LM4935WLX [NSC]

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC; 音频子系统具有双模立体声耳机和单声道高效扬声器放大器和多用途ADC
LM4935WLX
型号: LM4935WLX
厂家: National Semiconductor    National Semiconductor
描述:

Audio Sub-System with Dual-Mode Stereo Headphone and Mono High Efficiency Loudspeaker Amplifiers and Multi-Purpose ADC
音频子系统具有双模立体声耳机和单声道高效扬声器放大器和多用途ADC

放大器
文件: 总112页 (文件大小:4995K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 2005  
LM4935  
Audio Sub-System with Dual-Mode Stereo Headphone &  
Mono High Efficiency Loudspeaker Amplifiers and  
Multi-Purpose ADC  
j
1.0 General Description  
Supply Voltage Range  
BB_VDD = 1.8V to 4.5V,  
The LM4935 is an integrated audio subsystem that supports  
both analog and digital audio functions. The LM4935 in-  
cludes a high quality stereo DAC, a mono ADC, a multi-  
purpose SAR ADC, a stereo headphone amplifier, which  
supports output cap-less (OCL) or AC-coupled (SE)modes of  
operation, a mono earpiece amplifier and a mono high effi-  
ciency loudspeaker amplifier. It is designed for demanding  
applications in mobile phones and other portable devices.  
D_VDD & PLL_VDD = 2.7V to 4.5V  
LS_VDD & A_VDD = 2.7V to 5.5V  
n Shutdown Current  
n PSRR 217 Hz, A_VDD = 3.3V, (Headphone)  
n SNR (Stereo DAC to AUXOUT)  
n SNR (Mono ADC from Cell Phone In)  
n SNR (Aux In to Headphones)  
1.1 µA  
60 dB  
88 dB (typ)  
90 dB (typ)  
98 dB (typ)  
@
The LM4935 features a bi-directional I2S serial interface for  
full range audio and an I2C or SPI compatible interface for  
control. The stereo DAC path features an SNR of 88 dB with  
an 18-bit 48 kHz input. In SE mode the headphone amplifier  
delivers at least 33 mWRMS to a 32single-ended stereo  
4.0 Features  
n 18-bit stereo DAC  
n 16-bit mono ADC  
load with less than 1% distortion (THD+N) when A_VDD  
=
n 12-bit 4 input multipurpose SAR ADC  
n 8 kHz to 48 kHz stereo audio playback  
n 8 kHz to 48 kHz mono recording  
n 1 Hz to 13.888 kHz sample rate on all 4 SAR channels  
n Bidirectional PCM/I2S compatible audio interface  
n Sigma-Delta PLL for operation from any clock at any  
sample rate  
3.3V. The mono earpiece amplifier delivers at least 115  
mWRMS to a 32bridged-tied load with less than 1% distor-  
tion (THD+N) when A_VDD = 3.3V. The mono speaker am-  
plifier delivers up to 600 mW into an 8load with less than  
1% distortion when LS_VDD = 3.3V and up to 1.3W when  
LS_VDD = 5.0V. The LM4935 also contains a general pur-  
pose SAR ADC for housekeeping duties such as battery and  
temperature monitoring. This can also be used for analog  
volume control of the output stages and can trigger interrupt  
events.  
n Low power clock network operation if 12 MHz system  
clock is available  
n Read/write I2C or SPI compatible control interface  
n 33mW stereo headphone amplifier at 3.3V  
n OCL or AC-coupled headphone operation  
n Automatic headphone & microphone detection  
n Support for internal and external microphones  
n Automatic gain control for microphone input  
The LM4935 employs advanced techniques to reduce power  
consumption, to reduce controller overhead to speed devel-  
opment time and to eliminate click and pop. Boomer audio  
power amplifiers were designed specifically to provide high  
quality output power with a minimal amount of external com-  
ponents. It is therefore ideally suited for mobile phone and  
other low voltage applications where minimal power con-  
sumption, PCB area and cost are primary requirements.  
@
n High efficiency BTL 8amplifier, 600 mW 3.3V  
n 115 mW earpiece amplifier at 3.3V  
n Differential audio I/O for external cellphone module  
n Mono differential auxiliary output  
n Stereo auxiliary inputs  
2.0 Applications  
n Smartphones  
n Mobile Phones and Multimedia Terminals  
n PDAs, Internet Appliances and Portable Gaming  
n Portable DVD/CD/AAC/MP3 Players  
n Digital Cameras/Camcorders  
n Differential microphone input for internal microphone  
n Flexible audio routing from input to output  
n 32 Step volume control for mixers with 1.5 dB steps  
n 16 Step volume control for microphone in 2 dB steps  
n Programmable sidetone attenuation in 3 dB steps  
n DC Volume Control  
n Two configurable GPIO ports  
n Programmable voltage triggers on SAR channels  
n Multi-function IRQ output  
3.0 Key Specifications  
@
n PHP (AC-COUP) A_VDD = 3.3V, 32, 1% THD  
33 mW  
31 mW  
1.3 W  
900 mW  
600 mW  
@
n PHP (OCL) A_VDD = 3.3V, 32, 1% THD  
@
n PLS LS_VDD = 5V, 8, 1% THD  
n Micro-power shutdown mode  
n Available in the 4 x 4 mm 49 bump microfil package  
@
n PLS LS_VDD = 4.2V, 8, 1% THD  
@
n PLS LS_VDD = 3.3V, 8, 1% THD  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2005 National Semiconductor Corporation  
DS201341  
www.national.com  
5.0 LM4935 Overview  
20134101  
FIGURE 1. Conceptual Schematic  
www.national.com  
2
6.0 Typical Application  
20134102  
FIGURE 2. Example Application in Multimedia Mobile Phone  
3
www.national.com  
Table of Contents  
1.0 General Description ..................................................................................................................................... 1  
2.0 Applications .................................................................................................................................................. 1  
3.0 Key Specifications ........................................................................................................................................ 1  
4.0 Features ....................................................................................................................................................... 1  
5.0 LM4935 Overview ........................................................................................................................................ 2  
6.0 Typical Application ........................................................................................................................................ 3  
7.0 Connection Diagrams ................................................................................................................................... 6  
7.1 PIN TYPE DEFINITIONS .......................................................................................................................... 7  
8.0 Absolute Maximum Ratings ........................................................................................................................ 8  
9.0 Operating Ratings ........................................................................................................................................ 8  
10.0 Electrical Characteristics ........................................................................................................................... 8  
11.0 System Control ......................................................................................................................................... 16  
11.1 I2C SIGNALS ......................................................................................................................................... 16  
11.2 I2C DATA VALIDITY ............................................................................................................................... 16  
11.3 I2C START AND STOP CONDITIONS .................................................................................................. 16  
11.4 TRANSFERRING DATA ........................................................................................................................ 16  
11.5 I2C TIMING PARAMETERS ................................................................................................................. 18  
12.0 Status & Control Registers ...................................................................................................................... 20  
12.1 BASIC CONFIGURATION REGISTER ................................................................................................. 21  
12.2 CLOCKS CONFIGURATION REGISTER ............................................................................................. 22  
12.3 LM4935 CLOCK NETWORK ................................................................................................................ 23  
12.4 COMMON CLOCK SETTINGS FOR THE DAC & ADC ....................................................................... 24  
12.5 PLL M DIVIDER CONFIGURATION REGISTER .................................................................................. 25  
12.6 PLL N DIVIDER CONFIGURATION REGISTER .................................................................................. 26  
12.7 PLL P DIVIDER CONFIGURATION REGISTER .................................................................................. 27  
12.8 PLL N MODULUS CONFIGURATION REGISTER ............................................................................... 28  
12.9 FURTHER NOTES ON PLL PROGRAMMING ..................................................................................... 29  
12.10 ADC_1 CONFIGURATION REGISTER ............................................................................................... 31  
12.11 ADC_2 CONFIGURATION REGISTER ............................................................................................... 32  
12.12 AGC_1 CONFIGURATION REGISTER ............................................................................................. 33  
12.13 AGC_2 CONFIGURATION REGISTER ............................................................................................. 34  
12.14 AGC_3 CONFIGURATION REGISTER ............................................................................................. 35  
12.15 AGC OVERVIEW ................................................................................................................................. 36  
12.16 MIC_1 CONFIGURATION REGISTER ............................................................................................... 37  
12.17 MIC_2 CONFIGURATION REGISTER ............................................................................................... 38  
12.18 SIDETONE ATTENUATION REGISTER ............................................................................................. 39  
12.19 CP_INPUT CONFIGURATION REGISTER ........................................................................................ 40  
12.20 AUX_LEFT CONFIGURATION REGISTER ........................................................................................ 41  
12.21 AUX_RIGHT CONFIGURATION REGISTER ...................................................................................... 42  
12.22 DAC CONFIGURATION REGISTER .................................................................................................. 43  
12.23 CP_OUTPUT CONFIGURATION REGISTER .................................................................................... 44  
12.24 AUX_OUTPUT CONFIGURATION REGISTER .................................................................................. 45  
12.25 LS_OUTPUT CONFIGURATION REGISTER ..................................................................................... 46  
12.26 HP_OUTPUT CONFIGURATION REGISTER .................................................................................... 47  
12.27 EP_OUTPUT CONFIGURATION REGISTER .................................................................................... 48  
12.28 DETECT CONFIGURATION REGISTER ............................................................................................ 49  
12.29 HEADSET DETECT OVERVIEW ........................................................................................................ 50  
12.30 STATUS REGISTER ........................................................................................................................... 53  
12.31 AUDIO INTERFACE CONFIGURATION REGISTER ......................................................................... 54  
12.32 DIGITAL AUDIO DATA FORMATS ...................................................................................................... 55  
12.33 GPIO CONFIGURATION REGISTER ................................................................................................. 56  
12.34 SAR CHANNELS 0 & 1 CONFIGURATION REGISTER .................................................................... 57  
12.35 SAR CHANNELS 2 & 3 CONFIGURATION REGISTER .................................................................... 58  
12.36 SAR DATA 0 TO 3 REGISTERS ......................................................................................................... 59  
12.37 SAR OVERVIEW ................................................................................................................................. 60  
12.38 DC VOLUME CONFIGURATION REGISTER .................................................................................... 62  
12.39 SAR TRIGGER 1 CONFIGURATION REGISTER .............................................................................. 63  
12.40 SAR TRIGGER 1 MSBs CONFIGURATION REGISTER ................................................................... 64  
12.41 SAR TRIGGER 2 CONFIGURATION REGISTER .............................................................................. 65  
12.42 SAR TRIGGER 2 MSBs CONFIGURATION REGISTER ................................................................... 66  
12.43 DEBUG REGISTER ........................................................................................................................... 67  
13.0 Typical Performance Characteristics ....................................................................................................... 68  
www.national.com  
4
Table of Contents (Continued)  
14.0 LM4935 Demonstration Board Schematic Diagram .............................................................................. 104  
15.0 Demoboard PCB Layout ........................................................................................................................ 105  
16.0 Product Status Definitions ...................................................................................................................... 110  
17.0 Revision History ...................................................................................................................................... 111  
18.0 Physical Dimensions .............................................................................................................................. 112  
5
www.national.com  
7.0 Connection Diagrams  
49 Bump Microfil  
49 Bump Microfil Marking  
201341P5  
Top View  
XY — Date Code  
TT — Die Traceability  
G — Boomer  
F4 — LM4935WL/WLX  
201341P3  
Top View (Bump Side Down)  
Order Number LM4935  
See NS Package Number WLA49VVA  
Pin Descriptions  
Pin  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
Pin Name  
EP_NEG  
A_VDD  
Type Direction  
Description  
Analog  
Supply  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Inout  
Input  
Earpiece negative output  
Headphone and mixer VDD  
Internal microphone positive input  
External microphone input  
Input to SAR channel 2  
Input to SAR channel 1  
PLL VSS  
INT_MIC_POS Analog  
EXT_MIC  
VSAR2  
Analog  
Analog  
Analog  
Supply  
Supply  
Analog  
VSAR1  
PLL_VSS  
A_VSS  
Headphone and mixer VSS  
Earpiece positive output  
Internal microphone negative input  
A_VDD/2 filter point  
EP_POS  
INT_MIC_NEG Analog  
BYPASS Analog  
B5 TEST_MODE/CS Digital  
If SPI_MODE = 1, then this pin becomes CS. If SPI_MODE = 0,  
and TEST_MODE/CS = 1, then this places the LM4935 into test mode.  
Filter point for PLL VCO input  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
E1  
PLL_FILT  
PLL_VDD  
HP_R  
Analog  
Supply  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Analog  
Analog  
Analog  
Digital  
Digital  
Supply  
Supply  
Analog  
Inout  
Input  
Output  
Output  
Output  
Input  
Inout  
Inout  
Input  
Output  
Inout  
Input  
Input  
Inout  
Input  
Input  
Inout  
PLL VDD  
Headphone Right Output  
EXT_BIAS  
INT_BIAS  
AUX_R  
External microphone supply (2.0/2.5/2.8/3.3V)  
2.0V/2.5V ultra-clean supply for internal microphone  
Right Analog Input  
GPIO_2  
SDA  
General Purpose I/O 2  
Control Data, I2C_SDA or SPI_SDI  
Control Clock, I2C_SCL or SPI_SCK  
Headphone Left Output  
SCL  
HP_L  
VREF_FLT  
AUX_L  
Filter point for the microphone power supply  
Left Analog Input  
SPI_MODE  
GPIO_1  
BB_VDD  
D_VDD  
Control mode select 1 = SPI, 0 = I2C (or test)  
General Purpose I/O 1  
Baseband VDD for the digital I/Os  
Digital VDD  
HP_VMID  
Virtual Ground for Headphones in OCL mode, otherwise 1st headset detection input  
www.national.com  
6
7.0 Connection Diagrams (Continued)  
Pin Descriptions (Continued)  
Pin  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
F2  
F3  
F4  
Pin Name  
HP_VMID_FB  
MIC_DET  
CPI_NEG  
IRQ  
Type Direction  
Description  
VMID Feedback in OCL mode, otherwise a 2nd headset detection input  
Headset insertion/removal and Microphone presence detection input  
Cell Phone analog input negative  
Interrupt request signal (NOT open drain)  
I2S Serial Data Out  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Supply  
Supply  
Analog  
Analog  
Inout  
Input  
Input  
Output  
Output  
Input  
I2S_SDO  
I2S_SDI  
I2S Serial Data Input  
LS_VDD  
Input  
Loudspeaker VDD  
LS_VDD  
Input  
Loudspeaker VDD  
CPI_POS  
CPO_NEG  
Input  
Cell Phone analog input positive  
Cell Phone analog output negative  
Auxiliary analog output negative  
I2S Word Select Signal (can be master or slave)  
I2S Clock Signal (can be master or slave)  
Loudspeaker positive output  
Output  
Output  
Inout  
F5 AUX_OUT_NEG Analog  
F6  
F7  
I2S_WS  
I2S_CLK  
LS_POS  
LS_VSS  
Digital  
Digital  
Analog  
Supply  
Analog  
Analog  
Inout  
G1  
G2  
G3  
G4  
Output  
Input  
Loudspeaker VSS  
LS_NEG  
CPO_POS  
Output  
Output  
Output  
Input  
Loudspeaker negative output  
Cell Phone analog output positive  
Auxiliary analog output positive  
Digital VSS  
G5 AUX_OUT_POS Analog  
G6  
G7  
D_VSS  
MCLK  
Supply  
Digital  
Input  
Input clock from 0.5 MHz to 30 MHz  
never driven.  
7.1 PIN TYPE DEFINITIONS  
Analog Input A pin that is used by the analog and is  
never driven by the device. Supplies are  
part of this classification.  
Digital Output A pin that is driven by the device and  
should not be driven by another device to  
avoid contention.  
Analog Output A pin that is driven by the device and  
should not be driven by external sources.  
Digital Inout—  
A pin that is either open drain (I2C_SDA)  
or a bidirectional CMOS in/out. In the  
later case the direction is selected by a  
control register within the LM4935.  
Analog Inout A pin that is typically used for filtering a  
DC signal within the device, Passive com-  
ponents can be connected to these pins.  
Digital Input—  
A pin that is used by the digital but is  
7
www.national.com  
8.0 Absolute Maximum Ratings  
Thermal Resistance  
θJA – WLA49 (soldered down  
to PCB with 2in2 1oz. copper  
plane)  
(Notes 1, 2)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
60˚C/W  
Soldering Information  
See AN-1279 for MicrofilTM package information. Peak  
Analog Supply Voltage  
reflow temperature should not exceed 235˚C.  
(A_VDD & LS_VDD  
)
6.0V  
Digital Supply Voltage  
(BB_VDD & D_VDD & PLL_VDD  
Storage Temperature  
)
6.0V  
−65˚C to +150˚C  
Internally Limited  
9.0 Operating Ratings  
Temperature Range  
Supply Voltage  
D_VDD/PLL_VDD  
BB_VDD  
−40˚C to +85˚C  
Power Dissipation (Note 3)  
ESD Susceptibility  
2.7V to 4.5V  
1.8V to 4.5V  
2.7V to 5.5V  
Human Body Model (Note 4)  
Machine Model (Note 5)  
Junction Temperature  
2500V  
200V  
LS_VDD/A_VDD  
150˚C  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C.  
LM4935  
Symbol  
DC CURRENT CONSUMPTION  
DISD Digital Shutdown Current  
Parameter  
Conditions  
Units  
Typical  
(Note 6)  
Limit  
(Note 7)  
Chip Mode ’00’, fMCLK = 13MHz  
Chip Mode ’00’, fMCLK = 19.2MHz  
0.7  
0.7  
µA  
µA  
5
3
(max)  
mA  
Chip Mode ’01’, fMCLK = 13MHz  
Chip Mode ’01’, fMCLK = 19.2MHz  
1.5  
2.2  
DIST  
Digital Standby Current  
mA  
(max)  
Chip Mode ’10’, fMCLK = 13MHz,  
DAC, ADC, SAR OFF  
1.5  
2.2  
mA  
mA  
mA  
Chip Mode ’10’, fMCLK = 19.2MHz,  
DAC, ADC, SAR OFF  
DIDD  
Digital Active Current  
Chip Mode ’10’, fMCLK = 13MHz  
DAC, ADC, SAR ON  
11.2  
16.2  
0.2  
Chip Mode ’10’, fMCLK = 19.2MHz,  
DAC, ADC, SAR ON  
mA  
(max)  
µA  
20  
3
AISD  
AIST  
Analog Shutdown Current  
Analog Standby Current  
Chip Mode ’00’  
(max)  
µA  
Chip Mode ’01’,  
0.2  
3
No headset inserted  
(max)  
mA  
All Outputs OFF, SE MODE  
All Outputs OFF, OCL MODE  
All Outputs ON, SE MODE  
All Outputs ON, OCL MODE  
6.1  
5.7  
mA  
AIDD  
Analog Active Current  
18.3  
mA  
mA  
18.7  
4.2  
28  
(max)  
fMCLK = 13 MHz  
mA  
mA  
fPLLOUT = 12 MHz, PLL ON only  
fMCLK = 19.2 MHz  
PLLIDD  
PLL Active Current  
ADC Active Current  
6.2  
fPLLOUT = 12 MHz, PLL ON only  
fMCLK = 13MHz, ADC ON only  
fMCLK = 19.2MHz, ADC ON only  
ADCIDD  
2.5  
3.6  
mA  
mA  
www.national.com  
8
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
DC CURRENT CONSUMPTION  
fMCLK = 13MHz, DAC ON only;  
PLL OFF, fS = 48kHz  
fMCLK = 19.2MHz, DAC ON only  
PLL OFF; fS = 48kHz  
fMCLK = 13MHz, SAR ON only  
fMCLK = 19.2MHz, SAR ON only  
LS ON only  
7.4  
mA  
mA  
DACIDD  
DAC Active Current  
10.7  
1.6  
2.3  
8.8  
3.5  
3.9  
4.4  
4.8  
4.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
SARIDD  
LSIDD  
SAR Active Current  
Loudspeaker Quiescent Current  
Headphone Quiescent Current  
HP ON only, SE MODE  
HP ON only, OCL MODE  
EP ON only  
HPIDD  
EPIDD  
Earpiece Quiescent Current  
AUXOUT Quiescent Current  
CPOUT Quiescent Current  
AUXIDD  
CPOUTIDD  
AUXOUT ON only  
CPOUT ON only  
LOUDSPEAKER AMPLIFIER  
PLS  
Max Loudspeaker Power  
8load, LS_VDD = 5V  
8load, LS_VDD = 4.2V  
8load, LS_VDD = 3.3V  
8load, LS_VDD = 3.3V,  
PO = 400mW  
1.3  
0.9  
0.6  
W
W
0.44  
W (min)  
LSTHD+N  
LSEFF  
Loudspeaker Harmonic Distortion  
Efficiency  
0.4  
84  
%
%
0 dB Input  
MCLK = 12.000 MHz  
AUX inputs terminated  
CBYPASS = 1.0 µF  
PSRRLS  
Power Supply Rejection Ration  
(Loudspeaker)  
54  
dB  
dB  
VRIPPLE = 200 mVP-P  
fRIPPLE = 217 Hz  
SNRLS  
Signal to Noise Ratio  
From 0 dB Analog AUX input at  
1 kHz, A-weighted  
A-weighted  
76  
eN  
Output Noise  
Offset Voltage  
350  
7
µV  
VOS  
mV  
HEADPHONE AMPLIFIER  
PHP  
Headphone Power  
32load, 3.3V, SE  
mW  
(min)  
mW  
mW  
mW  
mW  
mW  
33  
20  
16load, 3.3V, SE  
32load, 3.3V, OCL, VCM = 1.5V  
32load, 3.3V, OCL, VCM = 1.2V  
16load, 3.3V, OCL, VCM = 1.5V  
16load, 3.3V, OCL, VCM = 1.2V  
AUX inputs terminated  
CBYPASS = 1.0 µF  
52  
31  
20  
50  
32  
VRIPPLE = 200 mVP-P  
fRIPPLE = 217 Hz  
Power Supply Rejection Ratio  
(Headphones)  
SE Mode  
60  
68  
dB  
dB  
PSRRHP  
OCL Mode  
VCM = 1.2V  
OCL Mode  
65  
dB  
VCM = 1.5V  
9
www.national.com  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
HEADPHONE AMPLIFIER  
From 0dB Analog AUX input  
A-weighted  
SE Mode  
98  
97  
dB  
dB  
SNRHP  
Signal to Noise Ratio  
OCL Mode  
VCM = 1.2V  
OCL Mode  
96  
dB  
VCM = 1.5V  
HPTHD+N  
eN  
Headphone Harmonic Distortion  
Output Noise  
32load, 3.3V, PO = 7.5mW  
A-weighted  
0.05  
12  
%
µV  
ACH-CH  
Stereo Channel-to-Channel Gain  
Mismatch  
0.3  
dB  
SE Mode  
61  
63  
dB  
dB  
XTALK  
Stereo Crosstalk  
OCL Mode  
EARPIECE AMPLIFIER  
PEP  
Earpiece Power  
32load, 3.3V  
mW  
(min)  
mW  
115  
150  
100  
16load, 3.3V  
PSRREP  
Power Supply Rejection Ratio  
(Earpiece)  
AUX inputs terminated  
CBYPASS = 1.0 µF  
VRIPPLE = 200 mVP-P  
FRIPPLE = 217 Hz  
65  
dB  
SNREP  
Signal to Noise Ratio  
From 0dB Analog AUX input,  
A-weighted  
98  
dB  
EPTHD+N  
eN  
Earpiece Harmonic Distortion  
Output Noise  
32load, 3.3V, PO = 50mW  
A-weighted  
0.04  
24  
%
µV  
mV  
VOS  
Offset Voltage  
15  
AUXOUT AMPLIFIER  
THD+N  
PSRR  
Total Harmonic Distortion + Noise  
Power Supply Rejection Ratio  
VO = 1VRMS, 5kload  
AUX inputs terminated  
CBYPASS = 1.0µF  
0.02  
70  
%
dB  
VRIPPLE = 200mVPP  
fRIPPLE = 217Hz  
CP_OUT AMPLIFIER  
THD+N  
PSRR  
Total Harmonic Distortion + Noise  
VO = 1VRMS, 5kload  
CBYPASS = 1.0µF  
0.02  
68  
%
Power SUpply Rejection Ratio  
VRIPPLE = 200mVPP  
fRIPPLE = 217Hz  
dB  
MONO ADC  
RADC  
ADC Ripple  
0.25  
300  
dB  
Hz  
Hz  
dB  
PBADC  
ADC Passband  
Lower (HPF Mode 1), fS = 8 kHz  
Upper  
3470  
60  
SBAADC  
ADC Stopband Attenuation  
Above Passband  
HPF Notch, 50 Hz/60 Hz (worst  
case)  
58  
dB  
SNRADC  
ADC Signal to Noise Ratio  
ADC Full Scale Input Level  
From CPI, A-weighted  
90  
1
dB  
ADCLEVEL  
VRMS  
www.national.com  
10  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
STEREO DAC  
RDAC  
DAC Ripple  
0.1  
20  
70  
88  
96  
1
dB  
kHz  
dB  
PBDAC  
DAC Passband  
SBADAC  
SNRDAC  
DRDAC  
DACLEVEL  
PLL  
DAC Stopband Attenuation  
DAC Signal to Noise Ratio  
DAC Dynamic Range  
A-weighted, AUXOUT  
dB  
dB  
DAC Full Scale Output Level  
VRMS  
FIN  
Input Frequency Range  
Min  
0.5  
30  
MHz  
MHz  
Max  
I2S/PCM  
fS = 48kHz; 16 bit mode  
fS = 48kHz; 25 bit mode  
fS = 8kHz; 16 bit mode  
fS = 8kHz; 25 bit mode  
fS = 48kHz; 16 bit mode  
fS = 48kHz; 25 bit mode  
fS = 8kHz; 16 bit mode  
fS = 8kHz; 25 bit mode  
Min  
1.536  
2.4  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
% (min)  
%
fI2SCLK  
I2S CLK Frequency  
0.256  
0.4  
0.768  
1.2  
fPCMCLK  
PCM CLK Frequency  
I2S_CLK Duty Cycle  
0.128  
0.2  
DCI2S_CLK  
40  
60  
Max  
(max)  
%
DCI2S_WS  
I2C  
I2S_WS Duty Cycle  
50  
TI2CSET  
TI2CHOLD  
SPI  
I2C Data Setup Time  
I2C Data Hold Time  
Refer to Pg. 18 for more details  
Refer to Pg. 18 for more details  
100  
300  
ns (min)  
ns (min)  
TSPISETENB  
Enable Setup Time  
100  
100  
100  
100  
500  
500  
ns (min)  
ns (min)  
ns (min)  
ns (min)  
ns (min)  
ns (min)  
TSPIHOLD-ENB Enable Hold Time  
TSPISETD  
TSPIHOLDD  
TSPICL  
Data Setup Time  
Data Hold Time  
Clock Low Time  
Clock High Time  
TSPICH  
VOLUME CONTROL  
Minimum Gain w/ AUX_BOOST OFF  
Maximum Gain w/ AUX_BOOST  
OFF  
–46.5  
0
dB  
dB  
VCRAUX  
AUX Volume Control Range  
Minimum Gain w/ AUX_BOOST ON  
Maximum Gain w/ AUX_BOOST ON  
Minimum Gain w/ DAC_BOOST OFF  
Maximum Gain w/ DAC_BOOST  
OFF  
–34.5  
12  
dB  
dB  
dB  
dB  
–46.5  
0
VCRDAC  
DAC Volume Control Range  
CPIN Volume Control Range  
Minimum Gain w/ DAC_BOOST ON  
Maximum Gain w/ DAC_BOOST ON  
Minimum Gain  
–34.5  
12  
dB  
dB  
dB  
dB  
–34.5  
12  
VCRCPIN  
Maximum Gain  
11  
www.national.com  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
VOLUME CONTROL  
Minimum Gain  
6
36  
–30  
0
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VCRMIC  
MIC Volume Control Range  
Maximum Gain  
Minimum Gain  
Maximum Gain  
VCRSIDE  
SIDETONE Volume Control Range  
SSAUX  
SSDAC  
SSCPIN  
SSMIC  
SSSIDE  
AUX VCR Stepsize  
DAC VCR Stepsize  
CPIN VCR Stepsize  
MIC VCR Stepsize  
1.5  
1.5  
1.5  
2
SIDETONE VCR Stepsize  
3
www.national.com  
12  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
AUDIO PATH GAIN W/ STEREO (bit 6 of 0x00h) ENABLED (AUX_L & AUX_R signals identical and selected onto mixer)  
Minimum Gain from AUX input,  
BOOST OFF  
–34.5  
dB  
Maximum Gain from AUX input,  
BOOST OFF  
12  
dB  
Loudspeaker Audio Path Gain  
Minimum Gain from CPI input  
Maximum Gain from CPI input  
Minimum Gain from AUX input,  
BOOST OFF  
–22.5  
24  
dB  
dB  
dB  
–52.5  
Maximum Gain from AUX input,  
BOOST OFF  
–6  
dB  
Minimum Gain from CPI input  
Maximum Gain from CPI input  
Minimum Gain from MIC input using  
SIDETONE path w/ VCRMIC gain =  
6dB  
–40.5  
6
dB  
dB  
dB  
Headphone Audio Path Gain  
–30  
Maximum Gain from MIC input using  
SIDETONE path w/ VCRMIC gain =  
6dB  
0
dB  
Minimum Gain from AUX input,  
BOOST OFF  
–40.5  
6
dB  
dB  
Maximum Gain from AUX input,  
BOOST OFF  
Minimum Gain from CPI input  
Maximum Gain from CPI input  
Minimum Gain from MIC input using  
SIDETONE path w/ VCRMIC gain =  
6dB  
–28.5  
18  
dB  
dB  
dB  
Earpiece Audio Path Gain  
–18  
Maximum Gain from MIC input using  
SIDETONE path w/ VCRMIC gain =  
6dB  
12  
dB  
Minimum Gain from AUX input,  
BOOST OFF  
–46.5  
0
dB  
dB  
Maximum Gain from AUX input,  
BOOST OFF  
AUXOUT Audio Path Gain  
Minimum Gain from CPI input  
Maximum Gain from CPI input  
Minimum Gain from AUX input,  
BOOST OFF  
–34.5  
12  
dB  
dB  
dB  
–46.5  
Maximum Gain from AUX input,  
BOOST OFF  
0
dB  
CPOUT Audio Path Gain  
Minimum Gain from MIC input  
Maximum Gain from MIC input  
6
dB  
dB  
36  
13  
www.national.com  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
LM4935  
Symbol  
Parameter  
Conditions  
Units  
Typical  
Limit  
(Note 6)  
(Note 7)  
Total DC Power Dissipation  
DAC (fS = 48kHz) and HP ON  
fMCLK = 12MHz, PLL OFF  
fMCLK = 13MHz, PLL ON  
fPLLOUT = 12MHz  
57  
63  
mW  
mW  
MP3 Mode Power Dissipation  
fMCLK = 19.2MHz, PLL ON  
fPLLOUT = 12MHz  
64  
mW  
AUX Inputs selected and HP ON  
fMCLK = 12MHz, PLL OFF  
fMCLK = 13MHz, PLL OFF  
fMCLK = 19.2MHz, PLL OFF  
PCM DAC (fS = 8kHz) + ADC (fS  
8kHz) and EP ON  
24  
25  
27  
mW  
mW  
mW  
FM Mode Power Dissipation  
=
fMCLK = 12MHz, PLL OFF  
fMCLK = 13MHz, PLL OFF  
fMCLK = 19.2MHz, PLL ON  
fPLLOUT = 12MHz  
49  
50  
56  
mW  
mW  
mW  
VOICE CODEC Mode Power  
Dissipation  
CP IN selected. EP and CPOUT ON  
fMCLK = 12MHz, PLL OFF  
30  
31  
33  
mW  
mW  
mW  
VOICE Module Mode Power  
Dissipation  
fMCLK = 13MHz, PLL OFF  
fMCLK = 19.2MHz, PLL OFF  
www.national.com  
14  
10.0 Electrical Characteristics (Notes 1, 2) Unless otherwise stated PLL_VDD = 3.3V, D_VDD = 3.3V,  
BB_VDD = 1.8V, A_VDD = 3.3V, LS_VDD = 3.3V. The following specifications apply for the circuit shown in Figure 2 unless  
otherwise stated. Limits apply for 25˚C. (Continued)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional but do not guarantee specific performance limits.  
Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device  
is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device  
performance.  
Note 2: All voltages are measured with respect to the relevant V pin unless otherwise specified. All grounds should be coupled as close as possible to the device.  
SS  
Note 3: The maximum power dissipation must be de-rated at elevated temperatures and is dictated by TJ  
, θ , and the ambient temperature, T . The maximum  
A
MAX JA  
allowable power dissipation is P  
= (T  
– T )/ θ or the number given in Absolute Maximum Ratings, whichever is lower.  
DMAX  
JMAX A JA  
Note 4: Human body model: 100pF discharged through a 1.5kresistor.  
Note 5: Machine model: 220pF – 240pF discharged through all pins.  
Note 6: Typical values are measured at 25˚C and represent the parametric norm.  
Note 7: Limits are guaranteed to Nationals AOQL (Average Outgoing Quality Level).  
<
<
<
<
>
D_V  
DD  
Note 8: Best operation is achieved by maintaining 3.0V A_V  
5.0 and 3.0V D_V  
3.6V and A_V  
.
DD  
DD  
DD  
Note 9: Digital shutdown current is measured with system clock set for PLL output while the PLL is disabled.  
Note 10: Disabling or bypassing the PLL will usually result in an improvement in noise measurements.  
15  
www.national.com  
11.0 System Control  
Method 1. I2C Compatible Interface  
11.1 I2C SIGNALS  
In I2C mode the LM4935 pin SCL is used for the I2C clock SCL and the pin SDA is used for the I2C data signal SDA. Both these  
signals need a pull-up resistor according to I2C specification. The I2C slave address for LM4935 is 00110102.  
11.2 I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can  
only be changed when SCL is LOW.  
201341Q1  
I2C Signals: Data Validity  
11.3 I2C START AND STOP CONDITIONS  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA signal  
transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH  
while SCL is HIGH. The I2C master always generates START and STOP bits. The I2C bus is considered to be busy after START  
condition and free after STOP condition. During data transmission, I2C master can generate repeated START conditions. First  
START and repeated START conditions are equivalent, function-wise.  
201341Q2  
11.4 TRANSFERRING DATA  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data  
has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter  
releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock  
pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been  
received.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an eighth bit which  
is a data direction bit (R/W). The LM4935 address is 00110102. For the eighth bit, a “0” indicates a WRITE and a “1” indicates a  
READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected  
register.  
201341Q3  
I2C Chip Address  
Register changes take an effect at the SCL rising edge during the last ACK from slave.  
www.national.com  
16  
11.0 System Control (Continued)  
201341Q5  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by slave)  
rs = repeated start  
Example I2C Write Cycle  
17  
www.national.com  
11.0 System Control (Continued)  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read  
Cycle waveform.  
201341Q6  
Example I2C Read Cycle  
201341P9  
I2C Timing Diagram  
11.5 I2C TIMING PARAMETERS  
Symbol  
Parameter  
Limit  
Units  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
Hold Time (repeated) START Condition  
Clock Low Time  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pF  
3
Clock High Time  
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LM4935)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
7
Rise Time of SDA and SCL  
20+0.1Cb  
15+0.1Cb  
600  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
Cb  
Bus Free Time between a STOP and a START Condition  
1.3  
Capacitive Load for Each Bus Line  
10  
200  
NOTE: Data guaranteed by design  
www.national.com  
18  
11.0 System Control (Continued)  
Method 2. SPI/Microwire Control/3–wire Control  
The LM4935 can be controlled via a three wire interface consisting of a clock, data and an active low chip_select. To use this  
control method connect SPI_MODE to BB_VDD and use TEST_MODE/CS as the chip_select as follows:  
20134106  
FIGURE 3. SPI Write Transaction  
If the application requires read access to the register set; for example to determine the cause of an interrupt request or to read  
back a SAR data field, the GPIO2 pin can be configured as an SPI format serial data output by setting the GPIO_SEL in the GPIO  
configuration register (0x1Ah) to SPI_SDO. To perform a read rather than a write to a particular address the MSB of the register  
address field is set to a 1, this effectively mirrors the contents of the register field to read-only locations above 0x80h:  
20134107  
FIGURE 4. SPI Read Transaction  
Three Wire Mode Write Bus Timing  
20134109  
FIGURE 5. SPI Timing  
19  
www.national.com  
12.0 Status & Control Registers  
TABLE 1. Register Map  
Address  
0x00h  
0x01h  
0x02h  
0x03h  
0x04h  
0x05h  
0x06h  
0x07h  
0x08h  
0x09h  
0x0Ah  
0x0Bh  
0x0Ch  
0x0Dh  
0x0Eh  
0x0Fh  
0x10h  
0x11h  
0x12h  
Register  
BASIC  
7
6
5
4
3
2
1
0
OCL  
STEREO  
CAP_SIZE  
R_DIV  
USE_OSC PLL_ENB  
CHP_MODE  
ADCLK DACCLK  
CLOCKS  
PLL_M  
PLLINPUT  
PLL_M  
PLL_N  
RSVD  
RSVD  
MIC  
PLL_N  
PLL_P  
RSVD  
RSVD  
Q_DIV  
PLL_P  
PLL_MOD  
ADC_1  
DITHER_LEVEL  
SAMPLE_RATE  
PLL_N_MOD  
HPF_MODE  
IF216 ADC_I2SM  
NOISE_GATE_THRESHOLD  
AGC_TIGHT  
RIGHT  
LEFT  
CPI  
ADC_2  
AGC_FRAME_TIME  
NG_ON  
ADCMUTE COMPND U/ALAW  
AGC_TARGET AGC_ENB  
AGC_MAX_GAIN  
AGC_HOLD_TIME  
PREAMP_GAIN  
AGC_1  
AGC_2  
AGC_DECAY  
AGC_3  
AGC_ATTACK  
INT_EXT  
MIC_1  
SE_DIFF  
MUTE  
MIC_2  
BTN_DEBOUNCE_TIME BTNTYPE MIC_BIAS_VOLTAGE VCMVOLT  
SIDETONE_ATTEN  
SIDETONE  
CP_INPUT  
AUX_LEFT  
AUX_RIGHT  
DAC  
MUTE  
BOOST  
BOOST  
USAXLVL  
CPI_LEVEL  
AUX_LEFT_LEVEL  
AUX_RIGHT_LEVEL  
DAC_LEVEL  
AUX_DAC  
AUX_DAC  
DACMUTE  
MUTE  
MUTE  
BOOST  
CP_OUTPUT  
MICGATE  
MUTE  
LEFT  
LEFT  
RIGHT  
MIC  
CPI  
0x13h AUX OUTPUT  
MUTE  
MUTE  
LEFT  
LEFT  
RIGHT  
RIGHT  
CPI  
0x14h  
0x15h  
0x16h  
0x17h  
0x18h  
0x19h  
0x1Ah  
0x1Bh  
0x1Ch  
LS_OUTPUT  
HP_OUTPUT  
EP_OUTPUT  
DETECT  
LEFT  
CPI  
MUTE  
MUTE  
RIGHT  
RIGHT  
SIDE  
SIDE  
CPI  
HS_DBNC_TIME  
SARTRG2 SARTRG1  
TEMP_INT BTN_INT DET_INT  
STATUS  
GPIN  
TEMP  
BTN  
MIC  
STEREO HEADSET  
AUDIO_IF_MODE  
GPIO_SEL  
AUDIO_IF  
GPIO  
I2S_SDO_DATA  
GPIODATA PCM_LNG I2S_MODE  
PCMCLMS PCMSYMS I2SCLKMS I2SWSMS  
SAR_CH_SEL  
SLT0ENB  
SLT2ENB  
SAR_SLT0/1  
SAR_SLT2/3  
SLT1ENB  
SLOT1_FS  
SLT2VBB  
SLOT0_FS  
SLT3ENB  
SLOT2_FS  
0x1Dh SAR_DATA_0  
0x1Eh SAR_DATA_1  
SLOT0_DATA  
SLOT1_DATA  
SLOT2_DATA  
SLOT3_DATA  
0x1Fh  
0x20h  
0x21h  
0x22h  
0x23h  
0x24h  
0x25h  
0x26h  
SAR_DATA_2  
SAR_DATA_3  
DC_VOL  
MAX_LVL  
SOURCE  
EFFECT DCVLENB  
TRIG_1  
TRIG_1 [3:0]  
TRIG_2 [3:0]  
RSVD RSVD  
DIR  
ENB  
TRIG_1_MSB  
TRIG_2  
TRIG_1 [11:4]  
TRIG_2 [11:4]  
SOURCE  
DIR  
ENB  
TRIG_2_MSB  
DEBUG  
GPIO_TEST  
_MODE  
RSVD  
SOFT  
RESET  
RSVD  
RSVD  
RSVD  
For all registers, the default setting of data bits 7 through 0 are all set to zero.  
RESERVED bits should always be set to zero.  
www.national.com  
20  
12.0 Status & Control Registers (Continued)  
12.1 BASIC CONFIGURATION REGISTER  
This register is used to control the basic function of the chip.  
TABLE 2. BASIC (0x00h)  
Description  
Bits  
Field  
1:0  
CHIP_MODE  
The LM4935 can be placed in one of four modes which dictate its basic operation. When a new  
mode is selected the LM4935 will change operation silently and will re-configure the power  
management profile automatically. The modes are described as follows:  
CHIP MODE  
Audio System  
Detection System  
Typical Application  
Power-down Mode  
002  
012  
Off  
Off  
Off  
On  
Stand-by mode with headset event  
detection  
102  
112  
On  
On  
Off  
On  
Active without headset event detection  
Active with headset event detection  
2
3
PLL_ENABLE  
USE_OSC  
If set the PLL can be used.  
If set the power management and control circuits will assume that no external clock is available and  
will resort to using an on-chip oscillator for SAR, headset detection and analog power management  
functions such as click and pop.  
5:4  
CAP_SIZE  
Programs the extra delays required to stabilize once charge/discharge is complete, based on the size  
of the bypass capacitor.  
CAP_SIZE  
002  
Bypass Capacitor Size  
Turn-off/on time  
45 ms/75 ms  
45 ms/140 ms  
45 ms/260 ms  
45 ms/500 ms  
0.1 µF  
1 µF  
012  
102  
2.2 µF  
4.7 µF  
112  
6
7
STEREO  
If set, the mixers assume that the signals on the left and right internal busses are highly correlated  
and when these signals are combined their levels are reduced by 6 dB to allow enough headroom for  
them to be summed at the Loudspeaker, Earpiece, CPOUT, and AUXOUT amplifiers. For the  
Headphone amplifier, if this bit is set, the left and right signal levels are routed to the corresponding  
left or right headphone output; if this bit is cleared, the left and the right signals are added and routed  
to both headphone outputs and their levels are reduced by 6dB to allow enough headroom.  
If set the part is placed in OCL (Output Capacitor Less) mode.  
OCL  
For reliable headset / push button detection the following bits should be defined before enabling the headset detection system by  
setting bit 0 of CHIP_MODE:  
The OCL-bit (Cap / Capless headphone interface; bit 7 of this register)  
The headset insert/removal debounce settings (bits 6:3 of DETECT (0x17h))  
The BTN_TYPE-bit (Parallel / Series push button type; bit 3 MIC_2 register (0x0Ch))  
The parallel push button debounce settings (bits 5:4 of MIC_2 register (0x0Ch))  
All register fields controlling the audio system should be defined before setting bit 1 of CHIP_MODE and should not be altered  
while the audio sub-system is active.  
If the analog or digital levels are below −12 dB then it is not necessary to set the stereo bit allowing greater output levels to be  
obtained for such signals.  
21  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.2 CLOCKS CONFIGURATION REGISTER  
This register is used to control the clocks throughout the chip.  
TABLE 3. CLOCKS (0x01h)  
Description  
Bits  
Field  
0
DAC_CLK  
Selects the clock to be used by the audio DAC system.  
DAC_CLK  
DAC Input Source  
PLL Input (MCLK or I2S_CLK)  
PLL Output  
0
1
1
ADC_CLK  
R_DIV  
Selects the clock to be used by the audio ADC system.  
ADC_CLK  
Audio ADC Input Source  
MCLK  
0
1
PLL Output  
7:2  
Programs the R divider (divides from an expected 12.000 MHz input).  
R_DIV  
Divide Value  
0
Bypass  
Bypass  
1.5  
2
1
2
3
4
2.5  
3
5
6
3.5  
4
7
8
9
4.5  
5
10  
5.5  
6
11  
12  
6.5  
7 to 31  
31.5  
32  
13 to 61  
62  
63  
www.national.com  
22  
12.0 Status & Control Registers (Continued)  
12.3 LM4935 CLOCK NETWORK  
The audio ADC operates at 125*fs, so it requires a 1.000 MHz clock to sample at 8 kHz (at point C as marked on the following  
diagram). The stereo DAC operates at 250*fs, i.e. 12.000 MHz (at point B) for 48 kHz data. It is expected that the PLL is used  
to drive the audio system unless a 12.000 MHz master clock is supplied and the sample rate is always a multiple of 8 kHz, in  
which case the PLL can be bypassed to reduce power, clock division instead being performed by the Q and R dividers. The PLL  
can also use the I2S clock input as a source. In this case, the audio DAC uses the clock from the output of the PLL and the audio  
ADC either uses the PLL output divided by 2*FSDAC/FSADC or a system clock divided by Q, this allows n*8 kHz recording and  
44.1 kHz playback.  
MCLK must be less than or equal to 30 MHz, the I2S clock should be an integer multiple of the DAC’s sampling frequency and  
should be below 6 MHz.  
When using the Class D amplifier with the DAC the Class D clock generator will assume 12 MHz at point A, if this is not the case  
then the DAC and power stage may become unsynchronized and SNR performance may be reduced.  
The LM4935 is designed to work from a 12.000 MHz or 11.025 MHz clock at point A. This is used to drive the power management  
and control logic. Performance may not meet the electrical specifications if the frequency at this point deviates significantly  
beyond this range.  
20134110  
FIGURE 6. LM4935 Clock Network  
23  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.4 COMMON CLOCK SETTINGS FOR THE DAC & ADC  
The DAC has an over sampling rate of 125 but requires a 250*fs clock at point B. This allows a simple clocking solution as it will  
work from 12.000 MHz (common in most systems with Bluetooth or USB) at 48 kHz exactly, the following table describes the clock  
required at point B for various clock sample rates in the different DAC modes:  
TABLE 4. Common DAC Clock Frequencies  
DAC Sample Rate (kHz)  
Clock Required at B (MHz)  
8
11.025  
12  
2
2.75625  
3
16  
4
5.5125  
6
22.05  
24  
32  
8
44.1  
48  
11.025  
12  
The ADC has an over sampling ratio of 125 so the table below shows the required clock frequency at point C.  
TABLE 5. Common ADC Clock Frequencies  
ADC Sample Rate (kHz)  
Clock Required at C (MHz)  
8
11.025  
12  
1
1.378125  
1.5  
16  
2
2.75625  
3
22.05  
24  
Methods for producing these clock frequencies are described in the PLL Section.  
www.national.com  
24  
12.0 Status & Control Registers (Continued)  
12.5 PLL M DIVIDER CONFIGURATION REGISTER  
This register is used to control the input section of the PLL.  
TABLE 6. PLL_M (0x02h)  
Description  
Bits  
0
Field  
RSVD  
PLL_M  
RESERVED  
6:1  
PLL_M  
Input Divider Value  
0
1
1
2
2
3
3
4
4...62  
63  
5...63  
64  
7
PLL_INPUT  
Programs the PLL input multiplexer to select between:  
PLL_INPUT  
PLL Input Source  
MCLK  
0
1
I2S_CLK  
The M divider should be set such that the output of the divider is between 0.5 MHz and 5 MHz.  
The division of the M divider is derived from PLL_M such that:  
M = PLL_M + 1  
Note 11: See Further Notes on PLL Programming for more detail.  
25  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.6 PLL N DIVIDER CONFIGURATION REGISTER  
This register is used to control the feedback divider of the PLL.  
TABLE 7. PLL_N (0x03h)  
Description  
Bits  
Field  
7:0  
PLL_N  
Programs the PLL feedback divider as follows:  
PLL_N  
Feedback Divider Value  
0 to 10  
10  
11  
11  
12  
12  
13  
14  
13  
14  
249  
249  
250  
250 to 255  
The N divider should be set such that the output of the divider is between 0.5 MHz and 5 MHz. (Fin/M)*N will be the target resting  
<
<
VCO frequency, FVCO. The N divider should be set such that 40 MHz (Fin/M)*N 60 MHz. Fin/M is often referred to as Fcomp  
(comparison frequency) or Fref (reference frequency), in this document Fcomp is used.  
The integer division of the N divider is derived from PLL_N such that:  
<
<
For 9 PLL_N 251: N = PLL_N  
Note 12: See Further Notes on PLL Programming for further details.  
www.national.com  
26  
12.0 Status & Control Registers (Continued)  
12.7 PLL P DIVIDER CONFIGURATION REGISTER  
This register is used to control the output divider of the PLL.  
TABLE 8. PLL_P (0x04h)  
Description  
Bits  
0
Field  
RSVD  
PLL_P  
RESERVED  
3:1  
PLL_P  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
Output Divider Value  
1
2
3
4
5
6
7
8
6:4  
Q_DIV  
Programs the Q Divider (divides from an expected 12.000 MHz input).  
Q_DIV  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
Divide Value  
2
3
4
6
8
10  
12  
13  
7
RSVD  
RESERVED  
The division of the P divider is derived from PLL_P such that:  
P = PLL_P + 1  
Note 13: See Further Notes on PLL Programming for more details.  
27  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.8 PLL N MODULUS CONFIGURATION REGISTER  
This register is used to control the modulation applied to the feedback divider of the PLL.  
TABLE 9. PLL_N_MOD (0x05h)  
Bits  
Field  
Description  
Programs the PLL N divider’s fractional component:  
4:0  
PLL_N_MOD  
PLL_N_MOD  
Fractional Addition  
0/32  
0
1
1/32  
2 to 30  
2/32 to 30/32  
31/32  
31  
6:5  
DITHER_LEVEL  
Allows control over the dither used by the N divider:  
DITHER_LEVEL  
Value  
Medium  
Small  
Large  
Off  
002  
012  
102  
112  
7
RSVD  
RESERVED  
The complete N divider is a fractional divider as such:  
N = PLL_N + PLL_N_MOD/32  
If the modulus input is zero then the N divider is simply an integer N divider. The output from the PLL is determined by the  
following formula:  
Fout = (Fin*N)/(M*P)  
Note 14: See Further Notes on PLL Programming for more details.  
www.national.com  
28  
12.0 Status & Control Registers (Continued)  
12.9 FURTHER NOTES ON PLL PROGRAMMING  
The sigma-delta PLL is designed to drive audio circuits requiring accurate clock frequencies of up to 30 MHz with frequency errors  
noise-shaped away from the audio band. The 5 bits of modulus control provide exact synchronization of 48 kHz and 44.1 kHz  
sample rates from any common system clock. In systems where an isochronous I2S data stream is the source of data to the DAC  
a clock synchronous to the sample rate should be used as input to the PLL (typically the I2S clock). If no isochronous source is  
available then the PLL can be used to obtain a clock that is accurate to within 1 Hz of the correct sample rate although this is  
highly unlikely to be a problem.  
20134111  
FIGURE 7. PLL Overview  
TABLE 10. Example PLL Settings for 48 kHz and 44.1 kHz Sample Rates  
Fin (MHz)  
11  
Fs (kHz)  
48  
M
11  
4
N
P
5
5
5
5
5
5
5
6
5
5
5
5
5
5
5
5
5
5
5
4
5
PLL_M  
10  
3
PLL_N  
60  
PLL_N_MOD  
PLL_P  
Fout (MHz)  
12  
60  
0
17  
0
4
4
4
4
4
4
4
5
4
4
4
4
4
4
4
4
4
4
4
3
4
12.288  
13  
48  
19.53125  
60  
19  
12  
48  
13  
9
12  
8
60  
12  
14.4  
16.2  
16.8  
19.2  
19.44  
19.68  
19.8  
11  
48  
37.5  
37  
16  
0
12  
48  
27  
14  
13  
27  
21  
17  
11  
8
100  
26  
13  
12  
26  
20  
16  
10  
7
100  
50  
12  
48  
50  
0
12  
48  
40.625  
100  
40  
20  
0
12  
48  
100  
64  
12  
48  
64.03125  
51.5  
1
12  
48  
51  
16  
4
12  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
55.125  
39.0625  
22.96875  
55.125  
45.9375  
30.625  
55.78125  
45.9375  
39.6875  
47.0625  
30.625  
55  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.2896  
12  
39  
2
5
4
22  
31  
4
13  
13  
12  
9
12  
11  
8
55  
14.4  
16.2  
16.8  
19.2  
19.44  
19.68  
19.8  
45  
30  
20  
25  
30  
22  
2
9
17  
16  
14  
21  
11  
16  
15  
13  
20  
10  
30  
45  
39  
47  
30  
204  
29  
www.national.com  
12.0 Status & Control Registers (Continued)  
These tables cover the most common applications, obtaining clocks for derivative sample rates such as 22.05 kHz should be  
done by increasing the P divider value or using the R/Q dividers.  
If the user needs to obtain a clock unrelated to those described above, the following method is advised. An example of obtaining  
12.000 MHz from 1.536 MHz is shown below (this is typical for deriving DAC clocks from I2S datastreams).  
Choose a small range of P so that the VCO frequency is swept between 40 MHz and 60 MHz. So for P = 3 to 5, sweep the M  
inputs from 1 to 3. The most accurate N and N_MOD can be calculated by:  
N = FLOOR(((Fout/Fin)*(P*M)),1)  
N_MOD = ROUND(32*((((Fout)/Fin)*(P*M)-N),0)  
This shows that setting M = 1, N = 39+1/16, P = 5 (i.e. PLL_M = 0, PLL_N = 39, PLL_N_MOD = 2, & PLL_P = 4) gives a  
comparison frequency of 1.5 MHz, a VCO frequency of 60 MHz and an output frequency of 12.000 MHz. The same settings can  
be used to get 11.025 from 1.4112 MHz for 44.1 kHz sample rates.  
Care must be taken when synchronization of isochronous data is not possible, i.e. when the PLL has to be used but an exact  
frequency match cannot be found. The I2S should be master on the LM4935 so that the data source can support appropriate SRC  
as required. This method should only be used with data being read on demand to eliminate sample rate mismatch problems.  
Where a system clock exists at an integer multiple of the required ADC or DAC clock rate it is preferable to use this rather than  
the PLL. The LM4935 is designed to work in 8, 12, 16, 24, 48 kHz modes from a 12 MHz clock and 8, 13, 26, 52 kHz modes from  
a 13 MHz clock without the use of the PLL. This saves power and reduces clock jitter which can affect SNR.  
The actual ADC and DAC sample rates are set up by the PLL and internal clock dividers.  
www.national.com  
30  
12.0 Status & Control Registers (Continued)  
12.10 ADC_1 CONFIGURATION REGISTER  
This register is used to control the LM4935’s audio ADC.  
TABLE 11. ADC_1 (0x06h)  
Description  
Bits  
0
Field  
MIC_SELECT  
CPI_SELECT  
LEFT_SELECT  
If set the microphone preamp output is added to the ADC input signal.  
If set the cell phone input is added to the ADC input signal.  
If set the left stereo bus is added to the ADC input signal.  
1
2
3
RIGHT_SELECT If set the right stereo bus is added to the ADC input signal.  
5:4  
ADC_SAMPLE_  
RATE  
Programs the closest expected sample rate of the mono ADC, which is a variable required by the  
AGC algorithm whenever the AGC is in use. This does not set the sample rate of the mono ADC.  
ADC_SAMPLE_RATE  
Sample Rate  
8 kHz  
002  
012  
102  
112  
12 kHz  
16 kHz  
24 kHz  
7:6  
HPF_MODE  
Sets the HPF of the ADC  
HPF-MODE  
002  
HPF Response  
No HPF  
@ @  
FS = 8 kHz, −0.5 dB 300 Hz, Notch 55 Hz  
012  
@
@
FS = 12 kHz, −0.5 dB 450 Hz, Notch 82 Hz  
@
@
FS = 16 kHz, −0.5 dB 600 Hz, Notch 110 Hz  
@ @  
FS = 8 kHz, −0.5 dB 150 Hz, Notch 27 Hz  
102  
112  
@
@
FS = 12 kHz, −0.5 dB 225 Hz, Notch 41 Hz  
@
@
FS = 16 kHz, −0.5 dB 300 Hz, Notch 55 Hz  
No HPF  
31  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.11 ADC_2 CONFIGURATION REGISTER  
This register is used to control the LM4935’s audio ADC.  
TABLE 12. ADC_2 (0x07h)  
Description  
Bits  
Field  
0
ULAW/ALAW  
If COMPAND is set then the data across the PCM interface to the DAC and from the ADC is  
companded as follows:  
ULAW/ALAW  
Commanding Type  
µ-law  
0
1
A-law  
1
2
COMPAND  
ADC_MUTE  
If set the 16 bit PCM data from the ADC is companded before the PCM interface and the PCM  
data to the DAC is treated as companded data.  
If set the analog inputs to the ADC are muted.  
5:3 AGC_FRAME_TIME This sets the frame time to be used by the AGC algorithm. In a given frame, the AGC’s peak  
detector determines the peak value of the incoming microphone audio signal and compares this  
value to the target value of the AGC defined by AGC_TARGET (bits [3:1] of register (0x08h)) in  
order to adjust the microphone preamplifiers gain accordingly. AGC_FRAME_TIME basically sets  
the sample rate of the AGC to adjust for a wide variety of speech patterns. (Note 15)  
AGC_FRAME_TIME  
Time (ms)  
96  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
128  
192  
256  
384  
512  
768  
1000  
6
7
ADC_I2S_M  
If set the DAC clock system is enabled to drive the I2S in master mode. The Point B frequency  
should be double that at Point C. This bit should be set when using the I2S interface in master  
mode to read SAR information whenever both the audio ADC and DAC are inactive.  
AUDIO_IF_2_16BIT If set the PCM and I2S interfaces are 16 bits per word in master mode. The 2 last clock cycles per  
word are 25% shorter to allow generation.  
Note 15: Refer to the AGC overview for further detail.  
www.national.com  
32  
12.0 Status & Control Registers (Continued)  
12.12 AGC_1 CONFIGURATION REGISTER  
This register is used to control the LM4935’s Automatic Gain Control. (Note 16)  
TABLE 13. AGC_1 (0x08h)  
Bits  
Field  
Description  
0
AGC_ENABLE  
If set the AGC controls the analog microphone preamplifier gain into the system. The microphone  
input must be passed to the ADC.  
3:1  
AGC_TARGET  
Programs the target level of the AGC. This will depend on the expected transients and desired  
headroom. Refer to AGC_TIGHT (bit 7 of 0x09h) for more detail.  
AGC_TARGET  
0002  
Target Level  
−6 dB  
0012  
−8 dB  
0102  
−10 dB  
−12 dB  
−14 dB  
−16 dB  
−18 dB  
−20 dB  
0112  
1002  
1012  
1102  
1112  
4
NOISE_GATE_ON If set, signals below the noise gate threshold are muted.The noise gate is only activated after a set  
period of signal absence.  
7:5  
NOISE_  
GATE_  
THRES  
This field sets the expected background noise level relative to the peak signal level. The sole  
presence of signals below this level will not result in an AGC gain change of the input and will be  
gated from the ADC output if the NOISE_GATE_ON is set. This level must be set even if the noise  
gate is not in use as it is required by the AGC algorithm.  
NOISE_GATE_THRES  
Level  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
−72 dB  
−66 dB  
−60 dB  
−54 dB  
−48 dB  
−42 dB  
−36 dB  
−30 dB  
Note 16: See the AGC overview.  
33  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.13 AGC_2 CONFIGURATION REGISTER  
This register is used to control the LM4935’s Automatic Gain Control.  
TABLE 14. AGC_2 (0x09h)  
Description  
AGC_MAX_GAIN This programs the maximum gain that the AGC algorithm can apply to the microphone preamplifier.  
Bits  
Field  
3:0  
AGC_MAX_GAIN  
00002  
Max Preamplifier Gain  
6 dB  
8 dB  
00012  
00102  
10 dB  
00112  
12 dB  
01002 to 11002  
11012  
14 dB to 30 dB  
32 dB  
11102  
34 dB  
11112  
36 dB  
6:4  
AGC_DECAY  
Programs the speed at which the AGC will increase gains if it detects the input level is a quiet  
signal.  
AGC_DECAY  
0002  
Step Time (ms)  
32  
64  
0012  
0102  
128  
256  
512  
1024  
2048  
4096  
0112  
1002  
1012  
1102  
1112  
7
AGC_TIGHT  
If set the AGC algorithm controls the microphone preamplifier more exactly. (Note 17)  
AGC_TIGHT = 0  
AGC_TARGET  
0002  
Min Level  
−6 dB  
Max Level  
−3 dB  
0012  
−8 dB  
−4 dB  
0102  
−10 dB  
−12 dB  
−14 dB  
−16 dB  
−18 dB  
−20 dB  
−6 dB  
−5 dB  
0112  
−6 dB  
1002  
−7 dB  
1012  
−8 dB  
1102  
−9 dB  
1112  
−10 dB  
−3 dB  
AGC_TIGHT = 1  
0002  
0012  
−8 dB  
−5 dB  
0102  
−10 dB  
−12 dB  
−14 dB  
−16 dB  
−18 dB  
−20 dB  
−7 dB  
0112  
−9 dB  
1002  
−11 dB  
−13 dB  
−15 dB  
−17 dB  
1012  
1102  
1112  
Note 17: The AGC can be used to control the analog path of the microphone to the output stages or to optimize the microphone path for recording on the ADC.  
When the analog path is used this bit should be set to ensure the target is tightly adhered to. If the ADC is the only destination of the microphone or the desired analog  
mixer level is line level then AGC_TIGHT should be cleared, allowing greater dynamic rage of the recorded signal. For further details see the AGC overview.  
www.national.com  
34  
12.0 Status & Control Registers (Continued)  
12.14 AGC_3 CONFIGURATION REGISTER  
This register is used to control the LM4935’s Automatic Gain Control. (Note 18)  
TABLE 15. AGC_3 (0x0Ah)  
Bits  
Field  
Description  
4:0  
AGC_HOLDTIME Programs the amount of delay before the AGC algorithm begins to adjust the gain of the  
microphone preamplifier.  
AGC_HOLDTIME  
000002  
No. of speech segments  
0
000012  
1
2
000102  
000112  
3
001002 to 111002  
111012  
4 to 28  
29  
111102  
30  
111112  
31  
7:5  
AGC_ATTACK  
Programs the speed at which the AGC will reduce gains if it detects the input level is too large.  
AGC_ATTACK  
0002  
Step Time (ms)  
32  
64  
0012  
0102  
128  
256  
512  
1024  
2048  
4096  
0112  
1002  
1012  
1102  
1112  
Note 18: See the AGC overview.  
35  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.15 AGC OVERVIEW  
The Automatic Gain Control (AGC) system can be used to optimize the dynamic range of the ADC for voice data when the level  
of the source is unknown. A target level for the output is set so that any transients on the input won’t clip during normal operation.  
The AGC circuit then compares the output of the ADC to this level and increases or decreases the gain of the microphone  
preamplifier to compensate. If the audio from the microphone is to be output digitally through the ADC then the full dynamic range  
of the ADC can be used automatically. If the output is through the analog mixer then the ADC is used to monitor the microphone  
level. In this case, the analog dynamic range is less important than the absolute level, so AGC_TIGHT should be set to tie  
transients closely to the target level.  
To ensure that the system doesn’t reduce the quality of the speech by constantly modulating the microphone preamplifier gain,  
the ADC output is passed through an envelope detector. This frames the output of the ADC into time segments roughly equal to  
the phonemes found in speech (AGC_FRAME_TIME). To calculate this, the circuit must also know the sample rate of the data  
from the ADC (ADC_SAMPLERATE). If after a programmable number of these segments (AGC_HOLDTIME), the level is  
consistently below target, the gain will be increased at a programmable rate (AGC_DECAY). If the signal ever exceeds the target  
level (AGC_TARGET) then the gain of the microphone is reduced immediately at a programmable rate (AGC_ATTACK). This is  
demonstrated below:  
20134112  
AGC Operation Example  
The signal in the above example starts with a small analog input which, after the hold time has timed out, triggers a rise in the  
gain ((1)  
(2)). After some time the real analog input increases and it reaches the threshold for a gain reduction which decreases  
the gain at a faster rate ((2)  
(3)) to allow the elimination of typical popping noises.  
Only ADC outputs that are considered signal (rather than noise) are used to adjust the microphone preamplifier gain. The signal  
to noise ratio of the expected input signal is set by NOISE_GATE_THRESHOLD. In some situations it is preferable to remove  
audio considered to be consisting solely of background noise from the audio output; for example conference calls. This can be  
done by setting NOISE_GATE_ON. This does not affect the performance of the AGC algorithm.  
The AGC algorithm should not be used where very large background noise is present. If the type of input data, application and  
microphone is known then the AGC will typically not be required for good performance, it is intended for use with inputs with a  
large dynamic range or unknown nominal level. When setting NOISE_GATE_THRESHOLD be aware that in some mobile phone  
scenarios the ADC SNR will be dictated by the microphone performance rather than the ADC or the signal. Gain changes to the  
microphone are performed on zero crossings. To eliminate DC offsets, wind noise, and pop sounds from the output of the ADC,  
the ADC’s HPF should always be enabled.  
www.national.com  
36  
12.0 Status & Control Registers (Continued)  
12.16 MIC_1 CONFIGURATION REGISTER  
This register is used to control the microphone configuration.  
TABLE 16. MIC_1 (0x0Bh)  
Description  
Programs the gain applied to the microphone preamplifier if the AGC is not in use.  
Bits  
Field  
3:0  
PREAMP_GAIN  
PREAMP_GAIN  
Gain  
6 dB  
00002  
00012  
8 dB  
00102  
10 dB  
00112  
12 dB  
01002 to 11002  
14 dB to 30 dB  
32 dB  
11012  
11102  
11112  
34 dB  
36 dB  
4
5
MIC_MUTE  
If set the microphone preamplifier is muted.  
INT_SE_DIFF  
If set the internal microphone is assumed to be single ended and the negative connection is  
connected to the ADC common mode point internally. This allows a single-ended internal  
microphone to be used.  
6
INT_EXT  
If set the single ended external microphone is used and the negative microphone input is grounded  
internally, otherwise internal microphone operation is assumed. (Note 19)  
Note 19: On changing INT_EXT from internal to external note that the dc blocking cap will not be charged so some time should be taken (300 ms for a 1 µF cap)  
between the detection of an external headset and the switching of the output stages and ADC to that input to allow the DC points on either side of this cap to stabilize.  
This can be accomplished by deselecting the microphone input from the audio outputs and ADC until the DC points stabilize.  
An active MIC path to CPOUT or the ADC may result in the microphone DC blocking caps causing audio pops under the following situations:  
1) Switching between internal and external microphone operation while in chip modes ’10’ or ’11’.  
2) Toggling in and out of powerdown/standby modes.  
3) Toggling between chip modes ’10’ and ’11’ whenever external microphone operation is selected.  
4) The insertion/removal of a headset while in chip modes ’10’ or ’11’ whenever external microphone operation is selected.  
To avoid these potential pop issues, it is recommended to deselect the microphone input from CPOUT and ADC until the DC points stabilize.  
37  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.17 MIC_2 CONFIGURATION REGISTER  
This register is used to control the microphone configuration.  
TABLE 17. MIC_2 (0x0Ch)  
Description  
Bits  
Field  
OCL_  
0
Selects the voltage used as virtual ground (HP_VMID pin) in OCL mode. This will depend on the  
available supply and the power output requirements of the headphone amplifiers.  
VCM_  
VOLTAGE  
OCL_VCM_VOLTAGE  
Voltage  
1.2V  
0
1
1.5V  
2:1  
MIC_  
BIAS_  
Selects the voltage as a reference to the internal and external microphones. Only one bias pin is  
driven at once depending on the INT_EXT bit setting found in the MIC_1 (0x0Bh) register.  
>
VOLTAGE  
MIC_BIAS_VOLTAGE should be set to ’11’ only if A_VDD 3.4V. In OCL mode,  
MIC_BIAS_VOLTAGE = ’00’ (EXT_BIAS = 2.0V) should not be used to generate the EXT_BIAS  
supply for a cellular headset external microphone. Please refer to Table 18 for more detail.  
MIC_BIAS_VOLTAGE  
EXT_BIAS  
2.0V  
INT_BIAS  
2.0V  
002  
012  
102  
112  
2.5V  
2.5V  
2.8V  
2.8V  
3.3V  
3.3V  
3
BUTTON_TYPE If set the LM4935 assumes that the button (if used) in the headset is in series (series push button)  
with the microphone, opening the circuit when pressed. The default is for the button to be in parallel  
(parallel push button), shorting out the microphone when pressed.  
5:4  
BUTTON_  
DEBOUNCE_  
TIME  
Sets the time used for debouncing the pushing of the button on a headset with a parallel push  
button.  
BUTTON_DEBOUNCE_TIME  
Time (ms)  
002  
012  
102  
112  
0
8
16  
32  
In OCL mode there is a trade-off between the external microphone supply voltage (EXT_MIC_BIAS - OCL_VCM_ VOLTAGE) and  
the maximum output power possible from the headphones. A lower OCL_VCM_VOLTAGE gives a higher microphone supply  
voltage but a lower maximum output power from the headphone amplifiers due to the lower OCL_VCM_VOLTAGE - A_VSS  
.
TABLE 18. External MIC Supply Voltages in OCL Mode  
Available  
A_VDD  
Recommended  
EXT_MIC_BIAS  
Supply to Microphone  
OCL_VCM_VOLT = 1.5V  
OCL_VCM_VOLT = 1.2V  
>
3.4V  
3.3V  
2.8V  
2.5V  
2.5V  
1.8V  
1.3V  
1.0V  
-
2.1V  
1.6V  
1.3V  
1.3V  
2.9V to 3.4V  
2.8V to 2.9V  
2.7V to 2.8V  
www.national.com  
38  
12.0 Status & Control Registers (Continued)  
12.18 SIDETONE ATTENUATION REGISTER  
This register is used to control the analog sidetone attenuation. (Note 20)  
TABLE 19. SIDETONE (0x0Dh)  
Bits  
Field  
SIDETONE_  
ATTEN  
Description  
3:0  
Programs the attenuation applied to the microphone preamp output to produce a sidetone signal.  
SIDETONE_ATTEN  
00002  
Attenuation  
-Inf  
00012  
−30 dB  
00102  
−27 dB  
00112  
−24 dB  
01002  
−21 dB  
01012 to 10102  
10112 to 11112  
−18 dB to −3 dB  
0 dB  
Note 20: An active SIDETONE path to an audio output may result in the microphone DC blocking caps causing audio pops under the following situations:  
1) Switching between internal and external microphone operation while in chip modes ’10’ or ’11’.  
2) Toggling in and out of powerdown/standby modes.  
3) Toggling between chip modes ’10’ and ’11’ whenever external microphone operation is selected.  
4) The insertion/removal of a headset while in chip modes ’10’ or ’11’ whenever external microphone operation is selected.  
To avoid potential pop noises, it is recommended to set SIDETONE_ATTEN to ’0000’ until DC points have stabilized whenever the SIDETONE path is used.  
39  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.19 CP_INPUT CONFIGURATION REGISTER  
This register is used to control the differential cell phone input.  
TABLE 20. CP_INPUT (0x0Eh)  
Description  
Bits  
Field  
4:0  
CPI_LEVEL  
Programs the gain/attenuation applied to the cell phone input.  
CPI_LEVEL  
Level  
−34.5 dB  
−33 dB  
000002  
000012  
000102  
−31.5 dB  
−30 dB  
000112  
00100 to 111002  
−28.5 dB to +7.5 dB  
+9 dB  
111012  
111102  
111112  
+10.5 dB  
+12 dB  
5
CPI_MUTE  
If set the CPI input is muted at source.  
www.national.com  
40  
12.0 Status & Control Registers (Continued)  
12.20 AUX_LEFT CONFIGURATION REGISTER  
This register is used to control the left aux analog input.  
TABLE 21. AUX_LEFT (0x0Fh)  
Description  
Programs the gain/attenuation applied to the AUX LEFT analog input to the mixer. (Note 21)  
Bits  
Field  
AUX_  
LEFT_  
LEVEL  
4:0  
AUX_LEFT_LEVEL  
000002  
Level (With Boost)  
−34.5 dB  
Level (Without Boost)  
−46.5 dB  
000012  
−33 dB  
−45 dB  
000102  
−31.5 dB  
−43.5 dB  
000112  
−30 dB  
−42 dB  
00100 to 111002  
111012  
−28.5 dB to +7.5 dB  
+9 dB  
−40.5 dB to −4.5 dB  
−3 dB  
111102  
+10.5 dB  
−1.5 dB  
111112  
+12 dB  
0 dB  
5
AUX_  
LEFT_  
If set the gain of the AUX_LEFT input to the mixer is increased by 12 dB (see above).  
BOOST  
6
7
AUX_L_MUTE  
If set the AUX LEFT input is muted.  
AUX_OR_DAC_L If set the AUX LEFT input is passed to the mixer, the default is for the DAC LEFT output to be  
passed to the mixer.  
Note 21: The recommended mixer level is 1V RMS. The auxiliary analog inputs can be boosted by 12 dB if enough headroom is available. Clipping may occur if  
the analog power supply is insufficient to cater for the required gain.  
41  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.21 AUX_RIGHT CONFIGURATION REGISTER  
This register is used to control the right aux analog input.  
TABLE 22. AUX_RIGHT (0x10h)  
Description  
Programs the gain/attenuation applied to the AUX RIGHT analog input to the mixer. (Note 22)  
Bits  
Field  
AUX_  
4:0  
RIGHT_  
LEVEL  
AUX_RIGHT_LEVEL  
000002  
Level (With Boost)  
−34.5 dB  
Level (Without Boost)  
−46.5 dB  
000012  
−33 dB  
−45 dB  
000102  
−31.5 dB  
−43.5 dB  
000112  
−30 dB  
−42 dB  
00100 to 111002  
111012  
−28.5 dB to +7.5 dB  
+9 dB  
−40.5 dB to −4.5 dB  
−3 dB  
111102  
+10.5 dB  
−1.5 dB  
111112  
+12 dB  
0 dB  
5
AUX_  
If set the gain of the AUX_RIGHT input to the mixer is increased by 12 dB (see above).  
RIGHT_BOOST  
AUX_R_MUTE  
6
7
If set the AUX RIGHT input is muted.  
AUX_OR_DAC_R If set the AUX RIGHT input is passed to the mixer, the default is for the DAC RIGHT output to be  
passed to the mixer.  
Note 22: The recommended mixer level is 1V RMS. The auxiliary analog inputs can be boosted by 12 dB if enough headroom is available. Clipping may occur if  
the analog power supply is insufficient to cater for the required gain.  
www.national.com  
42  
12.0 Status & Control Registers (Continued)  
12.22 DAC CONFIGURATION REGISTER  
This register is used to control the DAC levels to the mixer.  
TABLE 23. DAC (0x11h)  
Description  
Programs the gain/attenuation applied to the DAC input to the mixer. (Note 23)  
Bits  
Field  
4:0  
DAC_LEVEL  
DAC_LEVEL  
000002  
Level (With Boost)  
−34.5 dB  
Level (Without Boost)  
−46.5 dB  
000012  
−33 dB  
−45 dB  
000102  
−31.5 dB  
−43.5 dB  
000112  
−30 dB  
−42 dB  
00100 to 111002  
111012  
−28.5 dB to +7.5 dB  
+9 dB  
−40.5 dB to −4.5 dB  
−3 dB  
111102  
+10.5 dB  
−1.5 dB  
111112  
+12 dB  
0 dB  
5
USE_AUX_  
LEVELS  
If set the gain of the DAC inputs is controlled by the AUX_LEFT and AUX_RIGHT registers, allowing  
a stereo balance to be applied.  
6
7
BOOST  
If set the gain of the DAC inputs to the mixer is increased by 12 dB (see above).  
If set the stereo DAC input is muted on the next zero crossing.  
DAC_MUTE  
Note 23: The output from the DAC is 1V RMS for a full scale digital input. This can be boosted by 12 dB if enough headroom is available. Clipping may occur if the  
analog power supply is insufficient to cater for the required gain.  
43  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.23 CP_OUTPUT CONFIGURATION REGISTER  
This register is used to control the differential cell phone output. (Note 24)  
TABLE 24. CP_OUTPUT (0x12h)  
Bits  
0
Field  
Description  
MIC_SELECT  
RIGHT_SELECT  
LEFT_SELECT  
CPO_MUTE  
If set the microphone channel of the mixer is added to the cellphone output signal.  
If set the right channel of the mixer is added to the cellphone output signal.  
If set the left channel of the mixer is added to the cellphone output signal.  
If set the CPOUT output is muted.  
1
2
3
4
MIC_NOISE_GATE If this is set and NOISE_GATE_ON (register 0x08h) is enabled, the MIC to CPO path will be  
gated if the signal is determined to be noise by the AGC (that is, if the signal is below the set  
noise threshold).  
Note 24: The gain of cell phone output amplifier is 0 dB.  
www.national.com  
44  
12.0 Status & Control Registers (Continued)  
12.24 AUX_OUTPUT CONFIGURATION REGISTER  
This register is used to control the differential auxiliary output. (Note 25)  
TABLE 25. AUX_OUTPUT (0x13h)  
Description  
Bits  
0
Field  
CPI_SELECT  
RIGHT_SELECT  
LEFT_SELECT  
AUX_MUTE  
If set the cell phone input channel of the mixer is added to the aux output signal.  
If set the right channel of the mixer is added to the aux output signal.  
If set the left channel of the mixer is added to the aux output signal.  
If set the aux output is muted.  
1
2
3
Note 25: The gain of the auxiliary output amplifier is 0 dB. If a second (external) loudspeaker amplifier is to be used its gain should be set to 12 dB to match the  
onboard loudspeaker amplifier gain.  
45  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.25 LS_OUTPUT CONFIGURATION REGISTER  
This register is used to control the loudspeaker output. (Note 26)  
TABLE 26. LS_OUTPUT (0x14h)  
Description  
Bits  
0
Field  
CPI_SELECT  
RIGHT_SELECT  
LEFT_SELECT  
LS_MUTE  
If set the cell phone input channel of the mixer is added to the loudspeaker output signal.  
If set the right channel of the mixer is added to the loudspeaker output signal.  
If set the left channel of the mixer is added to the loudspeaker output signal.  
If set the loudspeaker output is muted.  
1
2
3
Note 26: The gain of the loudspeaker output amplifier is 12 dB.  
www.national.com  
46  
12.0 Status & Control Registers (Continued)  
12.26 HP_OUTPUT CONFIGURATION REGISTER  
This register is used to control the stereo headphone output. (Note 27)  
TABLE 27. HP_OUTPUT (0x15h)  
Description  
Bits  
0
Field  
SIDETONE_SELECT  
CPI_SELECT  
If set the sidetone channel of the mixer is added to both of the headphone output signals.  
If set the cell phone input channel of the mixer is added to both of the headphone output  
signals.  
1
2
3
4
RIGHT_SELECT  
LEFT_SELECT  
HP_MUTE  
If set the right channel of the mixer is added to the headphone output. If the STEREO bit  
(0x00h) is set, the right channel is added to the right headphone output signal only. If the  
STEREO bit (0x00h) is cleared, it is added to both the right and left headphone output  
signals.  
If set the left channel of the mixer is added to the headphone output. If the STEREO bit  
(0x00h) is set, the left channel is added to the left headphone output signal only. If the  
STEREO bit (0x00h) is cleared, it is added to both the right and left headphone output  
signals.  
If set the headphone output is muted.  
Note 27: The gain of the headphone output amplifier is –6 dB for the cell phone input channel and sidetone channel of the mixer. When the STEREO bit (0x00h)  
is set, headphone output amplifier gain is –6 dB for the left and right channel. When the STEREO bit (0x00h) is cleared, the headphone output amplifier gain is –12  
dB for the left and right channel (to allow enough headroom for adding them and routing them to both headphone amplifiers).  
47  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.27 EP_OUTPUT CONFIGURATION REGISTER  
This register is used to control the mono earpiece output. (Note 28)  
TABLE 28. EP_OUTPUT (0x16h)  
Description  
Bits  
0
Field  
SIDETONE_SELECT  
CPI_SELECT  
If set the sidetone channel of the mixer is added to the earpiece output signal.  
If set the cell phone input channel of the mixer is added to the earpiece output signal.  
If set the right channel of the mixer is added to the earpiece output signal.  
If set the left channel of the mixer is added to the earpiece output signal.  
If set the earpiece output is muted.  
1
2
RIGHT_SELECT  
LEFT_SELECT  
EP_MUTE  
3
4
Note 28: The gain of the earpiece output amplifier is 6 dB.  
www.national.com  
48  
12.0 Status & Control Registers (Continued)  
12.28 DETECT CONFIGURATION REGISTER  
This register is used to control the headset detection system.  
TABLE 29. DETECT (0x17h)  
Description  
Bits  
Field  
0
DET_INT  
If set an IRQ is raised when a change is detected in the headset status. Clearing this bit will clear  
an IRQ that has been triggered by the headset detect.  
1
2
BTN_INT  
If set an IRQ is raised when the headset button is pressed. Clearing this bit will clear an IRQ that  
has been triggered by a button event.  
TEMP_INT  
If set an IRQ is raised during a temperature event. If cleared, the LM4935 will still automatically  
cycle the power amplifiers off if the internal temperature is too high. This bit should not be set  
whenever the loudspeaker amplifier is turned on. Clearing this bit will clear an IRQ that has been  
triggered by a temperature event.  
6:3  
HS_  
Sets the time used for debouncing the analog signals from the detection inputs used to sense the  
insertion/removal of a headset.  
DBNC_TIME  
HS_DBNC_TIME  
00002  
00012  
00102  
00112  
Time (ms)  
0
8
16  
32  
01002  
01012  
01102  
48  
64  
96  
01112  
128  
192  
256  
384  
512  
768  
1024  
1536  
2048  
10002  
10012  
10102  
10112  
11002  
11012  
11102  
11112  
49  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.29 HEADSET DETECT OVERVIEW  
The LM4935 has built in monitors to automatically detect headset insertion or removal. The detection scheme can differentiate  
between mono, stereo, mono-cellular and stereo-cellular headsets. Upon detection of headset insertion or removal, the LM4935  
updates read-only bit 0 - headset absence/presence, bit 1- mono/stereo headset and bit 2 - headset without mic / with mic, of the  
STATUS register (0x18h). Headset insertion/removal and headset type can also be detected in standby mode; this consumes no  
analog supply current when the headset is absent.  
The LM4935 can be programmed to raise an interrupt (set the IRQ pin high) when headset insert/removal is sensed by setting  
bit 0 of DETECT (0x17h). When headset detection is enabled in active mode and a headset is not detected, the HPL_OUT and  
HPR_OUT amplifiers will be disabled (switched off for capless mode and muted for AC-coupled mode) and the EXT_BIAS pin will  
be disconnected from the MIC_BIAS amplifier, irrespective of control register settings.  
The LM4935 also has the capability to detect button press, when a button is present on the headset microphone. Both parallel  
button-type (in parallel with the headset microphone, default value) and series button-type (in series with the headset micro-  
phone) can be detected; the button type used needs to be defined in bit 3 of MIC_2 (0x0Ch). Button press can also be detected  
in stand-by mode; this consumes 10 µA of analog supply current for a series type push button and 100 µA for a parallel type push  
button. Upon button press, the LM4935 updates bit 3 of STATUS (0x18h). In active OCL mode, with internal microphone selected  
(INT_EXT = 0; (reg 0x0Bh)), if a parallel pushbutton headset is inserted into the system, INT_EXT must be set high before BTN  
(bit 3 of STATUS (0x18h)) can be read. The LM4935 can also be programmed to raise an interrupt on the IRQ pin when button  
press is sensed by setting bit 1 of DETECT.  
The LM4935 provides debounce programmability for headset and button detect. Debounce programmability can be used to reject  
glitches generated, and hence avoid false detection, while inserting/removing a headset or pressing a button.  
Headset insert/removal debounce time is defined by HS_DBNC_TIME; bits 6:3 of DETECT (0x17h). Parallel button press  
debounce time is defined by BTN_DBNC_TIME; bits 5:4 of MIC_2 (0x0Ch).  
Note that since the first effect of a series button press (microphone disconnected) is indistinguishable from headset removal, the  
debounce time for series button press in defined by HS_DBNC_TIME.  
Headset and push button detection can be enabled by setting CHIP_MODE 0; bit 0 of BASIC (0x00h). For reliable headset / push  
button detection all following bits should be defined before enabling the headset detection system:  
1) the OCL-bit (AC-Coupled / Capless headphone interface (bit 7 of BASIC (0x00h))  
2) the headset insert/removal debounce settings (bit 6:3 of DETECT (0x17h))  
3) the BTN_TYPE-bit (Parallel / Series push button type (bit 3 of MIC_2 (0x0Ch))  
4) the parallel push button debounce settings (bit 5:4 of MIC_2 (0x0Ch))  
Figure 8 shows terminal connections and jack configuration for various headsets. Care should be taken to avoid any DC path from  
the MIC_DET pin to ground when a headset is not inserted.  
www.national.com  
50  
12.0 Status & Control Registers (Continued)  
20134113  
FIGURE 8. Headset Configurations Supported by the LM4935  
The wiring of the headset jack to the LM4935 will depend on the intended mode of the headphone amplifier:  
51  
www.national.com  
12.0 Status & Control Registers (Continued)  
20134114  
FIGURE 9. Connection of Headset Jack to LM4935 Depends on the Mode of the Headphone Amplifier.  
www.national.com  
52  
12.0 Status & Control Registers (Continued)  
12.30 STATUS REGISTER  
This register is used to report the status of the device.  
TABLE 30. STATUS (0x18h)  
Description  
Bits  
Field  
0
HEADSET  
This field is high when headset presence is detected (only valid if the detection system is  
enabled). (Note 29)  
1
2
3
STEREO_  
HEADSET  
MIC  
This field is high when a headset with stereo speakers is detected (only valid if the detection  
system is enabled). (Note 29)  
This field is high when a headset with a microphone is detected (only valid if the detection system  
is enabled). (Note 29)  
BTN  
This field is high when the button on the headset is pressed (only valid if the detection system is  
enabled). IRQ is cleared when the button has been released and this register has been written  
to.  
4
5
6
SAR TRIG 1  
SAR TRIG 2  
TEMP  
If this field is high then an event has happened on SAR trigger 1 (write to this register to clear  
IRQ).  
If this field is high then an event has happened on SAR trigger 2 (write to this register to clear  
IRQ).  
If this field is high then a temperature event has occurred (write to this register to clear IRQ). This  
field will stay high even when the IRQ is cleared so long as the event occurs. This bit is only valid  
whenever the loudspeaker amplifier is turned off.  
7
GPIN  
When GPIO_SEL is set to a readable configuration a digital input on GPIO1 can be read back  
here.  
Note 29: The detection IRQ is cleared when this register has been written to.  
53  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.31 AUDIO INTERFACE CONFIGURATION REGISTER  
This register is used to control the configuration of the audio data interfaces.  
TABLE 31. AUDIO_IF (0x19h)  
Bits  
Field  
Description  
1:0  
AUDIO_IF_MODE Selects the function of the 6 audio interface IOs.  
AUDIO_IF_MODE  
I2S_  
CLK pin  
I2S  
I2S_  
WS pin  
I2S  
I2S_  
SDI pin  
I2S  
I2S_  
SDO pin  
I2S  
GPIO_1  
pin  
GPIO_2  
pin  
002  
012  
102  
112  
GPIO  
1
GPIO  
2
CLK  
WS  
SDI  
SDO  
PCM  
SDO  
PCM  
SDO  
PCM  
SDO  
PCM  
CLK  
PCM  
SYNC  
PCM  
SYNC  
I2S  
-
GPIO  
1
GPIO  
2
PCM  
CLK  
I2S  
PCM  
SDI  
I2S  
GPIO  
1
GPIO  
2
PCM  
CLK  
PCM  
SYNC  
CLK  
WS  
SDI  
2
3
I2S_WS_MS  
I2S_CLK_MS  
If set the I2S_WS is produced by the LM4935 and the I2S_WS pin will be an output.  
If set the I2S_CLK is produced by the LM4935 and the I2S_CLK pin will be an output.  
If set the PCM_SYNC is produced by the LM4935 and the relevant pin will be an output.  
If set the PCM_CLK is produced by the LM4935 and the relevant pin will be an output.  
4
PCM_SYNC_MS  
PCM_CLK_MS  
I2S_SDO_DATA  
5
7:6  
The two ADCs on the LM4935 can both be read via the isochronous I2S interface. The most recent  
valid sample is output from the following source: (Please refer to the GPIO configuration register  
(0x1Ah) for more information on SAR_CH_SEL)  
I2S_SDO_DATA  
LEFT  
RIGHT  
002  
012  
102  
112  
AUDIO ADC  
SAR VSAR 1  
SAR VSAR 2  
A_VDD/2  
SAR_CH_SEL  
SAR_CH_SEL  
SAR_CH_SEL  
SAR_CH_SEL  
www.national.com  
54  
12.0 Status & Control Registers (Continued)  
12.32 DIGITAL AUDIO DATA FORMATS  
I2S master mode can only be used when the DAC is enabled unless the ADC_I2S_M bit is set. PCM Master mode can only be  
used when the ADC is enabled. If the PCM receiver interface is operated in slave mode the clock and sync should be enabled  
at the same time as the PCM receiver uses the first PCM frame to calculate the PCM interface format. This format can not be  
changed unless a soft reset is issued. It is strongly recommended that the LM4935 is operated in master mode as this eliminates  
the risk of sample rate mismatch between the data converters and the audio interfaces.  
In master mode the I2S_CLK has a 60/40 duty cycle and a frequency of 50*fs. In slave mode the PCM and I2S receivers only  
record the 1st 16 and 18 bits of the serial words respectively. The I2S format is as follows:  
20134115  
FIGURE 10. I2S Serial Data Format (Default Mode)  
20134116  
FIGURE 11. PCM Serial Data Format (16 bit Slave Example)  
When SAR SDO data is passed to the I2S, it is left aligned (MSB aligned) to allow lower I2S resolutions to be used.  
If the DAC is driven from the PCM interface then the left channel of the DAC is used and the right channel is inactive.  
55  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.33 GPIO CONFIGURATION REGISTER  
This register is used to control the GPIO system.  
TABLE 32. GPIO (0x1Ah)  
Description  
This sets the function of the GPIOs when the Audio Interface is not using them.  
Bits  
Field  
2:0  
GPIO_SEL  
GPIO_SEL  
0002  
GPIO 1  
0
GPIO 2  
0
0012  
READABLE  
LS_AMP_ENABLE  
GPIO_DATA  
0
SPI_SDO  
SPI_SDO  
SPI_SDO  
SPI_SDO  
SAR_SDO  
SAR_SDO  
SAR_SDO  
0102  
0112  
1002  
1012  
READABLE  
LS_AMP_ENABLE  
GPIO_DATA  
1102  
1112  
Setting GPIO_SEL = “010” with the GPIO_TEST_MODE bit (register 0X26h) set configures the  
GPIOs for digital mic operation. With this setting, GPI01 will output VADC_CLK_OUT to provide a  
clock for the digital mic. GPIO2 will accept digital mic data. GPIO1’s LS_AMP_ENABLE setting will  
be logic high whenever the loudspeaker amplifier is enabled. This is useful for enabling an external  
amplifier for stereo loudspeaker applications.  
4:3  
SAR_CH_SEL  
This field selects the SAR output channel for the 2nd (Right) I2S channel or for SAR_SDO via  
GPIO2.  
SAR_CH_SEL  
Selected Channel  
VSAR_1  
002  
012  
102  
112  
VSAR_2  
D_VDD/2 or BB_VDD  
A_VDD/2  
5
I2S_MODE  
If set the I2S operates in left justified mode (sometimes referred to as DSP mode). See example  
below. (Note 30)  
6
7
PCM_LONG  
GPIO_DATA  
2
If set the PCM interface uses LONG frame sync which is essentially an inverted short frame sync.  
If GPIO_SEL is set to GPIO_DATA then the content of this field is passed to GPIO1 as an output.  
2
Note 30: The left justified I S mode is similar to normal I S other than there is no delay between a change in WS to the MSB:  
20134117  
FIGURE 12. I2S Serial Data Format (Left Justified Mode)  
www.national.com  
56  
12.0 Status & Control Registers (Continued)  
12.34 SAR CHANNELS 0 & 1 CONFIGURATION REGISTER  
This register is used to control channel 0 and 1 of the SAR system. (Note 31)  
TABLE 33. SAR_SLOT01 (0x1Bh)  
Bits  
Field  
Description  
2:0  
SLOT_0_FS  
Programs the sampling frequency of SAR channel 0:  
@
SLOT_0_FS  
Sample Rate 12.000 MHz  
(point A)  
13.888 kHz  
3.472 kHz  
0.868 kHz  
217 Hz  
54 Hz  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
14 Hz  
4 Hz  
1 Hz  
3
SLOT_0_ENB  
SLOT_1_FS  
If set then VSAR 1 is sampled into SAR slot 0 which also activates the  
SAR ADC.  
6:4  
Programs the sampling frequency of SAR channel 1:  
@
SLOT_1_FS  
Sample Rate 12.000 MHz  
(point A)  
13.888 kHz  
3.472 kHz  
0.868 kHz  
217 Hz  
54 Hz  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
14 Hz  
4 Hz  
1 Hz  
7
SLOT_1_ENB  
If set then VSAR 2 is sampled into SAR slot 1 which also activates the  
SAR ADC.  
Note 31: See the section SAR Overview for more details on this register.  
57  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.35 SAR CHANNELS 2 & 3 CONFIGURATION REGISTER  
This register is used to control channel 2 and 3 of the SAR system. (Note 31)  
TABLE 34. SAR_SLOT23 (0x1Ch)  
Bits  
Field  
Description  
2:0  
SLOT_2_FS  
Programs the sampling frequency of SAR channels 2 and 3:  
@
SLOT_2_FS  
Sample Rate 12.000 MHz  
(point A)  
13.888 kHz  
3.472 kHz  
0.868 kHz  
217 Hz  
54 Hz  
0002  
0012  
0102  
0112  
1002  
1012  
1102  
1112  
14 Hz  
4 Hz  
1 Hz  
3
4
5
SLOT_2_ENB  
SLOT_3_ENB  
SLOT_2_VBB  
If set then D_VDD / 2 or BB_VDD (depending on SLOT2_VBB) is sampled  
into SAR slot 2 which also activates the SAR ADC.  
If set then A_VDD / 2 is sampled into SAR slot 3 which also activates the  
SAR ADC.  
If set then BB_VDD input is used as input to SAR slot 2 rather than the  
D_VDD  
.
www.national.com  
58  
12.0 Status & Control Registers (Continued)  
12.36 SAR DATA 0 TO 3 REGISTERS  
These registers are used to read the 8 MSBs from the 4 SAR channels.  
TABLE 35. SAR_DATA_0 Register (0x1Dh)  
Description  
Bits  
Field  
7:0  
SLOT_0_DATA  
Latest slot 0 sample bits 11:4.  
TABLE 36. SAR_DATA_1 Register (0x1Eh)  
Description  
Bits  
Field  
7:0  
SLOT_1_DATA  
Latest slot 1 sample bits 11:4.  
TABLE 37. SAR_DATA_2 Register (0x1Fh)  
Description  
Bits  
Field  
7:0  
SLOT_2_DATA  
Latest slot 2 sample bits 11:4.  
TABLE 38. SAR_DATA_3 Register (0x20h)  
Description  
Bits  
Field  
7:0  
SLOT_3_DATA  
Latest slot 3 sample bits 11:4.  
59  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.37 SAR OVERVIEW  
The SAR controller works via a scheduler that allocates time slots for each of the four channels. All four channels can operate up  
to the same maximum frequency. When the sampling frequency of a channel is to be reduced the time slot allocated to that  
channel is simply enabled less often. For example if one slot is to work at a quarter of the frequency of the others then only one  
in four of its allocated slot triggers the SAR to activate:  
20134118  
FIGURE 13. Internal SAR Control Signals to SAR Module  
Each time slot is used to sample a single fixed input, slot 0 is used for VSAR 1, slot 1 for VSAR 2, slot 2 for either D_VDD or  
BB_VDD* and slot 3 for the A_VDD. When a particular time slot is activated the correct mux, clock and enable controls to the ADC  
module are produced and the output sampled when ready. If the D_VDD or the A_VDD are being sampled then a voltage divider  
is used to half the input to below the full scale reference of 2.5V. As this results in a current path to ground it is only inserted while  
the ADC is settling to reduce power consumption.  
Using this method, samples can be taken using as little power as possible while allowing sample rates as low as 1 Hz. The data  
can either be read directly or used to trigger interrupts when set voltages are passed. This reduces the baseband controllers  
software overhead and IO bandwidth, further reducing system power.  
The full scale digital output from the SAR is equal to 2.5V. The A_VDD and D_VDD inputs are divided by two during sampling. The  
SAR ADC can be activated at any time, even while the chip is in shutdown mode (chip mode ’00’). This allows the LM4935 to  
perform housekeeping duties such as voltage monitoring with minimal power consumption.  
*Depending on SLOT_2_VBB in SAR_SLOT23 (0x1Ch).  
www.national.com  
60  
12.0 Status & Control Registers (Continued)  
Only the 8 MSBS [11:4] from the 12 bits of SAR output data can be read back using the I2C interface.  
The SPI interface can be used to access all 12 bits of the SAR output data. In this case, GPIO2 should be set to SAR_SDO by  
setting GPIO_SEL in register (0x1Ah). The SAR channel selected by SAR_CH_SEL in the GPIO register is then output onto  
GPIO2 as follows:  
20134108  
FIGURE 14. SPI SAR Read Transaction (GPIO2 set to SAR_SDO)  
In applications where the 8 MSBS [11:4] from the SAR output data is enough resolution, GPIO2 should be set to SPI_SDO by  
setting GPIO_SEL in register (0x1Ah). The SAR data is then output on GPIO2 as follows:  
20134107  
FIGURE 15. SPI SAR Read Transaction (GPIO2 set to SPI_SDO)  
If the user performs a write to the GPIO register the changes will not take effect until the next SPI operation so SAR data can be  
read while the next channel is being selected. The SAR data is sampled at the start of the SPI transaction to ensure that the data  
is stable during the read operation.  
All 12 bits of the SAR output data for up to 2 SAR channels can be read back simultaneously through the bi-directional I2S  
interface. This is accomplished by setting I2S_SDO_DATA (bit [7:6] of (0x19h)) to the desired SAR channel(s).  
As mentioned previously in the Digital Audio Data Formats section, when SAR SDO is passed to the I2S bus, the SAR SDO’s  
MSB is aligned with the MSB of I2S_SDO.  
61  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.38 DC VOLUME CONFIGURATION REGISTER  
This register is used to control the DC volume control system.  
TABLE 39. DC_VOLUME (0x21h)  
Bits  
Field  
Description  
0
DC_VOL_ENB  
Enables the DC volume control system to use the voltage applied on the  
VSAR 1 pin to set the gain of the DC volume control. (Note 32)  
Selects which volume is altered:  
1
DC_VOL_EFFECT  
MAX_LEVEL  
DC_VOL_EFFECT  
Source  
AUX/DAC  
CPI  
0
1
3:2  
Programs the maximum level that can be applied by the system  
MAX_LEVEL  
LEVEL  
0 dB  
002  
012  
102  
112  
−3 dB  
−6 dB  
−12 dB  
Note 32: The correlation between the voltage on VSAR1 to the attenuation on the AUX/DAC channel is as follows:  
201341P4  
FIGURE 16. DC Volume Transfer Function For AUX/DAC  
www.national.com  
62  
12.0 Status & Control Registers (Continued)  
12.39 SAR TRIGGER 1 CONFIGURATION REGISTER  
This register is used to setup a voltage trigger on one of the SAR outputs.  
TABLE 40. TRIG_1 (0x22h)  
Bits  
0
Field  
Description  
TRIG_1_ENB  
TRIG_1_DIR  
Enables the 1st SAR trigger interrupt, if cleared will clear the IRQ.  
Selects the direction the voltage should be moving:  
1
TRIG_1_DIR  
Trigger if signal passes:  
Above Threshold  
0
1
Below Threshold  
3:2  
7:4  
TRIG_1_SOURCE  
Programs the channel used by the trigger.  
TRIG_1_SOURCE  
Source  
VSAR_1  
002  
012  
102  
112  
VSAR_2  
D_VDD/2 or BB_VDD  
A_VDD/2  
TRIG_1_LSB  
Sets bits 3:0 of the threshold used by the trigger.  
63  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.40 SAR TRIGGER 1 MSBs CONFIGURATION REGISTER  
This register is used to setup the threshold of a voltage trigger on one of the SAR outputs.  
TABLE 41. TRIG_1_MSB (0x23h)  
Bits  
Field  
Description  
Sets bits 11:4 of the threshold used by the trigger.  
7:0  
TRIG_1_MSB  
www.national.com  
64  
12.0 Status & Control Registers (Continued)  
12.41 SAR TRIGGER 2 CONFIGURATION REGISTER  
This register is used to setup a voltage trigger on one of the SAR outputs.  
TABLE 42. TRIG_2 (0x24h)  
Bits  
0
Field  
Description  
TRIG_2_ENB  
TRIG_2_DIR  
Enables the 2nd SAR trigger interrupt, if cleared will clear the IRQ.  
Selects the direction the voltage should be moving:  
1
TRIG_2_DIR  
Trigger if signal passes:  
Above Threshold  
0
1
Below Threshold  
3:2  
7:4  
TRIG_2_SOURCE  
Programs the channel used by the trigger  
TRIG_2_SOURCE  
Source  
VSAR_1  
002  
012  
102  
112  
VSAR_2  
D_VDD/2 or BB_VDD  
A_VDD/2  
TRIG_2_LSB  
Sets bits 3:0 of the threshold used by the trigger.  
65  
www.national.com  
12.0 Status & Control Registers (Continued)  
12.42 SAR TRIGGER 2 MSBs CONFIGURATION REGISTER  
This register is used to setup the threshold of a voltage trigger on one of the SAR outputs.  
TABLE 43. TRIG_2_MSB (0x25h)  
Bits  
Field  
Description  
Sets bits 11:4 of the threshold used by the trigger.  
7:0  
TRIG_2_MSB  
www.national.com  
66  
12.0 Status & Control Registers (Continued)  
12.43 DEBUG REGISTER  
This register is used to set test modes within the device.  
TABLE 44. DEBUG (0x26h)  
Description  
Bits  
0
Field  
RSVD  
Reserved  
Reserved  
Reserved  
1
RSVD  
2
RSVD  
3
SOFT_RESET  
RSVD  
This field can be used to reset the chip without a power cycle.  
4
Reserved  
Reserved  
Reserved  
5
RSVD  
6
RSVD  
7
GPIO_TEST_MODE If set and GPIO_SEL = ’010’, then the GPIOs are configured to interface with the LMV1026  
digital microphone as long as AUDIO_IF_MODE (0x19h) is not set to ’11’.  
GPIO_SEL  
0002  
GPIO 1  
RSVD  
GPIO 2  
RSVD  
0012  
RSVD  
RSVD  
0102  
VADC_CLOCK_OUT  
RSVD  
DIG_MIC_IN  
RSVD  
0112  
1002  
RSVD  
RSVD  
1012  
RSVD  
RSVD  
1102  
RSVD  
RSVD  
1112  
RSVD  
RSVD  
67  
www.national.com  
13.0 Typical Performance Characteristics  
(For all performance curves AVDD refers to the voltage applied to the A_VDD and LS_VDD pins. DVDD refers to the voltage applied  
to the D_VDD and PLL_VDD pins; AVDD = 3.3V and DVDD = 3.3V unless otherwise specified.  
Stereo DAC Frequency Response  
fS = 8kHz  
Stereo DAC Frequency Response Zoom  
fS = 8kHz  
20134136  
20134137  
Stereo DAC Frequency Response  
fS = 16kHz  
Stereo DAC Frequency Response Zoom  
fS = 16kHz  
20134138  
20134139  
Stereo DAC Frequency Response  
fS = 24kHz  
Stereo DAC Frequency Response Zoom  
fS = 24kHz  
20134140  
20134141  
www.national.com  
68  
13.0 Typical Performance Characteristics (Continued)  
Stereo DAC Frequency Response  
fS = 32kHz  
Stereo DAC Frequency Response Zoom  
fS = 32kHz  
20134142  
20134143  
Stereo DAC Frequency Response  
fS = 48kHz  
Stereo DAC Frequency Response Zoom  
fS = 48kHz  
20134145  
20134144  
THD+N vs  
Stereo DAC Input Voltage  
(0dB DAC, AUXOUT)  
Stereo DAC Crosstalk  
(0dB DAC, HP SE)  
20134147  
20134146  
69  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
MONO ADC Frequency Response  
fS = 8kHz, 6dB MIC  
MONO ADC Frequency Response Zoom  
fS = 8kHz, 6dB MIC  
20134148  
20134149  
MONO ADC Frequency Response  
fS = 8kHz, 36dB MIC  
MONO ADC Frequency Response Zoom  
fS = 8kHz, 36dB MIC  
20134150  
20134151  
MONO ADC Frequency Response  
fS = 16kHz, 6dB MIC  
MONO ADC Frequency Response Zoom  
fS = 16kHz, 6dB MIC  
20134152  
20134153  
www.national.com  
70  
13.0 Typical Performance Characteristics (Continued)  
MONO ADC Frequency Response  
fS = 16kHz, 36dB MIC  
MONO ADC Frequency Response Zoom  
fS = 16kHz, 36dB MIC  
20134154  
20134155  
MONO ADC Frequency Response  
fS = 24kHz, 6dB MIC  
MONO ADC Frequency Response Zoom  
fS = 24kHz, 6dB MIC  
20134156  
20134157  
MONO ADC Frequency Response  
fS = 24kHz, 36dB MIC  
MONO ADC Frequency Response Zoom  
fS = 24kHz, 36dB MIC  
20134158  
20134169  
71  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
MONO ADC Frequency Response  
fS = 32kHz, 6dB MIC  
MONO ADC Frequency Response Zoom  
fS = 32kHz, 6dB MIC  
20134159  
20134160  
MONO ADC Frequency Response  
fS = 32kHz, 36dB MIC  
MONO ADC Frequency Response Zoom  
fS = 32kHz, 36dB MIC  
20134161  
20134162  
MONO ADC HPF Frequency Response  
fS = 8kHz, 36dB MIC  
MONO ADC HPF Frequency Response  
fS = 16kHz, 36dB MIC  
(from left to right: HPF_MODE ’00’, ’10’, ’01’)  
(from left to right: HPF_MODE ’00’, ’10’, ’01’)  
20134163  
20134164  
www.national.com  
72  
13.0 Typical Performance Characteristics (Continued)  
MONO ADC HPF Frequency Response  
fS = 24kHz, 36dB MIC  
MONO ADC HPF Frequency Response  
fS = 32kHz, 36dB MIC  
(from left to right: HPF_MODE ’00’, ’10’, ’01’)  
(from left to right: HPF_MODE ’00’, ’10’, ’01’)  
20134165  
20134166  
MONO ADC THD+N  
vs MIC Input Voltage  
(fS = 8kHz, 6dB MIC)  
MONO ADC THD+N  
vs MIC Input Voltage  
(fS = 8kHz, 36dB MIC)  
20134168  
20134167  
MONO ADC PSRR vs Frequency  
AVDD = 3.3V, 6dB MIC  
MONO ADC PSRR vs Frequency  
AVDD = 5V, 6dB MIC  
20134170  
20134171  
73  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
MONO ADC PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC  
MONO ADC PSRR vs Frequency  
AVDD = 5V, 36dB MIC  
20134172  
20134173  
20134175  
20134177  
AUXOUT PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX  
AUXOUT PSRR vs Frequency  
AVDD = 5V, 0dB AUX  
(AUX inputs terminated)  
(AUX inputs terminated)  
20134174  
AUXOUT PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI  
AUXOUT PSRR vs Frequency  
AVDD = 5V, 0dB CPI  
(CPI inputs terminated)  
(CPI inputs terminated)  
20134176  
www.national.com  
74  
13.0 Typical Performance Characteristics (Continued)  
AUXOUT PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC  
(DAC inputs selected)  
AUXOUT PSRR vs Frequency  
AVDD = 5V, 0dB DAC  
(DAC inputs selected)  
20134178  
20134180  
20134182  
20134179  
20134181  
20134183  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX  
(AUX inputs terminated)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 0dB AUX  
(AUX inputs terminated)  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC  
(DAC inputs selected)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 0dB DAC  
(DAC inputs selected)  
75  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC  
(EXTMIC inputs terminated, AGC on)  
(EXTMIC inputs terminated, AGC on)  
20134185  
20134187  
CPOUT PSRR vs Frequency  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.0V  
(INTMIC DIFF inputs terminated, AGC off)  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.0V  
(INTMIC DIFF inputs terminated, AGC on)  
20134188  
20134189  
CPOUT PSRR vs Frequency  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.5V  
(INTMIC DIFF inputs terminated, AGC off)  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.5V  
(INTMIC DIFF inputs terminated, AGC on)  
20134190  
20134191  
www.national.com  
76  
13.0 Typical Performance Characteristics (Continued)  
CPOUT PSRR vs Frequency  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.8V  
(INTMIC DIFF inputs terminated, AGC off)  
AVDD = 3.3V, 36dB MIC, MICBIAS = 2.8V  
(INTMIC DIFF inputs terminated, AGC on)  
20134192  
20134193  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.0V  
(INTMIC DIFF inputs terminated, AGC off)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.0V  
(INTMIC DIFF inputs terminated, AGC on)  
20134196  
20134197  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.5V  
(INTMIC DIFF inputs terminated, AGC off)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.5V  
(INTMIC DIFF inputs terminated, AGC on)  
20134198  
20134199  
77  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.8V  
(INTMIC DIFF inputs terminated, AGC off)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 2.8V  
(INTMIC DIFF inputs terminated, AGC on)  
201341A0  
201341A1  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 3.3V  
(INTMIC DIFF inputs terminated, AGC off)  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC, MICBIAS = 3.3V  
(INTMIC DIFF inputs terminated, AGC on)  
201341A2  
201341A3  
CPOUT PSRR vs Frequency  
AVDD = 3.3V, 36dB MIC  
CPOUT PSRR vs Frequency  
AVDD = 5V, 36dB MIC  
(INTMIC SE input terminated, AGC on)  
(INTMIC SE input terminated, AGC on)  
201341A5  
201341A7  
www.national.com  
78  
13.0 Typical Performance Characteristics (Continued)  
Earpiece PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX  
Earpiece PSRR vs Frequency  
AVDD = 5V, 0dB AUX  
(AUX inputs terminated)  
(AUX inputs terminated)  
201341A8  
201341B0  
201341B2  
201341A9  
201341B1  
201341B3  
Earpiece PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI  
Earpiece PSRR vs Frequency  
AVDD = 5V, 0dB CPI  
(CPI input terminated)  
(CPI input terminated)  
Earpiece PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC  
(DAC input selected)  
Earpiece PSRR vs Frequency  
AVDD = 5V, 0dB DAC  
(DAC input selected)  
79  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX, OCL 1.2V  
(AUX inputs terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB AUX, OCL 1.2V  
(AUX inputs terminated)  
201341B4  
201341B5  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI, OCL 1.2V  
(CPI input terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB CPI, OCL 1.2V  
(CPI input terminated)  
201341B6  
201341B7  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB ADC, OCL 1.2V  
(DAC input selected)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB ADC, OCL 1.2V  
(DAC input selected)  
201341B8  
201341B9  
www.national.com  
80  
13.0 Typical Performance Characteristics (Continued)  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX, OCL 1.5V  
(AUX inputs terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB AUX, OCL 1.5V  
(AUX inputs terminated)  
201341C0  
201341C1  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI, OCL 1.5V  
(CPI input terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB CPI, OCL 1.5V  
(CPI input terminated)  
201341C2  
201341C3  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC, OCL 1.5V  
(DAC input selected)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB DAC, OCL 1.5V  
(DAC input selected)  
201341C4  
201341C5  
81  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX, SE  
(AUX inputs terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB AUX, SE  
(AUX inputs terminated)  
201341C6  
201341C7  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI, SE  
(CPI input terminated)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB CPI, SE  
(CPI input terminated)  
201341C8  
201341C9  
Headphone PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC, SE  
(DAC input selected)  
Headphone PSRR vs Frequency  
AVDD = 5V, 0dB DAC, SE  
(DAC input selected)  
201341D0  
201341D1  
www.national.com  
82  
13.0 Typical Performance Characteristics (Continued)  
Loudspeaker PSRR vs Frequency  
AVDD = 3.3V, 0dB AUX  
Loudspeaker PSRR vs Frequency  
AVDD = 5V, 0dB AUX  
(AUX inputs terminated)  
(AUX inputs terminated)  
201341N6  
201341N7  
Loudspeaker PSRR vs Frequency  
AVDD = 3.3V, 0dB CPI  
Loudspeaker PSRR vs Frequency  
AVDD = 5V, 0dB CPI  
(CPI input terminated)  
(CPI input terminated)  
201341N8  
201341N9  
Loudspeaker PSRR vs Frequency  
AVDD = 3.3V, 0dB DAC  
Loudspeaker PSRR vs Frequency  
AVDD = 5V, 0dB DAC  
(DAC input selected)  
(DAC input selected)  
201341O0  
201341O1  
83  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 3.3V, MICBIAS = 2.0V  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 5V, MICBIAS = 2.0V  
201341D2  
201341D3  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 3.3V, MICBIAS = 2.5V  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 5V, MICBIAS = 2.5V  
201341D4  
201341D5  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 3.3V, MICBIAS = 2.8V  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 5V, MICBIAS = 2.8V  
201341D6  
201341D7  
www.national.com  
84  
13.0 Typical Performance Characteristics (Continued)  
INT/EXT MICBIAS PSRR vs Frequency  
AVDD = 5V, MICBIAS = 3.3V  
AUXOUT THD+N vs Frequency  
AVDD = 3.3V, 0dB, VOUT = 1VRMS, 5kΩ  
201341D9  
201341D8  
AUXOUT THD+N vs Frequency  
CPOUT THD+N vs Frequency  
AVDD = 5V, 0dB, VOUT = 1VRMS, 5kΩ  
AVDD = 3.3V, 0dB, VOUT = 1VRMS, 5kΩ  
201341E0  
201341E1  
CPOUT THD+N vs Frequency  
Earpiece THD+N vs Frequency  
AVDD = 5V, 0dB, VOUT = 1VRMS, 5kΩ  
AVDD = 3.3V, 0dB, POUT = 500mW, 32Ω  
201341E2  
201341E3  
85  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Frequency  
Earpiece THD+N vs Frequency  
AVDD = 3.3V, OCL 1.5V, 0dB  
AVDD = 5V, 0dB, POUT = 50mW, 32Ω  
POUT = 7.5mW, 32Ω  
201341E4  
201341E5  
Headphone THD+N vs Frequency  
AVDD = 5V, OCL 1.5V, 0dB  
POUT = 10mW, 32Ω  
Headphone THD+N vs Frequency  
AVDD = 3.3V, OCL 1.2V, 0dB  
POUT = 7.5mW, 32Ω  
201341E6  
201341N1  
Headphone THD+N vs Frequency  
AVDD = 5V, OCL 1.2V, 0dB  
POUT = 10mW, 32Ω  
Headphone THD+N vs Frequency  
AVDD = 3.3V, SE, 0dB  
POUT = 7.5mW, 32Ω  
201341E7  
201341E8  
www.national.com  
86  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Frequency  
AVDD = 5V, SE, 0dB  
Loudspeaker THD+N vs Frequency  
AVDD = 3.3V, POUT = 400mW  
POUT = 10mW, 32Ω  
15µH+8+15µH  
201341E9  
201341O2  
Loudspeaker THD+N vs Frequency  
AVDD = 5V, POUT = 400mW  
15µH+8+15µH  
Earpiece THD+N vs Output Power  
AVDD = 3.3V, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341F0  
201341O3  
Earpiece THD+N vs Output Power  
AVDD = 5V, 0dB AUX  
Earpiece THD+N vs Output Power  
AVDD = 3.3V, 0dB AUX  
fOUT = 1kHz, 32Ω  
fOUT = 1kHz, 16Ω  
201341F1  
201341F2  
87  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Earpiece THD+N vs Output Power  
AVDD = 5V, 0dB AUX  
Earpiece THD+N vs Output Power  
AVDD = 3.3V, 0dB CPI  
fOUT = 1kHz, 32Ω  
fOUT = 1kHz, 16Ω  
201341F3  
201341F4  
Earpiece THD+N vs Output Power  
AVDD = 5V, 0dB CPI  
Earpiece THD+N vs Output Power  
AVDD = 3.3V, 0dB CPI  
fOUT = 1kHz, 16Ω  
fOUT = 1kHz, 32Ω  
201341F5  
201341F6  
Earpiece THD+N vs Output Power  
AVDD = 5V, 0dB CPI  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB DAC  
fOUT = 1kHz, 16Ω  
fOUT = 1kHz, 32Ω  
201341F7  
201341F8  
www.national.com  
88  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB DAC  
fOUT = 1kHz, 32Ω  
201341F9  
201341G0  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 12dB DAC  
fOUT = 1kHz, 16Ω  
201341G1  
201341G2  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 12dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 12dB DAC  
fOUT = 1kHz, 32Ω  
201341G3  
201341G4  
89  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 12dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB DAC  
fOUT = 1kHz, 16Ω  
201341G5  
201341G6  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB DAC  
fOUT = 1kHz, 32Ω  
201341G7  
201341G8  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 12dB DAC  
fOUT = 1kHz, 16Ω  
201341G9  
201341H0  
www.national.com  
90  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 12dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 12dB DAC  
fOUT = 1kHz, 32Ω  
201341H1  
201341H2  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 12dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB DAC  
fOUT = 1kHz, 16Ω  
201341H3  
201341H4  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB DAC  
fOUT = 1kHz, 32Ω  
201341H5  
201341H6  
91  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 12dB DAC  
fOUT = 1kHz, 16Ω  
201341H7  
201341H8  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 12dB DAC  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 12dB DAC  
fOUT = 1kHz, 32Ω  
201341H9  
201341I0  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 12dB DAC  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341I1  
201341I2  
www.national.com  
92  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 12dB AUX  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341I3  
201341I4  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 12dB AUX  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB AUX  
fOUT = 1kHz, 32Ω  
201341I5  
201341I6  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 12dB AUX  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB AUX  
fOUT = 1kHz, 32Ω  
201341I7  
201341I8  
93  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 12dB AUX  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB CPI  
fOUT = 1kHz, 16Ω  
201341I9  
201341J0  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB CPI  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.2V, 0dB CPI  
fOUT = 1kHz, 32Ω  
201341J1  
201341J2  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.2V, 0dB CPI  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341J3  
201341J4  
www.national.com  
94  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 12dB AUX  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341J5  
201341J6  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 12dB AUX  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB AUX  
fOUT = 1kHz, 32Ω  
201341J7  
201341J8  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 12dB AUX  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB AUX  
fOUT = 1kHz, 32Ω  
201341J9  
201341K0  
95  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 12dB AUX  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB CPI  
fOUT = 1kHz, 16Ω  
201341K1  
201341K2  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB CPI  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, OCL 1.5V, 0dB CPI  
fOUT = 1kHz, 32Ω  
201341K3  
201341N2  
Headphone THD+N vs Output Power  
AVDD = 5V, OCL 1.5V, 0dB CPI  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB AUX  
fOUT = 1kHz, 16Ω  
201341N3  
201341N4  
www.national.com  
96  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB AUX  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB AUX  
fOUT = 1kHz, 32Ω  
201341K4  
201341N5  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB AUX  
fOUT = 1kHz, 32Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB CPI  
fOUT = 1kHz, 16Ω  
201341K5  
201341K6  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB CPI  
fOUT = 1kHz, 16Ω  
Headphone THD+N vs Output Power  
AVDD = 3.3V, SE, 0dB CPI  
fOUT = 1kHz, 32Ω  
201341K7  
201341K8  
97  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
Headphone THD+N vs Output Power  
AVDD = 5V, SE, 0dB CPI  
fOUT = 1kHz, 32Ω  
Loudspeaker THD+N vs Output Power  
AVDD = 3.3V, 0dB AUX  
fOUT = 1kHz, 15µH+8+15µH  
201341K9  
201341O4  
Loudspeaker THD+N vs Output Power  
AVDD = 4.2V, 0dB AUX  
Loudspeaker THD+N vs Output Power  
AVDD = 5V, 0dB AUX  
fOUT = 1kHz, 15µH+8+15µH  
fOUT = 1kHz, 15µH+8+15µH  
201341O5  
201341O6  
Loudspeaker THD+N vs Output Power  
AVDD = 3.3V, 0dB CPI  
Loudspeaker THD+N vs Output Power  
AVDD = 4.2V, 0dB CPI  
fOUT = 1kHz, 15µH+8+15µH  
fOUT = 1kHz, 15µH+8+15µH  
201341O7  
201341O8  
www.national.com  
98  
13.0 Typical Performance Characteristics (Continued)  
Loudspeaker THD+N vs Output Power  
AVDD = 5V, 0dB CPI  
Loudspeaker THD+N vs Output Power  
AVDD = 3.3V, 0dB DAC  
fOUT = 1kHz, 15µH+8+15µH  
fOUT = 1kHz, 15µH+8+15µH  
201341O9  
201341P0  
Loudspeaker THD+N vs Output Power  
AVDD = 4.2V, 0dB DAC  
Loudspeaker THD+N vs Output Power  
AVDD = 5V, 0dB DAC  
fOUT = 1kHz, 15µH+8+15µH  
fOUT = 1kHz, 15µH+8+15µH  
201341P1  
201341P2  
AUXOUT THD+N vs Output Voltage  
AVDD = 3.3V, 0dB AUX  
AUXOUT THD+N vs Output Voltage  
AVDD = 5V, 0dB AUX  
fOUT = 1kHz, 5kΩ  
fOUT = 1kHz, 5kΩ  
201341L0  
201341L1  
99  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
AUXOUT THD+N vs Output Voltage  
AVDD = 3.3V, 0dB CPI  
AUXOUT THD+N vs Output Voltage  
AVDD = 5V, 0dB CPI  
fOUT = 1kHz, 5kΩ  
fOUT = 1kHz, 5kΩ  
201341L2  
201341L3  
AUXOUT THD+N vs Output Voltage  
AVDD = 3.3V, 0dB DAC  
AUXOUT THD+N vs Output Voltage  
AVDD = 5V, 0dB DAC  
fOUT = 1kHz, 5kΩ  
fOUT = 1kHz, 5kΩ  
201341L4  
201341L5  
AUXOUT THD+N vs Output Voltage  
AVDD = 3.3V, 12dB DAC  
fOUT = 1kHz, 5kΩ  
AUXOUT THD+N vs Output Voltage  
AVDD = 5V, 12dB DAC  
fOUT = 1kHz, 5kΩ  
201341L6  
201341L7  
www.national.com  
100  
13.0 Typical Performance Characteristics (Continued)  
CPOUT THD+N vs Output Voltage  
AVDD = 3.3V, 0dB AUX  
fOUT = 1kHz, 5kΩ  
CPOUT THD+N vs Output Voltage  
AVDD = 5V, 0dB AUX  
fOUT = 1kHz, 5kΩ  
201341L8  
201341L9  
CPOUT THD+N vs Output Voltage  
AVDD = 3.3V, 0dB DAC  
fOUT = 1kHz, 5kΩ  
CPOUT THD+N vs Output Voltage  
AVDD = 5V, 0dB DAC  
fOUT = 1kHz, 5kΩ  
201341M1  
201341M0  
CPOUT THD+N vs Output Voltage  
AVDD = 3.3V, 6dB MIC  
CPOUT THD+N vs Output Voltage  
AVDD = 5V, 6dB MIC  
fOUT = 1kHz, 5kΩ  
fOUT = 1kHz, 5kΩ  
201341M2  
201341M3  
101  
www.national.com  
13.0 Typical Performance Characteristics (Continued)  
CPOUT THD+N vs Output Voltage  
AVDD = 3.3V, 12dB DAC  
fOUT = 1kHz, 5kΩ  
CPOUT THD+N vs Output Voltage  
AVDD = 5V, 12dB DAC  
fOUT = 1kHz, 5kΩ  
201341M4  
201341M5  
CPOUT THD+N vs Output Voltage  
AVDD = 3.3V, 36dB MIC  
fOUT = 1kHz, 5kΩ  
CPOUT THD+N vs Output Voltage  
AVDD = 5V, 36dB MIC  
fOUT = 1kHz, 5kΩ  
201341M6  
201341M7  
Headphone Crosstalk vs Frequency  
Headphone Crosstalk vs Frequency  
OCL 1.2V, 0dB AUX, 32Ω  
OCL 1.5V, 0dB AUX, 32Ω  
201341M8  
201341M9  
www.national.com  
102  
13.0 Typical Performance Characteristics (Continued)  
Headphone Crosstalk vs Frequency  
SE, 0dB AUX, 32Ω  
201341N0  
103  
www.national.com  
www.national.com  
104  
15.0 Demoboard PCB Layout  
20134132  
Top Silkscreen  
105  
www.national.com  
15.0 Demoboard PCB Layout (Continued)  
20134131  
Top Layer  
www.national.com  
106  
15.0 Demoboard PCB Layout (Continued)  
20134129  
Mid Layer 1  
107  
www.national.com  
15.0 Demoboard PCB Layout (Continued)  
20134130  
Mid Layer 2  
www.national.com  
108  
15.0 Demoboard PCB Layout (Continued)  
20134128  
Bottom Layer  
109  
www.national.com  
16.0 Product Status Definitions  
Datasheet Status  
Advance  
Product Status  
Formative or in  
Design  
Definition  
This data sheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
Information  
Preliminary  
First Production  
This data sheet contains preliminary data. Supplementary data will be published  
at a later date. National Semiconductor Corporation reserves the right to make  
changes at any time without notice in order to improve design and supply the  
best possible product.  
No Identification  
Noted  
Full Production  
This data sheet contains final specifications. National Semiconductor Corporation  
reserves the right to make changes at any time without notice in order to improve  
design and supply the best possible product.  
Obsolete  
Not in Production  
This data sheet contains specifications on a product that has been discontinued  
by National Semiconductor Corporation. The datasheet is printed for reference  
information only.  
National Semiconductor B.V reserves the right to make changes without notice to any products herein to improve reliability, function or design. National does not  
assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the  
right of others.  
www.national.com  
110  
17.0 Revision History  
Rev  
1.0  
Date  
Description  
Filled in the actual limits (for TBDs) under  
Limit and edited few Typical values, all  
under the EC table. Edits from Alvin F.  
Input more edits. Replaced the correct  
boards. Replaced the Schematic Diagram  
(pg 60).  
5/11/05  
1.1  
7/29/05  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
9/8/05  
9/21/05  
9/30/05  
10/5/05  
10/11/05  
10/12/05  
10/14/5  
Added the 1st set of Typ Perf curves.  
Added a couple of tables.  
Input text edits.  
Input more edits.  
More edits.  
First D/S WEB release.  
Input more text edits after the 1st  
released.  
1.9  
2.0  
10/17/05  
10/18/05  
Input some text edits, then re-released  
D/S to the WEB.  
More text edits. Also used graphic  
20134107 back.  
111  
www.national.com  
18.0 Physical Dimensions inches (millimeters) unless otherwise noted  
49 Bump Microfil Package  
Order Number LM4935  
Dimensions: X1 = 3.925 mm, X2 = 3.925 mm, X3 = 0.6 mm  
NS Package Number WLA49VVA  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
Leadfree products are RoHS compliant.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LM4936

Stereo 2W Audio Power Amplifiers with Volume Control and Selectable Control Interface (SPI or I2C)
NSC

LM49360

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM49360RL

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM49360RLX

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
TI

LM4936MHX

IC 2 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO28, TSSOP-28, Audio Control IC
NSC

LM4937

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
NSC

LM49370

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX

IC SPECIALTY CONSUMER CIRCUIT, PBGA49, 4 X 4 MM, MICRO, SMDXT-49, Consumer IC:Other
NSC

LM49370RLX-NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI