
CL = 100pF  
Rs = 8Ω  
70  
CL = 1000pF  
0.2Vpp  
-
Vo  
Rs  
CLC416  
+
Ii  
50  
40  
CL  
1k  
100  
348Ω  
348Ω  
30  
0
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
Frequency (MHz)  
Maximum Output Voltage vs. RL  
Recommended Rs vs. Capacitive Load  
2nd & 3rd Harmonic Distoration  
-40  
-50  
-60  
-70  
-80  
-90  
4
2
120  
100  
80  
60  
40  
20  
0
3rd, RL = 100Ω  
Vo = 2Vpp  
0
2nd, RL = 100Ω  
2nd, RL = 1kΩ  
-2  
-4  
3rd, RL = 1kΩ  
0
100  
200  
300  
400  
500  
600  
10  
100  
1000  
1
10  
Load ()  
CL (pF)  
Frequency (MHz)  
2nd Harmonic Distortion vs. Pout  
3rd Harmonic Distortion vs. Pout  
Differential Gain & Phase  
-40  
-50  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
Po  
Po  
50Ω  
50Ω  
10MHz  
50Ω  
50Ω  
10MHz  
5MHz  
348Ω  
348Ω  
348Ω  
348Ω  
-60  
5MHz  
-70  
Gain Negative  
Sync  
Phase Negative Sync  
-80  
1MHz  
1MHz  
-90  
Phase Positive Sync  
Gain Positive Sync  
3 4  
500kHz  
500kHz  
-100  
-10  
-5  
0
5
10  
-10  
-5  
0
5
10  
1
2
Output Power (dBm)  
Output Power (dBm)  
Number of 150Loads  
Small Signal Pulse Response  
Large Signal Pulse Response  
PSRR and CMRR  
0.08  
0.06  
0.04  
0.02  
0
2
1
60  
50  
40  
30  
20  
10  
Av = +1  
PSRR  
CMRR  
Av = +2  
0
-0.02  
-0.04  
-0.06  
-0.08  
-1  
-2  
Av = -2  
Av = -1  
Time (5ns/div)  
Time (5ns/div)  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
3
http://www.national.com  
(Vcc = ±5V, Av = +2, R = 348Ω, R = 100; unless specified)  
CLC416 Typical Performance Characteristics  
f
L
Equivalent Input Noise  
Typical DC Errors vs. Temperature  
Power Derating Curves  
100  
10  
1
100  
6
5
4
3
2
1
1.0  
0.8  
1
IBN  
0
AJP  
AJE  
0.6  
0.4  
Inverting Current = 12pA/Hz  
-1  
-2  
-3  
10  
1
IBI  
Voltage = 5nV/Hz  
Non-Inverting Current = 3pA/Hz  
0.2  
0
VIO  
100  
1k  
10k  
100k  
1M  
10M  
-50  
0
50  
100  
0
20  
40  
60  
80 100 120 140 160 180  
Frequency (Hz)  
Temperature (°C)  
Ambient Temperature (°C)  
CLC416 OPERATION  
Description  
Feedback Resistor Selection  
The CLC416 is a dual current feedback amplifier with  
the following features:  
The feedback resistor, R , determines the loop gain  
and frequency response of a current feedback  
amplifier. Optimum performance of the CLC416, at a  
f
Differential gain and phase errors of 0.01%  
gain of +2V/V, is achieved with R equal to 348. The  
f
and 0.03° into a 150load  
frequency response plots in the typical performance  
Low, 3.9mA, supply current per amplifier  
section illustrate the recommended R for several  
f
gains. Within limits, R can be adjusted to optimize the  
frequency response.  
f
The professional video quality differential gain and  
phase errors and low power capabilities of the CLC416  
make this product a good choice for video applications.  
Decrease R to peak frequency response and  
f
extend bandwidth  
Gain  
Increase R to roll off frequency response and  
f
The non-inverting and inverting gain equations for the  
CLC416 are as follows:  
reduce bandwidth  
As a rule of thumb, if the recommended R is doubled,  
the bandwidth will be cut in half.  
f
R
f
Non-inverting Gain: 1+  
R
g
R
Channel Matching  
f
Inverting Gain:  
Channel matching and crosstalk efficiency are largely  
dependent on board layout. The layout of National’s  
dual amplifier evaluation boards are designed to produce  
optimum channel matching and isolation. Typical  
channel matching for the CLC416 is shown in Figure 2.  
R
g
Where R is the feedback resistor and R is the gain  
f
g
setting resistor. Figure 1 shows the general non-invert-  
ing gain configuration including the recommended  
bypass capacitors.  
+Vcc  
Channel A  
Channel B  
6.8µF  
Channel A  
0
0.1µF  
Vin  
+
Channel B  
-90  
Vo  
-180  
CLC416  
Av = +2  
RL = 100  
Vo = 2Vpp  
Rin  
-270  
-
Rf  
RL  
-360  
-450  
1
10  
100  
0.1µF  
Rg  
Frequency (MHz)  
Figure 2: Channel Matching  
6.8µF  
-Vcc  
The CLC416’s channel-to-channel isolation is better  
than 70dB for input frequencies of 4MHz. Input  
referred crosstalk vs. frequency is illustrated in Figure 3.  
Figure 1: Recommended Non-Inverting Gain Circuit  
http://www.national.com  
4
-20  
-40  
evaluation boards for the CLC416 (CLC730038 - DIP,  
CLC730036 - SOIC) and suggests their use as a guide  
for high frequency layout and as an aid for device test-  
ing and characterization.  
-60  
Supply bypassing is required for best performance.  
The bypass capacitors provide a low impedance return  
current path at the supply pins. They also provide high  
frequency filtering on the power supply traces. Other  
layout factors play a major role in high frequency  
performance. The following are recommended as a  
basis for high frequency layout:  
-80  
-100  
-120  
1
10  
100  
Frequency (MHz)  
1. Include 6.8µF tantalum and 0.1µF ceramic  
capacitors on both supplies.  
2. Place the 6.8µF capacitors within 0.75 inches  
of the power pins.  
3. Place the 0.1µF capacitors within 0.1 inches  
of the power pins.  
4. Remove the ground plane under and around  
the part, especially near the input and output  
pins to reduce parasitic capacitance.  
5. Minimize all trace lengths to reduce series  
inductances.  
Figure 3: Input Referred Crosstalk vs. Frequency  
Driving Cables and Capacitive Loads  
When driving cables, double termination is used to  
prevent reflections. For capacitive load applications, a  
small series resistor at the output of the CLC416 will  
improve stability. The R vs. Capacitive Load plot,  
s
in the Typical Performance section, gives the  
recommended series resistance value for optimum  
flatness at various capacitive loads.  
Power Dissipation  
Additional information is included in the evaluation  
board literature.  
The power dissipation of an amplifier can be described  
in two conditions:  
Quiescent Power Dissipation -  
SPICE Models  
P (No Load Condition)  
SPICE models provide a means to evaluate amplifier  
designs. Free SPICE models are available for  
National’s monolithic amplifiers that:  
Q
Total Power Dissipation -  
P (with Load Condition)  
T
The following steps can be taken to determine the  
power consumption for each CLC416 amplifier:  
Support Berkeley SPICE 2G and its many  
derivatives  
Reproduce typical DC, AC, Transient, and  
Noise performance  
Support room temperature simulations  
1. Determine the quiescent power  
P = I (V - V )  
Q
cc  
CC  
EE  
2. Determine the RMS power at the output stage  
= (V - V ) (I ), where V and I  
load  
P
The readme file that accompanies the diskette lists  
released models, and provides a list of modeled para-  
meters. The application note OA-18, Simulation  
SPICE Models for National’s Op Amps, contains  
schematics and a reproduction of the readme file.  
O
cc  
load  
load  
load  
are the RMS voltage and current across the  
external load.  
3. Determine the total RMS power  
P = P + P  
T
Q
O
Add the total RMS powers for both channels to deter-  
mine the power dissipated by the dual.  
Applications Circuits  
The maximum power that the package can dissipate at  
a given temperature is illustrated in the Power  
Derating curves in the Typical Performance section.  
The power derating curve for any package can be  
derived by utilizing the following equation:  
Instrumentation Amplifier  
An instrumentation circuit is shown on the front page  
and reproduced in Figure 4. The DC CMRR can be  
fine tuned by adjusting R .  
1
V1  
+
1/2  
CLC416  
(175° − Tamb)  
P =  
-
348  
348Ω  
348Ω  
348Ω  
θ
JA  
Vout = 3(V2 - V1)  
-
where: T  
= Ambient temperature (°C)  
= Thermal resistance, from junction to  
ambient, for a given package (°C/W)  
348Ω  
amb  
CLC405  
+
348Ω  
θ
JA  
-
1/2  
R1  
348Ω  
CLC416  
V2  
+
Layout Considerations  
A proper printed circuit layout is essential for achieving  
high frequency performance. National provides  
Figure 4: Instrumentation Amplifier  
5
http://www.national.com  
Differential Line Receiver  
Figure 5 illustrates a Differential Line Receiver. The  
circuit will convert differential signals to single-ended signals.  
C
+
1/2  
CLC416  
R
-
R
R
R
R
R
-
R
1/2  
-
-
CLC416  
+
Ro  
Vo = 2Vin  
1/2  
1/2  
CLC416  
+
CLC416  
+
R1  
Vin  
R
R
+
Vo  
C
CLC405  
-
Av = -1V/V  
Av = -1V/V  
R
R
+Vin  
-Vin  
Rf  
1
R =  
R1 = QR  
2πf C  
r
Figure 5: Differential Line Receiver  
Bandpass Filter  
Figure 6: Bandpass Filter Topology  
Figure 6 illustrates a low-sensitivity bandpass filter and  
design equations. This topology utilizes the CLC416’s  
closely matched amplifiers to obtain low op-amp  
sensitivity at high frequencies. The CLC405 is used as  
a buffer to obtain low output impedance. The overall  
circuit gain is unity. For additional gain, the CLC405  
can be configured as a non-inverting amplifier.  
1.8dB  
935kHz  
0
-10  
-20  
-30  
-40  
To design the filter, choose C and then determine values  
for R and R based on the desired resonant frequency  
1
(f ) and Q factor.  
r
Figure 7 illustrates a bandpass filter with Q = 10 and  
1
10  
f = 1MHz. The component values used are listed  
r
Frequency (MHz)  
below:  
R = 4.9kΩ  
R = 499Ω  
1
Figure 7: Bandpass Response  
C = 330pF  
R = 2kΩ  
f
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval  
of the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
National Semiconductor  
Japan Ltd.  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
13th Floor, Straight Block  
Ocean Centre, 5 Canton Road  
Tsimshatsui, Kowloon  
Hong Kong  
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
Tel: 81-043-299-2309  
Fax: 81-043-299-2408  
N
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
6

相关型号:

CLC416AJE

IC-SM-DUAL 110MHZ OP-AMP
ETC

CLC416AJE-TR13

DUAL OP-AMP, 8000uV OFFSET-MAX, 110MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC416AJE-TR9

DUAL OP-AMP, 8000uV OFFSET-MAX, 110MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC416AJP

IC-DUAL 110MHZ OP-AMP
ETC

CLC417

Dual Low-Power, Programmable Gain Buffer
NSC

CLC417AJE

Dual Low-Power, Programmable Gain Buffer
NSC

CLC417AJP

Dual Low-Power, Programmable Gain Buffer
NSC

CLC418

Dual High-Speed, Low-Power Line Driver
NSC

CLC418AJ

Dual High-Speed, Low-Power Line Driver
NSC

CLC418AJE

IC DUAL OP-AMP, 11000 uV OFFSET-MAX, 125 MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8, Operational Amplifier
NSC

CLC418AJE

DUAL OP-AMP, 11000uV OFFSET-MAX, 125MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
TI

CLC418AJE-TR

DUAL OP-AMP, 11000uV OFFSET-MAX, 130MHz BAND WIDTH, PDSO8, SOIC-8
TI