LM49352_14 [TI]

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers Earpiece Driver, and Audio DSP;
LM49352_14
型号: LM49352_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Mono Class D Audio Codec Subsystem with Ground Referenced Headphone Amplifiers Earpiece Driver, and Audio DSP

文件: 总112页 (文件大小:2162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM49352  
LM49352 Mono Class D Audio Codec Subsystem with Ground Referenced  
Headphone Amplifiers, Earpiece Driver, and Audio DSP  
Literature Number: SNAS467D  
June 30, 2010  
LM49352  
Mono Class D Audio Codec Subsystem with Ground  
Referenced Headphone Amplifiers, Earpiece Driver, and  
Audio DSP  
SNR (Stereo DAC at 48kHz)  
PSRR at 217 Hz, A_VDD = 3.3V, (HP from 100dB (typ)  
AUX)  
103dB (typ)  
1.0 General Description  
The LM49352 is a high performance mixed signal audio sub-  
system. The LM49352 includes a high quality stereo DAC, a  
high quality stereo ADC, a stereo headphone amplifier, which  
supports True Ground operation, a low EMI Class D loud-  
speaker amplifier, and an earpiece speaker amplifier. It com-  
bines advanced audio processing, conversion, mixing, and  
amplification in the smallest possible footprint while extending  
the battery life of feature rich portable devices.  
4.0 Features  
Ultra efficient, spread spectrum Class D loudspeaker  
amplifier that operates at 93% efficiency  
Low voltage, true ground headphone amplifier operation  
High performance 103dB SNR stereo DAC  
The LM49352 features dual bi-directional I2S or PCM audio  
interfaces and an I2C compatible interface for control. The  
stereo DAC path features an SNR of 103dB with 24-bit 48 kHz  
input. The headphone amplifier delivers 65mWRMS (typ) to a  
32single-ended stereo load with less than 1% distortion  
(THD+N) when HP_VDD = 2.8V. The loudspeaker amplifier  
delivers up to 970mW into an 8load with less than 1% dis-  
tortion when LS_VDD = 4.2V.  
High performance 97dB SNR stereo ADC  
Up to 96kHz stereo audio playback  
Up to 48kHz stereo recording  
Dual bidirectional I2S or PCM compatible audio interfaces  
Read/write I2C compatible control interface  
Flexible digital mixer with sample rate conversion  
Sigma-delta PLL clock network that supports system  
clocks up to 50MHz including 13MHz, 19.2MHz, and  
26MHz  
The LM49352 employs advanced techniques to extend bat-  
tery life, to reduce controller overhead, to speed development  
time, and to eliminate click and pop artifacts. Boomer audio  
power amplifiers are designed specifically for mobile devices  
and require minimal PCB area and external components.  
Dual stereo 5 band parametric equalizers  
Cascadable DSP effects that allow stereo 10 band  
parametric equalization  
ALC/Limiter/Compressor on both DAC and ADC paths  
2.0 Applications  
Dedicated Earpiece Speaker Amplifier  
Smart Phones  
Stereo auxiliary inputs and mono differential input  
Mobile Phones and VOIP Phones  
Differential microphone input with single-ended option  
Portable GPS Navigator and Portable Gaming Devices  
Automatic level control for digital audio inputs, mono  
differential input, microphone input, and stereo auxiliary  
inputs  
Portable DVD/CD/AAC/MP3/MP4 Players  
Digital Cameras/Camcorders  
Flexible audio routing from input to output  
3.0 Key Specifications  
16 Step volume control for microphone with 2dB steps  
Class D Amplifier Efficiency  
93% (typ)  
58mW (typ)  
65mW/ch (typ)  
32 Step volume control for auxiliary inputs in 1.5dB steps  
PEP at A_VDD = 3.3V, 32, 1% THD  
PHP at HP_VDD = 2.8V, Stereo 32Ω,  
1% THD  
4 Step volume control for class D loudspeaker amplifier  
8 Step volume control for headphone amplifier  
Micro-power shutdown mode  
PLS at LS_VDD = 5V, 8, 1% THD  
PLS at LS_VDD = 4.2V, 8, 1% THD  
PLS at LS_VDD = 3.3V, 8, 1% THD  
1.4W (typ)  
970mW (typ)  
590mW (typ)  
Available in the 3.3 x 3.3 mm 36 bump micro SMD package  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2010 National Semiconductor Corporation  
300727  
www.national.com  
 
 
 
 
5.0 LM49352 Overview  
30072777  
FIGURE 1. LM49352 Block Diagram  
www.national.com  
2
 
 
6.0 Typical Application  
30072785  
FIGURE 2. Example Application in Multimedia Phone with Dedicated Earpiece Speaker and Mono Loudspeaker  
3
www.national.com  
 
 
30072786  
FIGURE 3. Example Application in Multimedia Phone Using Multiple Media Sources  
www.national.com  
4
 
30072787  
FIGURE 4. Example Application in a Multimedia Phone with Stereo Loudspeaker  
5
www.national.com  
 
30072788  
FIGURE 5. Example Application in a Portable Media Player with Stereo Loudspeakers  
www.national.com  
6
 
Table of Contents  
1.0 General Description ......................................................................................................................... 1  
2.0 Applications .................................................................................................................................... 1  
3.0 Key Specifications ........................................................................................................................... 1  
4.0 Features ........................................................................................................................................ 1  
5.0 LM49352 Overview .......................................................................................................................... 2  
6.0 Typical Application ........................................................................................................................... 3  
7.0 Connection Diagrams ..................................................................................................................... 10  
7.1 PIN TYPE DEFINITIONS ........................................................................................................ 12  
8.0 Absolute Maximum Ratings ............................................................................................................ 13  
9.0 Operating Ratings ......................................................................................................................... 13  
10.0 Electrical Characteristics: A_VDD = LS_VDD = 3.3V; HP_VDD = D_VDD = I/O_VDD = 1.8V ...................... 13  
11.0 Typical Performance Characteristics .............................................................................................. 19  
12.0 System Control ............................................................................................................................ 29  
12.1 I2C SIGNALS ....................................................................................................................... 29  
12.2 I2C DATA VALIDITY ............................................................................................................. 29  
12.3 I2C START AND STOP CONDITIONS ..................................................................................... 29  
12.4 TRANSFERRING DATA ........................................................................................................ 29  
12.5 I2C TIMING PARAMETERS .................................................................................................. 31  
13.0 Device Register Map .................................................................................................................... 32  
14.0 Basic PMC Setup Register ............................................................................................................ 36  
15.0 PMC Clocks Register ................................................................................................................... 37  
16.0 PMC Clock Divide Register ........................................................................................................... 37  
17.0 LM49352 Clock Network .............................................................................................................. 38  
18.0 PLL Setup Registers .................................................................................................................... 40  
19.0 Analog Mixer Control Registers ..................................................................................................... 44  
20.0 ADC Control Registers ................................................................................................................. 53  
21.0 DAC Control Registers ................................................................................................................. 55  
22.0 Digital Mixer Control Registers ...................................................................................................... 56  
23.0 Audio Port Control Registers ......................................................................................................... 60  
24.0 Digital Effects Engine ................................................................................................................... 66  
25.0 DAC Effects Registers .................................................................................................................. 87  
26.0 GPIO Registers ......................................................................................................................... 102  
27.0 Schematic Diagram .................................................................................................................... 104  
28.0 Demonstration Board Layout ....................................................................................................... 105  
29.0 Revision History ........................................................................................................................ 108  
30.0 Physical Dimensions .................................................................................................................. 109  
List of Figures  
FIGURE 1. LM49352 Block Diagram ............................................................................................................. 2  
FIGURE 2. Example Application in Multimedia Phone with Dedicated Earpiece Speaker and Mono Loudspeaker ................ 3  
FIGURE 3. Example Application in Multimedia Phone Using Multiple Media Sources .................................................. 4  
FIGURE 4. Example Application in a Multimedia Phone with Stereo Loudspeaker ...................................................... 5  
FIGURE 5. Example Application in a Portable Media Player with Stereo Loudspeakers ................................................ 6  
FIGURE 6. I2C Signals: Data Validity ............................................................................................................ 29  
FIGURE 7. I2C Start and Stop Conditions ...................................................................................................... 29  
FIGURE 8. I2C Chip Address ..................................................................................................................... 29  
FIGURE 9. Example I2C Write Cycle ............................................................................................................ 30  
FIGURE 10. Example I2C Read Cycle .......................................................................................................... 30  
FIGURE 11. I2C Timing Diagram ................................................................................................................. 30  
FIGURE 12. Internal Clock Network ............................................................................................................. 39  
FIGURE 13. PLL Loop ............................................................................................................................ 40  
FIGURE 14. EMI/RFI Filter for the Class D Amplifier ......................................................................................... 45  
FIGURE 15. Application Circuit for Headphone Detection ................................................................................... 51  
FIGURE 16. Digital Mixer .......................................................................................................................... 56  
FIGURE 17. I2S Serial Data Format (24 bit example) ........................................................................................ 60  
FIGURE 18. Left Justified Data Format (24 bit example) .................................................................................... 60  
FIGURE 19. Right Justified Data Format (24 bit example) .................................................................................. 60  
FIGURE 20. PCM Serial Data Format (16 bit example) ...................................................................................... 60  
FIGURE 21. ADC DSP Effects Chain ........................................................................................................... 66  
FIGURE 22. DAC DSP Effects Chain ........................................................................................................... 66  
FIGURE 23. ALC Example ........................................................................................................................ 68  
FIGURE 24. ALC Limiter ........................................................................................................................... 69  
FIGURE 25. Audio Compressor Effect .......................................................................................................... 82  
FIGURE 26. Soft Knee Example with Compression Ratio Setting of 1:3.4 ............................................................... 83  
7
www.national.com  
FIGURE 27. Demo Board Schematic .......................................................................................................... 104  
FIGURE 28. Top Silkscreen ..................................................................................................................... 105  
FIGURE 29. Top Layer ........................................................................................................................... 105  
FIGURE 30. Inner Layer 2 ....................................................................................................................... 106  
FIGURE 31. Inner Layer 3 ....................................................................................................................... 106  
FIGURE 32. Bottom Layer ...................................................................................................................... 107  
FIGURE 33. Bottom Silkscreen ................................................................................................................. 107  
List of Tables  
TABLE 1. Device Register Map .................................................................................................................. 32  
TABLE 2. Nonzero I2C Default Registers ....................................................................................................... 35  
TABLE 3. PMC_SETUP (0x00h) ................................................................................................................. 36  
TABLE 4. PMC_SETUP (0x01h) ................................................................................................................. 37  
TABLE 5. PMC_SETUP (0x02h) ................................................................................................................ 37  
TABLE 6. DAC Clock Requirements ............................................................................................................. 38  
TABLE 7. ADC Clock Requirements ............................................................................................................. 38  
TABLE 8. PLL Settings for Common System Clock Frequencies .......................................................................... 40  
TABLE 9. PLL_CLOCK_SOURCE (0x03h) .................................................................................................... 41  
TABLE 10. PLL_M (0x04h) ........................................................................................................................ 42  
TABLE 11. PLL_N (0x05h) ........................................................................................................................ 42  
TABLE 12. PLL_N_MOD (0x06h) ................................................................................................................ 42  
TABLE 13. PLL_P1 (0x07h) ....................................................................................................................... 43  
TABLE 14. PLL_P2 (0x08h) ....................................................................................................................... 43  
TABLE 15. CLASS_D_OUTPUT (0x10h) ....................................................................................................... 44  
TABLE 16. LEFT HEADPHONE_OUTPUT (0x11h) .......................................................................................... 45  
TABLE 17. RIGHT HEADPHONE_OUTPUT (0x12h) ........................................................................................ 45  
TABLE 18. AUX_OUTPUT (0x13h) .............................................................................................................. 46  
TABLE 19. OUTPUT_OPTIONS (0x14h) ....................................................................................................... 47  
TABLE 20. ADC_INPUT (0x15h) ................................................................................................................. 48  
TABLE 21. MIC_INPUT (0x16h) ................................................................................................................. 48  
TABLE 22. AUX_LEVEL (0x18h) ................................................................................................................. 49  
TABLE 23. MONO_LEVEL (0x19h) .............................................................................................................. 50  
TABLE 24. HP_SENSE (0x1Bh) ................................................................................................................. 52  
TABLE 25. ADC Basic (0x20h) ................................................................................................................... 53  
TABLE 26. ADC_CLK_DIV (0x21h) ............................................................................................................. 53  
TABLE 27. ADC_MIXER (0x23h) ................................................................................................................ 54  
TABLE 28. DAC Basic (0x30h) .................................................................................................................. 55  
TABLE 29. DAC_CLK_DIV (0x31h) ............................................................................................................. 55  
TABLE 30. Input Levels 1 (0x40h) ............................................................................................................... 57  
TABLE 31. Input Levels 2 (0x41h) ............................................................................................................... 57  
TABLE 32. Audio Port 1 Input (0x42h) .......................................................................................................... 58  
TABLE 33. Audio Port 2 Input (0x43h) .......................................................................................................... 58  
TABLE 34. DAC Input Select (0x44h) ........................................................................................................... 59  
TABLE 35. Decimator Input Select (0x45h) .................................................................................................... 59  
TABLE 36. BASIC_SETUP (0x50h/0x60h) ..................................................................................................... 61  
TABLE 37. CLK_GEN_1 (0x51h/0x61h) ........................................................................................................ 61  
TABLE 38. CLK_GEN_1 (0x52h/62h) ........................................................................................................... 62  
TABLE 39. CLK_GEN_1 (0x53h/63h) ........................................................................................................... 62  
TABLE 40. DATA_WIDTHS (0x54h/64h) ....................................................................................................... 63  
TABLE 41. RX_MODE (0x55h/x65h) ............................................................................................................ 64  
TABLE 42. TX_MODE (0x56h/x66h) ............................................................................................................ 65  
TABLE 43. ADC EFFECTS (0x70h) ............................................................................................................. 66  
TABLE 44. DAC EFFECTS (0x71h) ............................................................................................................. 67  
TABLE 45. HPF MODE (0x80h) .................................................................................................................. 67  
TABLE 46. ADC_ALC_1 (0x81h) ................................................................................................................. 70  
TABLE 47. ADC_ALC_2 (0x82h) ................................................................................................................. 70  
TABLE 48. ADC_ALC_3 (0x83h) ................................................................................................................. 71  
TABLE 49. ADC_ALC_4 (0x84h) ................................................................................................................. 72  
TABLE 50. ADC_ALC_5 (0x85h) ................................................................................................................. 73  
TABLE 51. ADC_ALC_6 (0x86h) ................................................................................................................ 74  
TABLE 52. ADC_ALC_7 (0x87h) ................................................................................................................ 74  
TABLE 53. ADC_ALC_8 (0x88h) ................................................................................................................. 74  
TABLE 54. ADC_L_LEVEL (0x89h) ............................................................................................................ 75  
TABLE 55. ADC_R_LEVEL (0x8Ah) ............................................................................................................. 76  
TABLE 56. EQ_BAND_1 (0x8Bh) ................................................................................................................ 77  
TABLE 57. EQ_BAND_2 (0x8Ch) ................................................................................................................ 78  
TABLE 58. EQ_BAND_3 (0x8Dh) ................................................................................................................ 79  
TABLE 59. EQ_BAND_4 (0x8Eh) ................................................................................................................ 80  
www.national.com  
8
TABLE 60. EQ_BAND_5 (0x8Fh) ................................................................................................................ 81  
TABLE 61. SOFTCLIP1 (0x90h) ................................................................................................................. 84  
TABLE 62. SOFTCLIP2 (0x91h) ................................................................................................................. 85  
TABLE 63. SOFTCLIP3 (0x92h) ................................................................................................................. 86  
TABLE 64. DAC_ALC_1 (0xA0h) ................................................................................................................ 87  
TABLE 65. DAC_ALC_2 (0xA1h) ................................................................................................................ 87  
TABLE 66. DAC_ALC_3 (0xA2h) ................................................................................................................ 88  
TABLE 67. DAC_ALC_4 (0xA3h) ............................................................................................................... 89  
TABLE 68. DAC_ALC_5 (0xA4h) ............................................................................................................... 90  
TABLE 69. DAC_ALC_6 (0xA5h) ............................................................................................................... 91  
TABLE 70. DAC_ALC_7 (0xA6h) ............................................................................................................... 91  
TABLE 71. DAC_ALC_8 (0xA7h) ................................................................................................................ 91  
TABLE 72. DAC_L_LEVEL (0xA8h) ............................................................................................................ 92  
TABLE 73. DAC_R_LEVEL (0xA9h) ............................................................................................................ 93  
TABLE 74. EQ_BAND_1 (0xABh) ............................................................................................................... 94  
TABLE 75. EQ_BAND_2 (0xACh) ............................................................................................................... 95  
TABLE 76. EQ_BAND_3 (0xADh) ............................................................................................................... 96  
TABLE 77. EQ_BAND_4 (0xAEh) ............................................................................................................... 97  
TABLE 78. EQ_BAND_5 (0xAFh) ................................................................................................................ 98  
TABLE 79. SOFTCLIP1 (0xB0h) ................................................................................................................. 99  
TABLE 80. SOFTCLIP2 (0xB1h) ............................................................................................................... 100  
TABLE 81. SOFTCLIP3 (0xB2h) ............................................................................................................... 101  
TABLE 82. GPIO1 (0xE0h) ...................................................................................................................... 102  
TABLE 83. GPIO2 (0xE1h) ...................................................................................................................... 103  
TABLE 84. RESET (0xF0h) ..................................................................................................................... 103  
TABLE 85. Spread Spectrum (0xF1h) ......................................................................................................... 103  
TABLE 86. FORCE (0xFE) ...................................................................................................................... 103  
9
www.national.com  
7.0 Connection Diagrams  
36 Bump micro SMD  
36 Bump micro SMD Marking  
300727q7  
Top View  
XY — Date Code  
TT — Die Traceability  
G — Boomer  
30072711  
Order Number LM49352RL  
See NS Package Number RLA36MMA  
L5 — LM49352RL  
LM49352RL Pinout Diagram  
30072710  
Top View (Bump Side Down)  
Ordering Information  
Order Number  
Package  
Package DWG #  
Transport Media  
MSL Level  
Green Status  
36 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49352RL  
RLA36MMA  
RLA36MMA  
250 units on tape and reel  
1000 units on tape and reel  
1
1
36 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49352RLX  
www.national.com  
10  
 
Pin Descriptions  
Pin  
Pin Name  
Type  
Direction  
Description  
A1  
HPR  
Analog  
Output  
Headphone right output  
DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog  
mixer (AUX and class D), and Earpiece amplifier power supply input  
A_VDD  
AGND  
A2  
A3  
Supply  
Supply  
Input  
Input  
DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog  
mixer (AUX and class D), and Earpiece amplifier ground  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
DAC REF  
ADC REF  
SDA  
Analog  
Analog  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Analog  
Supply  
Analog  
Input/Output Filter point for the DAC reference  
Input  
Filter point for the ADC reference. Connect this pin to A_VDD.  
Input/Output I2C interface data line  
HPL  
Output  
Input  
Headphone left output  
AUX_R/AUX+  
AUX_L/AUX-  
PORT2_SYNC  
PORT2_SDI  
SCL  
Right analog input or positive differential auxiliary input  
Left analog input or negative differential auxiliary input  
Input  
Input/Output Audio Port 2 sync signal (can be master or slave)  
Input  
Input  
Audio Port 2 serial data input  
I2C interface clock line  
HP_VSS  
Output  
Input  
Negative power supply pin for the headphone amplifier  
Headphone amplifier power supply pin  
Earpiece negative output or Auxiliary negative output  
HP_VDD  
EP-/AUXOUT-  
Output  
PORT2_SDO /  
GPIO  
C4  
Digital  
Input / Output Audio port 2 serial data output or General Purpose Input Output  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
PORT2_CLK  
MCLK  
Digital  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Supply  
Supply  
Supply  
Analog  
Analog  
Digital  
Input/Output Audio port 2 clock signal (can be master or slave)  
Input  
Input clock from 0.5MHz to 50 MHz  
CP-  
Input/Output Fly capacitor negative input  
Input/Output Fly capacitor positive input  
CP+  
EP+/AUXOUT+  
PORT1_SYNC  
PORT1_SDO  
DGND  
Output  
Earpiece positive output or Auxiliary positive output  
Input/Output Audio Port 1 sync signal (can be master or slave)  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Audio Port 1 serial data output  
Digital ground  
LSGND  
Loudspeaker ground  
LS_VDD  
Loudspeaker amplifier and analog mixer (headphone) supply input  
Mono differential negative input  
Microphone negative input  
MONO-  
MIC-  
PORT1_SDI  
Audio Port 1 serial data input  
DAC (Digital), ADC (Digital), PLL (Digital), digital mixer, DSP core,  
and I2C register power supply input  
D_VDD  
E6  
Supply  
Input  
F1  
F2  
F3  
F4  
F5  
F6  
LS +  
LS -  
Analog  
Analog  
Analog  
Analog  
Digital  
Supply  
Output  
Output  
Input  
Loudspeaker positive output  
Loudspeaker negative output  
Mono differential positive input  
Microphone positive input  
MONO+  
MIC +  
Input  
PORT1_CLK  
I/O_VDD  
Input/Output Audio Port 1 clock signal (can be master or slave)  
Input  
Digital I/O (MCLK, I2S/PCM, I2C) interface power supply input  
11  
www.national.com  
7.1 PIN TYPE DEFINITIONS  
sive components can be connected  
to these pins.  
Analog Input —  
A pin that is used by the analog and  
is never driven by the device. Sup-  
plies are part of this classification.  
Digital Input —  
A pin that is used by the digital but is  
never driven by the device.  
Analog Output —  
A pin that is driven by the device and  
should not be driven by external  
sources.  
Digital Output —  
A pin that is driven by the device and  
should not be driven by another de-  
vice to avoid contention.  
Analog Input/Output — A pin that is typically used for filtering  
a DC signal within the device. Pas-  
Digital Input/Output —  
A pin that is either open drain (SDA)  
or a bidirectional CMOS in/out. In  
the latter case the direction is se-  
lected by a control register within the  
LM49352.  
www.national.com  
12  
 
Machine Model (Note 5)  
Junction Temperature  
Thermal Resistance  
200V  
150°C  
8.0 Absolute Maximum Ratings (Note  
1, Note 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
ꢀθJA – RLA36 (soldered down  
to PCB with 2in2 1oz. copper plane)  
60°C/W  
Soldering Information  
Analog Supply Voltage  
See Applications Note AN-1112.  
(A_VDD and LS_VDD  
)
6.0V  
2.2V  
5.5V  
Digital Supply Voltage  
D_VDD  
9.0 Operating Ratings  
Temperature Range  
−40°C to +85°C  
I/O Supply Voltage  
I/O_VDD  
Supply Voltage  
A_VDD, LS_VDD, and AVDD_REF  
D_VDD  
I/O_VDD  
HP_VDD  
2.7V to 5.5V  
1.6V to 2.0V  
1.6V to 4.5V  
1.7V to 2.8V  
Headphone Supply Voltage  
HP_VDD  
3.0V  
−65°C to +150°C  
Internally Limited  
Storage Temperature  
Power Dissipation (Note 3)  
ESD Ratings  
Human Body Model (Note 4)  
HPR and HPL pins  
All other pins  
8kV  
2.5kV  
10.0 Electrical Characteristics: A_VDD = LS_VDD = 3.3V; HP_VDD = D_VDD = I/  
O_VDD = 1.8V (Note 1, Note 2) The following specifications apply for RL(LS) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless  
otherwise specified. Limits apply for TA = 25°C.  
LM49352  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
(Limit)  
(Note 6) (Note 7)  
DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD, HP_VDD, and  
LS_VDD  
)
Shutdown Mode,  
fMCLK = 13MHz, PLL Off  
DISD  
Digital Shutdown Current  
2
µA  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Stereo DAC On, OSRDAC = 64,  
PLL Off, HP On  
Digital Active Current (MP3 Mode)  
Digital Active Current (FM Mode)  
1.2  
0.2  
1.3  
1.4  
0.5  
1.5  
mA (max)  
mA (max)  
mA (max)  
fMCLK = 13MHz  
Analog Audio modes  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
DIDD  
Digital Active Current  
(FM Record Mode)  
fMCLK = 12.288MHz, fS = 8kHz,  
Mono ADC On, Mono DAC On,  
OSRDAC = 64  
Digital Active Current  
(CODEC Mode)  
0.5  
0.1  
0.8  
5
mA (max)  
OSRADC = 128, PLL Off, MIC On  
AISD  
Analog Shutdown Current  
Shutdown Mode  
μA (max)  
13  
www.national.com  
 
 
 
LM49352  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
fMCLK = 11.2896MHz, fS = 44.1kHz  
Stereo DAC On, OSRDAC = 64  
PLL Off, Stereo HP On  
From A_VDD  
Analog Supply Current (MP3 Mode)  
4.3  
1.5  
6
mA (max)  
mA (max)  
From HP_VDD  
2.7  
fMCLK = 13MHz, PLL Off  
Stereo Auxiliary Inputs On,  
PLL Off, Stereo HP On  
Analog Supply Current (FM Mode)  
From A_VDD  
1.7  
1.5  
2.6  
2.7  
mA (max)  
mA (max)  
AIDD  
From HP_VDD  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
Analog Supply Current  
(FM Record Mode)  
7.2  
9.3  
mA (max)  
fMCLK = 12.288MHz, fS = 8kHz,  
Mono ADC On, Mono DAC On,  
OSRDAC = 64  
Analog Supply Current  
(CODEC Mode)  
6.6  
8.7  
mA (max)  
OSRADC = 128, PLL Off, MIC On,  
EP On  
fMCLK = 13MHz,  
fPLLOUT = 12MHz, PLL On only  
PLLIDD  
PLL Total Active Current  
From A_VDD  
1.9  
1.4  
1.5  
2.2  
0.4  
2.7  
2
mA (max)  
mA (max)  
mA  
From D_VDD  
HPIDD  
LSIDD  
Headphone Quiescent Current  
Loudspeaker Quiescent Current  
Microphone Quiescent Current  
Stereo HP On only  
LS On only  
mA  
MICIDD  
Mono MIC  
mA  
fS = 48kHz, Stereo  
From A_VDD  
ADCIDD  
DACIDD  
ADC Total Active Current  
DAC Total Active Current  
5.8  
1.3  
mA  
mA  
From D_VDD  
fS = 48kHz, Stereo  
From A_VDD  
3.1  
1
mA  
mA  
From D_VDD  
Mono/Auxiliary Input Amplifier  
Quiescent Current  
Mono and AUX Input Amplifiers  
enabled  
AUXINIDD  
0.6  
mA  
AUXOUT enabled  
Earpiece Mode  
0.4  
1.1  
mA  
mA  
Auxiliary Output Amplifier Quiescent  
Current  
AUXOUTIDD  
LOUDSPEAKER AMPLIFIER  
PO = 970mW, RL = 8Ω,  
LS_VDD = 4.2V  
LSEFF  
Loudspeaker Efficiency  
93  
%
%
PO = 300mW, f = 1kHz,  
RL = 8Ω, Mono Input Signal  
THD+N  
Total Harmonic Distortion + Noise  
0.03  
www.national.com  
14  
LM49352  
Typical Limit  
(Note 6) (Note 7)  
RL = 8Ω, f = 1kHz, THD+N = 1%, Mono Input Signal  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
LS_VDD = 5V  
LS_VDD = 4.2V  
LS_VDD = 3.3V  
1.4  
970  
590  
W
mW  
510  
mW (min)  
PO  
Output Power  
RL = 4Ω, f = 1kHz, THD+N = 1%,  
Mono Input Signal  
LS_VDD = 5V  
2.4  
1.65  
980  
W
W
LS_VDD = 4.2V  
LS_VDD = 3.3V  
mW  
VRIPPLE = 200mVP-P  
fRIPPLE = 217Hz  
Mono Input Terminated  
VREF = 1.0μF, Input Referred  
LS Gain = 12dB  
75  
74  
60  
dB (min)  
dB  
PSRR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P  
fRIPPLE = 217Hz  
From DAC, DAC gain = 0dB  
Reference = VOUT (1% THD+N )  
Mono gain = 0dB, A-weighted  
Mono Input Terminated, LS Gain = 8dB  
LS_VDD = 4.2V  
LS_VDD = 3.3V  
95  
93  
dB  
88  
dB (min)  
SNR  
Signal-to-Noise Ratio  
Reference = VOUT (1% THD+N )  
DAC Gain = 0dB, A-weighted  
fS = 48kHz, OSR = 128  
LS Gain = 8dB  
LS_VDD = 4.2V  
LS_VDD = 3.3V  
91  
89  
dB  
dB  
eOS  
VOS  
Mono gain = 0dB, A-weighted,  
Mono Input Terminated, Input Referred  
Output Noise  
Offset Voltage  
43  
10  
µV  
Mono gain = 0dB, from Mono Input  
50  
mV (max)  
HEADPHONE AMPLIFIERS  
PO = 15mW, f = 1kHz,  
RL = 32Ω  
THD+N Total Harmonic Distortion + Noise  
0.025  
0.1  
% (max)  
Stereo Analog Input Signal  
RL = 32Ω, f = 1kHz, THD+N = 1%,  
Stereo Analog Input Signal, In phase  
HP_VDD = 2.8V  
65  
24  
mW  
HP_VDD = 1.8V  
20  
mW (min)  
PO  
Headphone Output Power  
RL = 16Ω, f = 1kHz, THD+N = 1%,  
Stereo Analog Input Signal, In phase  
HP_VDD = 2.8V  
73  
24  
mW  
mW  
HP_VDD = 1.8V  
15  
www.national.com  
LM49352  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input Terminated, Mono gain = 0dB  
VREF = 1.0μF, Mono Differential Input Mode,  
Ripple applied to AVDD only  
100  
88  
85  
dB (min)  
dB  
PSRR  
Power Supply Rejection Ratio  
Ripple applied to AVDD and HPVDD  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
From DAC, DAC gain = 0dB  
Ripple applied to AVDD  
81  
98  
dB  
HPVDD, and DVDD  
Reference = VOUT (1% THD+N )  
Gain = 0dB, A-weighted  
Stereo Inputs Terminated  
93  
93  
dB (min)  
SNR  
Signal to Noise Ratio  
Output Noise  
Reference = VOUT (1% THD+N)  
Gain = 0dB,  
97  
dB (min)  
A-weighted, I2S Input = Digital Zero  
Gain = 0dB, A-weighted,  
Stereo Inputs Terminated  
11  
12  
µV  
µV  
eOS  
Gain = 0dB, A-weighted,  
I2S Input = Digital Zero  
PO = 7.5mW, f = 1kHz,  
RL = 32Ω  
XTALK  
Crosstalk  
85  
dB  
Stereo Analog Input Signal  
Channel-to-Channel Gain Matching  
ΔACH-CH  
0.03  
1.4  
dB  
AUX Gain = 0dB  
From mono Input  
6
6
mV (max)  
VOS  
Output Offset Voltage  
DAC Gain = 0dB  
From DAC Input, fMCLK = 12.288MHz  
1.6  
mV (max)  
%
AUXILIARY OUTPUT/EARPIECE AMPLIFIER  
AUX_LINE_OUT, f = 1kHz  
From Mono In  
0.002  
RL = 5k, VOUT = 1VRMS  
THD+N  
Total Harmonic Distortion  
Output Power  
Earpiece mode, f = 1kHz  
From Mono In  
0.02  
58  
%
mW (min)  
dB  
RL = 32Ω BTL, POUT = 20mW  
Earpiece mode, f = 1kHz  
POUT  
50  
90  
RL = 32Ω BTL, THD+N = 1%  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1.0μF  
AUX_LINE_OUT  
100  
PSRR  
SNR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1.0μF  
Earpiece mode,  
–6dB cut enabled  
100  
dB  
Gain = 0dB, VREF = VOUT (1% THD+N)  
A-weighted, Mono Input Terminated  
Gain = 0dB, VREF = VOUT (1% THD+N)  
A-weighted, Mono Input Terminated  
Signal to Noise Ratio  
Output Noise  
105  
7
dB  
μV  
OUT  
www.national.com  
16  
LM49352  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
MONO gain = 0dB, From Mono Input  
AUX_LINE_OUT  
4
mV  
VOS  
Output Offset Voltage  
Turn-On time  
Gain = 0dB, From Mono Input  
Earpiece mode  
4
12  
mV (max)  
ms  
TWU  
PMC Clock = 300kHz  
28  
STEREO ADC  
Mono Differential Input  
VIN = 1VRMS, f = 1kHz  
Gain = 0dB, fS = 48kHz  
ADC Total Harmonic Distortion +  
Noise  
THD+NADC  
0.007  
220  
%
HPF On, fS = 48kHz  
Lower -3dB Point  
Hz  
PBADC  
ADC Passband  
ADC Ripple  
0.41*fS  
0.1  
HPF On, Upper -3dB Point  
OSRDAC = 128  
kHz  
dB  
RADC  
Reference = VOUT (0dBFS )  
Gain = 6dB,  
98  
dB  
A-weighted From MIC, fS = 8kHz  
SNRADC  
ADC Signal to Noise Ratio  
ADC Full Scale Input Level  
Reference = VOUT (0dBFS )  
Gain = 0dB,  
A-weighted From Stereo Input,  
fS = 48kHz  
97  
dB  
ADCLEVEL  
VRMS  
1.6  
STEREO DAC  
I2S Input, AUXOUT, OSRDAC = 64  
VIN = 500mFFSRMS, f = 1kHz  
Gain = 0dB  
DAC Total Harmonic Distortion +  
Noise  
THD+NDAC  
0.01  
%
DACLEVEL  
RDAC  
DAC Full Scale Output Level  
DAC Ripple  
VRMS  
dB  
1.08  
0.1  
PBDAC  
DAC Passband  
Upper –3dB Point  
0.45*fS  
103  
kHz  
dB  
SNRDAC  
DAC Signal to Noise Ratio  
fS = 48kHz, A-weighted, AUXOUT  
VOLUME CONTROL  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
–46.5  
18  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VCRAUX  
VCRMONO  
VCRDAC  
VCRADC  
VCRMIC  
VCRLS  
Stereo Input Volume Control Range  
MONO Input Volume Control Range  
DAC Volume Control Range  
–46.5  
18  
–76.5  
18  
–76.5  
18  
ADC Volume Control Range  
6
MIC Volume Control Range  
36  
0
Loudspeaker Amplifier Volume  
Control Range  
12  
–18  
0
Headphone Amplifier Volume  
Control Range  
VCRHP  
SSLS  
Loudspeaker Amplifier Volume  
Control Stepsize  
4
Headphone Amplifier Volume  
Control Stepsize  
Refer to  
Table 19  
SSHP  
dB  
dB  
SSAUX  
AUX Input Volume Control Stepsize  
1.5  
17  
www.national.com  
LM49352  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
MONO Input Volume Control  
Stepsize  
SSMONO  
1.5  
dB  
SSDAC  
SSADC  
SSMIC  
SVAUX  
SVMONO  
SVMIC  
DAC Volume Control Stepsize  
ADC Volume Control Stepsize  
MIC Volume Control Stepsize  
AUX Volume Setting Variation  
MONO Volume Setting Variation  
MIC Volume Setting Variation  
1.5  
1.5  
2
dB  
dB  
dB  
±1  
±1  
±1  
dB (max)  
dB (min)  
dB (max)  
ANALOG INPUTS  
AUX Gain = 18dB  
10  
38  
64  
10  
38  
64  
50  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
AUX_RIN  
Auxiliary Input Impedance  
AUX Gain = 0dB  
AUX Gain = –46.5dB  
MONO Gain = 18dB  
MONO Gain = 0dB  
MONO Gain = –46.5dB  
All MIC gain settings  
MONO_RIN  
MIC_RIN  
Mono Input Impedance  
Microphone Input Impedance  
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.  
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified  
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.  
Note 4: Human body model, applicable std. JESD22-A114C.  
Note 5: Machine model, applicable std. JESD22-A115-A.  
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product  
characterization and are not guaranteed.  
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.  
www.national.com  
18  
 
 
 
 
 
 
11.0 Typical Performance Characteristics  
Class D Loudspeaker Amplifier Efficiency  
vs Output Power  
DAC Frequency Response  
fS = 48kHz  
Blue >> OSR = 64  
THD+N < 10%, RL = 8Ω  
Green >> LSVDD = 3.3V  
Gray >> LSVDD = 4.2V  
Blue >> LSVDD = 5V  
Light Blue >> OSR = 128  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300727b3  
0
400  
800  
1200 1600  
2000  
OUTPUT POWER (mW)  
300727b2  
DAC Frequency Response  
fS = 8kHz  
DAC THD+N vs Frequency  
fS = 8kHz, OSR = 128  
I2S Input = 500mFFS  
Blue >> OSR = 64  
Light Blue >> OSR = 128  
300727b5  
300727b4  
19  
www.national.com  
 
DAC THD+N vs Frequency  
fS = 8kHz, OSR = 64  
DAC THD+N vs Input Level  
fS = 48kHz, OSR = 64  
I2S Input = 1kHz  
I2S Input = 500mFFS  
300727b6  
300727b8  
Stereo Audio ADC Frequency Response  
fS = 48kHz, OSR = 64  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Stereo Audio ADC Frequency Response  
fS = 8kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
300727b9  
300727c0  
Mono Voice ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Mono Voice ADC Frequency Response  
fS = 8kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
300727c1  
300727c2  
www.national.com  
20  
Stereo Audio HPF ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO>AUX Gain = 0dB, CIN = 1µF  
Blue >> No HPF  
Mono Voice HPF ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Gray >> No HPF  
Light Blue >> HPF Mode = '101'  
Green >> HPF Mode = '110'  
Light Green >> HPF Mode = '111'  
Blue >> HPF Mode = '000'  
Light Blue >> HPF Mode = '001'  
Green >> HPF Mode = '010'  
Light Green >> HPF Mode = '011'  
Yellow >> HPF Mode = '100'  
300727c3  
300727c4  
Mono Voice HPF ADC Frequency Response  
fS = 8kHz, OSR = 128  
ADC THD+N vs Frequency  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO/AUX Gain = 6dB, VIN = 1VRMS  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Gray >> No HPF  
Blue >> HPF Mode = '000'  
Light Blue >> HPF Mode = '001'  
Green >> HPF Mode = '010'  
Light Green >> HPF Mode = '011'  
Yellow >> HPF Mode = '100'  
300727c5  
300727e9  
21  
www.national.com  
ADC THD+N vs Frequency  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, VIN = 500mVRMS  
ADC THD+N vs Input Voltage  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO/AUX Gain = 0dB, fIN = 1kHz  
300727c6  
300727c7  
ADC THD+N vs Input Voltage  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, VIN = 1kHz  
Loudspeaker THD+N vs Input Voltage  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, LSVDD = 3.3V, POUT = 300VRMS, RL = 8Ω  
300727c9  
300727c8  
Loudspeaker THD+N vs Input Voltage  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, LSVDD = 4.2V, POUT = 300VRMS, RL = 8Ω  
Loudspeaker THD+N vs Input Voltage  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, LSVDD = 5V, POUT = 300VRMS, RL = 8Ω  
300727d0  
300727d1  
www.national.com  
22  
Loudspeaker THD+N vs Input Voltage  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, LSVDD = 3.3V, POUT = 300VRMS, RL = 4Ω  
Loudspeaker THD+N vs Output Power  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, fIN = 1kHz, RL = 8Ω  
Blue >> LSVDD = 3.3V  
Light Blue >> LSVDD = 4.2V  
Green >> LSVDD = 5V  
300727d2  
300727f0  
Loudspeaker THD+N vs Output Power  
fS = 48kHz, OSR = 128  
Loudspeaker PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 3.3V, VRIPPLE = 200mVPP, Input Referred  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, fIN = 1kHz, RL = 4Ω  
Blue >> LSVDD = 3.3V  
Light Blue >> LSVDD = 4.2V  
Green >> LSVDD = 5V  
300727d3  
300727f1  
23  
www.national.com  
Loudspeaker PSRR vs Frequency  
fS = 48kHz, OSR = 128  
Loudspeaker PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 5V, VRIPPLE = 200mVPP, Input Referred  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 4.2V, VRIPPLE = 200mVPP, Input Referred  
300727d5  
300727d4  
Headphone PSRR vs Frequency  
HeadphoneTHD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 3.3V, POUT = 15mW, RL = 32Ω  
Stereo In Phase  
DAC Input, DAC Gain = 0dB, LS Gain = 12dB  
LSVDD = 3,3V, AVDD = 3.3V, DVDD = 1.8V, VRIPPLE  
200mVPP  
Ripple on LSVDD, AVDD, DVDD, Input Referred  
=
300727d7  
300727d6  
www.national.com  
24  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 2.8V, POUT = 15mW, RL = 32Ω  
Stereo In Phase  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, POUT = 15mW, RL = 16Ω  
Stereo In Phase  
300727d9  
300727d8  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 2.8V, POUT = 15mW, RL = 16Ω  
Stereo in Phase  
Headphone THD+N vs Output Power  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB  
Stereo In Phase, fIN = 1kHz, RL = 32Ω  
Blue >> HPVDD = 1.8V  
Light Blue >> HPVDD = 2.8V  
300727e0  
300727r0  
25  
www.national.com  
Headphone THD+N vs Output Power  
Headphone PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.3V, VRIPPLE = 200mVPP  
Ripple on HPVDD, AVDD  
Stereo In Phase, fIN = 1kHz, RL = 16Ω  
Blue >> HPVDD = 1.8V  
Light Blue >> HPVDD = 2.8V  
300727e1  
300727q9  
Headphone PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.3V, VRIPPLE = 200mVPP  
Ripple on AVDD only  
Headphone PSRR vs Frequency  
DAC Input, DAC Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.3V, DVDD = 1.8V, VRIPPLE  
200mVPP  
=
Ripple on HPVDD, AVDD, DVDD  
300727e2  
300727e3  
www.national.com  
26  
Headphone Crosstalk vs Frequency  
Earpiece THD+N vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.3V, POUT = 15mW, RL = 32Ω  
AVDD = 3.3V, POUT = 20mW, RL = 32Ω  
Earpiece Mode  
300727e4  
300727e5  
Earpiece THD+N vs Output Power  
Earpiece PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = –6dB  
AVDD = 3.3V, VRIPPLE = 200mVPP, Earpiece Mode  
AVDD = 3.3V, fIN = 1kHz, RL = 32Ω  
Earpiece Mode  
300727e6  
300727q8  
27  
www.national.com  
Auxiliary Output THD+N vs Frequency  
Auxiliary Output THD+N vs Output Voltage  
MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
AVDD = 3.3V, VOUT = 1VRMS, RL = 5kΩ  
AVDD = 3.3V, fIN = 1kHz, RL = 5kΩ  
AUXOUT Mode  
AUXOUT Mode  
300727f2  
300727e7  
Auxiliary Output PSRR vs FRequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
AVDD = 3.3V, VRIPPLE = 200mVPP, AUXOUT Mode  
300727e8  
www.national.com  
28  
after START condition and free after STOP condition. During  
data transmission, I2C master can generate repeated START  
conditions. First START and repeated START conditions are  
equivalent, function-wise.  
12.0 System Control  
Method 1. I2C Compatible Interface  
12.1 I2C SIGNALS  
In I2C mode the LM49352 pin SCL is used for the I2C clock  
SCL and the pin SDA is used for the I2C data signal SDA. Both  
these signals need a pull-up resistor according to I2C speci-  
fication. The I2C slave address for LM49352 is 00110102.  
12.2 I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when SCL is LOW.  
30072724  
FIGURE 7. I2C Start and Stop Conditions  
12.4 TRANSFERRING DATA  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. Each  
byte of data has to be followed by an acknowledge bit. The  
acknowledge related clock pulse is generated by the master.  
The transmitter releases the SDA line (HIGH) during the ac-  
knowledge clock pulse. The receiver must pull down the SDA  
line during the 9th clock pulse, signifying an acknowledge. A  
receiver which has been addressed must generate an ac-  
knowledge after each byte has been received.  
30072723  
FIGURE 6. I2C Signals: Data Validity  
After the START condition, the I2C master sends a chip ad-  
dress. This address is seven bits long followed by an eight bit  
which is a data direction bit (R/W). The LM49352 address is  
00110102. For the eighth bit, a “0” indicates a WRITE and a  
“1” indicates a READ. The second byte selects the register to  
which the data will be written. The third byte contains data to  
write to the selected register.  
12.3 I2C START AND STOP CONDITIONS  
START and STOP bits classify the beginning and the end of  
the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH.  
STOP condition is defined as the SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates  
START and STOP bits. The I2C bus is considered to be busy  
30072725  
FIGURE 8. I2C Chip Address  
29  
www.national.com  
 
 
 
 
 
 
 
 
Register changes take effect at the SCL rising edge during  
the last ACK from slave.  
30072726  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by slave)  
rs = repeated start  
FIGURE 9. Example I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle  
waveform.  
30072727  
FIGURE 10. Example I2C Read Cycle  
30072728  
FIGURE 11. I2C Timing Diagram  
www.national.com  
30  
 
 
 
12.5 I2C TIMING PARAMETERS  
Symbol  
Limit  
Typ  
Parameter  
Units  
Min  
0.6  
Max  
1
2
3
4
Hold Time (repeated) START Condition  
Clock Low Time  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
1.3  
Clock High Time  
600  
600  
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LM49352)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
50  
(Note 8)  
5
50  
6
7
100  
Rise Time of SDA  
300  
300  
8
Fall Time of SDA  
9
Set-up Time for STOP condition  
Bus Free Time between a STOP and a START Condition  
600  
1.3  
10  
Note 8: Data guaranteed by fall time.  
31  
www.national.com  
 
 
13.0 Device Register Map  
TABLE 1. Device Register Map  
Address  
Register  
7
6
5
4
3
2
1
0
BASIC SETUP  
PMC  
CHIP  
PORT2  
PORT1  
MCLK  
OVR  
OSC  
ENB  
PLL  
CHIP  
PLL_P2  
ENB  
0x00h  
0x01h  
0x02h  
SETUP  
ACTIVE  
CLK OVR CLK OVR  
ENB  
ENABLE  
PMC  
CLOCKS  
PMC_CLK_SEL  
PMC  
CLK_DIV  
PMC_CLK_DIV(R)  
PLL  
0x03h  
0x04h  
0x05h  
PLL_CLK_SEL  
PLL M  
PLL N  
PLL M  
PLL N  
PLL  
N_MOD  
0x06h  
PLL P2[8] PLL P1[8]  
PLL N_MOD  
0x07h  
0x08h  
PLL P  
PLL P1 [7:0]  
PLL P2[7:0]  
PLL P2  
ANALOG MIXER  
0x10h  
0x11h  
CLASSD  
HEAD  
AUX_LS  
MONO_LS  
DACL_LS DACR_LS  
DACL_HPL DACR_HPL  
MONO  
_HPL  
AUX_HPL  
PHONESL  
HEAD  
MONO  
_HPR  
DACL  
_HPR  
DACR  
_HPR  
0x12h  
0x13h  
0x14h  
0x15h  
AUX_HPR  
AUX_AUX  
PHONESR  
MONO  
_AUX  
DACR  
_AUX  
AUX_OUT  
MIC_AUX DACL_AUX  
OUTPUT  
OPTIONS  
AUX_LINE AUX_NEG  
_OUT  
LS_LEVEL  
LR_HP_LEVEL  
DACL  
RSVD  
_6dB  
MONO  
_ADCL  
AUX  
_ADCR  
DACR  
ADC  
MIC_ADCL MIC_ADCR  
_ADCL  
MIC_LEVEL  
_ADCR  
0x16h  
0x18h  
MIC_LVL  
MUTE  
SE/DIFF  
AUXL_LVL  
SE/DIFF  
SE/DIFF  
AUX_LEVEL  
AUXL_MO  
NO_IN  
0x19h  
0x1Bh  
MONO_LV  
MONO_LEVEL  
HP  
_SENSE  
HP SENSE HP SENSE  
HP  
SENSE_D  
HP SENSE  
MONO  
_AUX_D  
_AUX  
ADC  
0x20h  
0x21h  
ADC BASIC DSPONLY  
ADC_CLK_SEL  
MUTE_R  
MUTE_L  
ADC_OSR  
ADC  
CLOCK  
ADC_CLK_DIV (T)  
STEREO  
ADC  
_MIXER  
0x23h  
ADC_MIX_LEVEL_R  
ADC_MIX_LEVEL_L  
DAC_OSR  
_LINK  
DAC  
DAC  
0x30h  
0x31h  
DSPONLY  
_BASIC  
DAC_CLK_SEL  
MUTE_R  
DAC_CLK_DIV (S)  
DIGITAL MIXER  
MUTE_L  
DAC  
_CLOCK  
0x40h  
0x41h  
0x42h  
0x43h  
IPLVL1  
IPLVL2  
PORT2_RX_R_LVL  
INTERP_L_LVL  
PORT2_RX_L_LVL  
INTERP_R_LVL  
PORT1_RX_R_LVL  
ADC_R_LVL  
R_SEL  
PORT1_RX_L_LVL  
ADC_L_LVL  
L_SEL  
OPPORT1  
OPPORT2  
MONO  
MONO  
SWAP  
SWAP  
R_SEL  
L_SEL  
www.national.com  
32  
 
 
Address  
0x44h  
Register  
OPDAC  
OPDECI  
7
6
5
4
3
2
1
0
SWAP  
ADCR  
PORT2R  
PORT1R  
ADCL  
PORT2L  
PORT1L  
0x45h  
MXRCLK_SEL  
AUDIO PORT 1  
R_SEL  
L_SEL  
STEREO  
_SYNC  
_MODE  
STEREO  
_SYNC  
_PHASE  
0x50h  
BASIC  
CLK_PH  
SYNC_MS CLK_MS  
TX_ENB  
RX_ENB  
STEREO  
0x51h  
0x52h  
CLK_GEN1  
CLK_GEN2  
CLK_SEL  
HALF_CYCLE_DIVDER  
SYNTH  
_DENOM  
SYNTH_NUM  
SYNC_RATE  
RX_WIDTH  
SYNC  
_GEN  
0x53h  
0x54h  
SYNC_WIDTH(MONO MODE)  
TX_WIDTH  
DATA  
_WIDTH  
TX_EXTRA_BITS  
0x55h  
0x56h  
RX_MODE  
TX_MODE  
A/ULAW COMPAND  
A/ULAW COMPAND  
MSB_POSITION  
MSB_POSITION  
RX_MODE  
TX_MODE  
AUDIO PORT 2  
STEREO  
_SYNC  
_MODE  
STEREO  
_SYNC  
_PHASE  
0x60h  
BASIC  
CLK_PH SYNC_MS CLK_MS  
TX_ENB  
RX_ENB  
STEREO  
0x61h  
0x62h  
CLK_GEN1  
CLK_GEN2  
CLK_SEL  
HALF_CYCLE_DIVDER  
SYNTH_D  
ENOM  
SYNTH_NUM  
SYNC_RATE  
RX_WIDTH  
SYNC  
_GEN  
0x63h  
0x64h  
SYNC_WIDTH (MONO MODE)  
TX_WIDTH  
DATA  
_WIDTH  
TX_EXTRA_BITS  
0x65h  
0x66h  
RX_MODE  
TX_MODE  
A/ULAW COMPAND  
A/ULAW COMPAND  
MSB_POSITION  
RX_MODE  
TX_MODE  
MSB_POSITION  
EFFECTS ENGINE  
ADC  
ADC  
ADC  
PK ENB  
DAC  
ADC  
ADC  
0x70h  
0x71h  
ADC FX  
DAC FX  
SCLP ENB  
DAC  
EQ ENB  
ALC ENB HPF_ENB  
DAC  
DAC  
RSVD  
SCLP ENB  
ADC EFFECTS  
EQ ENB  
PK ENB  
ALC ENB  
0x80h  
0x81h  
HPF  
ADC  
HPF MODE  
SOURCE  
OVR  
SOURCE  
RSEL  
SOURCE  
LSEL  
STEREO  
LINK  
LIMITER  
ADC_SAMPLE  
ALC 1  
ADC  
0x82h  
0x83h  
0x84h  
0x85h  
0x86h  
0x87h  
0x88h  
NG_ENB  
NOISE_FLOOR  
ALC 2  
ADC  
ALC_TARGET_LEVEL  
ATTACK_RATE  
ALC 3  
ADC  
ALC 4  
ADC  
PK_DECAY_RATE  
DECAY_RATE/RELEASE_RATE  
HOLDTIME  
ALC 5  
ADC  
ALC 6  
ADC  
MAX_LEVEL  
ALC 7  
ADC  
MIN_LEVEL  
ALC 8  
33  
www.national.com  
Address  
Register  
ADC L  
7
6
5
4
3
2
1
0
STEREO  
LINK  
0x89h  
ADC_L_LEVEL  
ADC_R_LEVEL  
LEVEL  
ADC R  
0x8Ah  
LEVEL  
0x8Bh  
0x8Ch  
0x8Dh  
0x8Eh  
0x8Fh  
EQ BAND 1  
EQ BAND 2  
EQ BAND 3  
EQ BAND 4  
EQ BAND 5  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
Q
Q
Q
SOFTCLIP  
1
SOFT  
KNEE  
0x90h  
0x91h  
0x92h  
THRESHOLD  
RATIO  
SOFTCLIP  
2
SOFTCLIP  
3
LEVEL  
ADC EFFECT MONITORS  
ADC LEFT LEVEL MONITOR  
ADC RIGHT LEVEL MONITOR  
0x98h  
0x99h  
LVLMONL  
LVLMONR  
SCLP  
_R CLIP  
SCLP  
_L CLIP  
EQ  
_R CLIP  
EQ  
_L CLIP  
GAIN  
_R CLIP  
GAIN  
_L CLIP  
ADC  
_R CLIP  
ADC  
_L CLIP  
0x9Ah  
0x9Bh  
0x9Ch  
FXCLIP  
SCLP_R  
DISTORT  
SCLP_L  
SCLP_L  
DISTORT  
SCLP_R  
DISTORT  
ALCMONL  
ALCMONR  
ADC LEFT ALC MONITOR  
ADC RIGHT ALC MONITOR  
DISTORT  
DAC EFFECTS  
DAC  
ALC 1  
STEREO  
LINK  
0xA0h  
0xA1h  
0xA2h  
0xA3h  
0xA4h  
0xA5h  
0xA6h  
0xA7h  
0xA8h  
0xA9h  
LIMITER  
DAC_SAMPLE  
NOISE_FLOOR  
DAC  
NG_ENB  
ALC 2  
DAC  
AGC_TARGET_LEVEL  
ATTACK_RATE  
ALC 3  
DAC  
ALC 4  
DAC  
PK_DECAY_RATE  
DECAY_RATE/RELEASE_RATE  
HOLDTIME  
ALC 5  
DAC  
ALC 6  
DAC  
MAX_LEVEL  
ALC 7  
DAC  
MIN_LEVEL  
ALC 8  
DAC L  
LEVEL  
DAC R  
LEVEL  
EQ BAND 1  
EQ BAND 2  
EQ BAND 3  
EQ BAND 4  
EQ BAND 5  
STEREO  
LINK  
DAC_L_LEVEL  
DAC_R_LEVEL  
0xABh  
0xACh  
0xADh  
0xAEh  
0xAFh  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
FREQ  
Q
Q
Q
FREQ  
FREQ  
FREQ  
FREQ  
www.national.com  
34  
Address  
Register  
7
6
5
4
3
2
1
0
SOFTCLIP  
1
SOFT  
KNEE  
0xB0h  
THRESHOLD  
SOFTCLIP  
2
0xB1h  
0xB2h  
RATIO  
LEVEL  
SOFTCLIP  
3
DAC EFFECT MONITORS  
0xB8h  
0xB9h  
LVLMONL  
LVLMONR  
DAC LEFT LEVEL MONITOR  
DAC RIGHT LEVEL MONITOR  
SCLP  
_R CLIP  
SCLP  
_L CLIP  
EQ  
_R CLIP  
EQ  
GAIN  
_R CLIP  
GAIN  
_L CLIP  
0xBAh  
0xBBh  
0xBCh  
FXCLIP  
RSVD  
_L CLIP  
RSVD  
SCLP_R  
DISTORT  
SCLP_L  
SCLP_L  
DISTORT  
SCLP_R  
DISTORT  
ALCMONL  
ALCMONR  
DAC LEFT ALC MONITOR  
DAC RIGHT ALC MONITOR  
DISTORT  
GPIO  
0xE0h  
0xE1h  
GPIO1  
GPIO2  
GPIO_RX  
GPIO_TX  
GPIO_MODE  
TEMP  
SHORT  
SPREAD SPECTRUM  
SOFT  
RSVD  
0xF0h  
RESET  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
_RESET  
SS  
_DISABLE  
0xF1h  
0xFEh  
SS  
FORCE  
CPFORCE DACREF  
RSVD  
Unless otherwise specified, the default values of the I2C reg-  
isters is 0x00h.  
TABLE 2. Nonzero I2C Default Registers  
Address  
0x02h  
0x30h  
0x31h  
0x84h  
0x85h  
0x86h  
0x87h  
0x89h  
0x8Ah  
0xA3h  
0xA4h  
0xA5h  
0xA6h  
0xA8h  
0xA9h  
0xF0h  
Register  
Default Data Value  
0x50h  
PMC_CLK_DIV  
DAC_BASIC  
DAC_CLOCK  
ADC_ALC_4  
ADC_ALC_5  
ADC_ALC_6  
ADC_ALC_7  
ADC_L_LEVEL  
ADC_R_LEVEL  
DAC_ALC_4  
DAC_ALC_5  
DAC_ALC_6  
DAC_ALC_7  
DAC_L_LEVEL  
DAC_R_LEVEL  
RESET  
0x02h  
0x03h  
0x0Ah  
0x0Ah  
0x0Ah  
0x1Fh  
0x33h  
0x33h  
0x0Ah  
0x0Ah  
0x0Ah  
0x33h  
0x33h  
0x33h  
0x02h  
35  
www.national.com  
 
14.0 Basic PMC Setup Register  
This register is used to control the LM49352's Basic Power Management Setup:  
TABLE 3. PMC_SETUP (0x00h)  
Bits  
Field  
Description  
When this bit is set the power management will enable the MCLK I/O or internal  
oscillator1. It will then use this clock to sequence the enabling of the analog references and  
bias points. When this bit is cleared the PMC will bring the analog down gently and disable  
the MCLK or oscillator.  
0
CHIP_ENABLE  
CHIP _ENABLE  
Chip Status  
Turn Chip Off  
Turn Chip On  
0
1
This enables the PLL.  
PLL_ENABLE  
PLL Status  
PLL Off  
1
2
PLL_ENB  
0
1
PLL On  
This enables the P2 output of the PLL.  
PLL_P2ENB  
PLL P2 Status  
PLL P2 Off  
PLL_P2ENB  
0
1
PLL P2 On  
This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can  
be used instead of an external system clock to drive the chip's power management (PMC).  
OSC_ENABLE  
Oscillator Status  
Oscillator Off  
Oscillator On  
3
OSC_ENB  
0
1
This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and  
digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK  
is selected as the PMC clock source (reg 0x01h) and that there is an active clock signal  
driving the MCLK pin. Setting this bit reduces power consumption, by allowing audio ports  
and digital mixer to operate while the analog sections of the chip are powered down.  
4
5
MCLK_OVR  
MCLK_OVR  
Comment  
0
1
I/O control is automatic  
MCLK input forced on.  
This forces the clock input of Audio Port 1 input to enable, regardless of other port settings.  
PORT1_CLK_OVR  
Comment  
PORT1_CLK_OVR  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This forces the clock input of Audio Port 2 input to enable, regardless of other port settings.  
PORT2_CLK_OVR  
Comment  
6
7
PORT2_CLK_OVR  
CHIP_ACTIVE  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This bit is used to readback the enable status of the chip.  
1. If the PMC is set to operate from one of the audio ports then it will wait for the port to be enabled or the relevant override bit to  
be set, forcing the port clock input to enable.  
www.national.com  
36  
 
 
15.0 PMC Clocks Register  
This register is used to control the LM49352's Basic Power Management Clock:  
TABLE 4. PMC_SETUP (0x01h)  
Bits  
Field  
Description  
This selects the source of the PMC input clock.  
1:0  
PMC_CLK_SEL  
PMC_CLK_SEL  
PMC Input Clock Source  
MCLK (Default divide is 40.5)  
Internal 300kHz Oscillator  
DAC SOURCE CLOCK  
00  
01  
10  
11  
ADC SOURCE CLOCK  
16.0 PMC Clock Divide Register  
This register is used to control the LM49352's Power Management Circuit Clock Divider:  
TABLE 5. PMC_SETUP (0x02h)  
Bits  
Field  
Description  
7:0  
PMC_CLK_DIV  
This programs the half cycle divider that precedes the PMC. The PMC should run from a  
300kHz clock. The default of this divider is 0x50h (divide by 40.5) to get a 300kHz PMC  
clock from a 12MHz or 12.288MHz MCLK.  
Program this divider with the required division, multiplied by 2, and subtract 1.  
PMC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
Divide by  
1
1
1.5  
2
2.5  
3
11111101  
11111110  
11111111  
126  
127.5  
128  
37  
www.national.com  
 
 
 
 
17.0 LM49352 Clock Network  
(Refer to Figure 12)  
The audio DAC and ADC operate at a clock frequency of 2*OSR*fS where OSR is the oversampling ratio and fS is the sampling  
frequency of the DAC or ADC. The DAC can operate at three different OSR settings (128, 125, 64). The ADC can operate at two  
different OSR settings (128, 125). For example, if the stereo DAC or ADC is set at OSR = 128, a 12.288MHz clock is required for  
48kHz data. If a 12.288MHz clock is not available, then the internal PLL can be used to generate the desired clock frequency.  
Otherwise, if a 12.288MHz is available, the PLL can be bypassed to reduce power consumption. The DAC clock divider or ADC  
clock divider can also be used to generate the correct clock. If an 18.432 MHz clock is available, the DAC or ADC clock divider  
could be set to 1.5 in order to generate a 12.288MHz clock from 18.432MHz without using a PLL.  
The DAC path clock (DAC_SOURCE_CLK) and ADC path clock (ADC_SOURCE_CLK) can be driven directly by the MCLK input,  
the PORT1_CLK input, the PORT2_CLK input, or PLL output.  
For instances where a PLL must be used, the PLL input clock can come from three sources. The clock input to the PLL can come  
from the MCLK input, the PORT1_CLK input, or the PORT2_CLK input.  
The LM49352's Power Management Circuit (PMC) requires a clock that is independent from the DAC or ADC. It is recommended  
to provide a 300kHz clock at Point C. The PMC clock divider is available to generate the correct clock to the PMC block. The  
PMC clock path can be driven directly by the MCLK input, the internal 300kHz oscillator, the DAC_SOURCE_CLK, or the  
ADC_SOURCE_CLK.  
TABLE 6. DAC Clock Requirements  
DAC Sample Rate  
(kHz)  
Clock Required at A  
(OSR = 128)  
Clock Required at A  
(OSR = 125)  
Clock Required at A  
(OSR = 64)  
Clock Required at A  
(OSR = 32)  
8
11.025  
12  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
24.576 MHz  
2 MHz  
2.75625 MHz  
3 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
12.288 MHz  
0.512 MHz  
0.7056 MHz  
0.768 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048MHz  
2.8224 MHz  
3.072 MHz  
6.144 MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
96  
24 MHz  
TABLE 7. ADC Clock Requirements  
ADC Sample Rate  
Clock Required at B  
(OSR = 128)  
Clock Required at B  
(kHz)  
(OSR = 125)  
8
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
2 MHz  
11.025  
12  
2.75625 MHz  
3 MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
www.national.com  
38  
 
 
 
30072713  
FIGURE 12. Internal Clock Network  
39  
www.national.com  
 
18.0 PLL Setup Registers  
30072730  
FIGURE 13. PLL Loop  
The LM49352 contains a PLL for flexible operation of its dual audio ports. The PLL has a P1 and P2 output divider thereby allowing  
the PLL to generate two distinct clock outputs. The equations for the PLL's generated output clocks are as follows:  
fOUT1 = (fIN . N / M . P1)  
fOUT2 = (fIN . N / M . P2)  
where:  
N = PLL_N + PLL_N_MOD  
M = (PLL_M + 1) / 2  
P1 = (PLL_P1 + 1) / 2  
P2 = (PLL_P2 + 1) / 2  
The VCO frequency and comparison frequencies are as follows:  
fVCO = fOUT.P  
fCOMP = fIN/M  
Keep fVCO between 140MHz to 240MHz and keep fCOMP between 700KHz to 5MHz.  
TABLE 8. PLL Settings for Common System Clock Frequencies  
fIN (MHz)  
12  
fOUT (Hz)  
12288000  
12287970  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
11289600  
11289600  
11289603  
11289600  
M
N
N_MOD  
P
Error (Hz)  
2.5  
32  
0
26  
0
12.5  
12  
0
–30  
0
13  
15.5  
12.5  
13.5  
3.5  
175  
128  
128  
32  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
12  
0
12.5  
12.5  
12  
0
0
0
12.5  
20.5  
16.5  
32.5  
22.5  
12.5  
10  
96  
0
0
160  
128  
192  
128  
147  
147  
144  
147  
0
12.5  
12.5  
12.5  
12.5  
12.5  
16  
0
0
0
0
0
27  
0
0
12  
0
0
12.288  
13  
0
0
9
19  
0
18.5  
15  
+3  
0
14.4  
12.5  
www.national.com  
40  
 
 
 
fIN (MHz)  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
fOUT (Hz)  
11289600  
11289600  
11289600  
11289600  
11289600  
11289602.1  
12289600  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
1102500  
M
22.5  
12.5  
20  
N
N_MOD  
P
12.5  
15  
Error (Hz)  
196  
126  
147  
147  
196  
144  
196  
195  
125  
102  
68  
0
0
0
0
0
0
0
2.1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12.5  
12.5  
12.5  
18  
20.5  
27.5  
18.5  
37.5  
10.5  
8
0
0
19  
0
27  
12.5  
17.5  
16  
11.2896  
12.288  
13  
0
0
6.5  
4.5  
6
0
17  
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
0
17  
85  
0
17  
13.5  
7
170  
85  
0
17  
0
17  
8
85  
0
17  
20.5  
16.5  
6.5  
8
200  
170  
36  
0
16  
0
17  
0
12  
11.2896  
12  
125  
147  
114  
96  
0
16  
10  
0
16  
12.288  
13  
8
27  
15  
0
16  
6.5  
10  
17.5  
18  
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
147  
49  
4
0
16  
4
49  
0
18  
16  
189  
147  
189  
147  
27  
0
18  
16  
0
16  
16  
0
18  
16  
0
16.5  
13  
5
18  
TABLE 9. PLL_CLOCK_SOURCE (0x03h)  
Description  
This selects the source of the input clock to the PLL.  
Bits  
Field  
PLL_CLK_SEL  
1:0  
PLL_CLK_SEL  
PLL Input Clock Source  
00  
01  
10  
11  
MCLK  
PORT1_CLK  
PORT2_CLK  
RESERVED  
41  
www.national.com  
 
TABLE 10. PLL_M (0x04h)  
Description  
Bits  
Field  
6:0  
PLL_M  
This programs the PLL's M divider to divide from 1 to 64.  
PLL_M  
000000  
000001  
000010  
000011  
000100  
000101  
PLL Input Divider Value  
1
1
1.5  
2
2.5  
3
63  
63.5  
64  
1111101  
1111110  
1111111  
TABLE 11. PLL_N (0x05h)  
Bits  
Field  
Description  
7:0  
PLL_N  
This programs the PLL N divider to divide from 1 to 250.  
PLL_N  
00000000 to 00001010  
00001011  
Feedback Divider Value  
10  
11  
00001100  
12  
00001101  
13  
00001110  
14  
00001111  
15  
11111000  
248  
249  
250  
11111001  
11111010 to 11111111  
TABLE 12. PLL_N_MOD (0x06h)  
Bits  
Field  
Description  
4:0  
PLL_N_MOD  
This programs the sigma-delta modulator in the PLL.  
PLL_N_MOD  
00000  
00001  
00010  
00011  
00100  
00101  
Fractional Part of N  
0
1/32  
2/32  
3/32  
4/32  
5/32  
11101  
11110  
11111  
20/32  
30/32  
31/32  
5
6
PLL_P1[8]  
PLL_P2[8]  
This sets the MSB of the 1st P Divider on the PLL which is part of a standard half-cycle divider  
control.  
This sets the MSB of the 2nd P Divider on PLL which is part of a standard half-cycle divider  
control.  
www.national.com  
42  
 
 
 
TABLE 13. PLL_P1 (0x07h)  
Description  
Bits  
Field  
7:0  
PLL_P1[7:0]  
This programs the 8 LSBs of the PLL's P1 Divider. These LSBs combine with PL1_P1[8] which  
allows the P1 divider to divide by up to 256.  
PLL_P1 [8:0]  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P1 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
TABLE 14. PLL_P2 (0x08h)  
Bits  
Field  
Description  
7:0  
PLL_P2[7:0]  
This programs 8 LSBs of the PLL's P2 Divider. These LSBs combine with PLL_P2[8] which  
allows the P2 divider to divide by up to 256.  
PLL_P2 [8:0]  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P2 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
43  
www.national.com  
 
 
19.0 Analog Mixer Control Registers  
This register is used to control the LM49352's Analog Mixer:  
TABLE 15. CLASS_D_OUTPUT (0x10h)  
Description  
Bits  
0
Field  
DACR_LS  
DACL_LS  
RSVD  
The right DAC output is added to the loudspeaker output.  
The left DAC output is added to the loudspeaker output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_LS  
AUX_LS  
The MONO input is added to the loudspeaker output.  
The AUX input is added to the loudspeaker output.  
5
Class D Loudspeaker Amplifier  
The LM49352 features a filterless modulation scheme. The differential outputs of the device switch at 300kHz from VDD to GND.  
When there is no input signal applied, the two outputs (LS+ and LS-) switch with a 50% duty cycle, with both outputs in phase.  
Because the outputs of the LM49352 are differential, the two signals cancel each other. This results in no net voltage across the  
speaker, thus there is no load current during an idle state, conserving power.  
With an input signal applied, the duty cycle (pulse width) of the LM49352 outputs changes. For increasing output voltages, the duty  
cycle of LS+ increases, while the duty cycle of LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle  
of LS- increases while the duty cycle of LS+ decreases. The difference between the two pulse widths yields the differential output  
voltage.  
Spread Spectrum Modulation  
The LM49352 features a fitlerless spread spectrum modulation scheme that eliminates the need for output filters, ferrite beads or  
chokes. The switching frequency varies by ±30% about a 300kHz center frequency, reducing the wideband spectral content,  
improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits  
large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM49352 spreads  
that energy over a larger bandwidth. The cycle-to-cycle variation of the switching period does not affect the audio reproduction or  
efficiency.  
Class D Power Dissipation and Efficiency  
In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required to produce it  
with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For audio systems, the energy  
delivered in the audible bands is considered useful including the distortion products of the input signal. Sub-sonic (DC) and super-  
sonic components (>22kHz) are not useful. The difference between the power flowing from the power supply and the audio band  
power being transduced is dissipated in the LM49352 and in the transducer load. The amount of power dissipation in the LM49352's  
class D amplifier is very low. This is because the ON resistance of the switches used to form the output waveforms is typically less  
than 0.25. This leaves only the transducer load as a potential "sink" for the small excess of input power over audio band output  
power. The LM49352 dissipates only a fraction of the excess power requiring no additional PCB area or copper plane to act as a  
heat sink.  
EMI/RFI Filtering  
If system level PCB layout constraints require the LM49352’s Class D output bumps to be placed far away from the speaker or the  
Class D output traces to be routed near EMI/RFI sensitive components, an external EMI/RFI filter should be used. A series ferrite  
bead placed close to the Class D output bumps along with a shunt capacitor to ground placed close to the ferrite bead will reduce  
the EMI/RFI emissions of the Class D amplifier’s switching outputs. The ferrite bead must be rated with a current rating high enough  
to properly drive the loudspeaker. The ferrite bead that is rated for 1A or greater is recommended. The DC resistance of the ferrite  
bead is another important specification that must be taken into consideration. A low DC resistance will minimize any power losses  
dissipated by the EMI/RFI filter thereby preserving the power efficiency advantages of the Class D amplifier. Selecting a ferrite  
bead with high DC resistance will decrease output power delivered to speaker and reduce the Class D amplifier’s efficiency. The  
shunt capacitor needs to have low ESR. A 10pF ceramic capacitor with a X7R dielectric is recommended as a starting point. Care  
needs to be taken to ensure that the value of the shunt capacitor does not exceed 47pF when using a low resistance ferrite bead  
in order to prevent permanent damage to the low side FETs of the Class D output stage.  
www.national.com  
44  
 
 
30072732  
FIGURE 14. EMI/RFI Filter for the Class D Amplifier  
TABLE 16. LEFT HEADPHONE_OUTPUT (0x11h)  
Description  
Bits  
0
Field  
DACR_HPL  
DACL_HPL  
RSVD  
The right DAC output is added to the left headphone output.  
The left DAC output is added to the left headphone output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_HPL  
AUX_HPL  
The MONO input is added to the left headphone output.  
The AUX input is added to the left headphone output.  
5
TABLE 17. RIGHT HEADPHONE_OUTPUT (0x12h)  
Bits  
0
Field  
DACR_HPR  
DACL_HPR  
RSVD  
Description  
The right DAC output is added to the right headphone output.  
The left DAC output is added to the right headphone output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_HPR  
AUX _HPR  
The MONO input is added to the right headphone output.  
The AUX input is added to the right headphone output.  
5
Headphone Amplifier Function  
The LM49352 headphone amplifier features National’s ground referenced architecture that eliminates the large DC-blocking ca-  
pacitors required at the outputs of traditional headphone amplifiers. A low-noise inverting charge pump creates a negative supply  
(HP_VSS) from the positive supply voltage (LS_VDD). The headphone amplifiers operate from these bipolar supplies, with the  
amplifier outputs biased about GND, instead of a nominal DC voltage (typically VDD/2), like traditional amplifiers. Because there is  
no DC component to the headphone output signals, the large DC-blocking capacitors (typically 220μF) are not necessary, con-  
serving board space and system cost, while improving frequency response.  
Charge Pump Capacitor Selection  
Use low ESR ceramic capacitors (less than 100m) for optimum performance.  
Charge Pump Flying Capacitor (C6)  
The flying capacitor (C6) affects the load regulation and output impedance of the charge pump. A C6 value that is too low results  
in a loss of current drive, leading to a loss of amplifier headroom. A higher valued C6 improves load regulation and lowers charge  
pump output impedance to an extent. Above 2.2μF, the RDS(ON) of the charge pump switches and the ESR of C6 and C5 dominate  
the output impedance. A lower value capacitor can be used in systems with low maximum output power requirements. Please refer  
to the demonstration board schematic shown in Figure 27.  
45  
www.national.com  
 
 
 
Charge Pump Flying Capacitor (C5)  
The value and ESR of the hold capacitor (C5) directly affects the ripple on CPVSS. Increasing the value of C5 reduces output ripple.  
Decreasing the ESR of C5 reduces both output ripple and charge pump output impedance. A lower value capacitor can be used  
in systems with low maximum output power requirements. Please refer to the demonstration board schematic shown in Figure 27.  
TABLE 18. AUX_OUTPUT (0x13h)  
Bits  
0
Field  
Description  
The right DAC output is added to the AUX output.  
The left DAC output is added to the AUX output.  
The MIC input is added to the AUX output.  
Reserved  
DACR_AUX  
DACL_AUX  
MIC_AUX  
RSVD  
1
2
3
4
MONO_AUX  
AUX_AUX  
The MONO input is added to the AUX output.  
The AUX input is added to the AUX output.  
5
www.national.com  
46  
 
Auxiliary Output Amplifier  
The LM49352’s auxiliary output (AUXOUT) amplifier provides differential drive capability to loads that are connected across its  
outputs. This results in output signals at the AUX_OUT+ and AUX_OUT- pins that are 180 degrees out of phase with respect to  
each other. This effectively doubles the maximum possible output swing for a specific supply voltage when compared to single-  
ended output configurations. The differential output configuration also allows the load to be isolated from ground since both the  
AUX_OUT+ and AUX_OUT- pins are biased at the same DC potential. This eliminates the need for any large and expensive DC  
blocking capacitors at the AUXOUT amplifier outputs. The load can then be directly connected to the positive and negative outputs  
of the AUXOUT amplifier which then isolates it from any ground noise, thereby improving signal to noise ratio (SNR) and power  
supply rejection ratio (PSRR).  
The AUXOUT amplifier has two modes of operation. The primary mode of operation is high current drive mode (Earpiece Mode)  
where the AUXOUT amplifier can be used to differentially drive a mono earpiece speaker. The secondary mode of operation is  
low current drive mode where the AUXOUT amplifier operates in a power saving mode (AUX_LINE_OUT Mode) to provide a  
differential output that is used as a mono differential line level input to a standalone mono differential input class D amplifier  
(LM4675) for stereo loudspeaker applications.  
TABLE 19. OUTPUT_OPTIONS (0x14h)  
Bits  
Field  
Description  
0
RSVD  
Reserved  
This sets the gain of the left and right headphone amplifiers. The gain of the left and right headphone  
amplifiers are always set to the same level.  
LR_HP_LEVEL  
Gain (dB)  
0
000  
001  
–1.5  
–3  
010  
3:1  
LR_HP_LEVEL  
011  
–6  
100  
–9  
101  
–12  
–15  
–18  
110  
111  
This sets the gain of the Auxiliary output amplifier.  
AUX_NEG_6dB  
Gain (dB)  
4
5
AUX_NEG_6dB  
AUX_LINE_OUT  
0
0
1
–6  
This sets the Auxiliary output amplifier mode of operation.  
AUX_LINE_OUT  
Auxiliary Output Mode  
Earpiece Amplifier  
AUX_LINE_OUT  
0
1
This sets the gain of the Class D loudspeaker amplifier.  
LS_LEVEL  
Gain (dB)  
00  
01  
10  
11  
0
4
7:6  
LS_LEVEL  
8
12  
47  
www.national.com  
 
TABLE 20. ADC_INPUT (0x15h)  
Description  
Bits  
0
Field  
DACR_ADCR  
DACL_ADCL  
MIC_ADCR  
MIC_ADCL  
AUX_ADCR  
MONO_ADCL  
The right DAC output is added to the ADC right input.  
The left DAC output is added to the ADC left input.  
The MIC input is added to the ADC right input.  
The MIC input is added to the ADC left input.  
The AUX input is added to the ADC right input.  
The MONO input is added to the ADC left input.  
1
2
3
4
5
TABLE 21. MIC_INPUT (0x16h)  
Bits  
Field  
Description  
3:0  
MIC_LEVEL  
This sets the gain of the microphone preamp.  
MIC_LEVEL  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Gain  
6dB  
8dB  
10dB  
12dB  
14dB  
16dB  
18dB  
20dB  
22dB  
24dB  
26dB  
28dB  
30dB  
32dB  
34dB  
36dB  
4
5
SE_DIFF  
MUTE  
If set, the MIC negative input is ignored. In single-ended mode, the MIC negative input pin should  
left floating.  
If set, the microphone preamp is muted.  
www.national.com  
48  
 
 
TABLE 22. AUX_LEVEL (0x18h)  
Description  
Bits  
Field  
5:0  
AUX_LEVEL This programs the AUX input level. All gain changes are performed at zero crossings.  
AUX_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
AUX_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
SE/DIFF  
If set, the AUXL input is ignored. In single-ended mode, the AUXL input pin should be left  
floating.  
49  
www.national.com  
 
TABLE 23. MONO_LEVEL (0x19h)  
Description  
Bits  
Field  
5:0  
MONO_LEVEL This programs the MONO input level. All gain changes are performed at zero crossings.  
MONO_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
MONO_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
7
SE/DIFF  
If set, the MONO– input is ignored. In single-ended mode, the MONO- input pin should  
be left floating.  
AUXL_MONO If set, AUXL is routed to the MONO Input Amplifier.  
www.national.com  
50  
 
Headphone Detection Circuit  
The LM49352 features a headphone detection circuit (HDC) that automatically enables the headphone amplifier whenever the  
insertion of a headphone plug is detected and disables the headphone amplifier during the removal of a headphone plug. The HDC  
optimizes power management by automatically disabling any output amplifier that is not in use. The HDC eliminates the necessity  
of polling the I2C bus for status changes. However, since the HDC requires the use of the GPIO pin, the PORT2_SDO functionality  
sensing is required.  
The HDC requires a headphone jack with a normally closed mechanical switch and a pullup resistor, RPU, tied between the me-  
chanical switch and I/O_VDD (Refer to Figure 14). Choosing a RPU value of at least 500kensures minimal current draw through  
the pullup resistor. When the headphone amplifier is disabled, an internal 50kpulldown, RPD, is connected to each headphone  
amplifier output. Without the presence of a headphone plug, the headphone jack’s mechanical switch is closed thereby connecting  
the right headphone amplifier output to RPU. The GPIO pin detects a logic low level due to the voltage division between RPU and  
RPD. When the GPIO pin is set to HPSENSE mode, a logic low voltage reading causes the HDC to disable the headphone amplifier.  
When a headphone plug is inserted, the mechanical connection between RPU and RPD is broken, resulting in a logic high level  
detected by the GPIO pin. A logic high voltage reading causes the HDC to enable the headphone amplifier.  
The HDC has four modes of operation that automatically enable/disable different combinations of the audio output amplifiers  
contained within the LM49352. Having the choice of four different HDC settings maximizes power management flexibility to suit a  
particular application. Please refer to the HP_SENSE (reg 0x1Bh) register table for a detailed discussion on the different HDC  
modes of operation.  
30072793  
FIGURE 15. Application Circuit for Headphone Detection  
51  
www.national.com  
 
TABLE 24. HP_SENSE (0x1Bh)  
Description  
Bits  
Field  
0
HP SENSE  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on. If a headphone removal is detected the headphone amplifier will automatically  
turn off.  
HPSENSE  
Headphone Sense Status  
0
1
Off  
On  
1
2
3
HPSENSE_D  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Class D loudspeaker amplifier will turn off. If a headphone removal is  
detected the headphone amplifier will automatically turn off and the Class D loudspeaker amplifier  
will turn on. This bit overrides bit 0 of this register.  
HPSENSE_D  
Headphone Sense Status  
0
1
Off  
On  
HPSENSE_AUX  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Earpiece / Auxout amplifier will turn off. If a headphone removal is  
detected the headphone amplifier will automatically turn off and the Earpiece / Auxout amplifier will  
turn on. This bit overrides bit 0 and bit 1 of this register.  
HPSENSE_AUX  
Headphone Sense Status  
0
1
Off  
On  
HPSENSE_AUX_D This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Class D loudspeaker amplifier along with the Earpiece / Auxout  
amplifier will turn off. If a headphone removal is detected the headphone amplifier will automatically  
turn off and the Class D loudspeaker amplifier along with the Earpiece / Auxout amplifier will turn  
on. This bit overrides bit 0, bit 1, and bit 2 of this register.  
HPSENSE_AUX_D  
Headphone Sense Status  
0
1
Off  
On  
www.national.com  
52  
 
20.0 ADC Control Registers  
This register is used to control the LM49352's ADC:  
TABLE 25. ADC Basic (0x20h)  
Description  
Bits  
Field  
0
MONO  
This sets mono or stereo operation of the ADC.  
MONO  
0
ADC Operation  
Stereo Audio  
1
Mono Voice (Right ADC channel disabled, Left ADC channel active)  
This sets the oversampling ratio of the ADC.  
1
OSR  
OSR  
Stereo Audio ADC  
Oversampling Ratio  
Mono Voice ADC Oversampling Ratio  
0
1
128  
128  
125  
128  
2
3
MUTE_L  
MUTE_R  
If set, a digital mute is applied to the Left (or mono) ADC output.  
If set, a digital mute is applied to the Right ADC output.  
6:4  
ADC_CLK_SEL  
This selects the source of the ADC clock domain, ADC_SOURCE_CLK.  
ADC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL_OUTPUT1  
PLL_OUTPUT2  
7
ADC_DSP_ONLY  
If set, the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP  
functionality is maintained. This can be used to perform asynchronous resampling between audio  
rates of a common family. Setting this bit is also useful whenever applying Automatic Level Control  
(ALC) to an analog only audio path.  
TABLE 26. ADC_CLK_DIV (0x21h)  
Description  
Bits  
Field  
7:0  
ADC_CLK_DIV  
This programs the half cycle divider that preceeds the ADC. The input of this divider should be  
around 12MHz. The default of this divider is 0x00.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
ADC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2
11111101  
11111110  
11111111  
127  
127.5  
128  
53  
www.national.com  
 
 
 
TABLE 27. ADC_MIXER (0x23h)  
Description  
Bits  
Field  
1:0  
ADC_MIX_LEVEL_L This sets the input level to the left ADC channel.  
ADC_MIX_LEVEL_L  
Level  
0dB  
00  
01  
1.35dB  
3.5dB  
6dB  
10  
11  
3.2  
ADC_MIX_LEVEL_R This sets the input level to the right ADC channel.  
ADC_MIX_LEVEL_R  
Level  
0dB  
00  
01  
10  
11  
1.35dB  
3.5dB  
6dB  
4
STEREO_LINK  
If set, this links ADC_MIX_LEVEL_R with ADC_MIX_LEVEL_L.  
STEREO_LINK  
Status  
Off  
0
1
On  
www.national.com  
54  
 
21.0 DAC Control Registers  
This register is used to control the LM49352's DAC:  
TABLE 28. DAC Basic (0x30h)  
Description  
Bits  
Field  
1:0  
MODE  
This programs the over sampling ratio of the stereo DAC.  
MODE  
DAC Oversampling Ratio  
00  
125  
128  
01  
10  
11  
64 (Default)  
RSVD  
2
3
MUTE_L  
MUTE_R  
This digitally mutes the Left DAC output.  
This digitally mutes the Right DAC output.  
6:4  
DAC_CLK_SEL  
This selects the source of the DAC clock domain, DAC_SOURCE_CLK.  
DAC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL_OUTPUT1  
PLL_OUTPUT2  
7
DSP_ONLY  
If set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP  
functionality is maintained. This can be used to perform asyncronous resampling between audio rates  
of a common family.  
TABLE 29. DAC_CLK_DIV (0x31h)  
Description  
Bits  
Field  
7:0  
DAC_CLK_DIV  
This programs the half cycle divider that precedes the DAC. The input of this divider should be  
around 12MHz. The default of this divider is 0x03 which gives a division by 2.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
DAC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2 (Default)  
11111101  
11111110  
11111111  
127  
127.5  
128  
55  
www.national.com  
 
 
 
22.0 Digital Mixer Control Registers  
Digital Mixer  
The LM49352’s digital mixer allows for flexible routing of digital audio signals between both audio ports, DAC, and ADC. This mixer  
handles which digital data path (Port1 RX data, Port2 RX data, or ADC output) is routed to the DAC input. The digital mixer also  
selects the appropriate digital data path (Port1 RX data, Port2 RX data, ADC output, or DAC DSP (Interpolator) output) that is used  
for data transmission on Audio Port 1 and 2. Audio inputs to the digital mixer can be attenuated down to -18dB to avoid clipping  
conditions. The digital mixer also allows direct routing from the DAC interpolator output to the ADC decimator input which allows  
the DAC and ADC DSP blocks to be cascaded witjhout having to enable the analog of the DAC and ADC in order to save power.  
Another key feature of the digital mixer is sample rate conversion (SRC) between audio ports. This allows simultaneous operation  
of the dual audio ports even if each port is operating at a different sample rate. The LM49352 can be used as an audio port bridge  
with SRC capability. The digital mixer allows either straight pass through between audio ports or, if desired, DSP effects can be  
added to the digital audio signal during audio port bridge operation. The digital mixer automatically handles stereo I2S to mono  
PCM conversion between audio ports and vice versa.  
30072701  
FIGURE 16. Digital Mixer  
The LM49352 includes two separate and independent DSP blocks, one for the DAC and the other for the ADC. The digital mixer  
also allows both DSP blocks to be cascaded together in either order so that the DSP effects from both blocks can be combined  
into the same signal path. For example, the 5 band parametric EQ of each DSP block can be combined together to form a 10 band  
parametric EQ for added flexibility.  
www.national.com  
56  
 
 
This register is used to control the LM49352's digital mixer:  
TABLE 30. Input Levels 1 (0x40h)  
Bits  
Field  
Description  
1:0  
PORT1_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 1.  
PORT1_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
3:2  
5:4  
7:6  
PORT1_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 1.  
PORT1_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 2.  
PORT2_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 2.  
PORT2_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 31. Input Levels 2 (0x41h)  
Bits  
Field  
Description  
1:0  
3:2  
5:4  
ADC_L_LVL  
This programs the input level of the data arriving from the left ADC channel.  
ADC_L_LVL  
Level  
0dB  
00  
01  
–6dB  
–12dB  
–18dB  
10  
11  
ADC_R_LVL  
This programs the input level of the data arriving from the right ADC channel.  
ADC_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
INTERP_L_LVL This programs the input level of the data arriving from the left DAC's interpolator output.  
INTERP_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
57  
www.national.com  
 
 
Bits  
Field  
Description  
7:6  
INTERP_R_LVL This programs the input level of the data arriving from the right DAC's interpolator output.  
INTERP_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 32. Audio Port 1 Input (0x42h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the Left TX Channel of Audio Port 1.  
L_SEL  
Selected Input  
None  
00  
01  
ADC_L  
10  
PORT2_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to the Right TX Channel of Audio Port 1.  
R_SEL  
Selected Input  
None  
00  
01  
ADC_R  
10  
PORT2_RX_R  
DAC_INTERP_R  
11  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to Audio Port 1.  
If set, the right channel is ignored and the left channel becomes (left+right)/2.  
TABLE 33. Audio Port 2 Input (0x43h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to Audio Port 2's Left TX Channel.  
L_SEL  
Selected Input  
None  
00  
01  
ADC_L  
10  
PORT1_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to Audio Port 2's Right TX Channel.  
R_SEL  
00  
Selected Input  
None  
01  
ADC_R  
10  
PORT1_RX_R  
11  
DAC_INTERP_R  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to Audio Port 2.  
If set, the right channel is ignored and the left channel becomes (left+right)/2.  
www.national.com  
58  
 
 
TABLE 34. DAC Input Select (0x44h)  
Bits  
0
Field  
Description  
This adds Audio Port 1's left RX channel to the DAC's left input.  
This adds Audio Port 2's left RX channel to the DAC's left input.  
This adds the ADC's left output to the DAC's left input.  
PORT1_L  
PORT2_L  
ADC_L  
1
2
3
PORT1_R  
PORT2_R  
ADC_R  
This adds Audio Port 1's right RX channel to the DAC's right input.  
This adds Audio Port 2's right RX channel to the DAC's right input.  
This adds the ADC's right output to the DAC's right input.  
If set, this swaps the Left and Right inputs to the DAC.  
4
5
6
SWAP  
TABLE 35. Decimator Input Select (0x45h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the left ADC's decimator input.  
L_SEL  
Selected Input  
None  
00  
01  
PORT1_RX_L  
PORT2_RX_L  
DAC_INTERP_L  
10  
11  
3:2  
5:4  
R_SEL  
This selects which input is fed to the right ADC's decimator input.  
R_SEL  
00  
Selected Input  
None  
01  
PORT1_RX_R  
PORT2_RX_R  
DAC_INTERP_R  
10  
11  
MXR_CLK_SEL This selects sets the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source  
with the highest clock frequency. If the DAC interpolator output (DAC_OSR_L or DAC_OSR_R) is  
selected, then MXR_CLK_SEL should be set to '10'.  
MXR_CLK_SEL  
Selected Input  
Auto  
00  
01  
10  
11  
MCLK  
DAC  
ADC  
59  
www.national.com  
 
 
23.0 Audio Port Control Registers  
30072771  
FIGURE 17. I2S Serial Data Format (24 bit example)  
30072772  
FIGURE 18. Left Justified Data Format (24 bit example)  
30072770  
FIGURE 19. Right Justified Data Format (24 bit example)  
30072734  
FIGURE 20. PCM Serial Data Format (16 bit example)  
www.national.com  
60  
 
 
 
 
 
The following registers are used to control the LM49352's audio ports. Audio Port 1 and Audio Port 2 are identical. Port 1 is  
programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh) registers.  
TABLE 36. BASIC_SETUP (0x50h/0x60h)  
Bits  
0
Field  
Description  
STEREO  
If set, the audio port will receive and transmit stereo data.  
1
RX_ENABLE  
If set, the input is enabled (enables the SDI port and input shift register and any clock  
generation required).  
2
TX_ENABLE  
If set, the output is enabled (enables the SDO port and output shift register and any clock  
generation required).  
3
4
5
CLOCK_MS  
SYNC_MS  
If set, the audio port will transmit the clock when either the RX or TX is enabled.  
If set, the audio port will transmit the sync signal when either the RX or TX is enabled.  
This sets how data is clocked by the Audio Port.  
CLOCK_PHASE  
CLOCK_PHASE  
Audio Data Mode  
I2S (TX on falling edge, RX on rising edge)  
0
1
PCM (TX on rising edge, RX on falling edge)  
6
7
STEREO_SYNC_PHASE  
If set, this reverses the left and right channel data of the Audio Port.  
STEREO_SYNC_PHASE  
Audio Port Data Orientation  
Left channel data goes to left channel output.  
Right channel data goes to right channel output.  
0
Right channel data goes to left channel output.  
Left channel data goes to right channel output.  
1
SYNC_INVERT  
If this bit is set the SYNC is inverted before the receiver and transmitter.  
SYNC_INVERT  
SYNC ORIENTATION  
0
1
SYNC Low = Left, SYNC High = Right  
SYNC Low = Right, SYNC High = Left  
TABLE 37. CLK_GEN_1 (0x51h/0x61h)  
Bits  
Field  
Description  
5:0  
HALF_CYCLE_CLK_ This programs the half-cycle divider that generates the master clocks in the audio port. The default  
DIV  
of this divider is 0x00, i.e. bypassed.  
Program this divider with the required division multiplied by 2, and subtract 1.  
HALF_CYCLE_CLK_DIV  
Divides By  
000000  
000001  
000010  
000011  
BYPASS  
1
1.5  
2
111101  
111110  
11111  
31  
31.5  
32  
6
CLOCK_SEL  
This selects the clock source of the master mode Audio Port Clock generator's half-cycle divider.  
0 = DAC_SOURCE_CLK  
1 = ADC_SOURCE_CLK  
61  
www.national.com  
 
 
TABLE 38. CLK_GEN_1 (0x52h/62h)  
Description  
Bits  
Field  
2:0  
SYNTH_NUM  
Along with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in  
master mode.  
SYNTH_NUM  
Numerator  
000  
001  
010  
011  
100  
101  
110  
111  
SYNTH_DENOM (1/1)  
100/SYNTH_DENOM  
96/SYNTH_DENOM  
80/SYNTH_DENOM  
72/SYNTH_DENOM  
64/SYNTH_DENOM  
48/SYNTH_DENOM  
0/SYNTH_DENOM  
3
SYNTH_DENOM  
Along with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master  
mode.  
SYNTH_DENOM  
Denominator  
128  
0
1
125  
TABLE 39. CLK_GEN_1 (0x53h/63h)  
Description  
Bits  
Field  
2:0  
SYNC_RATE  
This sets the number of clock cycles before the sync pattern repeats. This depends if the audio port  
data is mono or stereo.  
In MONO mode:  
SYNC_RATE  
Number of Clock Cycles  
000  
8
001  
12  
16  
18  
20  
24  
25  
32  
010  
011  
100  
101  
110  
111  
In STEREO mode:  
SYNC_RATE  
000  
Number of Clock Cycles  
16  
24  
32  
36  
40  
48  
50  
64  
001  
010  
011  
100  
101  
110  
111  
www.national.com  
62  
 
 
Bits  
Field  
Description  
5:3  
SYNC_WIDTH  
In MONO mode, this programs the width (in number of bits) of the SYNC signal.  
SYNC_WIDTH  
Width of SYNC (in bits)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
7
8
11  
15  
16  
TABLE 40. DATA_WIDTHS (0x54h/64h)  
Bits  
Field  
Description  
2:0  
RX_WIDTH  
This programs the expected bits per word of the serial data input SDI.  
RX_WIDTH  
Bits  
24  
20  
18  
16  
14  
13  
12  
8
000  
001  
010  
011  
100  
101  
110  
111  
5:3  
TX_WIDTH  
This programs the bits per word of the serial data output SDO.  
TX_WIDTH  
000  
Description  
24  
20  
18  
16  
14  
13  
12  
8
001  
010  
011  
100  
101  
110  
111  
7:6  
TX_EXTRA_BITS This programs the TX data output padding.  
TX_EXTRA_BITS  
Description  
00  
01  
10  
11  
0
1
High-Z  
High-Z  
63  
www.national.com  
 
TABLE 41. RX_MODE (0x55h/x65h)  
Bits  
Field  
Description  
0
RX_MODE  
This sets the RX data input justification with respect to the SYNC signal.  
RX_MODE  
Description  
MSB Justified  
LSB Justified  
0
1
5:1  
MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of  
the frame (LSB Justified).  
MSB_POSITION  
Description  
00000  
0(Left Justified/PCM Long)  
00001  
1(I2S/PCM Short)  
00010  
2
00011  
3
00100  
4
00101  
5
00110  
6
00111  
7
01000  
8
01001  
9
01010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
6
7
COMPAND  
If set, audio data will be companded.  
This sets the audio companding mode.  
μLaw/A-Law  
Compand Mode  
μLaw/A-Law  
0
μLaw  
1
A-Law  
www.national.com  
64  
 
TABLE 42. TX_MODE (0x56h/x66h)  
Bits  
Field  
Description  
0
TX_MODE  
This sets the TX data output justification with respect to the SYNC signal.  
TX_MODE  
Description  
MSB Justified  
LSB Justified  
0
1
5:1  
MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of  
the frame (LSB Justified).  
MSB_POSITION  
Description  
00000  
0(Left Justified/PCM Long)  
00001  
1(I2S/PCM Short)  
00010  
2
00011  
3
00100  
4
00101  
5
00110  
6
00111  
7
01000  
8
01001  
9
01010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
6
7
COMPAND  
If set, audio data will be companded.  
This sets the audio companding mode.  
μLaw/A-Law  
Compand Mode  
μLaw/A-Law  
0
μLaw  
1
A-Law  
65  
www.national.com  
 
24.0 Digital Effects Engine  
Digital Signal Processor (DSP)  
The LM49352 is designed to handle the entire audio signal conditioning and processing within the audio system, thereby freeing  
up the workload of any other applications processor contained within the system. The LM49352 features two independent DSPs,  
one for the DAC and the other for the ADC. Each DSP is fully featured and performs as a professional quality digital audio effects  
engine. Both DSP engines feature digital volume control, automatic level control (ALC), digital soft clip compression, and a 5-band  
parametric EQ. The effects chain of each DSP engine is shown by the diagrams below.  
30072735  
FIGURE 21. ADC DSP Effects Chain  
30072736  
FIGURE 22. DAC DSP Effects Chain  
The ADC and DAC DSP engines can be cascaded together in any order via the digital mixer to combine different audio effects to  
the same signal path. For example, a signal can be processed with high-pass filtering from the ADC effects engine with ALC from  
the DAC effects engine. The 5-band parametric EQs from each DSP engine can be combined to form a single 10-band parametric  
EQ or a single 5-band parametric EQ with ±30dB (instead of ±15dB) gain control for each band.  
TABLE 43. ADC EFFECTS (0x70h)  
Bits  
0
Field  
Description  
ADC_HPF_ENB  
ADC_ALC_ENB  
ADC_PK_ENB  
ADC_EQ_ENB  
ADC_SCLP_ENB  
This enables the ADC's High Pass Filter.  
1
This enables the ADC's Automatic Level Control.  
This enables the ADC's Peak Detector.  
2
3
This enables the ADC's 5-band Parametric EQ.  
This enables the ADC's Soft Clip Feature.  
4
www.national.com  
66  
 
 
 
 
TABLE 44. DAC EFFECTS (0x71h)  
Description  
Bits  
0
Field  
DAC_ALC_ENB  
DAC_PK_ENB  
DAC_EQ_ENB  
RSVD  
This enables the DAC's Automatic Level Control.  
This enables the DAC's Peak Detector.  
This enables the DAC's 5-band Parametric EQ.  
Reserved  
1
2
3
4
ADC_SCLP_ENB  
This enables the DAC's Soft Clip Feature.  
TABLE 45. HPF MODE (0x80h)  
Bits  
Field  
Description  
2:0  
HPF_MODE  
This configures the ADC's High Pass Filter (HPF). To calculate the –3dB cutoff frequency, multiply  
the coefficient by the sample rate (Hz): fC = Xn.fS(Hz)  
HPF_MODE  
Coefficient  
Filter Characteristics  
fC = 220Hz for:  
000  
001  
010  
011  
100  
X0 = 0.0275  
X1 = 0.01833  
X2 = 0.01375  
X3 = 0.009166  
X4 = 0.006875  
8kHz Voice  
12kHz Voice  
16kHz Voice  
24kHz Voice  
32kHz Voice  
fC = 100Hz for:  
fC = 150Hz for:  
101  
110  
X5 = 0.003125  
X6 = 0.0020833  
32kHz Audio  
48kHz Audio  
111  
X7 = 0.0015625  
96kHz Audio  
67  
www.national.com  
 
 
ALC Overview  
The Automatic Level Control (ALC) system can be used to regulate the audio output level to a user defined target level. The ALC  
feature is especially useful whenever the level of the audio input is unknown, unpredictable, or has a large dynamic range. The  
main purpose of the ALC is to optimize the dynamic range of the audio input to audio output path.  
There are two separate and independent ALC circuits in the LM49352. One of the ALC circuits is located within the DAC DSP  
effects block. The other ALC circuit is integrated into the ADC DSP effects block. The DAC ALC controls the DAC digital gain. The  
ADC ALC controls the mono/auxiliary input amplifier gain or microphone preamplifier gain. The dual ALCs can be used to regulate  
the level of the analog (AUX, MONO, MIC) and digital (Port1 Data In, Port2 Data In) audio inputs. The ALC regulated output can  
be routed to any of the LM49352’s amplifier outputs for playback. The ALC regulated output can also be routed to Audio Port1 or  
Audio Port2 for digital data transmission via I2S or PCM.  
Only audio inputs that are considered signals (rather than noise) are sent to the ALC’s peak detector block. The peak detector  
compares the level of the audio input versus the ALC target level (TARGET_LEVEL). Signals lower than the target level will be  
amplified and signals higher than the target level will be attenuated. Any audio input that is lower than the level specified by the  
noise floor level (NOISE_FLOOR) will be considered as noise and will be gated from the ALC’s peak detector in order to avoid  
noise pumping. So it is important to set NOISE_FLOOR to correlate with the signal to noise ratio of the corresponding audio path.  
In some instances (ie. Conference calls), it may be desirable to mute audio input signals that consist solely of background noise  
from the audio output. This is accomplished by enabling the ALC’s noise gate (NG_ENB). When the noise gate is enabled, signals  
lower than the noise floor level will be muted from the audio output.  
If the audio input signal is below the target level, the ALC will increase the gain of the corresponding volume control until the signal  
reaches the target level. The rate at which the ALC performs gain increases is known as decay rate (DECAY RATE). But before  
each ALC gain increase the ALC must wait a predetermined amount of time (HOLD TIME). If the audio input signal is above the  
target level, the ALC will decrease the gain of the corresponding volume control until the signal reaches the target level. The rate  
at which the ALC performs attenuation is known as attack rate (ATTACK RATE). The ALC’s peak detector tracks increases in  
audio input signal amplitude instantaneously, but tracks decreases in audio input signal amplitude at programmable rate (PEAK  
DECAY TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and PEAK DECAY TIME are fully adjustable which allows flexible  
operation of the ALC circuit. The ALC’s timers are based on the sample rate of the DAC or ADC, so the closest corresponding  
sample rate must be programmed into the DAC SAMPLE setting (for DAC ALC) or the ADC SAMPLE (for ADC ALC).  
30072791  
FIGURE 23. ALC Example  
www.national.com  
68  
 
Limiter  
The LM49352’s ALC features a limiter function. The purpose of the limiter is to limit the maximum level of the audio signal to the  
specified ALC target level. When the limiter is enabled, the ALC will decrease the gain of the volume control whenever the audio  
signal is higher than the specified target level. The programmed I2C gain setting when the limiter is first enabled is the maximum  
gain setting that the ALC limiter will apply to the audio signal. Gain increases beyond the original I2C gain setting are disabled.  
This is in contrast to ALC operation with the limiter disabled, where the ALC may increase gain of audio signals below target level  
using gain settings beyond the original I2C gain setting. Therefore, it is important to set the gain of the audio path to the desired  
setting before enabling the ALC limiter function.  
The limiter’s target level can be set just below the clipping level of the output amplifier or ADC in order to prevent harsh distortions  
delivered to the loudspeaker or headphone on the receiving end. This method of ALC limiter operation is also known as “no clip”  
mode. Operating the ALC limiter in “no clip” mode maximizes the dynamic range of the audio amplifier or ADC while ensuring that  
the audio signal will never clip. Utilizing the ALC limiter in “no clip” mode also protects the loudspeaker from damage due to harmful  
overdriven conditions.  
The ALC limiter’s target level can also be set for a predetermined maximum output power or voltage level. This method of ALC  
limiter operation is known as “power limit” mode. Operating the ALC limiter in “power limit” mode prevents the speaker or headphone  
from playing at unsafe hearing levels that can permanently damage the end user’s ears. “Power limit” operation is especially useful  
for applications such as listening to music through a set of headphones. Another benefit of using the ALC limit in “power limit” mode  
is to extend battery life by reducing power consumption of the output amplifiers during audio playback.  
30072792  
FIGURE 24. ALC Limiter  
69  
www.national.com  
 
TABLE 46. ADC_ALC_1 (0x81h)  
Description  
This programs the timers on the ALC with the closest sample rate of the ADC.  
Bits  
Field  
2:0  
ADC_SAMPLE  
ADC_SAMPLE  
Expected ADC fS  
000  
001  
010  
011  
100  
101  
110  
111  
8kHz  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
3
4
LIMITER  
If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the  
signal as soon as it reaches target and release it at the decay rate, once signal level reduces below  
target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC  
will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling  
the Limiter.  
STEREO LINK  
If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo  
output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual  
mono.  
5
6
7
SOURCE_RSEL  
SOURCE_LSEL  
SOURCE_OVR  
If both SOURCE_OVR and this bit is set, the right ADC ALC channel will be active.  
If both SOURCE_OVR and this bit is set, the left ADC ALC channel will be active.  
If set, the active channel of the ADC ALC is determined by SOURCE_RSEL and SOURCE_LSEL.  
If cleared, the active channel of the ADC ALC is determined by the selected input to the ADC.  
MONO enables left ALC, AUX enables right ALC, MIC enables left and / or right ALC depending  
on which ADC channel MIC is selected to.  
TABLE 47. ADC_ALC_2 (0x82h)  
Description  
Bits  
Field  
3:0  
NOISE_FLOOR  
This sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from  
the ALC to avoid noise pumping.  
NOISE_FLOOR  
0000  
Noise Floor (dB)  
–39  
–42  
–45  
–48  
–51  
–54  
–57  
–60  
–63  
–66  
–69  
–72  
–75  
–78  
–81  
–84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate.  
www.national.com  
70  
 
 
TABLE 48. ADC_ALC_3 (0x83h)  
Description  
Bits  
Field  
4:0  
TARGET_LEVEL  
This sets the desired target output level. Signals lower than this will be amplified and signals larger  
than this will be attenuated.  
TARGET_LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Target Level (dB)  
–1.5  
–3  
–4.5  
–6  
–7.5  
–9  
–10.5  
–12  
–13.5  
–15  
–16.5  
–18  
–19.5  
–21  
–22.5  
–24  
–25.5  
–27  
–28.5  
–30  
–31.5  
–33  
–34.5  
–36  
–37.5  
–39  
–40.5  
–42  
–43.5  
–45  
–46.5  
–48  
71  
www.national.com  
 
TABLE 49. ADC_ALC_4 (0x84h)  
Description  
This sets the rate at which the ALC will reduce gain if it detects the input signal is large.  
Bits  
Field  
4:0  
ATTACK_RATE  
ATTACK_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps (μs)  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250 (Default)  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
www.national.com  
72  
 
TABLE 50. ADC_ALC_5 (0x85h)  
Description  
Bits  
Field  
4:0  
DECAY_RATE  
This sets the rate at which the ALC will increase gain if it detects the input signal is too  
small.  
DECAY_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PK_DECAY_RATE  
000  
Time between gain steps (μs)  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396 (Default)  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
Max Time to track decay  
1.3ms (Default)  
2.6ms  
7:5  
PK_DECAY_RATE  
001  
010  
5.3ms  
011  
10.6ms  
21.3ms  
42.6.3ms  
85.5ms  
2.73 secs  
100  
101  
110  
111  
73  
www.national.com  
 
TABLE 51. ADC_ALC_6 (0x86h)  
Description  
HOLD_TIME This sets how long the ALC circuit waits before increasing the gain.  
Bits  
Field  
4:0  
HOLD_TIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10 (Default)  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 52. ADC_ALC_7 (0x87h)  
Description  
Bits  
Field  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain of the volume control to the output  
amplifier whenever the ALC is use. If the volume control is less than 6 bits  
the relevant LSBs are used as the limit and the MSBs are ignored.  
TABLE 53. ADC_ALC_8 (0x88h)  
Description  
Bits  
Field  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain of the volume control to the output  
amplifier whenever the ALC is use. If the volume control is less than 6 bits the  
relevant LSBs are used as the limit and the MSBs are ignored.  
www.national.com  
74  
 
 
 
TABLE 54. ADC_L_LEVEL (0x89h)  
Description  
ADC_L_LEVEL This sets the post ADC digital gain of the left channel.  
Bits  
Field  
5:0  
ADC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
6
STEREO_LINK  
If set, this links the ADC_R_LEVEL with ADC_L_LEVEL.  
75  
www.national.com  
 
TABLE 55. ADC_R_LEVEL (0x8Ah)  
Description  
ADC_R_LEVEL This sets the post ADC digital gain of the right channel.  
Bits  
Field  
5:0  
ADC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
www.national.com  
76  
 
TABLE 56. EQ_BAND_1 (0x8Bh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Sub-bass shelving filter's cut-off frequency. The cut-off  
frequencies shown are based on a 48kHz sample rate. Using lower sample  
rates will scale down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
60  
80  
01  
10  
100  
120  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
77  
www.national.com  
 
TABLE 57. EQ_BAND_2 (0x8Ch)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Bass peak filter's center frequency. The cut-off frequencies  
shown are based on a 48kHz sample rate. Using lower sample rates will scale  
down the cut-off frequencies proportionately.  
FREQ  
Frequency (Hz)  
00  
150  
200  
250  
300  
01  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
Programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
78  
 
TABLE 58. EQ_BAND_3 (0x8Dh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Mid peak filter's center frequency. The cut-off frequencies shown  
are based on a 48kHz sample rate. Using lower sample rates will scale down  
the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
600  
800  
1k  
01  
10  
11  
1.2k  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
79  
www.national.com  
 
TABLE 59. EQ_BAND_4 (0x8Eh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Treble peak filter's center frequency. The cut-off frequencies  
shown are based on a 48kHz sample rate. Using lower sample rates will scale  
down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
2k  
01  
2.7k  
3.4k  
4.1k  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
80  
 
TABLE 60. EQ_BAND_5 (0x8Fh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the presence shelving filter's cut-off frequency. The cut-off  
frequencies shown are based on a 48kHz sample rate. Using lower sample  
rates will scale down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
7k  
9k  
01  
10  
11k  
13k  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
81  
www.national.com  
 
Digital Audio Compressor  
The LM49352 features a digital audio compressor on both the DAC and ADC paths. The compressor works by reducing the level  
of the audio signal that is higher than the level set by the audio compressor threshold level (THRESHOLD) by a fixed ratio (com-  
pressor output / compressor input) that is set by a predetermined audio compression ratio (RATIO). Higher compression ratios  
result in more compression as shown in Figure 24. The audio compressor can be used in conjunction with the ALC to limit audio  
peaks that the ALC may not be fast enough to react to.  
30072789  
FIGURE 25. Audio Compressor Effect  
www.national.com  
82  
 
Soft Knee Function  
The LM49352’s audio compressor also features a soft knee function that smoothes the harsh edges found during clipping of an  
audio signal. For audio signals higher than the compressor threshold level, the soft knee function gradually increases the com-  
pression ratio for increasing levels of audio signal beyond the compressor threshold. To achieve the smoothing effect to prevent  
hard clipping, the soft knee function initially compresses the audio signal at the smallest ratio and then incrementally increases the  
compression ratio if required. The highest level of compression applied by the soft knee function is set by the compressor ratio.  
The effect of the soft knee function is shown in Figure 26.  
30072790  
FIGURE 26. Soft Knee Example with Compression Ratio Setting of 1:3.4  
83  
www.national.com  
 
TABLE 61. SOFTCLIP1 (0x90h)  
Description  
Bits  
Field  
3:0  
THRESHOLD  
This sets the threshold level of the audio compressor. Audio signals above  
the threshold will be compressed.  
THRESHOLD  
0000  
Threshold Level (dB)  
-36dB  
0001  
-30dB  
0010  
-24dB  
0011  
-20dB  
0100  
-18dB  
0101  
-17dB  
0110  
-16dB  
0111  
-15dB  
1000  
-14dB  
1001  
-12dB  
1010  
-10dB  
1011  
-8dB  
1100  
-6dB  
1101  
-4dB  
1110  
-2.5dB  
-1dB  
1111  
4
SOFT_KNEE  
If set, the audio compressor will automatically apply higher compression ratios  
to audio signals higher than the threshold level. As the audio signal  
approaches levels higher than the threshold, SOFT_KNEE will increase the  
compression RATIO. The highest compression that the SOFT_KNEE  
algorithm will apply is the compression that is set by RATIO.  
www.national.com  
84  
 
TABLE 62. SOFTCLIP2 (0x91h)  
Description  
Bits  
Field  
4:0  
RATIO  
This sets the ratio at which the audio is compressed to when it passes beyond  
the threshold. In SOFT_KNEE mode this is the final level of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64.0  
1:75.0  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
85  
www.national.com  
 
TABLE 63. SOFTCLIP3 (0x92h)  
Description  
Bits  
Field  
3:0  
LEVEL  
This sets the post compressor gain level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
www.national.com  
86  
 
25.0 DAC Effects Registers  
TABLE 64. DAC_ALC_1 (0xA0h)  
Description  
DAC_SAMPLE This programs the timers on the ALC with the closest DAC sample rate.  
Bits  
Field  
2:0  
DAC_SAMPLE  
Expected DAC fS  
8kHz  
000  
001  
010  
011  
100  
101  
110  
111  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
3
4
LIMITER  
If set, the circuit will never apply gain to the signal, no matter how small, but  
it will attenuate the signal as soon as it reaches target and release it at the  
decay rate, once signal level reduces below target. The I2C gain setting (at  
the time the LIMITER is enabled) is the maximum gain that the ALC will apply.  
Care should be taken when choosing the optimum I2C gain setting whenever  
enabling the Limiter.  
STEREO LINK If set, the ALC circuit uses the stereo average of the input signals to control  
the gain of the stereo output. This maintains stereo imaging. If this bit is  
cleared, then both channels operate as dual mono.  
TABLE 65. DAC_ALC_2 (0xA1h)  
Bits  
Field  
Description  
3:0  
NOISE_FLOOR This sets the anticipated noise floor. Signals lower than the specified noise  
floor will be gated from the ALC to avoid noise pumping.  
NOISE_FLOOR  
Noise Floor (dB)  
0000  
-39  
-42  
-45  
-48  
-51  
-54  
-57  
-60  
-63  
-66  
-69  
-72  
-75  
-78  
-81  
-84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate  
87  
www.national.com  
 
 
 
TABLE 66. DAC_ALC_3 (0xA2h)  
Description  
Bits  
Field  
4:0  
TARGET_LEVEL This sets the desired output level. Signals lower than this will be amplified  
and signals larger than this will be attenuated.  
TARGET_LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Target Level (dB)  
-1.5  
-3  
-4.5  
-6  
-7.5  
-9  
-10.5  
-12  
-13.5  
-15  
-16.5  
-18  
-19.5  
-21  
-22.5  
-24  
-25.5  
-27  
-28.5  
-30  
-31.5  
-33  
-34.5  
-36  
-37.5  
-39  
-40.5  
-42  
-43.5  
-45  
-46.5  
-48  
www.national.com  
88  
 
TABLE 67. DAC_ALC_4 (0xA3h)  
Description  
Bits  
Field  
4:0  
ATTACK_RATE This sets the rate at which the ALC will reduce gain if it detects the input  
signal is too large.  
ATTACK_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps (μs)  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250 (Default)  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
89  
www.national.com  
 
TABLE 68. DAC_ALC_5 (0xA4h)  
Description  
Bits  
Field  
4:0  
DECAY_RATE  
This sets the rate at which the ALC will increase gain if it detects the input  
signal is too small.  
DECAY_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps(us)  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396 (Default)  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
7:5  
PK_DECAY_RATE This sets how precise the ALC will track amplitude reductions of the audio  
input. The shorter the length of time for PK_DECAY_RATE, the more  
responsive the ALC will be when applying gain increases whenever the audio  
falls below target level.  
PK_DECAY_RATE  
Time  
1.3ms (Default)  
2.6ms  
000  
001  
010  
011  
100  
101  
110  
111  
5.3ms  
10.6ms  
21.3ms  
42.6ms  
85.5ms  
2.73secs  
www.national.com  
90  
 
TABLE 69. DAC_ALC_6 (0xA5h)  
Description  
This sets how long the ALC circuit waits before increasing the gain.  
Bits  
Field  
4:0  
HOLD_TIME  
HOLDTIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10 (Default)  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 70. DAC_ALC_7 (0xA6h)  
Bits  
Field  
Description  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain to the digital level control when the  
ALC is used.  
TABLE 71. DAC_ALC_8 (0xA7h)  
Description  
Bits  
Field  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain to the digital level control when the ALC  
is used.  
91  
www.national.com  
 
 
 
TABLE 72. DAC_L_LEVEL (0xA8h)  
Description  
DAC_L_LEVEL This sets the pre DAC digital gain.  
Bits  
Field  
5:0  
DAC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
6
STEREO_LINK If set, this links DAC_R_LEVEL with DAC_L_LEVEL.  
www.national.com  
92  
 
TABLE 73. DAC_R_LEVEL (0xA9h)  
Description  
DAC_R_LEVEL This sets the pre DAC digital gain.  
Bits  
Field  
5:0  
DAC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
93  
www.national.com  
 
TABLE 74. EQ_BAND_1 (0xABh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Sub-bass shelving filter's cut-off frequency. The cut-off  
frequencies shown are based on a 48kHz sample rate. Using lower sample  
rates will scale down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
60  
80  
01  
10  
100  
120  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
www.national.com  
94  
 
TABLE 75. EQ_BAND_2 (0xACh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Bass peak filter's center frequency. The cut-off frequencies shown  
are based on a 48kHz sample rate. Using lower sample rates will scale down  
the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
150  
200  
250  
300  
01  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
95  
www.national.com  
 
TABLE 76. EQ_BAND_3 (0xADh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Mid peak filter's center frequency. The cut-off frequencies shown  
are based on a 48kHz sample rate. Using lower sample rates will scale down  
the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
600  
800  
1k  
01  
10  
11  
1.2k  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.national.com  
96  
 
TABLE 77. EQ_BAND_4 (0xAEh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the Treble peak filter's center frequency. The cut-off frequencies  
shown are based on a 48kHz sample rate. Using lower sample rates will scale  
down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
2k  
01  
2.7k  
3.4k  
4.1k  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
97  
www.national.com  
 
TABLE 78. EQ_BAND_5 (0xAFh)  
Description  
Bits  
Field  
1:0  
FREQ  
This sets the presence shelving filter's cut-off frequency. The cut-off  
frequencies shown are based on a 48kHz sample rate. Using lower sample  
rates will scale down the cut-off frequencies proportionately.  
FREQ  
00  
Frequency (Hz)  
7k  
9k  
01  
10  
11k  
13k  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
www.national.com  
98  
 
TABLE 79. SOFTCLIP1 (0xB0h)  
Description  
Bits  
Field  
3:0  
TRESHOLD  
This sets the threshold level of the audio compressor. Audio signals above the  
threshold will be compressed.  
THRESHOLD  
0000  
Threshold Level (dB)  
-36dB  
0001  
-30dB  
0010  
-24dB  
0011  
-20dB  
0100  
-18dB  
0101  
-17dB  
0110  
-16dB  
0111  
-15dB  
1000  
-14dB  
1001  
-12dB  
1010  
-10dB  
1011  
-8dB  
1100  
-6dB  
1101  
-4dB  
1110  
-2.5dB  
-1dB  
1111  
4
SOFT_KNEE  
If set, the audio compressor will automatically apply higher compression ratios  
to audio signals higher than the threshold level. As the audio signal approaches  
levels higher than the threshold, SOFT_KNEE will increase the compression  
RATIO. The highest compression that the SOFT_KNEE algorithm will apply is  
the compression that is set by RATIO.  
99  
www.national.com  
 
TABLE 80. SOFTCLIP2 (0xB1h)  
Description  
Bits  
Field  
4:0  
RATIO  
This sets the ratio at which the audio is compressed to when it passes beyond  
the threshold. In soft clip mode this is the final level of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64  
1:75.9  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
www.national.com  
100  
 
TABLE 81. SOFTCLIP3 (0xB2h)  
Description  
Bits  
Field  
4:0  
LEVEL  
This sets the post compressor gain level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
101  
www.national.com  
 
26.0 GPIO Registers  
TABLE 82. GPIO1 (0xE0h)  
Description  
Bits  
Field  
5:0  
GPIO_MODE This sets the mode of the GPIO Pin.  
GPIO_MODE  
GPIO STATUS  
000000  
GPIO Mode is disabled .PORT2_SDO is controlled by the Port2  
serial interface configuration. In all the other modes  
PORT2_SDO is configured as the GPIO pin.  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
GPIO_RX (in)  
CHIP ENABLE (in)  
CHIP ENABLE (in)  
ADC MUTE (in)  
ADC MUTE (in)  
HP SENSE (in)  
HP SENSE (in)  
SPARE (in)  
SPARE (in)  
GPIO TX (out)  
CHIP ACTIVE (out)  
CHIP ACTIVE (out)  
HP ENABLE (out)  
HP ENABLE (out)  
LS ENABLE (out)  
LS ENABLE (out)  
EP ENABLE (out)  
EP ENABLE (out)  
ADC CLIPPED (out)  
ADC CLIPPED (out)  
DAC CLIPPED (out)  
DAC CLIPPED (out)  
SOMETHING CLIPPED (out)  
SOMETHING CLIPPED (out)  
ADC NG ACTIVE (out)  
ADC NG ACTIVE (out)  
DAC NG ACTIVE (out)  
DAC NG ACTIVE (out)  
THERMAL (out)  
THERMAL (out)  
LS SHORT CCT (out)  
LS SHORT CCT (out)  
5:0  
GPIO_MODE  
ANALOG ERROR  
Thermal or LS CCT condition (out)  
100001  
100010  
100011  
ANALOG ERROR (out)  
ERROR (out)  
Thermal or LS CCT or Clipping  
100100  
ERROR (out)  
RESERVED  
100101 – 111111  
6
7
GPIO_TX  
GPIO_RX  
Whenever GPIO_MODE is set to '001010', the GPIO pin will output a logic level  
based on this bit setting. Setting this bit high will result in a logic high GPIO output.  
This bit reports the logic level is present on the GPIO pin.  
www.national.com  
102  
 
 
TABLE 83. GPIO2 (0xE1h)  
Description  
Bits  
Field  
0
SHORT  
This bit will go high whenever a short circuit condition occurs on the Class D  
loudspeaker amplifier outputs. Once triggered by a short circuit event, an I2C write  
of 1 to this bit clear this bit.  
1
TEMP  
This bit will go high whenever the temperature of the LM49352 reaches a critical  
temperature. Once triggered by a thermal event, an I2C write of 1 to this bit clear  
this bit.  
TABLE 84. RESET (0xF0h)  
Bits  
4:0  
5
Field  
RSVD  
Description  
Reserved.  
SOFT_RESET  
Setting this bit resets the digital core of LM49352. SOFT_RESET does not affect  
the current I2C register settings.  
TABLE 85. Spread Spectrum (0xF1h)  
Bits  
1:0  
2
Field  
RSVD  
Description  
Reserved  
SS_DISABLE  
If this bit is set, Spread Spectrum mode will be disabled from the Class D amplifier.  
TABLE 86. FORCE (0xFE)  
Bits  
0
Field  
RSVD  
Description  
Reserved  
1
DACREF  
This bit determines whether the DAC reference voltage is internally generated or  
externally driven.  
DACREF  
STATUS  
0
1
DACREF uses an internal bandgap reference.  
DACREF is driven by an external voltage reference.  
2
CP_FORCE  
If set, a -LS_VDD rail will be generated on HP_VSS, even if the headphone output  
stage is not required.  
103  
www.national.com  
 
 
 
 
27.0 Schematic Diagram  
www.national.com  
104  
 
 
28.0 Demonstration Board Layout  
30072721  
FIGURE 28. Top Silkscreen  
30072782  
FIGURE 29. Top Layer  
105  
www.national.com  
 
 
 
30072780  
FIGURE 30. Inner Layer 2  
30072781  
FIGURE 31. Inner Layer 3  
www.national.com  
106  
 
 
30072779  
FIGURE 32. Bottom Layer  
30072778  
FIGURE 33. Bottom Silkscreen  
107  
www.national.com  
 
 
29.0 Revision History  
Rev  
1.0  
Date  
Description  
05/03/10  
06/30/10  
Initial released.  
Fixed a typo in the I2C Timing Parameters table.  
1.01  
www.national.com  
108  
 
30.0 Physical Dimensions inches (millimeters) unless otherwise noted  
micro SMD–36 Package  
Order Number LM49352RL  
NS Package Number RLA36MMA  
X1 = 3.281±.03mm, X2 = 3.281±.03mm, X3 = 0.65±.075mm  
109  
www.national.com  
 
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
www.national.com  
Products  
www.national.com/amplifiers  
Design Support  
www.national.com/webench  
Amplifiers  
WEBENCH® Tools  
App Notes  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
www.national.com/interface  
www.national.com/lvds  
www.national.com/power  
www.national.com/appnotes  
www.national.com/refdesigns  
www.national.com/samples  
www.national.com/evalboards  
www.national.com/packaging  
www.national.com/quality/green  
www.national.com/contacts  
www.national.com/quality  
www.national.com/feedback  
www.national.com/easy  
Clock and Timing  
Data Converters  
Interface  
Reference Designs  
Samples  
Eval Boards  
LVDS  
Packaging  
Power Management  
Green Compliance  
Distributors  
Switching Regulators www.national.com/switchers  
LDOs  
www.national.com/ldo  
www.national.com/led  
www.national.com/vref  
www.national.com/powerwise  
Quality and Reliability  
Feedback/Support  
Design Made Easy  
Applications & Markets  
Mil/Aero  
LED Lighting  
Voltage References  
PowerWise® Solutions  
www.national.com/solutions  
www.national.com/milaero  
www.national.com/solarmagic  
www.national.com/training  
Serial Digital Interface (SDI) www.national.com/sdi  
Temperature Sensors  
PLL/VCO  
www.national.com/tempsensors SolarMagic™  
www.national.com/wireless  
PowerWise® Design  
University  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2010 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: support@nsc.com  
Tel: 1-800-272-9959  
www.national.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

LM4935WL

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC
NSC

LM4935WLX

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC
NSC

LM4936

Stereo 2W Audio Power Amplifiers with Volume Control and Selectable Control Interface (SPI or I2C)
NSC

LM49360

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM49360RL

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM49360RLX

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM4936MHX

IC 2 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO28, TSSOP-28, Audio Control IC
NSC

LM4937

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
NSC

LM49370

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX

IC SPECIALTY CONSUMER CIRCUIT, PBGA49, 4 X 4 MM, MICRO, SMDXT-49, Consumer IC:Other
NSC