LM49350RL/NOPB [NSC]

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, 3.5 X 3.5 MM, ROHS COMPLIANT, MICRO SMDXT-36, Consumer IC:Other;
LM49350RL/NOPB
型号: LM49350RL/NOPB
厂家: National Semiconductor    National Semiconductor
描述:

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, 3.5 X 3.5 MM, ROHS COMPLIANT, MICRO SMDXT-36, Consumer IC:Other

解码器 编解码器 放大器
文件: 总104页 (文件大小:3383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 29, 2009  
LM49350  
High Performance Audio Codec Sub-System with a  
Ground-Referenced Stereo Headphone Amplifier & an  
Ultra Low EMI Class D Loudspeaker Amplifier with Dual  
I2S/PCM Digital Audio Interfaces  
SNR (Stereo DAC at 48kHz)  
SNR (Stereo ADC at 48kHz)  
Shutdown Current  
PSRR at 217 Hz, A_VDD = 3.3V, (HP from  
AUX)  
96dB (typ)  
1.0 General Description  
94dB (typ)  
2.3µA (typ)  
97dB (typ)  
The LM49350 is a high performance audio subsystem that  
supports both analog and digital audio functions. The  
LM49350 includes a high quality stereo DAC, a high quality  
stereo ADC, a stereo headphone amplifier that supports  
ground referenced output cap-less operation, a dual mode  
earpiece speaker amplifier, and a low EMI Class D loud-  
speaker amplifier. It is designed for demanding applications  
in mobile phones and other portable devices.  
4.0 Features  
High performance 96dB SNR stereo DAC  
High performance 94dB SNR stereo ADC  
The LM49350 features dual bi-directional I2S or PCM audio  
interfaces for full range audio and an I2C compatible interface  
for control. The stereo DAC path features an SNR of 96dB  
with 24-bit 48 kHz input. The headphone amplifier delivers  
69mWRMS (typ) to a 32single-ended stereo load with less  
than 1% distortion (THD+N) when A_VDD = 3.3V. The ear-  
piece speaker amplifier delivers 58mWRMS (typ) to a 32Ω  
bridged-tied load with less than 1% distortion (THD+N) when  
A_VDD = 3.3V. The loudspeaker amplifier delivers up to  
495mW into an 8load with less than 1% distortion when  
LS_VDD = 3.3V and up to 1.2W when LS_VDD = 5.0V.  
Up to 192kHz stereo audio playback  
Up to 48kHz stereo recording  
Dual bidirectional I2S or PCM compatible audio interfaces  
Read/write I2C compatible control interface  
Flexible digital mixer with sample rate conversion  
Dual sigma-delta PLLs for operation from any clock at any  
sample rate  
Digital 3D stereo enhancement  
Dual 5 band parametric equalizers  
Cascadable DSP effects that allow 10 band parametric  
equalization  
ALC/Compressor/Limiter on both DAC and ADC paths  
The LM49350 employs advanced techniques to reduce pow-  
er consumption, to reduce controller overhead, to speed de-  
velopment time, and to eliminate click and pop. Boomer audio  
power amplifiers were designed specifically to provide high  
quality output power with a minimal amount of external com-  
ponents. It is therefore ideally suited for mobile phone and  
other low voltage applications where minimal power con-  
sumption, PCB area and cost are primary requirements.  
Ultra low EMI, Class D loudspeaker amplifier with spread  
spectrum control  
Ground referenced output cap-less headphone amplifier  
operation  
Earpiece speaker amplifier with reduced power  
consumption mode for mono differential line out  
applications  
2.0 Applications  
Stereo auxiliary inputs or mono differential input  
Smart Phones  
Differential stereo microphone inputs with single-ended  
option  
Automatic level control for digital audio inputs, stereo  
microphone inputs, and stereo auxiliary inputs  
Mobile Phones and VOIP Phones  
Portable GPS Navigator and Portable Gaming Devices  
Portable DVD/CD/AAC/MP3/MP4 Players  
Digital Cameras/Camcorders  
Flexible audio routing from input to output  
16 Step volume control for microphones with 2dB steps  
32 Step volume control for auxiliary inputs in 1.5dB steps  
Micro-power shutdown mode  
3.0 Key Specifications  
PHP at A_VDD = 3.3V, Stereo 32, 1% THD 69mW/ch (typ)  
PLS at LS_VDD = 5V, 8, 1% THD  
PLS at LS_VDD = 4.2V, 8, 1% THD  
PLS at LS_VDD = 3.3V, 8, 1% THD  
PEP at A_VDD = 3.3V, 32BTL, 1% THD  
1.2W (typ)  
825mW (typ)  
495mW (typ)  
58mW (typ)  
Available in the 3.5 x 3.5 mm 36 bump micro SMD package  
■ꢀSupply Voltage Range  
ꢀꢀD_VDD = 1.7V to 2.0V  
ꢀꢀLS_VDD and A_VDD = 2.7V to 5.5V  
ꢀꢀI/O_VDD = 1.6V to 4.5V  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2009 National Semiconductor Corporation  
201941  
www.national.com  
5.0 LM49350 Overview  
20194111  
FIGURE 1. LM49350 Block Diagram  
www.national.com  
2
6.0 Typical Application  
20194102  
FIGURE 2. Example Application in Multimedia Phone with a Dedicated Earpiece and Mono Loudspeaker  
3
www.national.com  
20194103  
FIGURE 3. Example Application in Multimedia Phone Using Stereo Loudspeaker  
www.national.com  
4
20194104  
FIGURE 4. Example Application in a Multimedia Phone Using a Dedicated RF Module for Voice Modern Functions  
5
www.national.com  
20194105  
FIGURE 5. Example Application in a Portable Media Player with a Differential Stereo Line Input  
www.national.com  
6
Table of Contents  
1.0 General Description ......................................................................................................................... 1  
2.0 Applications .................................................................................................................................... 1  
3.0 Key Specifications ........................................................................................................................... 1  
4.0 Features ........................................................................................................................................ 1  
5.0 LM49350 Overview .......................................................................................................................... 2  
6.0 Typical Application ........................................................................................................................... 3  
7.0 Connection Diagrams ..................................................................................................................... 10  
7.1 PIN TYPE DEFINITIONS ........................................................................................................ 11  
8.0 Absolute Maximum Ratings ............................................................................................................ 12  
9.0 Operating Ratings ......................................................................................................................... 12  
10.0 Electrical Characteristics: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD = 1.8V (Notes 1, 2) ..................... 12  
11.0 Timing Characteristics: DVDD = I/OVDD = 1.8V (Notes 1, 2) ................................................................. 16  
12.0 Typical Performance Characteristics .............................................................................................. 17  
13.0 System Control ............................................................................................................................ 24  
13.1 I2C SIGNALS ....................................................................................................................... 24  
13.2 I2C DATA VALIDITY ............................................................................................................. 24  
13.3 I2C START AND STOP CONDITIONS ..................................................................................... 24  
13.4 TRANSFERRING DATA ........................................................................................................ 24  
13.5 I2C TIMING PARAMETERS .................................................................................................. 26  
14.0 Device Register Map .................................................................................................................... 27  
15.0 Basic PMC Setup Register ............................................................................................................ 32  
16.0 PMC Clocks Register ................................................................................................................... 33  
17.0 PMC Clock Divide Register ........................................................................................................... 33  
18.0 LM49350 Clock Network .............................................................................................................. 34  
19.0 PLL Setup Registers .................................................................................................................... 36  
20.0 Analog Mixer Control Registers ..................................................................................................... 42  
20.1 CLASS D LOUDSPEAKER AMPLIFIER .................................................................................. 42  
20.2 SPREAD SPECTRUM MODULATION .................................................................................... 42  
20.3 CLASS D POWER DISSIPATION AND EFFICIENCY ............................................................... 42  
20.4 HEADPHONE AMPLIFIER FUNCTION ................................................................................... 43  
20.5 CHARGE PUMP CAPACITOR SELECTION ............................................................................ 43  
20.6 CHARGE PUMP FLYING CAPACITOR (C6) ............................................................................ 43  
20.7 CHARGE PUMP FLYING CAPACITOR (C5) ............................................................................ 43  
20.8 AUXILIARY OUTPUT AMPLIFIER .......................................................................................... 44  
21.0 ADC Control Registers ................................................................................................................. 48  
22.0 DAC Control Registers ................................................................................................................. 50  
23.0 Digital Mixer Control Registers ...................................................................................................... 51  
23.1 DIGITAL MIXER ................................................................................................................... 51  
24.0 Audio Port Control Registers ......................................................................................................... 55  
25.0 Digital Effects Engine ................................................................................................................... 60  
25.1 DIGITAL SIGNAL PROCESSOR (DSP) ................................................................................... 60  
25.2 ALC OVERVIEW .................................................................................................................. 62  
26.0 DAC Effects Registers .................................................................................................................. 78  
27.0 GPIO Registers ........................................................................................................................... 95  
FIGURE 24. Demo Board Schematic ..................................................................................................... 97  
28.0 Demonstration Board Layout ......................................................................................................... 98  
29.0 Revision History ........................................................................................................................ 101  
30.0 Physical Dimensions .................................................................................................................. 102  
List of Figures  
FIGURE 1. LM49350 Block Diagram ............................................................................................................. 2  
FIGURE 2. Example Application in Multimedia Phone with a Dedicated Earpiece and Mono Loudspeaker ......................... 3  
FIGURE 3. Example Application in Multimedia Phone Using Stereo Loudspeaker ...................................................... 4  
FIGURE 4. Example Application in a Multimedia Phone Using a Dedicated RF Module for Voice Modern Functions ............. 5  
FIGURE 5. Example Application in a Portable Media Player with a Differential Stereo Line Input .................................... 6  
FIGURE 6. I2C Signals: Data Validity ............................................................................................................ 24  
FIGURE 7. I2C Start and Stop Conditions ...................................................................................................... 24  
FIGURE 8. I2C Chip Address ..................................................................................................................... 24  
FIGURE 9. Example I2C Write Cycle ............................................................................................................ 25  
FIGURE 10. Example I2C Read Cycle .......................................................................................................... 26  
FIGURE 11. I2C Timing Diagram ................................................................................................................. 26  
FIGURE 12. Internal Clock Network ............................................................................................................. 35  
FIGURE 13. PLL1 Loop ........................................................................................................................... 36  
FIGURE 14. PLL2 Loop ............................................................................................................................ 36  
7
www.national.com  
FIGURE 15. EMI/RFI Filter for the Class D Amplifier ......................................................................................... 43  
FIGURE 16. Digital Mixer .......................................................................................................................... 51  
FIGURE 17. I2S Serial Data Format (24 bit example) ........................................................................................ 55  
FIGURE 18. Left Justified Data Format (24 bit example) .................................................................................... 55  
FIGURE 19. Right Justified Data Format (24 bit example) .................................................................................. 55  
FIGURE 20. PCM Serial Data Format (16 bit example) ...................................................................................... 55  
FIGURE 21. ADC DSP Effects Chain ........................................................................................................... 60  
FIGURE 22. DAC DSP Effects Chain ........................................................................................................... 60  
FIGURE 23. ALC Example ........................................................................................................................ 62  
FIGURE 24. Demo Board Schematic ............................................................................................................ 97  
FIGURE 25. Top Silkscreen Layer ............................................................................................................... 98  
FIGURE 26. Top Layer ............................................................................................................................. 98  
FIGURE 27. Inner Layer 1 ......................................................................................................................... 99  
FIGURE 28. Inner Layer 2 ......................................................................................................................... 99  
FIGURE 29. Bottom Silkscreen Layer ......................................................................................................... 100  
FIGURE 30. Bottom Layer ...................................................................................................................... 100  
List of Tables  
TABLE 1. Device Register Map .................................................................................................................. 27  
TABLE 2. PMC_SETUP (0x00h) ................................................................................................................. 32  
TABLE 3. PMC_SETUP (0x01h) ................................................................................................................. 33  
TABLE 4. PMC_SETUP (0x02h) (Default data value is 0x50h) ............................................................................. 33  
TABLE 5. DAC Clock Requirements ............................................................................................................. 34  
TABLE 6. ADC Clock Requirements ............................................................................................................. 34  
TABLE 7. PLL Settings for Common System Clock Frequencies .......................................................................... 37  
TABLE 8. PLL_CLOCK_SOURCE (0x03h) .................................................................................................... 38  
TABLE 9. PLL1_M (0x04h) ........................................................................................................................ 38  
TABLE 10. PLL1_N (0x05h) ...................................................................................................................... 38  
TABLE 11. PLL1_N_MOD (0x06h) .............................................................................................................. 39  
TABLE 12. PLL1_P1 (0x07h) ..................................................................................................................... 39  
TABLE 13. PLL1_P2 (0x08h) ..................................................................................................................... 39  
TABLE 14. PLL2_M (0x09h) ...................................................................................................................... 40  
TABLE 15. PLL2_N (0x0Ah) ...................................................................................................................... 40  
TABLE 16. PLL2_N_MOD (0x0Bh) .............................................................................................................. 40  
TABLE 17. PLL2_P (0x0Ch) ...................................................................................................................... 41  
TABLE 18. CLASS_D_OUTPUT (0x10h) ....................................................................................................... 42  
TABLE 19. LEFT HEADPHONE_OUTPUT (0x11h) .......................................................................................... 43  
TABLE 20. RIGHT HEADPHONE_OUTPUT (0x12h) ........................................................................................ 43  
TABLE 21. AUX_OUTPUT (0x13h) .............................................................................................................. 44  
TABLE 22. OUTPUT_OPTIONS (0x14h) ....................................................................................................... 44  
TABLE 23. ADC_INPUT (0x15h) ................................................................................................................. 44  
TABLE 24. MIC_L_INPUT (0x16h) .............................................................................................................. 45  
TABLE 25. MIC_R_INPUT (0x17h) .............................................................................................................. 45  
TABLE 26. AUX_L_INPUT (0x18h) .............................................................................................................. 46  
TABLE 27. AUX_R_INPUT (0x19h) ............................................................................................................. 47  
TABLE 28. ADC Basic (0x20h) ................................................................................................................... 48  
TABLE 29. ADC_CLK_DIV (0x21h) ............................................................................................................. 48  
TABLE 30. ADC TRIM (0x22h) ................................................................................................................... 49  
TABLE 31. DAC Basic (0x30h) ................................................................................................................... 50  
TABLE 32. DAC_CLK_DIV (0x31h) ............................................................................................................. 50  
TABLE 33. Input Levels 1 (0x40h) ............................................................................................................... 52  
TABLE 34. Input Levels 2 (0x41h) ............................................................................................................... 52  
TABLE 35. Audio Port 1 Input (0x42h) .......................................................................................................... 53  
TABLE 36. Audio Port 2 Input (0x43h) .......................................................................................................... 53  
TABLE 37. DAC Input Select (0x44h) ........................................................................................................... 54  
TABLE 38. Decimator Input Select (0x45h) .................................................................................................... 54  
TABLE 39. BASIC_SETUP (0x50h/0x60h) ..................................................................................................... 56  
TABLE 40. CLK_GEN_1 (0x51h/0x61h) ........................................................................................................ 56  
TABLE 41. CLK_GEN_1 (0x52h/62h) ........................................................................................................... 57  
TABLE 42. CLK_GEN_1 (0x53h/63h) ........................................................................................................... 57  
TABLE 43. DATA_WIDTHS (0x54h/64h) ....................................................................................................... 58  
TABLE 44. TX_MODE (0x55h/x65h) ............................................................................................................ 59  
TABLE 45. ADC EFFECTS (0x70h) ............................................................................................................. 60  
TABLE 46. DAC EFFECTS (0x71h) ............................................................................................................. 60  
TABLE 47. HPF MODE (0x80h) .................................................................................................................. 61  
TABLE 48. ADC_ALC_1 (0x81h) ................................................................................................................. 62  
TABLE 49. ADC_ALC_2 (0x82h) ................................................................................................................. 63  
TABLE 50. ADC_ALC_3 (0x83h) ................................................................................................................. 64  
www.national.com  
8
TABLE 51. ADC_ALC_4 (0x84h) ................................................................................................................. 65  
TABLE 52. ADC_ALC_5 (0x85h) ................................................................................................................. 66  
TABLE 53. ADC_ALC_6 (0x86h) ................................................................................................................. 67  
TABLE 54. ADC_ALC_7 (0x87h) ................................................................................................................. 67  
TABLE 55. ADC_ALC_8 (0x88h) ................................................................................................................. 67  
TABLE 56. ADC_L_LEVEL (0x89h) (Default data value is 0x33h) ......................................................................... 68  
TABLE 57. ADC_R_LEVEL (0x8Ah) (Default data value is 0x33h) ........................................................................ 69  
TABLE 58. EQ_BAND_1 (0x8Bh) ................................................................................................................ 70  
TABLE 59. EQ_BAND_2 (0x8Ch) ................................................................................................................ 71  
TABLE 60. EQ_BAND_3 (0x8Dh) ................................................................................................................ 72  
TABLE 61. EQ_BAND_4 (0x8Eh) ................................................................................................................ 73  
TABLE 62. EQ_BAND_5 (0x8Fh) ................................................................................................................ 74  
TABLE 63. SOFTCLIP1 (0x90h) ................................................................................................................. 75  
TABLE 64. SOFTCLIP2 (0x91h) ................................................................................................................. 76  
TABLE 65. SOFTCLIP3 (0x92h) ................................................................................................................. 77  
TABLE 66. DAC_ALC_1 (0xA0h) ................................................................................................................ 77  
TABLE 67. DAC_ALC_2 (0xA1h) ................................................................................................................ 79  
TABLE 68. DAC_ALC_3 (0xA2h) ................................................................................................................ 80  
TABLE 69. DAC_ALC_4 (0xA3h) ................................................................................................................ 81  
TABLE 70. DAC_ALC_5 (0xA4h) ................................................................................................................ 82  
TABLE 71. DAC_ALC_6 (0xA5h) ................................................................................................................ 83  
TABLE 72. DAC_ALC_7 (0xA6h) ................................................................................................................ 83  
TABLE 73. DAC_ALC_8 (0xA7h) ................................................................................................................ 83  
TABLE 74. DAC_L_LEVEL (0xA8h) (Default data value is 0x33h) ......................................................................... 84  
TABLE 75. DAC_R_LEVEL (0xA9h) (Default data value is 0x33h) ........................................................................ 85  
TABLE 76. DAC_3D (0xAAh) ..................................................................................................................... 86  
TABLE 77. EQ_BAND_1 (0xABh) ............................................................................................................... 87  
TABLE 78. EQ_BAND_2 (0xACh) ............................................................................................................... 88  
TABLE 79. EQ_BAND_3 (0xADh) ............................................................................................................... 89  
TABLE 80. EQ_BAND_4 (0xAEh) ............................................................................................................... 90  
TABLE 81. EQ_BAND_5 (0xAFh) ................................................................................................................ 91  
TABLE 82. SOFTCLIP1 (0xB0h) ................................................................................................................. 92  
TABLE 83. SOFTCLIP2 (0xB1h) ................................................................................................................. 93  
TABLE 84. SOFTCLIP3 (0xB2h) ................................................................................................................. 94  
TABLE 85. GPIO (0xE0h) ......................................................................................................................... 94  
TABLE 86. Spread Spectrum (0xF1h) ........................................................................................................... 95  
TABLE 87. ADC Compensation Filter C0 LSBs (0xF8h) ..................................................................................... 95  
TABLE 88. ADC Compensation Filter C0 MSBs (0xF9h) .................................................................................... 95  
TABLE 89. ADC Compensation Filter C1 LSBs (0xFAh) ..................................................................................... 96  
TABLE 90. ADC Compensation Filter C1 MSBs (0xFBh) .................................................................................... 96  
TABLE 91. ADC Compensation Filter C2 LSBs (0xFCh) .................................................................................... 96  
TABLE 92. ADC Compensation Filter C2 MSBs (0xFDh) .................................................................................... 96  
TABLE 93. AUX_LINEOUT (0xFE) .............................................................................................................. 96  
9
www.national.com  
7.0 Connection Diagrams  
36 Bump micro SMD  
36 Bump micro SMD Marking  
201941q7  
Top View  
XY — Date Code  
TT — Die Traceability  
G — Boomer  
20194101  
J8 — LM49350RL  
Top View (Bump Side Down)  
Order Number LM49350RL  
See NS Package Number RLA36TTA  
Ordering Information  
Order Number  
Package  
Package DWG #  
Transport Media  
MSL Level  
Green Status  
36 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49350RL  
RLA36TTA  
250 units on tape and reel  
3000 units on tape and reel  
1
1
36 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49350RLX  
RLA36TTA  
www.national.com  
10  
Pin Descriptions  
Pin  
Pin Name  
HPR  
Type  
Direction  
Output  
Input  
Description  
A1  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
Analog  
Supply  
Supply  
Analog  
Digital  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Supply  
Supply  
Supply  
Analog  
Analog  
Digital  
Supply  
Analog  
Analog  
Analog  
Analog  
Digital  
Supply  
Headphone right output  
A_VDD  
Headphone and mixer power supply input  
Headphone and mixer ground  
AGND  
Input  
VREF_FLT  
GPIO  
Input/Output Filter point for the microphone power supply and internal references  
Input/Output General purpose input or output  
Input/Output I2C interface data line  
SDA  
HPL  
Output  
Input  
Headphone left output  
Right analog input  
Left analog input  
AUX_R  
AUX_L  
Input  
PORT2_SYNC  
PORT2_SDI  
SCL  
Input/Output Audio Port 2 SYNC Signal (can be master or slave)  
Input  
Input  
Audio Port 2 serial data input  
I2C interface clock line  
HP_VSS  
Output  
Output  
Output  
Output  
Negative power supply pin for the headphone amplifier  
Auxiliary positive output  
AUX_OUT+  
AUX_OUT-  
PORT2_SDO  
PORT2_CLK  
MCLK  
Auxiliary negative output  
Audio port 2 serial data out  
Input/Output Audio port 2 clock signal (can be master or slave)  
Input Input clock from 0.5MHz to 50 MHz  
CP-  
Input/Output Charge pump flying capacitor negative input  
Input/Output Charge pump flying capacitor positive input  
CP+  
MIC_BIAS  
PORT1_SYNC  
PORT1_SDO  
DGND  
Output  
Microphone ultra clean supply (2.2V)  
Input/Output Audio Port 1 sync signal (can be master or slave)  
Output  
Input  
Audio Port 1 serial data output  
Digital ground  
LSGND  
Input  
Loudspeaker ground  
LS_VDD  
Input  
Loudspeaker power supply input  
Right microphone negative input  
Left microphone negative input  
Audio Port 1 serial data input  
Digital power supply input  
Loudspeaker positive output  
Loudspeaker negative output  
Right microphone positive input  
Left microphone positive input  
RIGHT_MIC-  
LEFT_MIC-  
PORT1_SDI  
D_VDD  
Input  
Output  
Input  
Input  
LS +  
Output  
Output  
Input  
LS -  
RIGHT_MIC +  
LEFT_MIC +  
PORT1_CLK  
I/O_VDD  
Input  
Input/Output Audio Port 1 clock signal (can be master or slave)  
Input Digital interface power supply input  
7.1 PIN TYPE DEFINITIONS  
sive components can be connected  
to these pins.  
Analog Input —  
A pin that is used by the analog and  
is never driven by the device. Sup-  
plies are part of this classification.  
Digital Input —  
A pin that is used by the digital but is  
never driven by the device.  
Analog Output —  
A pin that is driven by the device and  
should not be driven by external  
sources.  
Digital Output —  
A pin that is driven by the device and  
should not be driven by another de-  
vice to avoid contention.  
Analog Input/Output — A pin that is typically used for filtering  
a DC signal within the device. Pas-  
Digital Input/Output —  
A pin that is either open drain (SDA)  
or a bidirectional CMOS in/out. In  
the latter case the direction is se-  
lected by a control register within the  
LM49350.  
11  
www.national.com  
Junction Temperature  
Thermal Resistance  
ꢁθJA – RLA36 (soldered down  
to PCB with 2in2 1oz. copper  
plane)  
Soldering Information  
See Applications Note AN-1112.  
150°C  
8.0 Absolute Maximum Ratings (Notes  
1, 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
60°C/W  
Analog Supply Voltage  
(A_VDD and LS_VDD  
)
6.0V  
2.2V  
9.0 Operating Ratings  
Temperature Range  
Digital Supply Voltage  
D_VDD  
−40°C to +85°C  
I/O Supply Voltage  
I/O_VDD  
Supply Voltage  
A_VDD and LS_VDD  
D_VDD  
5.5V  
−65°C to +150°C  
Internally Limited  
2.7V to 5.5V  
1.7V to 2.0V  
1.6V to 4.5V  
Storage Temperature  
Power Dissipation (Note )  
I/O_VDD  
ESD Ratings  
Human Body Model (Note )  
Machine Model (Note )  
2000V  
200V  
10.0 Electrical Characteristics: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD = 1.8V  
(Notes 1, 2) The following specifications apply for RL(LS) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply  
for TA = 25°C.  
LM49350  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
(Limits)  
(Note 6) (Note 7)  
DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD and LS_VDD  
)
Shutdown Mode,  
fMCLK = 13MHz, PLL Off  
DISD  
DIST  
Digital Shutdown Current  
Digital Standby Current  
2
15  
1
µA (max)  
mA (max)  
fMCLK = 12.288MHz, PMC On only  
0.25  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Stereo DAC On, OSRDAC = 128,  
PLL Off, HP On  
Digital Active Current (MP3 Mode)  
Digital Active Current (FM Mode)  
0.9  
0.2  
1.5  
2
0.5  
2
mA (max)  
mA (max)  
mA (max)  
fMCLK = 13MHz  
Analog Audio modes  
DIDD  
Digital Active Current (FM Record  
Mode)  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
Digital Active Current (CODEC  
Mode)-  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Mono ADC On, Stereo DAC On,  
OSR = 128, PLL Off, MIC On  
2.7  
3.8  
mA (max)  
AISD  
AIST  
Analog Shutdown Current  
Shutdown Mode  
0.3  
5
μA (max)  
Analog Standby Quiescent Current Reference Voltages On only  
0.85  
1.5  
mA (max)  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Analog Supply Current (MP3 Mode) Stereo DAC On, OSRDAC = 128,  
PLL Off, HP On  
7.8  
5.3  
9.8  
10  
7
mA (max)  
mA (max)  
mA (max)  
Analog Supply Current (FM Mode)  
Stereo Analog Inputs On, HP On  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
AIDD  
Analog Supply Current (FM Record  
Mode)  
12  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Mono ADC On, Stereo DAC On,  
OSR = 128, PLL Off, MIC On  
Analog Supply Current (CODEC  
Mode)  
13  
15  
mA (max)  
mA (max)  
fMCLK = 13MHz,  
PLLIDD  
PLL Total Active Current  
2.9  
5.5  
fPLLOUT = 12MHz, PLL On only  
HPIDD  
LSIDD  
Headphone Quiescent Current  
Loudspeaker Quiescent Current  
Stereo HP On only  
LS On only  
3.5  
2.9  
mA  
mA  
www.national.com  
12  
LM49350  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limits)  
Symbol  
MICIDD  
Parameter  
Conditions  
Microphone Quiescent Current  
ADC Total Active Current  
DAC Total Active Current  
mono MIC + MIC Bias On  
fS = 48kHz, Stereo  
0.5  
9
mA  
mA  
mA  
ADCIDD  
DACIDD  
fS = 48kHz, Stereo  
5.5  
Auxiliary Input Amplifier Quiescent  
Current  
AUXINIDD  
Stereo Auxiliary Inputs enabled  
0.7  
mA  
AUX_LINE_OUT enabled  
Earpiece mode enabled  
0.5  
1.0  
mA  
mA  
Auxiliary Output Amplifier Quiescent  
Current  
AUXOUTIDD  
LOUDSPEAKER AMPLIFIER  
LSEFF  
Loudspeaker Efficiency  
PO = 400mW, RL = 8Ω  
PO = 400mW, f = 1kHz,  
RL = 8Ω, Mono Input Signal  
83  
%
%
THD+N  
Total Harmonic Distortion + Noise  
0.07  
RL = 8Ω, f = 1kHz, THD+N = 1%, Mono Input Signal  
LS_VDD = 3.3V  
LS_VDD = 4.2V  
LS_VDD = 5V  
495  
825  
1.2  
400  
mW (min)  
mW  
W
PO  
Output Power  
RL = 4Ω, f = 1kHz, THD+N = 1%, Mono Input Signal  
LS_VDD = 3.3V  
LS_VDD = 4.2V  
LS_VDD = 5V  
800  
1.4  
2
mW  
W
W
VRIPPLE = 200mVP-P  
fRIPPLE = 217Hz  
PSRR  
Power Supply Rejection Ration  
73  
55  
85  
dB (min)  
Mono Input Terminated  
VREF = 1.0μF  
Reference = VOUT (1% THD+N )  
Gain = 0dB, A-weighted  
Mono Input Terminated  
SNR  
eOS  
Signal-to-Noise Ratio  
Output Noise  
95  
35  
dB (min)  
µV  
Gain = 0dB, A-weighted,  
Mono Input Terminated  
VOS  
TWU  
Offset Voltage  
Turn-On Time  
Gain = 0dB, form Mono Input  
PMC Clock = 300kHz  
10  
28  
50  
mV (max)  
ms  
HEADPHONE AMPLIFIERS  
PO = 7.5mW, f = 1kHz,  
RL = 32Ω  
THD+N  
PO  
Total Harmonic Distortion + Noise  
0.025  
69  
0.1  
60  
% (max)  
Stereo Analog Input Signal  
RL = 32Ω, f = 1kHz, THD+N = 1%,  
Stereo Analog Input Signal  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Stereo Analog Inputs Terminated,  
VREF = 1.0μF, Mono Differential Input  
Mode  
Headphone Output Power  
mW (min)  
PSRR  
SNR  
Power Supply Rejection Ratio  
97  
75  
dB (min)  
Reference = VOUT (1% THD+N )  
Gain = 0dB, A-weighted  
Stereo Inputs Terminated  
106  
96  
98  
90  
dB (min)  
dB (min)  
Signal-to-Noise Ratio  
Reference = VOUT (0dBFS ) Gain =  
0dB,  
A-weighted, I2S Input = Digital Zero  
13  
www.national.com  
LM49350  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Gain = 0dB, A-weighted,  
Stereo Inputs Terminated  
8
µV  
µV  
eOS  
Output Noise  
Gain = 0dB, A-weighted,  
I2S Input = Digital Zero  
16  
PO = 60mW, f = 1kHz,  
RL = 32Ω  
XTALK  
Crosstalk  
71  
dB  
Stereo Analog Input Signal  
Channel-to-Channel Gain Matching  
ΔACH-CH  
0.03  
dB  
AUX Gain = 0dB  
From Differential Mono Input  
0.5  
6
6
mV (max)  
VOS  
Output Offset Voltage  
Turn-On Time  
DAC Gain = 0dB, From DAC Input  
fMCLK = 12.288MHz, PLL off  
1
mV (max)  
ms  
TWU  
PMC Clock = 300kHz  
28  
AUXILIARY OUTPUTS  
AUX_LINE_OUT  
0.004  
0.08  
58  
%
%
RL = 5k, VOUT = 1VRMS  
THD+N  
POUT  
Total Harmonic Distortion + Noise  
Earpiece mode, f = 1kHz  
RL = 32Ω BTL, POUT = 20mW  
Earpiece mode, f = 1kHz  
Output Power  
45  
62  
mW (min)  
RL = 32Ω BTL, THD+N = 1%  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1μF  
AUX_LINE_OUT  
100  
94  
dB  
PSRR  
SNR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1μF  
Earpiece mode  
dB (min)  
dB  
Gain = 0dB, VREF = VOUT (1%THD+N)  
A-weighted, Mono Input Terminated  
Gain = 0dB, VREF = VOUT (1%THD+N)  
A-weighted, Mono Input Terminated  
Signal-to-Noise Ratio  
Output Noise  
100  
13  
7
μV  
OUT  
Gain = 0dB, From Mono Input  
AUX_LINE_OUT  
mV  
VOS  
Output Offset Voltage  
Turn-On Time  
Gain = 0dB, From Mono Input  
Earpiece mode  
3
15  
mV (max)  
ms  
TWU  
PMC Clock = 300kHz  
28  
STEREO ADC  
Differential Line Input  
VIN = 200mVRMS, f = 1kHz  
Gain = 0dB  
ADC Total Harmonic Distortion +  
Noise  
THD+NADC  
0.03  
300  
%
HPF On, fS = 48kHz  
Lower -3dB Point  
Hz  
PBADC  
ADC Passband  
ADC Ripple  
0.41*fS  
0.1  
HPF On, Upper -3dB Point  
ADC Compensated  
kHz  
dB  
RADC  
Reference = VOUT (0dBFS ) Gain =  
6dB,  
90  
dB  
A-weighted From MIC, fS = 8kHz  
SNRADC  
ADC Signal-to-Noise Ratio  
Reference = VOUT (0dBFS ) Gain =  
0dB,  
94  
dB  
A-weighted From Stereo Input, fS =  
48kHz  
www.national.com  
14  
LM49350  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
ADCLEVEL  
VRMS  
ADC Full Scale Input Level  
1
STEREO DAC  
I2S Input  
DAC Total Harmonic Distortion +  
Noise  
THD+NDAC  
VIN = 500mFFSRMS, f = 1kHz  
Gain = 0dB  
0.05  
%
DACLEVEL  
RDAC  
DAC Full Scale Output Level  
DAC Ripple  
VRMS  
dB  
1
0.1  
PBDAC  
DAC Passband  
Upper –3dB Point  
0.45*fS  
96  
kHz  
dB  
SNRDAC  
MIC BIAS  
VBIAS  
DAC Signal-to-Noise Ratio  
fS = 48kHz, A-weighted  
Microphone Bias Voltage  
MIC input selected  
2.2  
V
VOLUME CONTROL  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
–46.5  
12  
dB  
dB  
VCRAUX  
VCRDAC  
VCRADC  
VCRMIC  
Stereo Input Volume Control Range  
DAC Volume Control Range  
ADC Volume Control Range  
MIC Volume Control Range  
–76.5  
18  
dB  
dB  
–76.5  
18  
dB  
dB  
6
dB  
36  
dB  
SSAUX  
SSDAC  
SSADC  
SSMIC  
SVAUX  
SVMIC  
AUX Volume Control Stepsize  
DAC Volume Control Stepsize  
DAC Volume Control Stepsize  
MIC Volume Control Stepsize  
AUX Volume Setting Variation  
MIC Volume Setting Variation  
1.5  
1.5  
1.5  
2
dB  
dB  
dB  
dB  
±1  
dB (max)  
dB (max)  
±1  
ANALOG INPUTS  
AUXR Gain = 12dB  
AUXR Gain = 0dB  
AUXR Gain = –46.5dB  
AUXL Gain = 12dB  
AUXL Gain = 0dB  
17.5  
38  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
AUXR_RIN  
AUXL_RIN  
Right Auxiliary Input Impedance  
Right Auxiliary Input Impedance  
64  
17.5  
38  
AUXL Gain = –46.5dB  
64  
MICR_RIN  
MICL_RIN  
Right Microphone Input Impedance All MIC gain settings  
Left Microphone Input Impedance All MIC gain settings  
50  
50  
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.  
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified  
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.  
Note 4: Human body model, applicable std. JESD22-A114C.  
Note 5: Machine model, applicable std. JESD22-A115-A.  
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product  
characterization and are not guaranteed.  
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.  
15  
www.national.com  
11.0 Timing Characteristics: DVDD = I/OVDD = 1.8V (Notes 1, 2) The following specifications  
apply for RL(SP) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C.  
LM49350  
Units  
Symbol  
PLL  
fIN  
Parameter  
Conditions  
Typical  
Limit  
(Limits)  
(Note 6)  
(Note 7)  
Minimum MCLK Frequency  
Maximum MCLK Frequency  
0.5  
50  
MHz (min)  
MHz (max)  
PLL Input Frequency Range  
DIGITAL AUDIO INTERFACE TIMING  
tBCLKR  
BCK rise time  
BCK fall time  
BCK duty cycle  
3
3
ns (max)  
ns (max)  
%
tBCLKCF  
tBCLKDS  
50  
WS Propagation Delay from BCK  
falling edge  
tDL  
10  
10  
10  
ns (max)  
ns (min)  
ns (min)  
tDST  
tDHT  
DATA Setup Time to BCK Rising Edge  
DATA Hold Time from BCK Rising  
Edge  
CONTROL INTERFACE TIMING  
SCL Frequency  
400  
0.6  
kHz (max)  
Hold Time (repeated START  
Condition)  
1
μs (min)  
2
3
Clock Low Time  
Clock High Time  
1.3  
μs (min)  
ns (min)  
600  
Setup Time for a Repeated START  
Condition  
4
600  
ns (min)  
300  
900  
ns (min)  
ns (max)  
Output  
Input  
5
Data Hold Time  
0
900  
ns (min)  
ns (max)  
6
7
Data Setup Time  
100  
20+0.1CB  
300  
ns (min)  
ns (min)  
ns (max)  
Rise Time of SDA and SCL  
15+0.1CB  
300  
ns (min)  
ns (max)  
8
Fall Time SDA and SCL  
9
Setup Time for STOP Condition  
600  
ns (min)  
Bus Free Time Between a STOP and  
START Condition  
10  
1.3  
μs (min)  
10  
200  
pF (min)  
pF(max)  
CB  
Bus Capacitance  
www.national.com  
16  
12.0 Typical Performance Characteristics  
DAC Frequency Response  
fS = 48kHz, OSR = 128  
DAC Frequency Response  
fS = 8kHz, OSR = 128  
20194140  
20194139  
Stereo Audio ADC Frequency Response  
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
Stereo Audio ADC Frequency Response  
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
20194142  
20194141  
Stereo Audio ADC HPF Frequency Response  
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
(Top-No HPF, Upper-HPF_Mode = '101',  
Lower-HPF_Mode = '110)'  
Mono Voice ADC Frequency Response  
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
Bottom-HPF_Mode = '111'  
20194144  
20194143  
17  
www.national.com  
Mono Voice ADC Frequency Response  
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
Mono Voice ADC HPF Frequency Response  
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
(Top-No HPF)  
(From Left to Right:  
HPF_Mode = '000', '001', '010', '011', '100')  
20194145  
20194146  
Mono Voice ADC HPF Frequency Response  
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB  
(Top-No HPF)  
ADC Output THD+N vs Frequency  
Differential Line Input, Aux Gain = 0dB  
VIN = 200mVRMS, fS = 48kHz  
(From Left to Right:  
HPF_Mode = '000', '001', '010', '011', '100')  
20194155  
20194147  
ADC Output THD+N vs Frequency  
Differential MIC Input, MIC Gain = 6dB  
VIN = 100mVRMS, fS = 48kHz  
ADC Output THD+N vs VIN  
Differential Line Input, Aux Gain = 0dB  
VIN = 1kHz, fS = 48kHz  
20194156  
20194148  
www.national.com  
18  
ADC Output THD+N vs VIN  
Differential MIC Input, MIC Gain = 6dB  
VIN = 1kHz, fS = 48kHz  
Loudspeaker THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
VDD = 3.3V, POUT = 400mW, RL = 8Ω  
20194159  
20194149  
Loudspeaker THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
VDD = 5V, POUT = 400mW, RL = 8Ω  
Loudspeaker THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
LS_VDD = 3.3V, POUT = 500mW, RL = 4Ω  
20194161  
20194181  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
VDD = 3.3V, VIN = 1kHz, RL = 8Ω  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
VDD = 4.2V, VIN = 1kHz, RL = 8Ω  
20194165  
20194166  
19  
www.national.com  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
VDD = 5V, VIN = 1kHz, RL = 8Ω  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
LS_VDD = 3.3V, RL = 4Ω, f = 1kHz  
20194167  
20194182  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
LS_VDD = 4.2V, RL = 4Ω, f = 1kHz  
Loudspeaker THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
LS_VDD = 5V, RL = 4Ω, f = 1kHz  
20194183  
20194184  
Loudspeaker PSRR vs Frequency  
LS_VDD = 3.3V, Aux Gain = 0dB  
Differential Aux Input to Ground  
VRIPPLE = 200mVPP  
Loudspeaker PSRR vs Frequency  
LS_VDD = 4.2V, Aux Gain = 0dB  
Differential Aux Input to Ground  
VRIPPLE = 200mVPP  
20194151  
20194152  
www.national.com  
20  
Loudspeaker PSRR vs Frequency  
LS_VDD = 5V, Aux Gain = 0dB  
Differential Aux Input to Ground  
VRIPPLE = 200mVPP  
Headphone THD+N vs Frequency  
Stereo Aux Input, Aux Gain = 0dB  
VDD = 3.3V, POUT = 7.5mW, RL = 32Ω  
20194157  
20194153  
Headphone THD+N vs Frequency  
Stereo Aux Input, Aux Gain = 0dB  
VDD = 5V, POUT = 7.5mW, RL = 32Ω  
Headphone THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
A_VDD = 3.3V, POUT = 7.5mW, RL = 16Ω  
20194158  
20194179  
Headphone THD+N vs Output Power  
Stereo Aux Input, Aux Gain = 0dB  
VDD = 3.3V, VIN = 1kHz, RL = 32Ω  
Headphone THD+N vs Output Power  
Stereo Aux Input, Aux Gain = 0dB  
VDD = 5V, VIN = 1kHz, RL = 32Ω  
20194173  
20194174  
21  
www.national.com  
Headphone THD+N vs Output Power  
Headphone PSRR vs Frequency  
Differential Aux Input to Ground, Aux Gain = 0dB  
VRIPPLE = 200mVPP  
A_VDD = 3.3V, Stereo Aux Input, Aux Gain = 0dB  
RL = 16Ω, f = 1kHz  
20194175  
20194180  
Headphone Crosstalk vs Frequency  
Stereo Aux Inputs, Aux Gain = 0dB, RL = 32Ω  
Earpiece THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
A_VDD = 3.3V, POUT = 20mW, RL = 32Ω  
20194169  
20194176  
Earpiece THD+N vs Output Power  
Differential Aux Input, Aux Gain = 0dB  
A_VDD45 = 3.3V, RL = 32Ω, f = 1kHz  
Earpiece PSRR vs Frequency  
Differential Aux Input to Ground, Aux Gain = 0dB  
VRIPPLE = 200mVPP  
20194177  
20194178  
www.national.com  
22  
AUXOUT THD+N vs Frequency  
Differential Aux Input, Aux Gain = 0dB  
VDD = 5V, VOUT = 1VRMS, RL = 5kΩ  
AUXOUT THD+N vs Output Voltage  
Differential Aux Input, Aux Gain = 0dB  
VIN = 1kHz, RL = 5kΩ  
20194162  
20194168  
AUXOUT PSRR vs Frequency  
Differential Aux Input to Ground, Aux Gain = 0dB  
VRIPPLE = 200mVPP  
20194154  
23  
www.national.com  
these signals need a pull-up resistor according to I2C speci-  
13.0 System Control  
fication. The I2C slave address for LM49350 is 00110102.  
Method 1. I2C Compatible Interface  
13.2 I2C DATA VALIDITY  
13.1 I2C SIGNALS  
In I2C mode the LM49350 pin SCL is used for the I2C clock  
SCL and the pin SDA is used for the I2C data signal SDA. Both  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when SCL is LOW.  
20194123  
FIGURE 6. I2C Signals: Data Validity  
13.3 I2C START AND STOP CONDITIONS  
START and STOP bits. The I2C bus is considered to be busy  
after START condition and free after STOP condition. During  
data transmission, I2C master can generate repeated START  
conditions. First START and repeated START conditions are  
equivalent, function-wise.  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
STOP condition is defined as the SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates  
20194124  
FIGURE 7. I2C Start and Stop Conditions  
13.4 TRANSFERRING DATA  
After the START condition, the I2C master sends a chip ad-  
dress. This address is seven bits long followed by an eight bit  
which is a data direction bit (R/W). The LM49350 address is  
00110102. For the eighth bit, a “0” indicates a WRITE and a  
“1” indicates a READ. The second byte selects the register to  
which the data will be written. The third byte contains data to  
write to the selected register.  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. Each  
byte of data has to be followed by an acknowledge bit. The  
acknowledge related clock pulse is generated by the master.  
The transmitter releases the SDA line (HIGH) during the ac-  
knowledge clock pulse. The receiver must pull down the SDA  
line during the 9th clock pulse, signifying an acknowledge. A  
receiver which has been addressed must generate an ac-  
knowledge after each byte has been received.  
20194125  
FIGURE 8. I2C Chip Address  
Register changes take effect at the SCL rising edge during  
the last ACK from slave.  
www.national.com  
24  
20194126  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by slave)  
rs = repeated start  
FIGURE 9. Example I2C Write Cycle  
25  
www.national.com  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle  
waveform.  
20194127  
FIGURE 10. Example I2C Read Cycle  
20194128  
FIGURE 11. I2C Timing Diagram  
13.5 I2C TIMING PARAMETERS  
Symbol  
Parameter  
Limit  
Units  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
Hold Time (repeated) START Condition  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pF  
Clock Low Time  
3
Clock High Time  
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LM49350)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
20+0.1Cb  
15+0.1Cb  
600  
7
Rise Time of SDA and SCL  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
CB  
Bus Free Time between a STOP and a START Condition  
Capacitive Load for Each Bus Line  
1.3  
10  
200  
NOTE: Data guaranteed by design  
www.national.com  
26  
14.0 Device Register Map  
TABLE 1. Device Register Map  
Address  
Register  
7
6
5
4
3
2
1
0
BASIC SETUP  
0x00h  
0x01h  
0x02h  
PMC  
CHIP  
PORT2  
PORT1  
MCLK  
OVR  
OSC  
ENB  
PLL2  
ENB  
PLL1  
ENB  
CHIP  
SETUP  
ACTIVE  
CLK OVR CLK OVR  
ENABLE  
PMC  
CLOCKS  
PMC_CLK_SEL  
PMC  
PMC_CLK_DIV(R)  
CLK_DIV  
PLLs  
0x03h  
0x04h  
0x05h  
0x06h  
PLL2_CLK_SEL  
PLL1 M  
PLL1 N  
PLL1_CLK_SEL  
PLL1 M  
PLL1 N  
PLL1  
PLL2 P2[8] PLL1 P1[8]  
PLL1 N_MOD  
N_MOD  
0x07h  
0x08h  
0x09h  
0x0Ah  
0x0Bh  
PLL1 P1  
PLL1 P2  
PLL2 M  
PLL2 N  
PLL1 P1 [7:0]  
PLL1 P2[7:0]  
PLL2 M  
PLL2 N  
PLL2  
PLL2 P[8]  
PLL2 N_MOD  
N_MOD  
0x0Ch  
PLL2 P  
PLL2 P[7:0]  
ANALOG MIXER  
0x10h  
0x11h  
CLASSD  
AUXL_LS AUXR_LS MICL_LS MICR_LS DACL_LS DACR_LS  
AUXL_HP AUXR_HP MICL_HPL MICR_HPL DACL_HP DACR_HP  
HEAD  
PHONESL  
L
L
L
L
0x12h  
HEAD  
AUXL_HP AUXR_HP MICL_HPR MICR_HPR DACL_HP DACR_HP  
R
R
R
R
PHONESR  
AUX_OUT  
0x13h  
0x14h  
AUXL_AX AUXR_AX MICL_AX MICR_AX DACL_AX DACR_AX  
OUTPUT  
OPTIONS  
CP_FORC AUX-6dB  
E
LS-6dB  
HP-6dB  
EPMODE  
0x15h  
ADC  
AUXL_AD AUXR_AD MICL_ADC MICR_ADC DACL_AD DACR_AD  
CR  
CL  
R
L
CR  
CL  
0x16h  
0x17h  
0x18h  
MICL_LVL  
MICR_LVL  
AUXL_LVL  
MUTE  
MUTE  
SE/DIFF  
SE/DIFF  
MIC_L_LEVEL  
MIC_R_LEVEL  
FROM  
LINEL  
AUX_L_LEVEL  
0x19h  
AUXR_LV DIFF_MOD FROM  
AUX_R_LEVEL  
L
E
LINER  
ADC  
0x20h  
0x21h  
0x22h  
ADC  
BASIC  
DSPONLY  
ADC_CLK_SEL  
MUTE_R  
ADC_CLK_DIV (T)  
MUTE_L ADC_OSR  
MONO  
ADC  
CLOCK  
ADC_DSP  
ADC_TRI  
M
DAC  
0x30h  
DAC_BASI DSPONLY  
C
DAC_CLK_SEL  
MUTE_R  
MUTE_L  
DAC_OSR  
27  
www.national.com  
Address  
Register  
7
6
5
4
3
2
1
0
0x31h  
DAC_CLO  
CK  
DAC_CLK_DIV (S)  
0x32h  
DAC_DSP  
DAC_TRI  
M
DIGITAL MIXER  
PORT2_RX_L_LVL  
INTERP_R_LVL  
0x40h  
0x41h  
0x42h  
0x43h  
0x44h  
0x45h  
IPLVL1  
IPLVL2  
PORT2_RX_R_LVL  
INTERP_L_LVL  
PORT1_RX_R_LVL  
ADC_R_LVL  
R_SEL  
PORT1_RX_L_LVL  
ADC_L_LVL  
L_SEL  
OPPORT1  
OPPORT2  
OPDAC  
MONO  
MONO  
ADCR  
SWAP  
SWAP  
R_SEL  
L_SEL  
SWAP  
PORT2R  
PORT1R  
ADCL  
PORT2L  
PORT1L  
OPDECI  
MXRCLK_SEL  
AUDIO PORT 1  
R_SEL  
L_SEL  
0x50h  
BASIC  
STEREO_ STEREO_ CLK_PH SYNC_MS CLK_MS  
SYNC_MO SYNC_PH  
TX_ENB  
RX_ENB  
STEREO  
DE  
ASE  
0x51h  
0x52h  
0x53h  
0x54h  
0x55h  
0x56h  
CLK_GEN  
1
CLK_SEL  
HALF_CYCLE_DIVDER  
CLK_GEN  
2
SYNTH_D  
ENOM  
SYNTH_NOM  
SYNC_RATE  
RX_WIDTH  
SYNC_GE  
N
SYNC_WIDTH(MONO MODE)  
TX_WIDTH  
MSB_POSITION  
MSB_POSITION  
DATA_WI  
DTH  
TX_EXTRA_BITS  
RX_MODE A/ULAW  
TX_MODE A/ULAW  
COMPAN  
D
RX_MODE  
TX_MODE  
COMPAN  
D
AUDIO PORT 2  
0x60h  
BASIC  
STEREO_ STEREO_ CLK_PH SYNC_MS CLK_MS  
SYNC_MO SYNC_PH  
TX_ENB  
RX_ENB  
STEREO  
DE  
ASE  
0x61h  
0x62h  
0x63h  
0x64h  
0x65h  
0x66h  
CLK_GEN  
1
CLK_SEL  
HALF_CYCLE_DIVDER  
CLK_GEN  
2
SYNTH_D  
ENOM  
SYNTH_NOM  
SYNC_RATE  
RX_WIDTH  
SYNC_GE  
N
SYNC_WIDTH(MONO MODE)  
TX_WIDTH  
MSB_POSITION  
DATA_WI  
DTH  
TX_EXTRA_BITS  
RX_MODE A/ULAW  
TX_MODE A/ULAW  
COMPAN  
D
RX_MODE  
TX_MODE  
COMPAN  
D
MSB_POSITION  
EFFECTS ENGINE  
0x70h  
0x71h  
ADC FX  
DAC FX  
ADC  
ADC  
ADC  
PK ENB  
DAC  
ADC  
ADC  
SCLP ENB EQ ENB  
ALC ENB HPF_ENB  
DAC  
DAC  
DAC  
DAC  
SCLP ENB 3D ENB  
ADC EFFECTS  
EQ ENB  
PK ENB  
ALC ENB  
0x80h  
0x81h  
HPF  
ADC  
HPF MODE  
SOURCE SOURCE STEREO  
OVR SEL LINK  
LIMITER  
SAMPLE_RATE  
ALC 1  
www.national.com  
28  
Address  
Register  
ADC  
7
6
5
4
3
2
1
0
0x82h  
NG_ENB  
NOISE_FLOOR  
ALC_TARGET_LEVEL  
ATTACK_RATE  
ALC 2  
ADC  
0x83h  
0x84h  
0x85h  
0x86h  
0x87h  
0x88h  
0x89h  
0x8Ah  
0x8Bh  
0x8Ch  
0x8Dh  
0x8Eh  
0x8Fh  
0x90h  
0x91h  
0x92h  
ALC 3  
ADC  
ALC 4  
ADC  
PK_DECAY_RATE  
DECAY_RATE/RELEASE_RATE  
HOLDTIME  
ALC 5  
ADC  
ALC 6  
ADC  
MAX_LEVEL  
ALC 7  
ADC  
MIN_LEVEL  
ALC 8  
ADC L  
LEVEL  
ADC R  
LEVEL  
ADC_L_LEVEL  
ADC_R_LEVEL  
EQ BAND  
1
LEVEL  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
FREQ  
EQ BAND  
2
Q
Q
Q
FREQ  
FREQ  
FREQ  
FREQ  
EQ BAND  
3
EQ BAND  
4
EQ BAND  
5
SOFTCLIP  
1
SOFT  
KNEE  
THRESHOLD  
RATIO  
LEVEL  
SOFTCLIP  
2
SOFTCLIP  
3
ADC EFFECT MONITORS  
ADC LEFT LEVEL MONITOR  
ADC RIGHT LEVEL MONITOR  
0x98h  
0x99h  
0x9Ah  
LVLMONL  
LVLMONR  
FXCLIP  
SCLP_R  
CLIP  
SCLP_L  
CLIP  
EQ_R  
CLIP  
EQ_L  
CLIP  
GAIN_R  
CLIP  
GAIN_L  
CLIP  
ADC_R  
CLIP  
ADC_L  
CLIP  
0x9Bh  
0x9Ch  
ALCMONL SCLP_R  
SCLP_L  
ADC LEFT ALC MONITOR  
DISTORT DISTORT  
ALCMONR SCLP_L  
SCLP_R  
ADC RIGHT ALC MONITOR  
DISTORT DISTORT  
DAC EFFECTS  
STEREO  
0xA0h  
0xA1h  
0xA2h  
0xA3h  
DAC  
ALC 1  
DAC  
LIMITER  
SAMPLE_RATE  
NOISE_FLOOR  
LINK  
NG_ENB  
ALC 2  
DAC  
AGC_TARGET_LEVEL  
ATTACK_RATE  
ALC 3  
DAC  
ALC 4  
29  
www.national.com  
Address  
Register  
DAC  
7
6
5
4
3
2
1
0
0xA4h  
PK_DECAY_RATE  
DECAY_RATE/RELEASE_RATE  
ALC 5  
DAC  
0xA5h  
0xA6h  
0xA7h  
0xA8h  
0xA9h  
0xAAh  
0xABh  
0xACh  
0xADh  
0xAEh  
0xAFh  
0xB0h  
0xB1h  
0xB2h  
HOLDTIME  
ALC 6  
DAC  
MAX_LEVEL  
ALC 7  
DAC  
MIN_LEVEL  
ALC 8  
DAC L  
LEVEL  
DAC R  
LEVEL  
DAC_3D  
DAC_L_LEVEL  
DAC_R_LEVEL  
EFFECT_LEVEL  
ATTEN  
FILTER_TYPE  
LEVEL  
EFFECT_  
MODE  
EQ BAND  
1
FREQ  
EQ BAND  
2
Q
Q
Q
LEVEL  
LEVEL  
LEVEL  
LEVEL  
FREQ  
FREQ  
FREQ  
FREQ  
EQ BAND  
3
EQ BAND  
4
EQ BAND  
5
SOFTCLIP  
1
SOFT  
KNEE  
THRESHOLD  
RATIO  
SOFTCLIP  
2
SOFTCLIP  
3
LEVEL  
DAC EFFECT MONITORS  
0xB8h  
0xB9h  
0xBAh  
LVLMONL  
LVLMONR  
FXCLIP  
DAC LEFT LEVEL MONITOR  
DAC RIGHT LEVEL MONITOR  
SCLP_R  
CLIP  
SCLP_L  
CLIP  
EQ_R  
CLIP  
EQ_L  
CLIP  
3D_R  
CLIP  
3D_L  
CLIP  
GAIN_R  
CLIP  
GAIN_L  
CLIP  
0xBBh  
0xBCh  
ALCMONL SCLP_R  
SCLP_L  
DAC LEFT ALC MONITOR  
DISTORT DISTORT  
ALCMONR SCLP_L  
SCLP_R  
DAC RIGHT ALC MONITOR  
DISTORT DISTORT  
GPIO  
0xE0h  
0xF1h  
GPIO  
SS  
TEMP  
SHORT  
GPIO_RX GPIO_TX  
GPIO_MODE  
SPREAD SPECTRUM  
SS_DISAB  
LE  
RSVD  
RSVD  
ADC COMPENSATION FILTER  
ADC_C0_LSB  
0xF8h  
0xF9h  
0xFAh  
ADC_C0_L  
SB  
ADC_C0_  
MSB  
ADC_C0_MSB  
ADC_C1_LSB  
ADC_C1_L  
SB  
www.national.com  
30  
Address  
Register  
7
6
5
4
3
2
1
0
0xFBh  
ADC_C1_  
MSB  
ADC_C1_MSB  
ADC_C2_LSB  
ADC_C2_MSB  
0xFCh  
0xFDh  
0xFEh  
ADC_C2_L  
SB  
ADC_C2_  
MSB  
AUX_LINE  
_OUT  
AUX_LINE  
_OUT  
RSVD  
Unless otherwise specified, the default values of the I2C reg-  
isters is 0x00h.  
31  
www.national.com  
15.0 Basic PMC Setup Register  
This register is used to control the LM49350's Basic Power Management Setup:  
TABLE 2. PMC_SETUP (0x00h)  
Bits  
Field  
Description  
When this bit is set the power management will enable the MCLK I/O or internal  
oscillator1. It will then use this clock to sequence the enabling of the analog references and  
bias points. When this bit is cleared the PMC will bring the analog down gently and disable  
the MCLK or oscillator.  
0
CHIP_ENABLE  
CHIP _ENABLE  
Chip Status  
Turn Chip Off  
Turn Chip On  
0
1
This enables the primary PLL  
PLL1_ENABLE  
PLL1 Status  
PLL1 Off  
1
2
PLL1_ENB  
PLL2_ENB  
0
1
PLL1 On  
This enables the secondary PLL  
PLL2_ENABLE  
PLL2 Status  
PLL2 Off  
0
1
PLL2 On  
This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can  
be used instead of an external system clock to drive the chip's power management (PMC).  
OSC_ENABLE  
Oscillator Status  
Oscillator Off  
Oscillator On  
3
OSC_ENB  
0
1
This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and  
digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK  
is selected as the clock source and that there is an active clock signal driving the MCLK pin.  
Setting this bit reduces power consumption, by allowing audio ports and digital mixer to  
operate while the analog sections of the chip is powered down.  
4
5
MCLK_OVR  
MCLK_OVR  
Comment  
0
1
I/O control is automatic  
MCLK input forced on.  
This forces the clock input of Audio Port 1 input to enable, regardless of other port settings.  
PORT1_CLK_OVR  
Comment  
PORT1_CLK_OVR  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This forces the clock input of Audio Port 2 input to enable, regardless of other port settings.  
PORT2_CLK_OVR  
Comment  
6
7
PORT2_CLK_OVR  
CHIP_ACTIVE  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This bit is used to read back the enable status of the chip.  
1. If the PMC is set to operate from one of the audio ports then it will wait for the port to be enabled or the relevant over ride bit to  
be set, forcing the port clock input to enable.  
www.national.com  
32  
16.0 PMC Clocks Register  
This register is used to control the LM49350's Basic Power Management Setup:  
TABLE 3. PMC_SETUP (0x01h)  
Bits  
Field  
Description  
This selects the source of the PMC input clock.  
1:0  
PMC_CLK_SEL  
PMC_CLK_SEL  
PMC Input Clock Source  
MCLK (Default divide is 40)  
Internal 300kHz Oscillator  
DAC SOURCE CLOCK  
ADC SOURCE CLOCK  
00  
01  
10  
11  
17.0 PMC Clock Divide Register  
This register is used to control the LM49350's Power Management Circuits Clocks:  
TABLE 4. PMC_SETUP (0x02h) (Default data value is 0x50h)  
Description  
Bits  
Field  
PMC_CLK_DIV  
7:0  
This programs the half cycle divider that precedes the PMC. The PMC should run from a  
300kHz clock. The default of this divider is 0x50h (divide by 40) to get a 300kHz PMC clock  
from a 12MHz or 12.288MHz MCLK.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
PMC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
Divide by  
1
1
1.5  
2
2.5  
3
11111101  
11111110  
11111111  
126  
127.5  
128  
33  
www.national.com  
The DAC path clock (DAC_SOURCE_CLK) and ADC path  
clock (ADC_SOURCE_CLK) can be driven directly by the  
MCLK input, the PORT1_CLK input, the PORT2_CLK input,  
PLL1's output, or PLL2's output.  
18.0 LM49350 Clock Network  
(Refer to Figure 12)  
The audio DAC and ADC operate at a clock frequency of  
2*OSR*fS where OSR is the oversampling ratio and fS is the  
sampling frequency of the DAC or ADC. The DAC can operate  
at four different OSR settings (128, 125, 64, 32). The ADC  
can operate at three different OSR settings (128, 125, 64).  
For example, if the stereo DAC or ADC is set at OSR = 128,  
a 12.288MHz clock is required for 48kHz data. If a 12.288MHz  
clock is not available, then one of the LM49350's dual PLLs  
can be used to generate the desired clock frequency. Other-  
wise, if a 12.288MHz is available, then the PLL can be by-  
passed to reduce power consumption. The DAC clock divider  
(S divider) or ADC clock divider (T divider) can also be used  
to generate the correct clock. If an 18.432 MHz clock is avail-  
able, the S or T divider could be set to 1.5 in order to generate  
a 12.288MHz clock from 18.432MHz without using a PLL.  
For instances where a PLL must be used, the PLL input clock  
can come from three sources. The clock input to PLL1 or PLL2  
can come from the MCLK input, the PORT1_CLK input, or the  
PORT2_CLK input.  
The LM49350's Power Management Circuit (PMC) requires  
a clock that is independent from the DAC or ADC. It is rec-  
ommended to provide a 300kHz clock at Point C. The PMC  
clock divider (R divider) is available to generate the correct  
clock to the PMC block. The PMC clock path can be driven  
directly by the MCLK input, the internal 300kHz oscillator, the  
DAC_SOURCE_CLK, or the ADC_SOURCE_CLK.  
TABLE 5. DAC Clock Requirements  
DAC Sample Rate  
(kHz)  
Clock Required at A  
(OSR = 128)  
Clock Required at A  
(OSR= 125)  
Clock Required at A  
(OSR = 64)  
Clock Required at A  
(OSR = 32)  
8
11.025  
12  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
24.576 MHz  
2 MHz  
2.75625 MHz  
3 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
12.288 MHz  
24.576 MHz  
0.512 MHz  
0.7056 MHz  
0.768 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
24 MHz  
2.8224 MHz  
3.072 MHz  
6.144 MHz  
12.288 MHz  
96  
192  
TABLE 6. ADC Clock Requirements  
Clock Required at B Clock Required at B  
ADC Sample Rate  
(kHz)  
Clock Required at B  
(OSR = 64)  
(OSR = 128)  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
(OSR= 125)  
8
11.025  
12  
2 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
2.75625 MHz  
3 MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
www.national.com  
34  
20194129  
FIGURE 12. Internal Clock Network  
35  
www.national.com  
19.0 PLL Setup Registers  
20194130  
FIGURE 13. PLL1 Loop  
20194131  
FIGURE 14. PLL2 Loop  
The LM49350 contains two PLLs for flexible operation of its dual audio ports. PLL1 has a P1 and P2 output divider thereby allowing  
PLL1 to generate two distinct clock outputs. The equations for PLL1's generated output clocks are as follows:  
fOUT1 = (fIN . N1 / M1 . P1)  
fOUT2 = (fIN . N1 / M1 . P2)  
where:  
N1 = PLL1_N + PLL1_N_MOD  
M1 = (PLL1_M + 1) / 2  
P1 = (PLL1_P1 + 1) / 2  
P2 = (PLL1_P2 + 1) / 2  
The equations for PLL2's generated output clock are as follows:  
fOUT3 = (fIN.N2 / M2.P)  
where:  
N2 = PLL2_N + PLL2_N_MOD  
M2 = (PLL2_M + 1) / 2  
P = (PLL2_P + 1) / 2  
The VCO frequency and comparison frequencies are as follows:  
fVCO = fOUT.P  
fCOMP = fIN/M  
Keep fVCO between 140MHz to 240MHz and keep fCOMP between 700kHz to 5MHz.  
www.national.com  
36  
TABLE 7. PLL Settings for Common System Clock Frequencies  
fIN (MHz)  
12  
fOUT (MHz)  
12288000  
12287970  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
11289600  
11289600  
11289603  
11289589  
11289600  
11289600  
11289600  
11289600  
11289600  
11289600  
12289600  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
M
2.5  
15.5  
12.5  
13.5  
3.5  
12.5  
20.5  
16.5  
22.5  
12.5  
10  
N
N_MOD  
P
Error (Hz)  
32  
0
26  
0
12.5  
12  
0
–30  
0
13  
175  
128  
128  
32  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
27  
12  
0
12.5  
12.5  
12  
0
0
0
96  
0
0
160  
128  
128  
147  
147  
144  
213  
147  
196  
126  
147  
147  
196  
196  
195  
125  
102  
68  
0
12.5  
12.5  
12.5  
12.5  
16  
0
0
0
0
0
12  
0
0
12.288  
13  
0
0
9
19  
28  
0
18.5  
16.5  
15  
+3  
–11  
0
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
27  
15.5  
12.5  
22.5  
12.5  
20  
0
12.5  
15  
0
0
0
0
12.5  
12.5  
12.5  
12.5  
17.5  
16  
0
20.5  
27.5  
37.5  
10.5  
8
0
0
0
0
0
0
11.2896  
12.288  
13  
0
0
0
0
6.5  
4.5  
6
0
17  
0
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
11.2896  
12  
0
17  
0
85  
0
17  
0
13.5  
7
170  
85  
0
17  
0
0
17  
0
8
85  
0
17  
0
20.5  
16.5  
8
200  
170  
125  
147  
114  
96  
0
16  
0
0
17  
0
0
16  
0
10  
0
16  
0
12.288  
13  
8
27  
15  
0
16  
0
6.5  
10  
17.5  
18  
0
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
147  
49  
0
4
0
16  
0
4
49  
0
18  
0
16  
189  
147  
189  
147  
0
18  
0
16  
0
16  
0
16  
0
18  
0
16  
0
16.5  
0
37  
www.national.com  
TABLE 8. PLL_CLOCK_SOURCE (0x03h)  
Description  
Bits  
Field  
1:0  
PLL1_CLK_SEL  
This selects the source of the input clock to PLL1  
PLL1_CLK_SEL  
PLL1 Input Clock Source  
MCLK  
00  
01  
10  
11  
PORT1_CLK  
PORT2_CLK  
RESERVED  
TABLE 9. PLL1_M (0x04h)  
Description  
Bits  
Field  
6:0  
PLL1_M  
This programs the PLL1 M divider to divide from 1 to 64.  
PLL1_M  
000000  
000001  
000010  
000011  
000100  
000101  
PLL1 Input Divider Vaue  
1
1
1.5  
2
2.5  
3
63  
63.5  
64  
1111101  
1111110  
1111111  
TABLE 10. PLL1_N (0x05h)  
Bits  
Field  
Description  
7:0  
PLL1_N  
This programs the PLL1 N divider to divide from 1 to 250.  
PLL1_N  
00000000 to 00001010  
00001011  
Feedback Divider Value  
10  
11  
00001100  
12  
00001101  
13  
00001110  
14  
00001111  
15  
11111000  
248  
249  
250  
11111001  
11111010 to 11111111  
www.national.com  
38  
TABLE 11. PLL1_N_MOD (0x06h)  
Description  
Bits  
Field  
4:0  
PLL1_N_MOD  
This programs the sigma-delta modulator in PLL1  
PLL1_N_MOD  
00000  
00001  
00010  
00011  
00100  
00101  
Fractional Part of N  
0
1/32  
2/32  
3/32  
4/32  
5/32  
11101  
11110  
11111  
20/32  
30/32  
31/32  
5
6
PLL1_P1[8]  
PLL1_P2[8]  
This sets the MSB of the 1st P Divider on PLL1 which is part of a standard half-cycle divider  
control.  
This sets the MSB of the 2nd P Divider on PLL1 which is part of a standard half-cycle divider  
control.  
TABLE 12. PLL1_P1 (0x07h)  
Description  
Bits  
Field  
7:0  
PLL1_P1[7:0]  
This programs the 8 LSBs of the PLL1's P1 Divider. These LSBs combine with PLL1_P1[8] which  
allows the P1 divider to divide by up to 256  
PLL1_P1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P1 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
TABLE 13. PLL1_P2 (0x08h)  
Bits  
Field  
Description  
7:0  
PLL1_P2[7:0]  
This programs 8 LSBs of PLL1's P2 Divider. These LSBs combine with PLL1_P2[8] which allows  
the P2 divider to divide by up to 256  
PLL1_P2  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P2 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
39  
www.national.com  
TABLE 14. PLL2_M (0x09h)  
Description  
Bits  
Field  
6:0  
PLL2_M  
This programs the PLL2 M divider to divide from 1 to 64.  
PLL2_M  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
PLL2 Input Divider Value  
1
1
1.5  
2
2.5  
3
63  
63.5  
64  
1111101  
0000010  
1111111  
TABLE 15. PLL2_N (0x0Ah)  
Bits  
Field  
Description  
7:0  
PLL2_N  
This programs PLL2's N divider to divide from 10 to 250.  
PLL2_N  
00000000 to 00001010  
00001011  
Comment  
10  
11  
00001100  
12  
00001101  
13  
00001110  
14  
00001111  
15  
11111000  
248  
249  
250  
11111001  
11111010 to 11111111  
TABLE 16. PLL2_N_MOD (0x0Bh)  
Bits  
Field  
Description  
4:0  
PLL2_N_MOD  
This programs the sigma-delta modulator in PLL2  
PLL2_N_MOD  
Fractional Part of N  
00000  
0
00001  
1/32  
2/32  
3/32  
4/32  
5/32  
00010  
00011  
00100  
00101  
11101  
29/32  
30/32  
31/32  
11110  
11111  
5
PLL2_P[8]  
This is the MSB of the P Divider on PLL2.  
www.national.com  
40  
TABLE 17. PLL2_P (0x0Ch)  
Description  
Bits  
Field  
7:0  
PLL2_P[7:0]  
This programs the 8 LSBs of PLL2's P Divider. These LSBs combine with PLL2_P[8] which  
allows the P divider to divide by up to 256  
PLL2_P  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P Divides by  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
41  
www.national.com  
20.0 Analog Mixer Control Registers  
This register is used to control the LM49350's Analog Mixer:  
TABLE 18. CLASS_D_OUTPUT (0x10h)  
Bits  
0
Field  
Description  
DACR_LS  
DACL_LS  
MICR_LS  
MICL_LS  
AUXR_LS  
AUXL_LS  
The right DAC output is added to the loudspeaker output.  
1
The left DAC output is added to the loudspeaker output.  
2
The right MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.  
The left MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.  
The right AUX input is added to the loudspeaker output.  
3
4
5
The left AUX input is added to the loudspeaker output.  
20.1 CLASS D LOUDSPEAKER AMPLIFIER  
signal. Sub-sonic (DC) and super-sonic components  
(>22kHz) are not useful. The difference between the power  
flowing from the power supply and the audio band power be-  
ing transduced is dissipated in the LM49350 and in the trans-  
ducer load. The amount of power dissipation in the LM49350's  
class D amplifier is very low. This is because the ON resis-  
tance of the switches used to form the output waveforms is  
typically less than 0.25. This leaves only the transducer load  
as a potential "sink" for the small excess of input power over  
audio band output power. The LM49350 dissipates only a  
fraction of the excess power requiring no additional PCB area  
or copper plane to act as a heat sink.  
The LM49350 features a filterless modulation scheme. The  
differential outputs of the device switch at 300kHz from VDD  
to GND. When there is no input signal applied, the two outputs  
(LS+ and LS-) switch with a 50% duty cycle, with both outputs  
in phase. Because the outputs of the LM49350 are differen-  
tial, the two signals cancel each other. This results in no net  
voltage across the speaker, thus there is no load current dur-  
ing an idle state, conserving power.  
With an input signal applied, the duty cycle (pulse width) of  
the LM49350 outputs changes. For increasing output volt-  
ages, the duty cycle of LS+ increases, while the duty cycle  
of LS- decreases. For decreasing output voltages, the con-  
verse occurs, the duty cycle of LS- increases while the duty  
cycle of LS+ decreases. The difference between the two  
pulse widths yields the differential output voltage.  
EMI/RFI Filtering  
If system level PCB layout constraints require the LM49350’s  
Class D output bumps to be placed far away from the speaker  
or the Class D output traces to be routed near EMI/RFI sen-  
sitive components, an external EMI/RFI filter should be used.  
A series ferrite bead placed close to the Class D output bumps  
along with a shunt capacitor to ground placed close to the  
ferrite bead will reduce the EMI/RFI emissions of the Class D  
amplifier’s switching outputs. The ferrite bead must be rated  
with a current rating high enough to properly drive the loud-  
speaker. The ferrite bead that is rated for 1A or greater is  
recommended. The DC resistance of the ferrite bead is an-  
other important specification that must be taken into consid-  
eration. A low DC resistance will minimize any power losses  
dissipated by the EMI/RFI filter thereby preserving the power  
efficiency advantages of the Class D amplifier. Selecting a  
ferrite bead with high DC resistance will decrease output  
power delivered to speaker and reduce the Class D amplifier’s  
efficiency. The shunt capacitor needs to have low ESR. A  
10pF ceramic capacitor with a X7R dielectric is recommended  
as a starting point. Care needs to be taken to ensure that the  
value of the shunt capacitor does not exceed 47pF when us-  
ing a low resistance ferrite bead in order to prevent permanent  
damage to the low side FETs of the Class D output stage.  
20.2 SPREAD SPECTRUM MODULATION  
The LM49350 features a fitlerless spread spectrum modula-  
tion scheme that eliminates the need for output filters, ferrite  
beads or chokes. The switching frequency varies by ±30%  
about a 300kHz center frequency, reducing the wideband  
spectral content, improving EMI emissions radiated by the  
speaker and associated cables and traces. Where a fixed fre-  
quency class D exhibits large amounts of spectral energy at  
multiples of the switching frequency, the spread spectrum ar-  
chitecture of the LM49350 spreads that energy over a larger  
bandwidth. The cycle-to-cycle variation of the switching peri-  
od does not affect the audio reproduction or efficiency.  
20.3 CLASS D POWER DISSIPATION AND EFFICIENCY  
In general terms, efficiency is considered to be the ratio of  
useful work output divided by the total energy required to pro-  
duce it with the difference being the power dissipated, typi-  
cally, in the IC. The key here is “useful” work. For audio  
systems, the energy delivered in the audible bands is con-  
sidered useful including the distortion products of the input  
www.national.com  
42  
20194110  
FIGURE 15. EMI/RFI Filter for the Class D Amplifier  
TABLE 19. LEFT HEADPHONE_OUTPUT (0x11h)  
Bits  
0
Field  
Description  
DACR_HPL  
DACL_HPL  
MICR_HPL  
MICL_HPL  
AUXR_HPL  
AUXL_HPL  
The right DAC output is added to the left headphone output.  
1
The left DAC output is added to the left headphone output.  
2
The right MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.  
The left MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.  
The right AUX input is added to the left headphone output.  
3
4
5
The left AUX input is added to the left headphone output.  
TABLE 20. RIGHT HEADPHONE_OUTPUT (0x12h)  
Bits  
0
Field  
Description  
DACR_HPR  
DACL_HPR  
The right DAC output is added to the right headphone output.  
The left DAC output is added to the right headphone output.  
1
The right MIC input is added to the right headphone output. Setting this bit enables the MIC  
BIAS output.  
2
3
MICR_HPR  
MICL_HPR  
The left MIC input is added to the right headphone output. Setting this bit enables the MIC  
BIAS output.  
4
5
AUXR_HPR  
AUXL_HPR  
The right AUX input is added to the right headphone output.  
The left AUX input is added to the right headphone output.  
20.4 HEADPHONE AMPLIFIER FUNCTION  
20.6 CHARGE PUMP FLYING CAPACITOR (C6)  
The LM49350 headphone amplifier features National’s  
ground referenced architecture that eliminates the large DC-  
blocking capacitors required at the outputs of traditional head-  
phone amplifiers. A low-noise inverting charge pump creates  
a negative supply (HP_VSS) from the positive supply voltage  
(LS_VDD). The headphone amplifiers operate from these  
bipolar supplies, with the amplifier outputs biased about GND,  
instead of a nominal DC voltage (typically VDD/2), like tradi-  
tional amplifiers. Because there is no DC component to the  
headphone output signals, the large DC-blocking capacitors  
(typically 220μF) are not necessary, conserving board space  
and system cost, while improving frequency response.  
The flying capacitor (C6) affects the load regulation and out-  
put impedance of the charge pump. A C6 value that is too low  
results in a loss of current drive, leading to a loss of amplifier  
headroom. A higher valued C6 improves load regulation and  
lowers charge pump output impedance to an extent. Above  
2.2μF, the RDS(ON) of the charge pump switches and the ESR  
of C6 and C5 dominate the output impedance. A lower value  
capacitor can be used in systems with low maximum output  
power requirements. Please refer to the demonstration board  
schematic shown in Figure 23.  
20.7 CHARGE PUMP FLYING CAPACITOR (C5)  
The value and ESR of the hold capacitor (C5) directly affects  
the ripple on CPVSS. Increasing the value of C5 reduces out-  
put ripple. Decreasing the ESR of C5 reduces both output  
ripple and charge pump output impedance. A lower value ca-  
pacitor can be used in systems with low maximum output  
20.5 CHARGE PUMP CAPACITOR SELECTION  
Use low ESR ceramic capacitors (less than 100m) for opti-  
mum performance.  
43  
www.national.com  
power requirements. Please refer to the demonstration board  
schematic shown in Figure 23.  
TABLE 21. AUX_OUTPUT (0x13h)  
Bits  
0
Field  
Description  
DACR_AUX  
DACL_AUX  
MICR_AUX  
MICL_AUX  
AUXR_AUX  
AUXL_AUX  
The right DAC output is added to the AUX output.  
1
The left DAC output is added to the AUX output.  
2
The right MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.  
The left MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.  
The right AUX input is added to the AUX output.  
3
4
5
The left AUX input is added to the AUX output.  
20.8 AUXILIARY OUTPUT AMPLIFIER  
amplifier which then isolates it from any ground noise, thereby  
improving signal to noise ratio (SNR) and power supply re-  
jection ratio (PSRR).  
The LM49350’s auxiliary output (AUXOUT) amplifier provides  
differential drive capability to loads that are connected across  
its outputs. This results in output signals at the AUX_OUT+  
and AUX_OUT- pins that are 180 degrees out of phase with  
respect to each other. This effectively doubles the maximum  
possible output swing for a specific supply voltage when com-  
pared to single-ended output configurations. The differential  
output configuration also allows the load to be isolated from  
ground since both the AUX_OUT+ and AUX_OUT- pins are  
biased at the same DC potential. This eliminates the need for  
any large and expensive DC blocking capacitors at the AUX-  
OUT amplifier outputs. The load can then be directly con-  
nected to the positive and negative outputs of the AUXOUT  
The AUXOUT amplifier has two modes of operation. The pri-  
mary mode of operation is high current drive mode (Earpiece  
Mode) where the AUXOUT amplifier can be used to differen-  
tially drive a mono earpiece speaker. The secondary mode of  
operation is low current drive mode where the AUXOUT am-  
plifier operates in a power saving mode (AUX_LINE_OUT  
Mode) to provide a differential output that is used as a mono  
differential line level input to a standalone mono differential  
input class D amplifier (LM4675) for stereo loudspeaker ap-  
plications.  
TABLE 22. OUTPUT_OPTIONS (0x14h)  
Bits  
Field  
Description  
0
EPMODE  
If set the HPR output is driven with the negative input of the HPL output stage.  
If set, both HPL and HPR are attenuated by 6dB. This is useful when adding stereo signals  
that need more headroom due to being highly correlated.  
1
2
HP_NEG_6dB  
LS_NEG_6dB  
If set the class D output is attenuated by 6dB. This is useful when adding stereo signals that  
need more headroom due to being highly correlated.  
If set the AUX output is attenuated by 6dB. This is useful when adding stereo signals that  
need more headroom due to being highly correlated.  
3
4
AUX_NEG_6dB  
CP_FORCE  
If set, a -LS_VDD rail will be created on HP_VSS, even if the HP output stage is not required.  
TABLE 23. ADC_INPUT (0x15h)  
Bits  
0
Field  
Description  
DACR_ADCR  
DACL_ADCL  
MICR_ADCR  
MICL_ADCL  
AUXR_ADCR  
AUXL_ADCL  
The right DAC output is added to the ADC right input.  
1
The left DAC output is added to the ADC left input.  
2
The right MIC input is added to the ADC right input. Setting this bit enables MIC BIAS.  
The left MIC input is added to the ADC left input. Setting this bit enables MIC BIAS.  
The right AUX input is added to the ADC right input.  
3
4
5
The left AUX input is added to the ADC left input.  
www.national.com  
44  
TABLE 24. MIC_L_INPUT (0x16h)  
Description  
Bits  
Field  
3:0  
MIC_L_LEVEL  
This sets the gain of the left microphone preamp.  
MIC_L_LEVEL  
Gain  
6dB  
0000  
0001  
8dB  
0010  
10dB  
12dB  
14dB  
16dB  
18dB  
20dB  
22dB  
24dB  
26dB  
28dB  
30dB  
32dB  
34dB  
36dB  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
5
SE_DIFF  
MUTE  
If set, the MIC_L negative input is ignored.  
If set, the left microphone preamp is muted.  
TABLE 25. MIC_R_INPUT (0x17h)  
Bits  
Field  
Description  
3:0  
MIC_R_LEVEL  
This sets the gain of the right microphone preamp.  
MIC_R_LEVEL  
Gain  
6dB  
0000  
0001  
8dB  
0010  
10dB  
12dB  
14dB  
16dB  
18dB  
20dB  
22dB  
24dB  
26dB  
28dB  
30dB  
32dB  
34dB  
36dB  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
5
SE_DIFF  
MUTE  
If set, the MIC_R negative input is ignored.  
If set, the right microphone preamp is muted.  
45  
www.national.com  
TABLE 26. AUX_L_INPUT (0x18h)  
Description  
Bits  
Field  
5:0  
AUX_L_LEVEL This programs the left AUX input level. All gain changes are performed at zero crossings.  
AUX_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
AUX_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
FROM_LINE_L If set, the LEFT_MIC/LINE differential input is routed to the AUX_L input amplifier for line level volume  
control. This bit overrides the DIFF_MODE (bit 7 of 0x19h) setting.  
www.national.com  
46  
TABLE 27. AUX_R_INPUT (0x19h)  
Description  
Bits  
Field  
5:0  
AUX_R_LEVEL This programs the right AUX input level. All gain changes are performed at zero crossings.  
AUX_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
AUX_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
12dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
7
FROM_LINE_R If set, the RIGHT_MIC/LINE differential input is routed to the AUX_R input amplifier for line level volume  
control. This bit overrides the DIFF_MODE (bit 7) setting.  
DIFF_MODE If set, the stereo single-ended inputs AUX_L and AUX_R convert to a mono differential input pair MONO_IN  
+ and MONO_IN-.  
(MONO_IN+) - (MONO_IN-) is routed to the AUX_L input amplifier.  
(MONO_IN-) - (MONO_IN+) is routed to the AUX_R input amplifier.  
(unless overriden by the respective FROM_LINE bits).  
47  
www.national.com  
21.0 ADC Control Registers  
This register is used to control the LM49350's ADC:  
TABLE 28. ADC Basic (0x20h)  
Description  
Bits  
Field  
0
MONO  
This sets mono or stereo operation of the ADC.  
MONO  
0
ADC Operation  
Stereo Audio  
1
Mono Voice (Right ADC channel disabled, Left ADC channel active)  
This sets the oversampling ratio of the ADC.  
1
OSR  
OSR  
Stereo Audio ADC  
Oversampling Ratio  
Mono Voice ADC Oversampling Ratio  
0
1
128  
64  
125  
128  
2
3
MUTE_L  
MUTE_R  
If set, a digital mute is applied to the Left (or mono) ADC output.  
If set, a digital mute is applied to the Right ADC output.  
6.4  
ADC_CLK_SEL  
This selects the source of the ADC clock domain, ADC_SOURCE_CLK.  
ADC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL1_OUTPUT2  
PLL2_OUTPUT  
7
ADC_DSP_ONLY  
If set the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP  
functionality is maintained. This can be used to perform asyncronous resampling between audio  
rates of a common family. Setting this bit is also useful whenever applying Automatic Level Control  
(ALC) to an analog only audio path.  
TABLE 29. ADC_CLK_DIV (0x21h)  
Description  
Bits  
Field  
7:0  
ADC_CLK_DIV  
This programs the half cycle divider that preceeds the ADC. The input of this divider should be  
around 12MHz. The default of this divider is 0x00.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
ADC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2
11111101  
11111110  
11111111  
127  
127.5  
128  
www.national.com  
48  
TABLE 30. ADC TRIM (0x22h)  
Description  
Bits  
Field  
7:0  
ADC_TRIM  
If set, the ADC is compensated with recommended compensation filter coefficients. The  
recommended ADC compensation filter coefficients are programmed as follows:  
Register 0xF8h set to 0x00h  
Register 0xF9h set to 0x01h  
Register 0xFAh set to 0x96h  
Register 0xFBh set to 0xFBh  
Register 0xFCh set to 0x30h  
Register 0xFDh set to 0x62h  
49  
www.national.com  
22.0 DAC Control Registers  
This register is used to control the LM49350's DAC:  
TABLE 31. DAC Basic (0x30h)  
Description  
Bits  
Field  
1:0  
MODE  
This programs the over sampling ratio of the stereo DAC.  
MODE  
DAC Oversampling Ratio  
00  
125  
128  
64  
01  
10  
11  
32  
2
3
MUTE_L  
MUTE_R  
This digitally mutes the Left DAC output.  
This digitally mutes the Right DAC output.  
6:4  
DAC_CLK_SEL  
This selects the source of the DAC clock domain, DAC_SOURCE_CLK.  
DAC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL1_OUTPUT1  
PLL2_OUTPUT  
7
DSP_ONLY  
If set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP  
functionality is maintained. This can be used to perform asyncronous resampling between audio rates  
of a common family.  
TABLE 32. DAC_CLK_DIV (0x31h)  
Description  
Bits  
Field  
7:0  
DAC_CLK_DIV  
This programs the half cycle divider that precedes the DAC. The input of this divider should be  
around 12MHz. The default of this divider is 0x00.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
DAC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2
11111101  
11111110  
11111111  
127  
127.5  
128  
www.national.com  
50  
Another key feature of the digital mixer is sample rate con-  
version (SRC) between audio ports. This allows simultaneous  
operation of the dual audio ports even if each port is operating  
at a different sample rate. The LM49350 can be used as an  
audio port bridge with SRC capability. The digital mixer allows  
either straight pass through between audio ports or, if desired,  
DSP effects can be added to the digital audio signal during  
audio port bridge operation. The digital mixer automatically  
handles stereo I2S to mono PCM conversion between audio  
ports and vice versa.  
23.0 Digital Mixer Control Registers  
23.1 DIGITAL MIXER  
The LM49350’s digital mixer allows for flexible routing of dig-  
ital audio signals between both audio ports, DAC, and ADC.  
This mixer handles which digital data path (Port1 RX data,  
Port2 RX data, or ADC output) is routed to the DAC input. The  
digital mixer also selects the appropriate digital data path  
(Port1 RX data, Port2 RX data, ADC output, DAC DSP output,  
or ADC DSP output) that is used for data transmission on Au-  
dio Port 1 and 2. Audio inputs to the digital mixer can be  
attenuated down to -18dB to avoid clipping conditions.  
20194137  
FIGURE 16. Digital Mixer  
The LM49350 includes two separate and independent DSP  
blocks, one for the DAC and the other for the ADC. The digital  
mixer also allows both DSP blocks to be cascaded together  
in either order so that the DSP effects from both blocks can  
be combined into the same signal path. For example, the 5  
band parametric EQ of each DSP block can be combined to-  
gether to form a 10 band parametric EQ for added flexibility.  
51  
www.national.com  
This register is used to control the LM49350's digital mixer:  
TABLE 33. Input Levels 1 (0x40h)  
Bits  
Field  
Description  
1:0  
PORT1_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 1.  
PORT1_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
3:2  
5:4  
7:6  
PORT1_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 1.  
PORT1_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 2.  
PORT2_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 2.  
PORT2_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 34. Input Levels 2 (0x41h)  
Bits  
Field  
Description  
1:0  
3:2  
5:4  
ADC_L_LVL  
This programs the input level of the data arriving from the left ADC channel.  
ADC_L_LVL  
Level  
0dB  
00  
01  
–6dB  
–12dB  
–18dB  
10  
11  
ADC_R_LVL  
This programs the input level of the data arriving from the right ADC channel.  
ADC_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
INTERP_L_LVL This programs the input level of the data arriving from the left DAC's interpolator output.  
INTERP_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
www.national.com  
52  
Bits  
Field  
Description  
7:6  
INTERP_R_LVL This programs the input level of the data arriving from the right DAC's interpolator output.  
INTERP_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 35. Audio Port 1 Input (0x42h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the Left TX Channel of Audio Port 1.  
L_SEL  
Selected Input  
None  
00  
01  
ADC_L  
10  
PORT2_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to the Right TX Channel of Audio Port 1.  
R_SEL  
Selected Input  
None  
00  
01  
ADC_R  
10  
PORT2_RX_R  
DAC_INTERP_R  
11  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to Audio Port 1.  
If set, the right channel is ignored and the left channel becomes (left+right)/2.  
TABLE 36. Audio Port 2 Input (0x43h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to Audio Port 2's Left TX Channel.  
L_SEL  
Selected Input  
None  
00  
01  
ADC_L  
10  
PORT1_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to Audio Port 2's Right TX Channel.  
R_SEL  
00  
Selected Input  
None  
01  
ADC_R  
10  
PORT1_RX_R  
11  
DAC_INTERP_R  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to audio port 2.  
If set, the right channel is ignored and the left channel becomes (left+right)/2.  
53  
www.national.com  
TABLE 37. DAC Input Select (0x44h)  
Bits  
0
Field  
Description  
This adds Audio Port 1's left RX channel to the DAC's left input.  
This adds Audio Port 2's left RX channel to the DAC's left input.  
This adds the ADC's left output to the DAC's left input  
PORT1_L  
PORT2_L  
ADC_L  
1
2
3
PORT1_R  
PORT2_R  
ADC_R  
This adds Audio Port 1's right RX channel to the DAC's right input.  
This adds Audio Port 2's right RX channel to the DAC's right input.  
This adds the ADC's right output to the DAC's right input.  
If set, this swaps the Left and Right inputs to the DAC.  
4
5
6
SWAP  
TABLE 38. Decimator Input Select (0x45h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the left ADC's decimator input.  
L_SEL  
Selected Input  
None  
00  
01  
PORT1_RX_L  
PORT2_RX_L  
DAC_INTERP_L  
10  
11  
3:2  
5:4  
R_SEL  
This selects which input is fed to the right ADC's decimator input.  
R_SEL  
00  
Selected Input  
None  
01  
PORT1_RX_R  
PORT2_RX_R  
DAC_INTERP_R  
10  
11  
MXR_CLK_SEL This selects sets the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source  
with the highest clock frequency. Whenever the DAC interpolator (DAC_OSR_L or DAC_OSR_R) is  
selected then MXR_CLK_SEL should be set to '10'.  
MXR_CLK_SEL  
Selected Input  
Auto  
00  
01  
10  
11  
MCLK  
DAC  
ADC  
www.national.com  
54  
24.0 Audio Port Control Registers  
20194171  
FIGURE 17. I2S Serial Data Format (24 bit example)  
20194172  
FIGURE 18. Left Justified Data Format (24 bit example)  
20194170  
FIGURE 19. Right Justified Data Format (24 bit example)  
20194134  
FIGURE 20. PCM Serial Data Format (16 bit example)  
55  
www.national.com  
The following registers are used to control the LM49350's audio ports. Audio Port 1 and Audio Port 2 are identical. Port 1 is  
programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh) registers.  
TABLE 39. BASIC_SETUP (0x50h/0x60h)  
Bits  
0
Field  
Description  
STEREO  
If set, the audio port will receive and transmit stereo data.  
1
RX_ENABLE  
If set the input is enabled (enables the SDI port and input shift register and any clock  
generation required).  
2
TX_ENABLE  
If set the output is enabled (enables the SDO port and output shift register and any clock  
generation required).  
3
4
5
CLOCK_MS  
SYNC_MS  
If set the audio port will transmit the clock when either the RX or TX is enabled.  
If set the audio port will transmit the sync signal when either the RX or TX is enabled.  
This sets how data is clocked by the Audio Port.  
CLOCK_PHASE  
CLOCK_PHASE  
Audio Data Mode  
0
1
I2S (TX on falling edge, RX on rising edge)  
PCM (TX on rising edge, RX on falling edge)  
6
7
STEREO_SYNC_PHASE  
If set, this reverses the left and right channel data of the Audio Port.  
STEREO_SYNC_PHASE  
0
Audio Port Data Orientation  
Left channel data goes to left channel output.  
Right channel data goes to right channel output.  
1
Right channel data goes to left channel output.  
Left channel data goes to right channel output.  
SYNC_INVERT  
If this bit is set the SYNC is inverted before the receiver and transmitter.  
SYNC_INVERT  
Sync Orientation  
0
1
SYNC Low = Left, SYNC High = Right  
SYNC Low = Right, SYNC High = Left  
TABLE 40. CLK_GEN_1 (0x51h/0x61h)  
Bits  
Field  
Description  
5:0  
HALF_CYCLE_CLK_ This programs the half-cycle divider that generates the master clocks in the audio port. The input  
DIV  
of this divider should be around 12MHz. The default of this divider is 0x00, i.e. bypassed.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
HALF_CYCLE_CLK_DIV  
Divides By  
000000  
000001  
000010  
000011  
BYPASS  
1
1.5  
2
111101  
111110  
11111  
31  
31.5  
32  
6
CLOCK_SEL  
This selects the clock source of the master mode Audio Port Clock generator's half-cycle divider.  
0 = DAC_SOURCE_CLK  
1 = ADC_SOURCE_CLK  
www.national.com  
56  
TABLE 41. CLK_GEN_1 (0x52h/62h)  
Description  
Bits  
Field  
2:0  
SYNTH_NUM  
Along with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in  
master mode.  
SYNTH_NUM  
Numerator  
000  
001  
010  
011  
100  
101  
110  
111  
SYNTH_DENOM (1/1)  
100/SYNTH_DENOM  
96/SYNTH_DENOM  
80/SYNTH_DENOM  
72/SYNTH_DENOM  
64/SYNTH_DENOM  
48/SYNTH_DENOM  
0/SYNTH_DENOM  
3
SYNTH_DENOM  
Along with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master  
mode.  
SYNTH_DENOM  
Denominator  
128  
0
1
125  
TABLE 42. CLK_GEN_1 (0x53h/63h)  
Description  
Bits  
Field  
2:0  
SYNC_RATE  
This sets the number of clock cycles before the sync pattern repeats. This depends if the audio port  
data is mono or stereo.  
In MONO mode:  
SYNC_RATE  
Number of Clock Cycles  
000  
8
001  
12  
16  
18  
20  
24  
25  
32  
010  
011  
100  
101  
110  
111  
In STEREO mode:  
SYNC_RATE  
000  
Number of Clock Cycles  
16  
24  
32  
36  
40  
48  
50  
64  
001  
010  
011  
100  
101  
110  
111  
57  
www.national.com  
Bits  
Field  
Description  
5:3  
SYNC_WIDTH  
In MONO mode, this programs the width (in number of bits) of the SYNC signal.  
SYNC_WIDTH  
Width of SYNC (in bits)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
7
8
11  
15  
16  
TABLE 43. DATA_WIDTHS (0x54h/64h)  
Bits  
Field  
Description  
2:0  
RX_WIDTH  
This programs the expected bits per word of the serial data input SDI.  
RX_WIDTH  
Bits  
24  
20  
18  
16  
14  
13  
12  
8
000  
001  
010  
011  
100  
101  
110  
111  
5:3  
TX_WIDTH  
This programs the bits per word of the serial data output SDO.  
TX_WIDTH  
000  
Description  
24  
20  
18  
16  
14  
13  
12  
8
001  
010  
011  
100  
101  
110  
111  
7:6  
TX_EXTRA_BITS This programs the TX data output padding.  
TX_EXTRA_BITS  
Description  
00  
01  
10  
11  
0
1
High-Z  
High-Z  
www.national.com  
58  
TABLE 44. TX_MODE (0x55h/x65h)  
Bits  
Field  
Description  
0
TX_MODE  
This sets the TX data input justification with respect to the SYNC signal.  
TX_MODE  
Description  
MSB Justified  
LSB Justified  
0
1
5:1  
MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of  
the frame (LSB Justified).  
MSB_POSITION  
Description  
00000  
0(Left Justified/PCM Long)  
00001  
1(I2S/PCM Short)  
00010  
2
00011  
3
00100  
4
00101  
5
00110  
6
00111  
7
01000  
8
01001  
9
01010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
6
7
COMPAND  
If set, audio data will be companded.  
This sets the audio companding mode.  
μLaw/A-Law  
Compand Mode  
μLaw/A-Law  
0
μLaw  
1
A-Law  
59  
www.national.com  
quality digital audio effects engine. The data paths on each  
DSP engine are 24 bits wide for ultimate flexibility. Both DSP  
engines feature digital volume control, automatic level control  
(ALC), digital soft clip compression, and a 5-band parametric  
EQ. The ADC DSP engine adds a dedicated high-pass filter  
to reduce wind noise or pop noise during uplink. The DAC  
DSP engine adds a digital 3D algorithm that allows for stereo  
widening of the original audio signal. The effects chain of each  
DSP engine is shown by the diagrams below.  
25.0 Digital Effects Engine  
25.1 DIGITAL SIGNAL PROCESSOR (DSP)  
The LM49350 is designed to handle the entire audio signal  
conditioning and processing within the audio system, thereby  
freeing up the workload of any other applications processor  
contained within the system. The LM49350 features two in-  
dependent DSPs, one for the DAC and the other for the ADC.  
Each DSP is fully featured and performs as a professional  
20194135  
FIGURE 21. ADC DSP Effects Chain  
20194136  
FIGURE 22. DAC DSP Effects Chain  
The ADC and DAC DSP engines can be cascaded together  
in any order via the digital mixer to combine different audio  
effects to the same signal path. For example, a signal can be  
processed with high-pass filtering from the ADC effects en-  
gine with 3D stereo widening from the DAC effects engine.  
The 5-band parametric EQs from each DSP engine can be  
combined to form a single 10-band parametric EQ or a single  
5-band parametric EQ with ±30dB (instead of ±15dB) gain  
control for each band.  
TABLE 45. ADC EFFECTS (0x70h)  
Bits  
0
Field  
Description  
ADC_HPF_ENB  
ADC_ALC_ENB  
ADC_PK_ENB  
ADC_EQ_ENB  
ADC_SCLP_ENB  
This enables the ADC's High Pass Filter.  
1
This enables the ADC's Auto Level Control.  
This enables the ADC's Peak Detector.  
This enables the ADC's 5-band Parametric EQ.  
This enables the ADC's Soft Clip Feature.  
2
3
4
TABLE 46. DAC EFFECTS (0x71h)  
Bits  
0
Field  
Description  
DAC_ALC_ENB  
DAC_PK_ENB  
DAC_EQ_ENB  
DAC_3D_ENB  
ADC_SCLP_ENB  
This enables the DAC's Auto Level Control.  
This enables the DAC's Peak Detector.  
1
2
This enables the DAC's 5-band Parametric EQ.  
This enables the DAC's Stereo Widening Circuit.  
This enables the DAC's Soft Clip Feature.  
3
4
www.national.com  
60  
TABLE 47. HPF MODE (0x80h)  
Description  
Bits  
Field  
2:0  
HPF_MODE  
This configures the ADC's High Pass Filter.  
HPF_MODE  
000  
FILTER CHARACTERISTICS  
8kHz Voice  
001  
12kHz Voice  
010  
16kHz Voice  
011  
24kHz Voice  
100  
32kHz Voice  
101  
32kHz Audio  
110  
48kHz Audio  
111  
96kHz Audio  
61  
www.national.com  
25.2 ALC OVERVIEW  
detector in order to avoid noise pumping. So it is important to  
set NOISE_FLOOR to correlate with the signal to noise ratio  
of the corresponding audio path. In some instances (ie. Con-  
ference calls), it may be desirable to mute audio input signals  
that consist solely of background noise from the audio output.  
This is accomplished by enabling the ALC’s noise gate  
(NG_ENB). When the noise gate is enabled, signals lower  
than the noise floor level will be muted from the audio output.  
The Automatic Level Control (ALC) system can be used to  
regulate the audio output level to a user defined target level.  
The ALC feature is especially useful whenever the level of the  
audio input is unknown, unpredictable, or has a large dynamic  
range. The main purpose of the ALC is to optimize the dy-  
namic range of the audio input to audio output path.  
There are two separate and independent ALC circuits in the  
LM49350. One of the ALC circuits is located within the DAC  
DSP effects block. The other ALC circuit is integrated into the  
ADC DSP effects block. The DAC ALC controls the DAC dig-  
ital gain. The ADC ALC controls the auxiliary input amplifier  
gain or microphone preamplifier gain. The dual ALCs can be  
used to regulate the level of the analog (Stereo Auxiliary,  
mono differential, Stereo MIC/LINE) and digital (Port1 Data  
In, Port2 Data In) audio inputs. The ALC regulated output can  
be routed to any of the LM49350’s amplifier outputs for play-  
back. The ALC regulated output can also be routed to Audio  
Port1 or Audio Port2 for digital data transmission via I2S or  
PCM.  
If the audio input signal is below the target level, the ALC will  
increase the gain of the corresponding volume control until  
the signal reaches the target level. The rate at which the ALC  
performs gain increases is known as decay rate (DECAY  
RATE). But before each ALC gain increase the ALC must wait  
a predetermined amount of time (HOLD TIME). If the audio  
input signal is above the target level, the ALC will decrease  
the gain of the corresponding volume control until the signal  
reaches the target level. The rate at which the ALC performs  
attenuation is known as attack rate (ATTACK RATE). The  
ALC’s peak detector tracks increases in audio input signal  
amplitude instantaneously, but tracks decreases in audio in-  
put signal amplitude at programmable rate (PEAK DECAY  
TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and  
PEAK DECAY TIME are fully adjustable which allows flexible  
operation of the ALC circuit. The ALC’s timers are based on  
the sample rate of the DAC or ADC, so the closest corre-  
sponding sample rate must be programmed into the ALC  
SAMPLE RATE setting (for DAC ALC) or the ALC MODE set-  
ting (for ADC ALC).  
Only audio inputs that are considered signals (rather than  
noise) are sent to the ALC’s peak detector block. The peak  
detector compares the level of the audio input versus the ALC  
target level (TARGET_LEVEL). Signals lower than the target  
level will be amplified and signals higher than the target level  
will be attenuated. Any audio input that is lower than the level  
specified by the noise floor level (NOISE_FLOOR) will be  
considered as noise and will be gated from the ALC’s peak  
20194138  
FIGURE 23. ALC Example  
TABLE 48. ADC_ALC_1 (0x81h)  
Description  
This programs the timers on the ALC with the closest sample rate of the ADC.  
Bits  
Field  
2:0  
SAMPLE_RATE  
SAMPLE_RATE  
ADC Fs  
8kHz  
000  
001  
010  
011  
100  
101  
110  
111  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
www.national.com  
62  
Bits  
Field  
Description  
3
LIMITER  
If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the  
signal as soon as it reaches target and release it at the decay rate, once signal level reduces below  
target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC  
will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling  
the Limiter.  
4
5
STEREO LINK  
SOURCE_SEL  
If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo  
output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual  
mono.  
If SOURCE_OVR is set then this manually overrides the selection of the input amplifier that is used  
to alter the gain for ALC operation.  
0 = Both ALCs control AUX gain  
1 = Both ALCs control MIC gain  
6
SOURCE_OVR  
If set, the output of the ALC is not set automatically but is controlled by the SOURCE_SEL bit. If  
cleared each ALC controls the input gain of the amplifier (AUX or MIC) that is set to that ADC  
channel (or MIC if both are selected).  
TABLE 49. ADC_ALC_2 (0x82h)  
Description  
Bits  
Field  
3:0  
NOISE_FLOOR  
This sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from  
the ALC to avoid noise pumping.  
NOISE_FLOOR  
0000  
Noise Floor (dB)  
–39  
–42  
–45  
–48  
–51  
–54  
–57  
–60  
–63  
–66  
–69  
–72  
–75  
–78  
–81  
–84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate.  
63  
www.national.com  
TABLE 50. ADC_ALC_3 (0x83h)  
Description  
Bits  
Field  
4:0  
TARGET_LEVEL  
This sets the desired target output level. Signals lower than this will be amplified and signals larger  
than this will be attenuated.  
TARGET_LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Target Level (dB)  
–1.5  
–3  
–4.5  
–6  
–7.5  
–9  
–10.5  
–12  
–13.5  
–15  
–16.5  
–18  
–19.5  
–21  
–22.5  
–24  
–25.5  
–27  
–28.5  
–30  
–31.5  
–33  
–34.5  
–36  
–37.5  
–39  
–40.5  
–42  
–43.5  
–45  
–46.5  
–48  
www.national.com  
64  
TABLE 51. ADC_ALC_4 (0x84h)  
Description  
This sets the rate at which the ALC will reduce gain if it detects the input signal is large.  
Bits  
Field  
4:0  
ATTACK_RATE  
ATTACK_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps (μs)  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
65  
www.national.com  
TABLE 52. ADC_ALC_5 (0x85h)  
Description  
Bits  
Field  
4:0  
DECAY_RATE  
This sets the rate at which the ALC will increase gain if it detects the input signal is too  
small.  
DECAY_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PK_DECAY_RATE  
000  
Time between gain steps (μs)  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
Max Time to track decay  
1.3ms  
7:5  
PK_DECAY_RATE  
001  
2.6ms  
010  
5.3ms  
011  
10.6ms  
21.3ms  
42.6.3ms  
85.5ms  
2.73 secs  
100  
101  
110  
111  
www.national.com  
66  
TABLE 53. ADC_ALC_6 (0x86h)  
Field Description  
Bits  
4:0  
HOLD_TIME This sets how long the ALC circuit waits before  
increasing the gain.  
HOLD_TIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 54. ADC_ALC_7 (0x87h)  
Bits  
Field  
Description  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain of the volume control to the output  
amplifier. If the volume control is less than 6 bits the relevant LSBs are used  
as the limit and the MSBs are ignored.  
TABLE 55. ADC_ALC_8 (0x88h)  
Description  
Bits  
Field  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain of the volume control to the output  
amplifier. If the volume control is less than 6 bits the relevant LSBs are used  
as the limit and the MSBs are ignored.  
67  
www.national.com  
TABLE 56. ADC_L_LEVEL (0x89h) (Default data value is 0x33h)  
Field Description  
ADC_L_LEVEL This sets the post ADC digital gain of the left channel.  
Bits  
5:0  
ADC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
www.national.com  
68  
TABLE 57. ADC_R_LEVEL (0x8Ah) (Default data value is 0x33h)  
Field Description  
ADC_R_LEVEL This sets the post ADC digital gain of the right channel.  
Bits  
5:0  
ADC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
69  
www.national.com  
TABLE 58. EQ_BAND_1 (0x8Bh)  
Description  
This sets the Sub-bass shelving filter's cut-off frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
00  
Frequency (Hz)  
60  
80  
01  
10  
100  
120  
11  
6:2  
LEVEL  
This sets the gain at fc.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
www.national.com  
70  
TABLE 59. EQ_BAND_2 (0x8Ch)  
Description  
This sets the Bass peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
100  
150  
200  
250  
300  
101  
110  
111  
6:2  
LEVEL  
This sets the gain at fc.  
LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Programs the width of the peak filter.  
Q
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
Bandwidth  
2/3 Octave  
4/3 Octave  
0
1
71  
www.national.com  
TABLE 60. EQ_BAND_3 (0x8Dh)  
Description  
This sets the Mid peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
100  
600  
800  
1k  
101  
110  
111  
1.2k  
6:2  
LEVEL  
This sets the gain at fc.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
72  
TABLE 61. EQ_BAND_4 (0x8Eh)  
Description  
This sets the Treble peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
00  
2k  
01  
2.7k  
3.4k  
4.1k  
10  
11  
6:2  
LEVEL  
This sets the gain at fc.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
73  
www.national.com  
TABLE 62. EQ_BAND_5 (0x8Fh)  
Description  
This sets the presence shelving filter's cut-off frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
00  
Frequency (Hz)  
7k  
9k  
01  
10  
11k  
20k  
11  
6:2  
LEVEL  
This sets the gain at fc.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
www.national.com  
74  
TABLE 63. SOFTCLIP1 (0x90h)  
Bits  
Field  
Description  
3:0  
THRESHOLD  
This sets the threshold level of the  
audio compressor. Audio signals  
above the threshold will be  
compressed.  
THRESHOLD  
Threshold Level  
(dB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-36dB  
-30dB  
-24dB  
-20dB  
-18dB  
-17dB  
-16dB  
-15dB  
-14dB  
-12dB  
-10dB  
-8dB  
-6dB  
-4dB  
-2.5dB  
-1dB  
4
SOFT_KNEE  
If set, the audio compressor will  
automatically apply higher  
compression ratios to audio signals  
higher than the threshold level. As the  
audio signal approaches levels higher  
than the threshold, SOFT_KNEE will  
increase the compression RATIO. The  
highest compression that the  
SOFT_KNEE algorithm will apply is the  
compression that is set by RATIO.  
75  
www.national.com  
TABLE 64. SOFTCLIP2 (0x91h)  
Bits  
Field  
Description  
4:0  
RATIO  
This sets the ratio at which the audio is  
compressed to when it passes beyond  
the threshold. In SOFT_KNEE mode  
this is the final level of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64.0  
1:75.0  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
www.national.com  
76  
TABLE 65. SOFTCLIP3 (0x92h)  
Bits  
Field  
Description  
4:0  
LEVEL  
This sets the post compressor gain  
level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
77  
www.national.com  
26.0 DAC Effects Registers  
TABLE 66. DAC_ALC_1 (0xA0h)  
Bits  
Field  
Description  
2:0  
SAMPLE_ RATE This programs the timers on the ALC  
with the closest DAC sample rate.  
SAMPLE_ RATE  
DAC Fs  
8kHz  
000  
001  
010  
011  
100  
101  
110  
111  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
3
LIMITER  
If set, the circuit will never apply gain to  
the signal, no matter how small, but it  
will attenuate the signal as soon as it  
reaches target and release it at the  
decay rate, once signal level reduces  
below target. The I2C gain setting (at  
the time the LIMITER is enabled) is the  
maximum gain that the ALC will apply.  
Care should be taken when choosing  
the optimum I2C gain setting whenever  
enabling the Limiter.  
4
STEREO LINK If set, the ALC circuit uses the stereo  
average of the input signals to control  
the gain of the stereo output. This  
maintains stereo imaging. If this bit is  
cleared, then both channels operate as  
dual mono.  
www.national.com  
78  
TABLE 67. DAC_ALC_2 (0xA1h)  
Bits  
Field  
Description  
3:0  
NOISE_FLOOR This sets the anticipated noise floor.  
Signals lower than the specified noise  
floor will be gated from the ALC to  
avoid noise pumping.  
NOISE_FLOOR  
0000  
Noise Floor (dB)  
-39  
-42  
-45  
-48  
-51  
-54  
-57  
-60  
-63  
-66  
-69  
-72  
-75  
-78  
-81  
-84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate  
79  
www.national.com  
TABLE 68. DAC_ALC_3 (0xA2h)  
Bits  
Field  
Description  
4:0  
TARGET_LEVEL This sets the desired output level.  
Signals lower than this will be amplified  
and signals larger than this will be  
attenuated.  
TARGET_LEVEL Target Level (dB)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
-1.5  
-3  
-4.5  
-6  
-7.5  
-9  
-10.5  
-12  
-13.5  
-15  
-16.5  
-18  
-19.5  
-21  
-22.5  
-24  
-25.5  
-27  
-28.5  
-30  
-31.5  
-33  
-34.5  
-36  
-37.5  
-39  
-40.5  
-42  
-43.5  
-45  
-46.5  
-48  
www.national.com  
80  
TABLE 69. DAC_ALC_4 (0xA3h)  
Bits  
Field  
Description  
4:0  
ATTACK_RATE This sets the rate at which the ALC will  
reduce gain if it detects the input signal  
is too large.  
ATTACK_RATE  
Time between  
gain steps(us)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
81  
www.national.com  
TABLE 70. DAC_ALC_5 (0xA4h)  
Bits  
Field  
DECAY_RATE  
Description  
4:0  
This sets the rate at which the ALC will increase gain  
if it detects the input signal is too small.  
DECAY_RATE  
Time between gain steps  
(us)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
7:5  
PK_DECAY_RATE This sets how precise the ALC will track amplitude  
reductions of the audio input. The shorter the length  
of time for PK_DECAY_RATE, the more responsive  
the ALC will be when applying gain increases  
whenever the audio falls below target level.  
PK_DECAY_RATE  
Time  
1.3ms  
000  
001  
010  
011  
100  
101  
110  
111  
2.6ms  
5.3ms  
10.6ms  
21.3ms  
42.6ms  
85.5ms  
2.73secs  
www.national.com  
82  
TABLE 71. DAC_ALC_6 (0xA5h)  
Bits  
Field  
Description  
4:0  
HOLD_TIME  
This sets how long the ALC circuit  
waits before increasing the gain.  
HOLDTIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 72. DAC_ALC_7 (0xA6h)  
Bits  
Field  
Description  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain to  
the digital level control when the ALC  
is used.  
TABLE 73. DAC_ALC_8 (0xA7h)  
Bits  
Field  
Description  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain  
to the digital level control when the  
ALC is used.  
83  
www.national.com  
TABLE 74. DAC_L_LEVEL (0xA8h) (Default data value is 0x33h)  
Field Description  
DAC_L_LEVEL This sets the pre DAC digital gain.  
Bits  
5:0  
DAC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
www.national.com  
84  
TABLE 75. DAC_R_LEVEL (0xA9h) (Default data value is 0x33h)  
Field Description  
DAC_R_LEVEL This sets the pre DAC digital gain.  
Bits  
5:0  
DAC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
85  
www.national.com  
TABLE 76. DAC_3D (0xAAh)  
Bits  
Field  
Description  
0
EFFECT_MODE This sets the digital 3D stereo  
enhancement mode.  
EFFECT_MODE  
Type  
0
1
Loudspeaker  
Headphone  
2:1  
6:3  
EFFECT_LEVEL This sets the applied level of 3D effect.  
EFFECT_LEVEL  
Level  
25%  
00  
01  
10  
11  
37.50%  
50%  
75%  
FILTER_TYPE This sets the 3D effect filter response.  
FILTER_TYPE  
0000  
Response  
200Hz HPF  
300Hz HPF  
600Hz HPF  
900Hz HPF  
0001  
0010  
0011  
0100  
200Hz-500Hz  
BPF  
0101  
0110  
200Hz-1kHz BPF  
200Hz-1.6kHz  
BPF  
0111  
200Hz-2.5kHz  
BPF  
1000  
1001  
300Hz-1kHz BPF  
300Hz-1.6kHz  
BPF  
1010  
300Hz-2.5kHz  
BPF  
1011  
1100  
600Hz-1kHz BPF  
600Hz-1.6kHz  
BPF  
1101  
1110  
1111  
600Hz-2.5kHz  
BPF  
900Hz-1.6kHz  
BPF  
900Hz-2.5kHz  
BPF  
7
ATTENUATE  
If set, the inputs are reduced by 6dB  
before 3D effects are applied in order  
to avoid clipping.  
www.national.com  
86  
TABLE 77. EQ_BAND_1 (0xABh)  
Description  
This sets the Sub-bass shelving filter's cut-off frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
00  
Frequency (Hz)  
60  
80  
01  
10  
100  
120  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
87  
www.national.com  
TABLE 78. EQ_BAND_2 (0xACh)  
Description  
This sets the Bass peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
00  
150  
200  
250  
300  
01  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
88  
TABLE 79. EQ_BAND_3 (0xADh)  
Description  
This sets the Mid peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
00  
600  
800  
1k  
01  
10  
11  
1.2k  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
89  
www.national.com  
TABLE 80. EQ_BAND_4 (0xAEh)  
Description  
This sets the Treble peak filter's center frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
Frequency (Hz)  
00  
2k  
01  
2.7k  
3.4k  
4.1k  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
90  
TABLE 81. EQ_BAND_5 (0xAFh)  
Description  
This sets the presence shelving filter's cut-off frequency.  
Bits  
Field  
1:0  
FREQ  
FREQ  
00  
Frequency (Hz)  
7k  
9k  
01  
10  
11k  
20k  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
91  
www.national.com  
TABLE 82. SOFTCLIP1 (0xB0h)  
Bits  
Field  
Description  
3:0  
TRESHOLD  
This sets the threshold level of the  
audio compressor. Audio signals  
above the threshold will be  
compressed.  
THRESHOLD  
Threshold Level  
(dB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-36dB  
-30dB  
-24dB  
-20dB  
-18dB  
-17dB  
-16dB  
-15dB  
-14dB  
-12dB  
-10dB  
-8dB  
-6dB  
-4dB  
-2.5dB  
-1dB  
4
SOFT_KNEE  
If set, the audio compressor will  
automatically apply higher  
compression ratios to audio signals  
higher than the threshold level. As the  
audio signal approaches levels higher  
than the threshold, SOFT_KNEE will  
increase the compression RATIO. The  
highest compression that the  
SOFT_KNEE algorithm will apply is the  
compression that is set by RATIO.  
www.national.com  
92  
TABLE 83. SOFTCLIP2 (0xB1h)  
Bits  
Field  
Description  
4:0  
RATIO  
This sets the ratio at which the audio is  
compressed to when it passes beyond  
the threshold. In soft clip mode this is  
the final level of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64  
1:75.9  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
93  
www.national.com  
TABLE 84. SOFTCLIP3 (0xB2h)  
Table 40:  
Bits  
4:0  
Field  
Description  
LEVEL  
This sets the post compressor gain  
level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
www.national.com  
94  
27.0 GPIO Registers  
TABLE 85. GPIO (0xE0h)  
Bits  
Field  
GPIO_MODE  
Description  
3:0  
This sets the mode of the GPIO Pin.  
GPIO_MODE  
0000  
GPIO Function  
OFF (input disabled)  
GPIO_RX  
0001  
0010  
GPIO_TX  
0011  
HP_ENB (out)  
HP_ENB (out)  
LS_ENB (out)  
LS_ENB (out)  
0100  
0101  
0110  
0111  
SHORT_CCT or  
THERMAL (out)  
1000  
SHORT_CCT or  
THERMAL or CLIP  
(out)  
1001  
1010  
CLIP (out)  
ADC_NG_ACTIVE  
(out)  
1011  
ADC_NG_ACTIVE  
(out)  
1100  
1101  
1110  
1111  
MIC_MUTE (in)  
MIC_MUTE (in)  
CHIP_ENB (in)  
CHIP_ENB (in)  
4
GPIO_TX  
If set, the GPIO pin will transmit a logic  
high whenever GPIO_MODE is set to  
'0010'.  
5
6
GPIO_RX  
This bit reports what logic level is present  
on the GPIO pin.  
SHORT_CCT  
If set, the GPIO records that a short circuit  
event has occurred on the class D  
outputs.  
7
THERMAL_EVENT If set records that a temperature event has  
occurred on the die. Clear on Write (1).  
TABLE 86. Spread Spectrum (0xF1h)  
Bits  
1:0  
2
Field  
RSVD  
Description  
Reserved  
SS_DISABLE  
If this bit is set, Spread Spectrum mode  
will be disabled from the Class D amplifier.  
TABLE 87. ADC Compensation Filter C0 LSBs (0xF8h)  
Bits  
Field  
Description  
Bits 7:0 of C0[15:0]  
7:0  
ADC_CO_LSB  
TABLE 88. ADC Compensation Filter C0 MSBs (0xF9h)  
Bits  
Field  
Description  
Bits 15:0 of C0[15:0]  
7:0  
ADC_CO_MSB  
95  
www.national.com  
TABLE 89. ADC Compensation Filter C1 LSBs (0xFAh)  
Bits  
Field  
Description  
Bits 7:0 of C1[15:0]  
7:0  
ADC_C1_LSB  
TABLE 90. ADC Compensation Filter C1 MSBs (0xFBh)  
Bits  
Field  
Description  
Bits 15:0 of C1[15:0]  
7:0  
ADC_C1_MSB  
TABLE 91. ADC Compensation Filter C2 LSBs (0xFCh)  
Bits  
Field  
Description  
Bits 7:0 of C2[15:0]  
7:0  
ADC_C2_LSB  
TABLE 92. ADC Compensation Filter C2 MSBs (0xFDh)  
Bits  
Field  
Description  
Bits 15:0 of C2[15:0]  
7:0  
ADC_C2_MSB  
TABLE 93. AUX_LINEOUT (0xFE)  
Bits  
4:0  
5
Field  
Description  
RSVD  
Reserved  
AUX_LINE_OUT If set, the earpiece amplifier operates in a  
low current drive mode for line out  
applications in order to reduce power  
consumption.  
www.national.com  
96  
97  
www.national.com  
28.0 Demonstration Board Layout  
20194106  
FIGURE 25. Top Silkscreen Layer  
20194115  
FIGURE 26. Top Layer  
www.national.com  
98  
20194116  
FIGURE 27. Inner Layer 1  
20194117  
FIGURE 28. Inner Layer 2  
99  
www.national.com  
20194120  
FIGURE 29. Bottom Silkscreen Layer  
20194118  
FIGURE 30. Bottom Layer  
www.national.com  
100  
29.0 Revision History  
Rev  
1.0  
Date  
Description  
09/03/08  
09/04/08  
09/22/08  
10/24/08  
12/15/08  
05/27/09  
05/29/09  
Initial release.  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
Text edits.  
Text edits.  
Text edits.  
Text edits and replaced the top silkscreen layer.  
Added the EMI/RFI section and the corresponding graphic.  
Text edits.  
101  
www.national.com  
30.0 Physical Dimensions inches (millimeters) unless otherwise noted  
micro SMD–36 Package  
Order Number LM49350RL  
NS Package Number RLA36TTA  
X1 = 3.459±.03mm, X2 = 3.459±.03mm, X3 = 0.65±.075mm  
www.national.com  
102  
Notes  
103  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
Products  
www.national.com/amplifiers  
Design Support  
www.national.com/webench  
Amplifiers  
WEBENCH® Tools  
App Notes  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
www.national.com/interface  
www.national.com/lvds  
www.national.com/power  
www.national.com/appnotes  
www.national.com/refdesigns  
www.national.com/samples  
www.national.com/evalboards  
www.national.com/packaging  
www.national.com/quality/green  
www.national.com/contacts  
www.national.com/quality  
www.national.com/feedback  
www.national.com/easy  
Clock and Timing  
Data Converters  
Interface  
Reference Designs  
Samples  
Eval Boards  
LVDS  
Packaging  
Power Management  
Green Compliance  
Distributors  
Switching Regulators www.national.com/switchers  
LDOs  
www.national.com/ldo  
www.national.com/led  
www.national.com/vref  
www.national.com/powerwise  
Quality and Reliability  
Feedback/Support  
Design Made Easy  
Solutions  
LED Lighting  
Voltage Reference  
PowerWise® Solutions  
www.national.com/solutions  
www.national.com/milaero  
www.national.com/solarmagic  
www.national.com/training  
Serial Digital Interface (SDI) www.national.com/sdi  
Mil/Aero  
Temperature Sensors  
Wireless (PLL/VCO)  
www.national.com/tempsensors SolarMagic™  
www.national.com/wireless  
PowerWise® Design  
University  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2009 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: support@nsc.com  
Tel: 1-800-272-9959  
www.national.com  

相关型号:

LM49350RLX

High Performance Audio Codec Sub-System with a Ground-Referenced Stereo Headphone Amplifier
NSC

LM49352

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers, Earpiece Driver, and Audio DSP
TI

LM49352RL

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers, Earpiece Driver, and Audio DSP
TI

LM49352RL/NOPB

Mono Class D Audio Codec Subsytem w/ Gnd Referenced Headphone Amps, Earpiece Driver, & Audio DSP 36-DSBGA -40 to 85
TI

LM49352RLX

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers, Earpiece Driver, and Audio DSP
TI

LM49352RLX/NOPB

Mono Class D Audio Codec Subsytem w/ Gnd Referenced Headphone Amps, Earpiece Driver, & Audio DSP 36-DSBGA -40 to 85
TI

LM49352_14

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers Earpiece Driver, and Audio DSP
TI

LM4935WL

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC
NSC

LM4935WLX

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC
NSC

LM4936

Stereo 2W Audio Power Amplifiers with Volume Control and Selectable Control Interface (SPI or I2C)
NSC

LM49360

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM49360RL

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI