CLC5633IN [NSC]

Triple, High Output, Programmable Gain Buffer; 三重,高输出,可编程增益缓冲器
CLC5633IN
型号: CLC5633IN
厂家: National Semiconductor    National Semiconductor
描述:

Triple, High Output, Programmable Gain Buffer
三重,高输出,可编程增益缓冲器

文件: 总17页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2000  
CLC5633  
Triple, High Output, Programmable Gain Buffer  
n 3.0mA/ch supply current  
n 130MHz bandwidth (Av=+2)  
The CLC5633 is a triple, low cost, high speed (130MHz)  
n −92/−96dBc HD2/HD3 (1MHz)  
General Description  
buffer which features user programmable gains of +2, +1,  
and −1V/V. The CLC5633 also has a new output stage that  
delivers high output drive current (130mA/ch) from a single  
n 20ns settling to 0.05%  
n 410V/µs slew rate  
n Stable for capacitive loads up to 1000pf  
5V supply. Its current feedback architecture, fabricated in an  
advanced complementary bipolar process, maintains consis-  
tent performance over a wide range of gains and signal  
levels, and has a linear phase response up to one half of the  
−3dB frequency.  
±
n Single 5V to 5V supplies  
Applications  
n Video line driver  
The CLC5633 offers 0.1dB gain flatness to 20MHz and  
differential gain and phase errors of 0.03% and 0.06˚. These  
features area ideal for professional and consumer video  
applications.  
n Coaxial cable driver  
n Twisted pair driver  
n Transformer/coil driver  
n High capacitive load driver  
n Portable/battery powered applications  
n A/D driver  
The CLC5633 offers superior dynamic performance with a  
130MHz small-signal bandwidth, 410V/µs slew rate and  
5.0ns rise/fall times (2VSTEP). The combination of low quies-  
cent power, high output current drive, and high speed per-  
formance make the CLC5633 well suited for many battery  
powered personal communication/computing systems.  
Maximum Output Voltage vs. RL  
The ability to drive low impedance, highly capacitive loads,  
with minimum distortion makes the CLC5633 ideal for cable  
applications. The CLC5633 will drive a 100load with only  
−73/−92dBc second/third harmonic distortion (AV = +2,  
VOUT= 2VPP, f = 1MHz). With a 25load, and the same  
conditions, it produces only −75/−75dBc second/third har-  
monic distortion. It is also optimized for driving high currents  
into single-ended transformers and coils.  
When driving the input of high resolution A/D converters, the  
CLC5633 provides excellent −92/−96dBc second/third har-  
monic distortion (AV = +2, VOUT = 2VPP, f = 1MHz, RL  
=
1k) and fast settling time.  
Features  
n 130mA output current  
n 0.03%, 0.06˚ differential gain, phase  
DS015005-1  
Connection Diagram  
DS015005-3  
Pinout  
DIP & SOIC  
© 2000 National Semiconductor Corporation  
DS015005  
www.national.com  
Typical Application  
DS015005-2  
Single Supply Cable Driver  
Ordering Information  
Package  
Temperature Range  
Packaging  
Marking  
NSC  
Industrial  
Drawing  
N14A  
14-pin plastic DIP  
14-pin plastic SOIC  
−40˚C to +85˚C  
−40˚C to +85˚C  
CLC5633IN  
CLC5633IM  
CLC5633IMX  
M14A, M14B  
www.national.com  
2
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Lead Temperature (soldering 10 sec)  
ESD (human body model)  
+300˚C  
2000V  
Operating Ratings  
Supply Voltage (VCC-VEE  
)
+14V  
140mA  
Thermal Resistance  
Output Current (See note 4)  
Common-Mode Input Voltage  
Maximum Junction Temperature  
Storage Temperature Range  
Package  
MDIP  
(θJC  
)
(θJA  
)
VEE to VCC  
+150˚C  
60˚C/W  
55˚C/W  
110˚C/W  
125˚C/W  
SOIC  
−65˚C to +150˚C  
+5 Electrical Characteristics  
(AV = +2, RL =100, VS = +5V1, VCM = VEE + (VS/2), RL tied to VCM, unless specified.  
Symbol  
Parameter  
Conditions  
CLC5633IN/IM  
Typ  
Min/Max Ratings (Note 2)  
Units  
Ambient Temperature  
+25˚C  
+25˚C  
0 to  
−40 to  
70˚C  
85˚C  
Frequency Domain Response  
-3dB Bandwidth  
VO = 0.5VPP  
VO = 2.0VPP  
VO = 0.5VPP  
100  
97  
80  
79  
17  
0.5  
0.5  
0.3  
70  
74  
17  
1.0  
0.6  
0.4  
70  
72  
13  
1.0  
0.6  
0.4  
MHz  
MHz  
MHz  
dB  
−0.1dB Bandwidth  
Gain Peaking  
20  
<
<
<
200MHz, VO = 0.5VPP  
30MHz, VO = 0.5VPP  
30MHz, VO = 0.5VPP  
0
Gain Rolloff  
0.2  
0.15  
0.04  
0.1  
dB  
Linear Phase Deviation  
Differential Gain  
deg  
%
NTSC, RL = 150to −1V  
NTSC, RL = 150to −1V  
Differential Phase  
deg  
Time Domain Response  
Rise and Fall Time  
Settling Time to 0.05%  
Overshoot  
2V Step  
1V Step  
2V Step  
2V Step  
4.8  
20  
5
6.4  
24  
7
6.8  
40  
7.3  
60  
ns  
ns  
11  
14  
%
Slew Rate  
290  
170  
150  
140  
V/µs  
Distortion And Noise Response  
2nd Harmonic Distortion  
2VPP, 1MHz  
−72  
−84  
−71  
−87  
−95  
−78  
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
2VPP, 1MHz; RL = 1KΩ  
2VPP, 5MHz  
-
−54  
-
-
−52  
-
-
−52  
-
3rd Harmonic Distortion  
2VPP, 1MHz  
2VPP, 1MHz; RL=1KΩ  
2VPP, 5MHz  
-
-
-
−61  
−54  
−54  
Equivalent Input Noise  
Voltage (eni)  
>
>
>
1MHz  
1MHz  
1MHz  
4.9  
6.6  
5.9  
8.5  
6.4  
9.3  
6.4  
9.3  
nV/  
Non-Inverting Current (ibn  
Inverting Current (ibi)  
)
pA/  
pA/  
11.1  
14.7  
15.8  
15.8  
Crosstalk (Input Referred)  
10MHz, 1VPP  
10MHz, 1VPP  
−54  
−52  
-
-
-
-
-
-
dB  
Crosstalk, all Hostile (Input  
Referred)  
dB  
Static, DC Performance  
Input Offset Voltage (Note 3)  
Average Drift  
13  
80  
5
30  
-
35  
-
35  
-
mV  
µV/˚C  
µA  
Input Bias Current  
18  
24  
24  
(Non-Inverting)(Note 3)  
Average Drift  
30  
-
-
-
nA/˚C  
3
www.national.com  
+5 Electrical Characteristics (Continued)  
(AV = +2, RL =100, VS = +5V1, VCM = VEE + (VS/2), RL tied to VCM, unless specified.  
Symbol  
Static, DC Performance  
Gain Accuracy (Note 3)  
Parameter  
Conditions  
Typ  
Min/Max Ratings (Note 2)  
Units  
±
±
±
±
2.0  
0.3  
1.5  
2.0  
µA  
±
±
±
Internal Resistors (Rf, Rg  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
1000  
48  
20%  
45  
26%  
43  
30%  
43  
DC  
DC  
RL  
dB  
dB  
mA  
44  
41  
39  
39  
Supply Current (Per  
Amplifier)(Note 3)  
=
3.0  
3.4  
3.6  
3.6  
Miscellaneous Performance  
Input Resistance (Non-Inverting)  
1.0  
2.2  
0.62  
3.3  
0.56  
3.3  
0.56  
3.3  
MΩ  
Input Capacitance  
(Non-Inverting)  
pF  
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Range, High  
Output Voltage Range, Low  
Output Voltage Range, High  
Output Voltage Range, Low  
Output Current (Note 4)  
4.2  
0.8  
4.0  
1.0  
4.1  
0.9  
100  
400  
4.1  
0.9  
3.9  
1.1  
4.0  
1.0  
80  
4.0  
1.0  
3.8  
1.2  
4.0  
1.0  
65  
4.0  
1.0  
3.8  
1.2  
3.9  
1.1  
40  
V
V
RL = 100Ω  
RL = 100Ω  
V
V
RL  
RL  
=
=
V
V
mA  
mΩ  
Output Resistance, Closed Loop  
DC  
600  
600  
600  
±
5 Electrical Characteristics  
±
(AV = +2, RL = 100, VCC  
=
5V, unless specified)  
Symbol  
Parameter  
Conditions  
CLC5633IN/IM  
Typ  
Min/Max Ratings (Note 2)  
Units  
Ambient Temperature  
+25˚C  
+25˚C  
0 to  
−40 to  
85˚C  
70˚C  
Frequency Domain Response  
-3dB Bandwidth  
VO = 1.0VPP  
VO = 4.0VPP  
VO = 1.0VPP  
130  
80  
100  
60  
90  
55  
12  
1.0  
0.5  
0.6  
90  
55  
12  
1.0  
0.5  
0.6  
MHz  
MHz  
MHz  
dB  
−0.1dB Bandwidth  
Gain Peaking  
20  
17  
<
<
<
200MHz, VO = 1.0VPP  
30MHz, VO = 1.0VPP  
30MHz, VO = 1.0VPP  
0
0.5  
0.3  
0.4  
0.08  
0.1  
Gain Rolloff  
0.1  
0.2  
0.03  
0.06  
dB  
Linear Phase Deviation  
Differential Gain  
deg  
%
NTSC, RL = 150Ω  
NTSC, RL = 150Ω  
Differential Phase  
deg  
Time Domain Response  
Rise and Fall Time  
Settling Time to 0.05%  
Overshoot  
2V Step  
2V Step  
2V Step  
2V Step  
5.0  
20  
6.5  
30  
7.0  
44  
7.7  
67  
ns  
ns  
14  
17  
18  
19  
%
Slew Rate  
410  
310  
240  
225  
V/µs  
Distortion And Noise Response  
2nd Harmonic Distortion  
2VPP, 1MHz  
−73  
−92  
−69  
−92  
−96  
−72  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
2VPP, 1MHz; RL = 1kΩ  
2VPP, 5MHz  
−58  
−56  
−56  
3rd Harmonic Distortion  
Equivalent Input noise  
2VPP, 1MHz  
2VPP, 1MHz; RL = 1kΩ  
2VPP, 5MHz  
−66  
−65  
−65  
www.national.com  
4
±
5 Electrical Characteristics (Continued)  
±
5V, unless specified)  
(AV = +2, RL = 100, VCC  
=
Symbol  
Parameter  
Conditions  
Typ  
Min/Max Ratings (Note 2)  
Units  
Distortion And Noise Response  
>
>
>
Voltage (eni)  
1MHz  
1MHz  
1MHz  
4.9  
6.6  
5.9  
8.5  
6.4  
9.3  
6.4  
9.0  
nV/  
Non-Inverting Current (ibn  
Inverting Current (ibi)  
)
pA/  
pA/  
11.1  
14.7  
15.8  
15.8  
Crosstalk (Input Referred)  
10MHz, 1VPP  
10MHz, 1VPP  
−54  
−52  
-
-
-
-
-
-
dB  
Crosstalk, all Hostile (input  
referred)  
dB  
Static, DC Performance  
Input Offset Voltage  
Average Drift  
7
80  
5
30  
-
35  
-
35  
-
mV  
µV/˚C  
µA  
Input Bias Current  
(Non-Inverting)  
18  
25  
25  
Average Drift  
40  
-
-
-
nA/˚C  
%
±
±
±
±
2.0  
Gain Accuracy  
0.3  
1.5  
2.0  
±
±
±
Internal Resistors (Rf, Rg)  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
Supply Current (per amplifier)  
1000  
48  
20%  
45  
26%  
43  
30%  
43  
DC  
DC  
dB  
44  
41  
39  
39  
dB  
RL  
=
3.2  
3.8  
4.0  
4.0  
mA  
Miscellaneous Performance  
Input Resistance (Non-inverting)  
1.1  
1.9  
0.63  
2.85  
0.57  
2.85  
0.57  
2.85  
MΩ  
Input Capacitance  
(Non-Inverting)  
pF  
±
±
±
±
±
±
±
±
±
±
±
±
Common Mode Input Range  
Output Voltage Range  
4.2  
3.8  
4.0  
4.1  
3.6  
3.8  
4.1  
3.6  
3.8  
4.0  
3.5  
3.7  
V
V
RL = 100Ω  
Output Voltage Range  
RL  
=
V
Output Current (Note 4)  
Output Resistance, Closed Loop  
130  
400  
100  
600  
80  
50  
mA  
mΩ  
DC  
600  
600  
Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices  
should be operated at these limits. The table of “Electrical Characteristics” specifies conditions of device operation.  
Note 2: Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined  
from tested parameters.  
Note 3: AJ-level: spec. is 100% tested at +25˚C.  
Note 4: The short circuit current can exceed the maximum safe output current  
Note 5: V = V  
− V  
EE  
S
CC  
5
www.national.com  
+5V Typical Performance Characteristics  
Frequency Response  
Frequency Response vs. RL  
Av = +1  
Vo = 0.5Vpp  
Gain  
Vo = 0.5Vpp  
Gain  
RL = 1k  
Av = -1  
Phase  
Phase  
0
0
-90  
-90  
RL = 25Ω  
RL = 100Ω  
Av = +2  
-180  
-270  
-360  
-450  
-180  
-270  
-360  
-450  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
DS015005-4  
DS015005-5  
Gain Flatness & Linear Phase  
Frequency Response vs. VO (AV = 2)  
0.05  
0
Vo = 0.5Vpp  
Gain  
Vo = 0.1Vpp  
Vo = 1Vpp  
-0.05  
-0.1  
-0.15  
-0.2  
Phase  
Vo = 2Vpp  
Vo = 2.5Vpp  
1M  
10M  
100M  
0
10  
20  
30  
Frequency (Hz)  
Frequency (MHz)  
DS015005-7  
DS015005-6  
Frequency Response vs.  
VO (AV = 1)  
Frequency Response vs. VO (AV = −1)  
Vo = 0.1Vpp  
Vo = 0.1Vpp  
Vo = 1Vpp  
Vo = 1.5Vpp  
Vo = 2Vpp  
Vo = 2Vpp  
Vo = 2.5Vpp  
Vo = 2.5Vpp  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
DS015005-8  
DS015005-9  
www.national.com  
6
+5V Typical Performance Characteristics (Continued)  
PSRR & CMRR  
Equivalent Input Noise  
3.6  
12.5  
10  
60  
CMRR  
PSRR  
50  
40  
30  
20  
10  
3.5  
3.4  
3.3  
3.2  
Inverting Current 8.7pA/Hz  
Non-Inverting Current 7pA/Hz  
Voltage 3.35nV/Hz  
7.5  
5
0
2.5  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
DS015005-10  
DS015005-11  
2nd & 3rd Harmonic Distortion  
2nd & 3rd Harmonic Distortion, RL = 25Ω  
-50  
-40  
Vo = 2Vpp  
3rd, 10MHz  
-60  
2nd, 10MHz  
-50  
2nd  
L = 100Ω  
R
-70  
-80  
2nd  
RL = 1kΩ  
-60  
2nd, 1MHz  
3rd, 1MHz  
-70  
-80  
3rd  
RL = 1kΩ  
-90  
3rd  
RL = 100Ω  
-100  
1M  
10M  
0
0.5  
1
1.5  
2
2.5  
Frequency (Hz)  
Output Amplitude (Vpp)  
DS015005-12  
DS015005-13  
2nd & 3rd Harmonic Distortion, RL = 100Ω  
2nd & 3rd Harmonic Distortion, RL = 1kΩ  
-50  
-55  
3rd, 10MHz  
3rd, 10MHz  
2nd, 10MHz  
-60  
-70  
-65  
2nd, 1MHz  
2nd, 1MHz  
3rd, 1MHz  
-80  
-75  
-85  
-95  
2nd, 10MHz  
-90  
-100  
-110  
3rd, 1MHz  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
DS015005-14  
DS015005-15  
7
www.national.com  
+5V Typical Performance Characteristics (Continued)  
Large & Small Signal Pulse Response  
Output Impedance vs. Frequency  
50  
40  
30  
20  
10  
0
Large Signal  
Small Signal  
Time (10ns/div)  
1k  
10k  
100k  
1M  
10M  
100M  
DS015005-16  
Frequency (Hz)  
DS015005-17  
IBN, VIO vs. Temperature  
2.5  
7.5  
1.5  
0
7
6.5  
6
0.5  
IBN  
-1.5  
-2.5  
5.5  
5
VIO  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ϒC)  
DS015005-18  
±
±
5V Typical Performance Characteristics (AV = +2, RL = 100, VCC  
=
5V, unless specified)  
Frequency Response  
Frequency Response vs. RL  
Av = +1  
Vo = 1.0Vpp  
Gain  
Vo = 1.0Vpp  
Gain  
Av = -1  
RL = 1kΩ  
RL = 100Ω  
Phase  
Phase  
0
0
-45  
-90  
-135  
-180  
-225  
-90  
-180  
-270  
-360  
RL = 25Ω  
Av = +2  
-450  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
DS015005-19  
DS015005-20  
www.national.com  
8
±
±
5V Typical Performance Characteristics (AV = +2, RL = 100, VCC  
=
5V, unless  
specified) (Continued)  
Gain Flatness & Linear Phase  
Frequency Response vs. VO (AV = 2)  
0
VO = 1Vpp  
Vo = 0.1Vpp  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Gain  
Vo = 2Vpp  
Vo = 5Vpp  
Vo = 1Vpp  
Phase  
100M  
1M  
10M  
0
5
10  
15  
20  
25  
30  
Frequency (Hz)  
Frequency (MHz)  
DS015005-22  
DS015005-21  
Frequency Response vs. VO (AV = 1)  
Frequency Response vs. VO (AV = −1)  
Vo = 1Vpp  
Vo = 0.1Vpp  
Vo = 1Vpp  
Vo = 5Vpp  
Vo = 0.1Vpp  
Vo = 5Vpp  
Vo = 2Vpp  
Vo = 2Vpp  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
DS015005-23  
DS015005-24  
Large & Small Signal Pulse Response  
Differential Gain and Phase  
0.02  
-0.02  
Large Signal  
f = 3.58MHz  
0
-0.04  
-0.06  
-0.08  
-0.1  
Phase Neg Sync  
-0.02  
Small Signal  
Gain Neg Sync  
-0.04  
-0.06  
-0.08  
-0.1  
-0.12  
-0.14  
-0.16  
Phase Pos Sync  
Gain Pos Sync  
-0.12  
Time (10ns/div)  
1
2
3
4
DS015005-25  
Number of 150 Loads  
DS015005-26  
9
www.national.com  
±
±
5V, unless  
5V Typical Performance Characteristics (AV = +2, RL = 100, VCC  
=
specified) (Continued)  
2nd & 3rd Harmonic Distortion vs. Frequency  
2nd & 3rd Harmonic Distortion, RL = 25Ω  
-45  
2nd, 10MHz  
-50  
3rd, 10MHz  
-55  
-60  
-65  
-70  
2nd, 1MHz  
-75  
-80  
3rd, 1MHz  
-85  
0
0.5  
1
1.5  
2
2.5  
Output Amplitude (Vpp  
)
DS015005-28  
DS015005-27  
2nd & 3rd Harmonic Distortion, RL = 100Ω  
2nd & 3rd Harmonic Distortion, RL = 1kΩ  
-60  
-60  
3rd, 10MHz  
-65  
2nd, 10MHz  
-70  
2nd, 10MHz  
-70  
3rd, 10MHz  
-80  
-75  
2nd, 1MHz  
-80  
-90  
-100  
-110  
2nd, 1MHz  
-85  
3rd, 1MHz  
3rd, 1MHz  
-90  
-95  
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
DS015005-29  
DS015005-30  
Short Term Settling Time  
Long Term Settling Time  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
Vo = 2V step  
Vo = 2V step  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.05  
-0.1  
-0.15  
-0.2  
1
10  
100  
1000  
10000  
1µ  
10µ  
100  
µ
1m  
10m  
Time (ns)  
Time (s)  
DS015005-31  
DS015005-32  
www.national.com  
10  
±
±
5V, unless  
5V Typical Performance Characteristics (AV = +2, RL = 100, VCC  
=
specified) (Continued)  
IBN, VOS vs. Temperature  
Channel Matching  
7.5  
2.5  
1.5  
7.0  
6.5  
6.0  
5.5  
5.0  
Channel 2  
0.5  
Channel 3  
-0.5  
-1.5  
-2.5  
Channel 1  
VOS  
IBN  
-60  
-20  
20  
60  
100  
1M  
10M  
100M  
Temperature (ϒC)  
DS015005-33  
Frequency (Hz)  
DS015005-34  
All Hostile Crosstalk  
Pulse Crosstalk  
Active Output  
Channel 1  
-30  
-40  
-50  
-60  
-70  
Inactive Output  
Channel 2  
Inactive Output  
Channel 3  
Time (10ns/div)  
-80  
1M  
DS015005-36  
10M  
100M  
Frequency (Hz)  
DS015005-35  
Application Division  
CLC5633 Operation  
Current Feedback Amplifiers  
The CLC5633 is a current feedback buffer fabricated in an  
advanced complementary bipolar process. The CLC5633  
Some of the key features of current feedback technology  
are:  
±
operates from a single 5V supply or dual 5V supplies.  
Independence of AC bandwidth and voltage gain  
Inherently stable at unity gain  
Adjustable frequency response with feedback resistor  
High slew rate  
Operating from a single 5V supply, the CLC5633 has the  
following features:  
Gains of +1, −1, and 2V/V are achievable without exter-  
nal resistors  
Fast settling  
Provides 100mA of output current while consuming only  
15mW of power  
Current feedback operation can be described using a simple  
equation. The voltage gain for a non-inverting or inverting  
current feedback amplifier is approximated by Equation 1.  
Offers low −84/−95dBc 2nd and 3rd harmonic distortion  
>
<
Provides BW 90MHz and 1MHz distortion −70dBc at  
VO = 2VPP  
Vo  
Av  
Rf  
±
The CLC5633 performance is further enhanced in 5V sup-  
ply applications as indicated in the 5V Electrical Charac-  
teristics table and 5V Typical Performance plots.  
=
±
V
in  
1+  
±
Z(jω)  
(1)  
If gains other than +1, −1, or +2V/V are required, then the  
CLC5602 can be used. The CLC5602 is a current feedback  
amplifier with near identical performance and allows for ex-  
ternal feedback and gain setting resistors.  
where:  
AV is the closed loop DC voltage gain  
Rf is the feedback resistor  
11  
www.national.com  
Application Division (Continued)  
Note: Rb provides DC bias for the non-inverting input. Rb, RL and Rt are tied to Vcm  
for minimum power consumption and maximum output swing.  
Z(jω) is the CLC5633’s open loop transimpedance gain  
Z(jω)/Rf is the loop gain  
Channel 2 and 3 not shown.  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
6.8µF  
+
-
The denominator of Equation 1 is approximately equal to 1 at  
low frequencies. Near the −3dB corner frequency, the inter-  
action between Rf and Z(jω) dominates the circuit perfor-  
mance. The value of the feedback resistor has a large affect  
on the circuits performance. Increasing Rf has the following  
affects:  
+
1kΩ  
1kΩ  
0.1µF  
- +  
1kΩ  
1kΩ  
+
-
Vin  
Rb  
Vcm  
Vo  
8
Decreases loop gain  
Rt  
Vcm  
RL  
Vcm  
Decreases bandwidth  
CLC5633  
Reduces gain peaking  
Select Rt to yield desired Rin = Rt||Rg, where Rg = 1k.  
DS015005-39  
Lowers pulse response overshoot  
Affects frequency response phase linearity  
FIGURE 1. DC Coupled, AV = −1V/V Configuration  
CLC5633 Design Information  
Note: Rt and RL are tied to Vcm for minimum power  
consumption and maximum output swing.  
Closed Loop Gain Selection  
The CLC5633 is a current feedback op amp with Rf = Rg  
=
Channel 2 and 3 not shown.  
1kon chip (in the package). Select from three closed loop  
gains without using any external gain or feedback resistors.  
Implement gains of +2, +1, and −1V/V by connecting pins 5  
and 6 (or 9 and 10, or 12 and 13) as described in the chart  
below.  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
6.8µF  
+
-
+
1kΩ  
1kΩ  
0.1µF  
- +  
Gain AV  
Input Connections  
Vin  
Non-Inverting  
(pins 5, 10, &  
12)  
Inverting (pins 6,  
9, & 13)  
1kΩ  
1kΩ  
+
-
Rt  
Vo  
8
−1V/V  
+1V/V  
+2V/V  
ground  
input signal  
NC (open)  
ground  
RL  
Vcm  
Vcm  
CLC5633  
input signal  
input signal  
DS015005-40  
The gain accuracy of the CLC5633 is excellent and stable  
over temperature change. The internal gain setting resistors,  
Rf and Rg are diffused silicon resistors with a process varia-  
FIGURE 2. DC Coupled, AV = +1V/V Configuration  
±
tion of 20% and a temperature coefficient of −2000ppm/˚C.  
Note: Rt and RL and Rg are tied to Vcm for minimum power  
consumption and maximum output swing.  
Although their absolute values change with processing and  
temperature, their ratio (Rf/Rg) remains constant. If an exter-  
nal resistor is used in series with Rg, gain accuracy over  
temperature will suffer.  
Channel 2 and 3 not shown.  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
Single Supply Operation (VCC=+5V, VEE=GND)  
6.8µF  
+
-
+
The specifications given in the +5V Electrical Characteris-  
tics table for single supply operation are measured with a  
common mode voltage (Vcm) of 2.5V. Vcm is the voltage  
around which the inputs are applied and the output voltages  
are specified.  
1kΩ  
1kΩ  
0.1µF  
- +  
Vin  
Operating from a single +5V supply, the Common Mode  
Input Range (CMIR) of the CLC5633 is typically +0.8V to  
+4.2V. The typical output range with RL=100is +1.0V to  
+4.0V.  
1kΩ  
1kΩ  
+
-
Vcm  
Rt  
Vo  
8
For single supply DC coupled operation, keep input signal  
levels above 0.8V DC, AC coupling and level shifting the  
signal are recommended. The non-inverting and inverting  
configurations for both input conditions are illustrated in the  
following 2 sections.  
RL  
Vcm  
Vcm  
CLC5633  
DS015005-41  
FIGURE 3. DC Coupled, AV = +2V/V Configuration  
DC Coupled Single Supply Operation  
Figure 1, Figure 2, and Figure 3 on the following page, show  
the recommended configurations for input signals that re-  
main above 0.8V DC. Note: Rb provides DC bias for the  
non-inverting input. Rb, RL and Rt are tied to Vcm for mini-  
mum power consumption and maximum output swing. Chan-  
nel 2 and 3 not shown.  
AC Coupled Single Supply Operation  
Figure 4, Figure 5, and Figure 6 show possible non-inverting  
and inverting configurations for input signals that go below  
0.8V DC.  
www.national.com  
12  
Dual Supply Operation  
Application Division (Continued)  
The CLC5633 operates on dual supplies as well as signal  
supplies. The non-inverting and inverting configurations are  
shown in Figure 7, Figure 8, and Figure 9.  
Note: Channel 2 and 3 not shown.  
VCC  
1
Note: Rb provides DC bias for the  
non-inverting input. Select Rt to  
yield desired Rin = Rt||1k.  
14  
13  
12  
11  
10  
9
1kΩ  
1kΩ  
6.8µF  
Channel 2 and 3 not shown.  
+
-
+
2
3
4
5
6
7
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
1kΩ  
1kΩ  
6.8µF  
+
-
+
1kΩ  
1kΩ  
0.1µF  
- +  
R
1kΩ  
1kΩ  
0.1µF  
- +  
1kΩ  
1kΩ  
+
-
Vin  
R
0.1µF  
1kΩ  
1kΩ  
+
-
Vin  
Rb  
CC  
Vo  
Vo  
8
+
8
Rt  
6.8µF  
V
= V + 2.5  
in  
o
CLC5633  
1
CLC5633  
VEE  
FIGURE 7. Dual Supply, AV = −1V/V Configuration  
,
Low frequency cutoff =  
2πR C  
DS015005-45  
g
C
where R = 1k.  
g
DS015005-42  
FIGURE 4. AC Coupled, AV = −1V/V Configuration  
Note: Channel 2 and 3 not shown.  
The input is AC coupled to prevent the need for level shifting  
the input signal at the source. The resistive voltage divider  
VCC  
1
biases the non-inverting input to VCC ÷ 2 = 2.5V (For VCC  
+5V).  
=
14  
13  
12  
11  
10  
9
1kΩ  
1kΩ  
6.8µF  
+
-
+
2
3
Note: Channel 2 and 3 not shown.  
1kΩ  
1kΩ  
0.1µF  
- +  
4
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Vin  
1kΩ  
1kΩ  
5
6.8µF  
+
-
+
0.1µF  
1kΩ  
1kΩ  
+
-
6
7
Rt  
VCC  
Vo  
+
8
1kΩ  
1kΩ  
0.1µF  
- +  
6.8µF  
R
CC  
Vin  
CLC5633  
VEE  
DS015005-46  
1kΩ  
1kΩ  
+
-
R
FIGURE 8. Dual Supply, AV = +1V/V Configuration  
C
Vo  
8
V
= 2V + 2.5  
in  
o
1
CLC5633  
Low frequency cutoff =  
,
2πR  
C
C
Note: Channel 2 and 3 not shown.  
in  
R >> R  
source  
R
whereR  
=
in  
2
VCC  
DS015005-43  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
6.8µF  
+
-
FIGURE 5. AC Coupled, AV = +1V/V Configuration  
+
1kΩ  
1kΩ  
0.1µF  
- +  
Note: Channel 2 and 3 not shown.  
Vin  
VCC  
0.1µF  
1kΩ  
1kΩ  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
-
1kΩ  
1kΩ  
Rt  
6.8µF  
+
-
+
Vo  
+
8
VCC  
6.8µF  
CLC5633  
VEE  
1kΩ  
1kΩ  
0.1µF  
- +  
R
CC  
Vin  
DS015005-47  
1kΩ  
1kΩ  
+
-
FIGURE 9. Dual Supply, AV= + 2V/V Configuration  
R
C
Vo  
8
Load Termination  
V
= 2V + 2.5  
in  
o
The CLC5633 can source and sink near equal amounts of  
current. For optimum performance, the load should be tied to  
1
CLC5633  
Low frequency cutoff =  
,
2πR  
C
C
in  
R >> R  
source  
R
whereR  
=
in  
VCM  
.
2
DS015005-44  
FIGURE 6. AC Coupled, AV = +2V/V Configuration  
13  
www.national.com  
Application Division (Continued)  
Note: Channel 2 and 3 not shown.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
Driving Cables and Capacitive Loads  
+
-
Z0  
R1  
R3  
When driving cables, double termination is used to prevent  
reflections. For capacitive load applications, a small series  
resistor at the output of the CLC5633 will improve stability  
and settling performance. The Frequency Response vs. CL  
plot, shown below in Figure 10, gives the recommended  
series resistance value for optimum flatness at various ca-  
pacitive loads.  
+
-
V2  
1kΩ  
1kΩ  
-
+
R2  
Z0  
R4  
1kΩ  
1kΩ  
+
-
+
-
V1  
8
R5  
Z0  
CLC5633  
R6  
C6  
Vo  
R7  
Vo = 1Vpp  
CL = 10pF  
Rs = 49.9  
DS015005-49  
FIGURE 11. Transmission Line Matching  
Power Dissipation  
CL = 100pF  
Rs = 21Ω  
CL = 1000pF  
Rs = 6.7Ω  
Follow these steps to determine the power consumption of  
the CLC5633:  
+
Rs  
1. Calculate the quiescent (no-load) power: Pamp=ICC (VCC  
VEE  
2. Calculate the RMS power at the output stage: PO=(VCC  
-
-
CL  
1k  
)
1k  
1k  
-
VLOAD)(ILOAD), where Vload and Iload are the RMS voltage  
and current across the external load.  
1M  
10M  
100M  
3. Calculate the total RMS power: Pt=Pamp+PO  
Frequency (Hz)  
DS015005-48  
The maximum power that the DIP and SOIC, packages can  
dissipate at a given temperature is illustrated in Figure 12.  
The power derating curve for any CLC5633 package can be  
derived by utilizing the following equation:  
FIGURE 10. Frequency Response vs. CL  
Transmission Line Matching  
One method for matching the characteristic impedance (Zo)  
of a transmission line or cable is to place the appropriate  
resistor at the input or output of the amplifier. Figure 11  
shows typical inverting and non-inverting circuit configura-  
tions for matching transmission lines.  
where  
Tamb = Ambient temperature (˚C)  
Non-Inverting gain applications:  
θJA = Thermal resistance, from junction to ambient, for a  
given package (˚C/W)  
Connect pin 2 as indicated in the table in the Closed  
Loop Gain Selection section.  
Make R1, R2, R6, and R7 equal to ZO.  
Use R3 to isolate the amplifier from reactive loading  
caused by the transmission line, or by parasitics.  
Inverting gain applications:  
Connect R3 directly to ground.  
Make the resistors R4, R6, and R7 equal to ZO.  
Make R5\Rg=ZO.  
The input and output matching resistors attenuate the signal  
by a factor of 2, therefore additional gain is needed. Use C6  
to match the output transmission line over a greater fre-  
quency range. C6 compensates for the increase of the am-  
plifier’s output impedance with frequency.  
DS015005-51  
FIGURE 12. Power Derating Curve  
www.national.com  
14  
Reproduce typical DC, AC, Transient, and Noise perfor-  
mance  
Application Division (Continued)  
Layout Considerations  
Support room temperature simulations  
A proper printed circuit layout is essential for achieving high  
frequency performance. National provides evaluation boards  
for the CLC5633 (CLC730075-DIP, CLC730074-SOIC) and  
suggests their use as a guide for high frequency layout and  
as an aid for device testing and characterization.  
The readme file that accompanies the diskette lists released  
models, and provides a list of modeled parameters. The  
application note OA-18, Simulation SPICE Models for Na-  
tional’s Op Amps, contains schematics and a reproduction of  
the readme file.  
General layout and supply bypassing play major roles in high  
frequency performance. Follow the steps below as a basis  
for high frequency layout:  
Application Circuits  
Single Supply Cable Driver  
Figure 13 below shows the CLC5633 driving 10m of 75Ω  
coaxial cable. The CLC5633 is set for a gain of +2V/V to  
compensate for the divide-by-two voltage drop at VO. The  
response after 10m of cable is illustrated in Figure 14.  
Include 6.8µF tantalum and 0.1µF ceramic capacitors on  
both supplies.  
Place the 6.8µF capacitors within 0.75 inches of the  
power pins.  
+5V  
Place the 0.1µF capacitors less than 0.1 inches from the  
power pins.  
Note: Channel 2 and 3 not shown.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1k  
1kΩ  
6.8µF  
+
-
+
Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance.  
+5V  
5kΩ  
5kΩ  
1kΩ  
1kΩ  
0.1µF  
- +  
0.1µF  
Vin  
10m of 75Ω  
1kΩ  
1kΩ  
Coaxial Cable  
+
-
Use flush-mount printed circuit board pins for prototyping,  
never use high profile DIP sockets.  
75Ω  
0.1µF  
Vo  
0.1µF  
8
75Ω  
Evaluation Board Information  
CLC5633  
A data sheet is available for the CLC730075/CLC730074  
evaluation boards. The evaluation board data sheets pro-  
vide:  
DS015005-52  
FIGURE 13. Single Supply Cable Driver  
Evaluation board schematics  
Evaluation board layouts  
Vin = 10MHz, 0.5Vpp  
General information about the boards  
The evaluation boards are designed to accommodate dual  
supplies. The boards can be modified to provide single  
supply operation. For best performance; 1) do not connect  
the unused supply, 2) ground the unused supply pin.  
Special Evaluation Board  
Considerations for the CLC5633  
To optimize off-isolation of the CLC5633, cut the Rf trace on  
both the CLC730074 and the CLC730075 evaluation  
boards. This cut minimizes capacitive feedthrough between  
the input and the output.  
SPICE Models  
20ns/div  
SPICE models provide a means to evaluate amplifier de-  
signs. Free SPICE models are available for National’s mono-  
lithic amplifiers that:  
DS015005-53  
FIGURE 14. Response After 10m of Cable  
Support Berkeley SPICE 2G and its many derivatives  
15  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
14-Pin SOIC  
NSC Package Number M14A  
14-Pin SOIC  
NSC Package Number M14B  
www.national.com  
16  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
14-Pin MDIP  
NSC Package Number N14A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 180-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

CLC5644

Low-Power, Low-Cost, Quad Operational Amplifier
NSC

CLC5644IM

Low-Power, Low-Cost, Quad Operational Amplifier
NSC

CLC5644IMX

Low-Power, Low-Cost, Quad Operational Amplifier
NSC

CLC5644IN

Low-Power, Low-Cost, Quad Operational Amplifier
NSC

CLC5654

Very High-Speed, Low-Cost, Quad Operational Amplifier
NSC

CLC5654IM

Very High-Speed, Low-Cost, Quad Operational Amplifier
NSC

CLC5654IMX

Very High-Speed, Low-Cost, Quad Operational Amplifier
NSC

CLC5654IN

Very High-Speed, Low-Cost, Quad Operational Amplifier
NSC

CLC5665

Low Distortion Amplifier with Disable
NSC

CLC5665IM

Low Distortion Amplifier with Disable
NSC

CLC5665IMX

Low Distortion Amplifier with Disable
NSC

CLC5665IN

Low Distortion Amplifier with Disable
NSC