935314424557 [NXP]

RISC Microcontroller;
935314424557
型号: 935314424557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器
文件: 总104页 (文件大小:2286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MPC5604P  
Rev. 8, 07/2012  
MPC5604P  
144 LQFP  
20 mm x 20 mm  
100 LQFP  
14 mm x 14 mm  
Qorivva MPC5604P  
Microcontroller Data Sheet  
Up to 64 MHz, single issue, 32-bit CPU core complex  
(e200z0h)  
1 safety port based on FlexCAN with 32 message  
objects and up to 7.5 Mbit/s capability; usable as  
second CAN when not used as safety port  
1 FlexRay™ module (V2.1) with selectable dual or  
single channel support, 32 message objects and up to  
10 Mbit/s  
Compliant with Power Architecture embedded  
category  
Variable Length Encoding (VLE)  
Memory organization  
Two 10-bit analog-to-digital converters (ADC)  
Up to 512 KB on-chip code flash memory with ECC  
and erase/program controller  
Optional 64 (4 × 16) KB on-chip data flash memory  
with ECC for EEPROM emulation  
2 × 15 input channels, 4 channels shared between the  
two ADCs  
Conversion time < 1 µs including sampling time at  
full precision  
Up to 40 KB on-chip SRAM with ECC  
Programmable Cross Triggering Unit (CTU)  
4 analog watchdogs with interrupt capability  
Fail safe protection  
Programmable watchdog timer  
Non-maskable interrupt  
Fault collection unit  
On-chip CAN/UART bootstrap loader with Boot Assist  
Module (BAM)  
1 FlexPWM unit  
Nexus L2+ interface  
Interrupts  
8 complementary or independent outputs with ADC  
synchronization signals  
Polarity control, reload unit  
Integrated configurable dead time unit and inverter  
fault input pins  
16-bit resolution, up to 2 × fCPU  
Lockable configuration  
16-channel eDMA controller  
16 priority level controller  
General purpose I/Os individually programmable as input,  
output or special function  
2 general purpose eTimer units  
6 timers each with up/down count capabilities  
16-bit resolution, cascadable counters  
Quadrature decode with rotation direction flag  
Double buffer input capture and output compare  
Clock generation  
4–40 MHz main oscillator  
16 MHz internal RC oscillator  
Software controlled FMPLL capable of speeds as fast  
as 64 MHz  
Communications interfaces  
2 LINFlex channels (LIN 2.1)  
4 DSPI channels with automatic chip select  
generation  
Voltage supply  
3.3 V or 5 V supply for I/Os and ADC  
On-chip single supply voltage regulator with external  
ballast transistor  
1 FlexCAN interface (2.0B Active) with 32 message  
objects  
Operating temperature ranges: –40 to 125 °C or –40  
to 105 °C  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale, Inc., 2008–2012. All rights reserved.  
Table of Contents  
1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.5.1 High performance e200z0 core processor. . . . . .7  
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . .8  
1.5.3 Enhanced direct memory access (eDMA) . . . . . .8  
1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.5.5 Static random access memory (SRAM). . . . . . . .9  
1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . .9  
1.5.7 System status and configuration module  
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . 38  
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . 39  
3.4 Recommended operating conditions. . . . . . . . . . . . . . 42  
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.5.1 Package thermal characteristics . . . . . . . . . . . 46  
3.5.2 General notes for specifications at maximum  
junction temperature . . . . . . . . . . . . . . . . . . . . 47  
3.6 Electromagnetic interference (EMI) characteristics. . . 48  
3.7 Electrostatic discharge (ESD) characteristics . . . . . . . 48  
3.8 Power management electrical characteristics . . . . . . . 49  
3.8.1 Voltage regulator electrical characteristics. . . . 49  
3.8.2 Voltage monitor electrical characteristics . . . . . 52  
3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 53  
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . 55  
3.10.1 NVUSRO register. . . . . . . . . . . . . . . . . . . . . . . 55  
3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . 55  
3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . 57  
3.10.4 Input DC electrical characteristics definition . . 58  
3.10.5 I/O pad current specification. . . . . . . . . . . . . . . 59  
3.11 Main oscillator electrical characteristics . . . . . . . . . . . 64  
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 65  
3.13 16 MHz RC oscillator electrical characteristics . . . . . . 67  
3.14 Analog-to-digital converter (ADC) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
3.14.1 Input impedance and ADC accuracy . . . . . . . . 68  
3.14.2 ADC conversion characteristics . . . . . . . . . . . . 72  
3.15 Flash memory electrical characteristics. . . . . . . . . . . . 74  
3.16 AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 75  
3.17 AC timing characteristics. . . . . . . . . . . . . . . . . . . . . . . 76  
3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . 76  
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 78  
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . 83  
3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 90  
4.1.1 144 LQFP mechanical outline drawing . . . . . . 90  
4.1.2 100 LQFP mechanical outline drawing . . . . . . 92  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
(SSCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.5.8 System clocks and clock generation . . . . . . . . .10  
1.5.9 Frequency-modulated phase-locked loop  
(FMPLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . .11  
1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . .11  
1.5.13 System timer module (STM) . . . . . . . . . . . . . . .11  
1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . .11  
1.5.15 Fault collection unit (FCU). . . . . . . . . . . . . . . . .12  
1.5.16 System integration unit – Lite (SIUL). . . . . . . . .12  
1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . .12  
1.5.18 Error correction status module (ECSM). . . . . . .13  
1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . .13  
1.5.20 Controller area network (FlexCAN) . . . . . . . . . .13  
1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . .14  
1.5.22 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.5.23 Serial communication interface module  
(LINFlex) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.5.24 Deserial serial peripheral interface (DSPI) . . . .15  
1.5.25 Pulse width modulator (FlexPWM) . . . . . . . . . .16  
1.5.26 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.5.27 Analog-to-digital converter (ADC) module. . . . .17  
1.5.28 Cross triggering unit (CTU) . . . . . . . . . . . . . . . .18  
1.5.29 Nexus development interface (NDI). . . . . . . . . .18  
1.5.30 Cyclic redundancy check (CRC) . . . . . . . . . . . .19  
1.5.31 IEEE 1149.1 JTAG controller. . . . . . . . . . . . . . .19  
1.5.32 On-chip voltage regulator (VREG). . . . . . . . . . .19  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . .20  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.2.1 Power supply and reference voltage pins . . . . .21  
2.2.2 System pins. . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4
5
2
Appendix AAbbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6
MPC5604P Microcontroller Data Sheet, Rev. 8  
2
Freescale  
1
Introduction  
1.1  
Document overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5603P/4P series of  
microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical  
characteristics. For functional characteristics, refer to the device reference manual.  
1.2  
Description  
This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive  
application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis  
applications—specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)—as well as airbag  
applications.  
This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture  
technology.  
The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture  
embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power  
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported  
with software drivers, operating systems and configuration code to assist with users implementations.  
1.3  
Device comparison  
Table 1 provides a summary of different members of the MPC5604P family and their features to enable a comparison among  
the family members and an understanding of the range of functionality offered within this family.  
Table 1. MPC5604P device comparison  
Feature  
MPC5603P  
MPC5604P  
Code flash memory (with ECC)  
Data flash memory / EE option (with ECC)  
SRAM (with ECC)  
384 KB  
512 KB  
64 KB (optional feature)  
36 KB  
40 KB  
Processor core  
32-bit e200z0h  
Instruction set  
VLE (variable length encoding)  
CPU performance  
0–64 MHz  
2
FMPLL (frequency-modulated phase-locked loop)  
module  
INTC (interrupt controller) channels  
PIT (periodic interrupt timer)  
eDMA (enhanced direct memory access) channels  
FlexRay1  
147  
1 (includes four 32-bit timers)  
16  
Optional feature  
FlexCAN (controller area network)  
Safety port  
22,3  
Yes (via second FlexCAN module)  
FCU (fault collection unit)  
CTU (cross triggering unit)  
Yes  
Yes  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
3
Table 1. MPC5604P device comparison (continued)  
Feature  
MPC5603P  
MPC5604P  
eTimer  
2 (16-bit, 6 channels)  
FlexPWM (pulse-width modulation) channels  
ADC (analog-to-digital converter)  
LINFlex  
8 (capturing on X-channels)  
2 (10-bit, 15-channel4)  
2
DSPI (deserial serial peripheral interface)  
CRC (cyclic redundancy check) unit  
JTAG controller  
4
Yes  
Yes  
Nexus port controller (NPC)  
Yes (Level 2+)  
Supply  
Digital power supply  
Analog power supply  
Internal RC oscillator  
External crystal oscillator  
3.3 V or 5 V single supply with external transistor  
3.3 V or 5 V  
16 MHz  
4–40 MHz  
Packages  
100 LQFP  
144 LQFP  
Temperature  
Standard ambient temperature  
–40 to 125 °C  
1
32 message buffers, selectable single or dual channel support  
Each FlexCAN module has 32 message buffers.  
2
3
4
One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s.  
Four channels shared between the two ADCs  
1.4  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5604P MCU.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
4
Freescale  
External ballast  
1.2 V regulator  
e200z0 Core  
32-bit  
general  
purpose  
registers  
control  
XOSC  
Integer  
execution  
unit  
Special  
purpose  
registers  
Exception  
handler  
Interrupt  
controller  
16 MHz  
RC oscillator  
FMPLL_0  
(System)  
Variable  
length  
encoded  
instructions  
Instruction  
unit  
FMPLL_1  
(FlexRay, MotCtrl)  
Branch  
prediction  
unit  
Load/store  
unit  
JTAG  
Nexus port  
controller  
Nexus 2+  
eDMA  
16 channels  
FlexRay  
Instruction  
32-bit  
Data  
32-bit  
Master  
Master  
Master  
Crossbar switch (XBAR, AMBA 2.0 v6 AHB)  
Slave Slave  
Slave  
Code Flash  
(with ECC)  
Data Flash  
(with ECC)  
SRAM  
(with ECC)  
Peripheral bridge  
10-bit  
ADC_0  
10-bit  
ADC_1  
Legend:  
ADC  
BAM  
CRC  
CTU  
Analog-to-digital converter  
Boot assist module  
Cyclic redundancy check  
Cross triggering unit  
LINFlex  
Serial communication interface (LIN support)  
Mode entry module  
MC_CGM Clock generation module  
MC_ME  
MC_PCU Power control unit  
DSPI  
ECSM  
eDMA  
eTimer  
FCU  
Deserial serial peripheral interface  
Error correction status module  
Enhanced direct memory access  
Enhanced timer  
Fault collection unit  
Flash memory  
MC_RGM Reset generation module  
PIT  
Periodic interrupt timer  
System integration unit Lite  
Static random-access memory  
System status and configuration module  
System timer module  
SIUL  
SRAM  
SSCM  
STM  
Flash  
FlexCAN Controller area network  
FlexPWM Flexible pulse width modulation  
SWT  
Software watchdog timer  
Wakeup unit  
External oscillator  
WKPU  
XOSC  
XBAR  
FMPLL  
INTC  
JTAG  
Frequency-modulated phase-locked loop  
Interrupt controller  
JTAG controller  
Crossbar switch  
Figure 1. MPC5604P block diagram  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
5
Table 2. MPC5604P series block summary  
Function  
Block  
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter  
Boot assist module (BAM)  
Block of read-only memory containing VLE code which is executed according to  
the boot mode of the device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Controller area network (FlexCAN) Supports the standard CAN communications protocol  
Cross triggering unit (CTU)  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Crossbar switch (XBAR)  
Supports simultaneous connections between two master ports and three slave  
ports; supports a 32-bit address bus width and a 32-bit data bus width  
Cyclic redundancy check (CRC) CRC checksum generator  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced direct memory access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels  
Enhanced timer (eTimer)  
Provides enhanced programmable up/down modulo counting  
Error correction status module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset  
status register, wakeup control for exiting sleep modes, and optional features  
such as information on memory errors reported by error-correcting codes  
External oscillator (XOSC)  
Provides an output clock used as input reference for FMPLL_0 or as reference  
clock for specific modules depending on system needs  
Fault collection unit (FCU)  
Flash memory  
Provides functional safety to the device  
Provides non-volatile storage for program code, constants and variables  
Frequency-modulated  
phase-locked loop (FMPLL)  
Generates high-speed system clocks and supports programmable frequency  
modulation  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with minimum load on CPU  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Periodic interrupt timer (PIT)  
Peripheral bridge (PBRIDGE)  
Power control unit (MC_PCU)  
Produces periodic interrupts and triggers  
Interface between the system bus and on-chip peripherals  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
MPC5604P Microcontroller Data Sheet, Rev. 8  
6
Freescale  
Table 2. MPC5604P series block summary (continued)  
Function  
Block  
Pulse width modulator (FlexPWM) Contains four PWM submodules, each of which is capable of controlling a single  
half-bridge power stage and two fault input channels  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status and configuration Provides system configuration and status data (such as memory size and status,  
module (SSCM)  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR1 and operating  
system tasks  
System watchdog timer (SWT)  
Wakeup unit (WKPU)  
Provides protection from runaway code  
Supports up to 18 external sources that can generate interrupts or wakeup  
events, 1 of which can cause non-maskable interrupt requests or wakeup events  
1
AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)  
Feature details  
1.5  
1.5.1  
High performance e200z0 core processor  
The e200z0 Power Architecture core provides the following features:  
High performance e200z0 core processor for managing peripherals and interrupts  
Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU  
Harvard architecture  
Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions  
— Results in smaller code size footprint  
— Minimizes impact on performance  
Branch processing acceleration using lookahead instruction buffer  
Load/store unit  
— 1 cycle load latency  
— Misaligned access support  
— No load-to-use pipeline bubbles  
Thirty-two 32-bit general purpose registers (GPRs)  
Separate instruction bus and load/store bus Harvard architecture  
Hardware vectored interrupt support  
Reservation instructions for implementing read-modify-write constructs  
Long cycle time instructions, except for guarded loads, do not increase interrupt latency  
Extensive system development support through Nexus debug port  
Non-maskable interrupt support  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
7
1.5.2  
Crossbar switch (XBAR)  
The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and three slave ports. The  
crossbar supports a 32-bit address bus width and a 32-bit data bus width.  
The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers  
must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master  
port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting  
that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with  
equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted  
access.  
The crossbar provides the following features:  
4 master ports:  
— e200z0 core complex Instruction port  
— e200z0 core complex Load/Store Data port  
— eDMA  
— FlexRay  
3 slave ports:  
— Flash memory (code flash and data flash)  
— SRAM  
— Peripheral bridge  
32-bit internal address, 32-bit internal data paths  
Fixed Priority Arbitration based on Port Master  
Temporary dynamic priority elevation of masters  
1.5.3  
Enhanced direct memory access (eDMA)  
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data  
movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture  
includes a DMA engine which performs source and destination address calculations, and the actual data movement operations,  
along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation  
is utilized to minimize the overall block size.  
The eDMA module provides the following features:  
16 channels support independent 8, 16 or 32-bit single value or block transfers  
Supports variable sized queues and circular queues  
Source and destination address registers are independently configured to either post-increment or to remain constant  
Each transfer is initiated by a peripheral, CPU, or eDMA channel request  
Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block  
transfer  
DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer and CTU  
Programmable DMA channel multiplexer for assignment of any DMA source to any available DMA channel with as  
many as 30 request sources  
eDMA abort operation through software  
1.5.4  
Flash memory  
The MPC5604P provides as much as 576 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM)  
can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory  
MPC5604P Microcontroller Data Sheet, Rev. 8  
8
Freescale  
array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory.  
The module contains four 128-bit wide prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory  
array accesses are registered and are forwarded to the system bus on the following cycle, incurring two wait-states.  
The flash memory module provides the following features:  
As much as 576 KB flash memory  
— 8 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 3×128 KB) code flash  
— 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash  
— Full Read While Write (RWW) capability between code and data flash  
Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to  
prefetch code or data or both)  
Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz  
Hardware managed flash memory writes handled by 32-bit RISC Krypton engine  
Hardware and software configurable read and write access protections on a per-master basis  
Configurable access timing allowing use in a wide range of system frequencies  
Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for  
emulation of other memory types.  
Software programmable block program/erase restriction control  
Erase of selected block(s)  
Read page sizes  
— Code flash memory: 128 bits (4 words)  
— Data flash memory: 32 bits (1 word)  
ECC with single-bit correction, double-bit detection for data integrity  
— Code flash memory: 64-bit ECC  
— Data flash memory: 64-bit ECC  
Embedded hardware program and erase algorithm  
Erase suspend, program suspend and erase-suspended program  
Censorship protection scheme to prevent flash memory content visibility  
Hardware support for EEPROM emulation  
1.5.5  
Static random access memory (SRAM)  
The MPC5604P SRAM module provides up to 40 KB of general-purpose memory.  
ECC handling is done on a 32-bit boundary and is completely software compatible with MPC55xx family devices with an  
e200z6 core and 64-bit wide ECC.  
The SRAM module provides the following features:  
Supports read/write accesses mapped to the SRAM from any master  
Up to 40 KB general purpose SRAM  
Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory  
Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait state for 8- and 16-bit writes if back to back  
with a read to same memory block  
1.5.6  
Interrupt controller (INTC)  
The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically  
scheduled hard real-time systems. The INTC handles 147 selectable-priority interrupt sources.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
9
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor  
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt  
request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that  
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of  
interrupt request, the priority of each interrupt request is software configurable.  
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority  
ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so  
that all tasks which share the same resource can not preempt each other.  
The INTC provides the following features:  
Unique 9-bit vector for each separate interrupt source  
8 software triggerable interrupt sources  
16 priority levels with fixed hardware arbitration within priority levels for each interrupt source  
Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol  
for accessing shared resources.  
2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism  
1.5.7  
System status and configuration module (SSCM)  
The system status and configuration module (SSCM) provides central device functionality.  
The SSCM includes these features:  
System configuration and status  
— Memory sizes/status  
— Device mode and security status  
— Determine boot vector  
— Search code flash for bootable sector  
— DMA status  
Debug status port enable and selection  
Bus and peripheral abort enable/disable  
1.5.8  
System clocks and clock generation  
The following list summarizes the system clock and clock generation on the MPC5604P:  
Lock detect circuitry continuously monitors lock status  
Loss of clock (LOC) detection for PLL outputs  
Programmable output clock divider (1, 2, 4, 8)  
FlexPWM module and eTimer module can run on an independent clock source  
On-chip oscillator with automatic level control  
Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application  
1.5.9  
Frequency-modulated phase-locked loop (FMPLL)  
The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports  
programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all  
software configurable.  
The PLL has the following major features:  
Input clock frequency: 4–40 MHz  
MPC5604P Microcontroller Data Sheet, Rev. 8  
10  
Freescale  
Maximum output frequency: 64 MHz  
Voltage controlled oscillator (VCO)—frequency 256–512 MHz  
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock  
Frequency-modulated PLL  
— Modulation enabled/disabled through software  
— Triangle wave modulation  
Programmable modulation depth (±0.25% to ±4% deviation from center frequency): programmable modulation  
frequency dependent on reference frequency  
Self-clocked mode (SCM) operation  
1.5.10 Main oscillator  
The main oscillator provides these features:  
Input frequency range: 4–40 MHz  
Crystal input mode or oscillator input mode  
PLL reference  
1.5.11 Internal RC oscillator  
This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage  
at the capacitor is compared by the stable bandgap reference voltage.  
The RC oscillator provides these features:  
Nominal frequency 16 MHz  
±5% variation over voltage and temperature after process trim  
Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the  
PLL  
RC oscillator is used as the default system clock during startup  
1.5.12 Periodic interrupt timer (PIT)  
The PIT module implements these features:  
4 general purpose interrupt timers  
32-bit counter resolution  
Clocked by system clock frequency  
Each channel can be used as trigger for a DMA request  
1.5.13 System timer module (STM)  
The STM module implements these features:  
One 32-bit up counter with 8-bit prescaler  
Four 32-bit compare channels  
Independent interrupt source for each channel  
Counter can be stopped in debug mode  
1.5.14 Software watchdog timer (SWT)  
The SWT has the following features:  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
11  
32-bit time-out register to set the time-out period  
Programmable selection of system or oscillator clock for timer operation  
Programmable selection of window mode or regular servicing  
Programmable selection of reset or interrupt on an initial time-out  
Master access protection  
Hard and soft configuration lock bits  
Reset configuration inputs allow timer to be enabled out of reset  
1.5.15 Fault collection unit (FCU)  
The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.  
The FCU module has the following features:  
FCU status register reporting the device status  
Continuous monitoring of critical fault signals  
User selection of critical signals from different fault sources inside the device  
Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device  
and/or other circuitry (for example, safety relay or FlexRay transceiver)  
Faults are latched into a register  
1.5.16 System integration unit – Lite (SIUL)  
The MPC5604P SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral  
multiplexing.  
The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and  
discrete input/output control of the I/O pins of the MCU.  
The SIU provides the following features:  
Centralized general purpose input output (GPIO) control of as many as 80 input/output pins and 26 analog input-only  
pads (package dependent)  
All GPIO pins can be independently configured to support pull-up, pull down, or no pull  
Reading and writing to GPIO supported both as individual pins and 16-bit wide ports  
All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins  
ADC channels support alternative configuration as general purpose inputs  
Direct readback of the pin value is supported on all pins through the SIUL  
Configurable digital input filter that can be applied to some general purpose input pins for noise elimination: as many  
as 4 internal functions can be multiplexed onto 1 pin  
1.5.17 Boot and censorship  
Different booting modes are available in the MPC5604P: booting from internal flash memory and booting via a serial link.  
The default booting scheme uses the internal flash memory (an internal pull-down is used to select this mode). Optionally, the  
user can boot via FlexCAN or LINFlex (using the boot assist module software).  
A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device.  
A password mechanism is designed to grant the legitimate user access to the non-volatile memory.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
12  
Freescale  
1.5.17.1 Boot assist module (BAM)  
The BAM is a block of read-only one-time programmed memory and is identical for all MPC560xP devices that are based on  
the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been  
selected by the user.  
The BAM provides the following features:  
Serial bootloading via FlexCAN or LINFlex  
Ability to accept a password via the used serial communication channel to grant the legitimate user access to the  
non-volatile memory  
1.5.18 Error correction status module (ECSM)  
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform  
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,  
and information on platform memory errors reported by error-correcting codes and/or generic access error information for  
certain processor cores.  
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes  
these features:  
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented  
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the  
MPC5604P.  
The sources of the ECC errors are:  
Flash memory  
SRAM  
1.5.19 Peripheral bridge (PBRIDGE)  
The PBRIDGE implements the following features:  
Duplicated periphery  
Master access privilege level per peripheral (per master: read access enable; write access enable)  
Write buffering for peripherals  
Checker applied on PBRIDGE output toward periphery  
Byte endianess swap capability  
1.5.20 Controller area network (FlexCAN)  
The MPC5604P MCU contains one controller area network (FlexCAN) module. This module is a communication controller  
implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used  
primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in  
the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message  
buffers.  
The FlexCAN module provides the following features:  
Full implementation of the CAN protocol specification, version 2.0B  
— Standard data and remote frames  
— Extended data and remote frames  
— Up to 8-bytes data length  
— Programmable bit rate up to 1 Mbit/s  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
13  
32 message buffers of up to 8-bytes data length  
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  
Programmable loop-back mode supporting self-test operation  
3 programmable mask registers  
Programmable transmit-first scheme: lowest ID or lowest buffer number  
Time stamp based on 16-bit free-running timer  
Global network time, synchronized by a specific message  
Maskable interrupts  
Independent of the transmission medium (an external transceiver is assumed)  
High immunity to EMI  
Short latency time due to an arbitration scheme for high-priority messages  
Transmit features  
— Supports configuration of multiple mailboxes to form message queues of scalable depth  
— Arbitration scheme according to message ID or message buffer number  
— Internal arbitration to guarantee no inner or outer priority inversion  
— Transmit abort procedure and notification  
Receive features  
— Individual programmable filters for each mailbox  
— 8 mailboxes configurable as a six-entry receive FIFO  
— 8 programmable acceptance filters for receive FIFO  
Programmable clock source  
— System clock  
— Direct oscillator clock to avoid PLL jitter  
1.5.21 Safety port (FlexCAN)  
The MPC5604P MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN  
module of the safety port provides the following features:  
Identical to the FlexCAN module  
Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between CAN modules (no physical  
transceiver required)  
32 message buffers of up to 8 bytes data length  
Can be used as a second independent CAN module  
1.5.22 FlexRay  
The FlexRay module provides the following features:  
Full implementation of FlexRay Protocol Specification 2.1  
32 configurable message buffers can be handled  
Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate  
Message buffers configurable as Tx, Rx or RxFIFO  
Message buffer size configurable  
Message filtering for all message buffers based on FrameID, cycle count and message ID  
Programmable acceptance filters for RxFIFO message buffers  
MPC5604P Microcontroller Data Sheet, Rev. 8  
14  
Freescale  
1.5.23 Serial communication interface module (LINFlex)  
The LINFlex (local interconnect network flexible) on the MPC5604P features the following:  
Supports LIN Master mode, LIN Slave mode and UART mode  
LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications  
Handles LIN frame transmission and reception without CPU intervention  
LIN features  
— Autonomous LIN frame handling  
— Message buffer to store Identifier and as much as 8 data bytes  
— Supports message length as long as 64 bytes  
— Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out)  
— Classic or extended checksum calculation  
— Configurable Break duration as long as 36-bit times  
— Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)  
— Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection  
— Interrupt-driven operation with 16 interrupt sources  
LIN slave mode features  
— Autonomous LIN header handling  
— Autonomous LIN response handling  
UART mode  
— Full-duplex operation  
— Standard non return-to-zero (NRZ) mark/space format  
— Data buffers with 4-byte receive, 4-byte transmit  
— Configurable word length (8-bit or 9-bit words)  
— Error detection and flagging  
— Parity, Noise and Framing errors  
— Interrupt-driven operation with four interrupt sources  
— Separate transmitter and receiver CPU interrupt sources  
— 16-bit programmable baud-rate modulus counter and 16-bit fractional  
— 2 receiver wake-up methods  
1.5.24 Deserial serial peripheral interface (DSPI)  
The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the  
MPC5604P MCU and external devices.  
The DSPI modules provide these features:  
Full duplex, synchronous transfers  
Master or slave operation  
Programmable master bit rates  
Programmable clock polarity and phase  
End-of-transmission interrupt flag  
Programmable transfer baud rate  
Programmable data frames from 4 to 16 bits  
Up to 20 chip select lines available  
— 8 on DSPI_0  
— 4 each on DSPI_1, DSPI_2 and DSPI_3  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
15  
8 clock and transfer attributes registers  
Chip select strobe available as alternate function on one of the chip select pins for deglitching  
FIFOs for buffering as many as 5 transfers on the transmit and receive side  
Queueing operation possible through use of the eDMA  
General purpose I/O functionality on pins when not used for SPI  
1.5.25 Pulse width modulator (FlexPWM)  
The pulse width modulator module (PWM) contains four PWM submodules, each capable of controlling a single half-bridge  
power stage. There are also four fault channels.  
This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC),  
both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper  
motors.  
The FlexPWM block implements the following features:  
16-bit resolution for center, edge-aligned, and asymmetrical PWMs  
Maximum operating clock frequency of 120 MHz  
PWM outputs can operate as complementary pairs or independent channels  
Can accept signed numbers for PWM generation  
Independent control of both edges of each PWM output  
Synchronization to external hardware or other PWM supported  
Double buffered PWM registers  
— Integral reload rates from 1 to 16  
— Half cycle reload capability  
Multiple ADC trigger events can be generated per PWM cycle via hardware  
Write protection for critical registers  
Fault inputs can be assigned to control multiple PWM outputs  
Programmable filters for fault inputs  
Independently programmable PWM output polarity  
Independent top and bottom deadtime insertion  
Each complementary pair can operate with its own PWM frequency and deadtime values  
Individual software-control for each PWM output  
All outputs can be programmed to change simultaneously via a “Force Out” event  
PWMX pin can optionally output a third PWM signal from each submodule  
Channels not used for PWM generation can be used for buffered output compare functions  
Channels not used for PWM generation can be used for input capture functions  
Enhanced dual-edge capture functionality  
eDMA support with automatic reload  
2 fault inputs  
Capture capability for PWMA, PWMB, and PWMX channels not supported  
1.5.26 eTimer  
The MPC5604P includes two eTimer modules. Each module provides six 16-bit general purpose up/down timer/counter units  
with the following features:  
Maximum operating clock frequency of 120 MHz  
Individual channel capability  
MPC5604P Microcontroller Data Sheet, Rev. 8  
16  
Freescale  
— Input capture trigger  
— Output compare  
— Double buffer (to capture rising edge and falling edge)  
— Separate prescaler for each counter  
— Selectable clock source  
— 0–100% pulse measurement  
— Rotation direction flag (Quad decoder mode)  
Maximum count rate  
— External event counting: max. count rate = peripheral clock/2  
— Internal clock counting: max. count rate = peripheral clock  
Counters are:  
— Cascadable  
— Preloadable  
Programmable count modulo  
Quadrature decode capabilities  
Counters can share available input pins  
Count once or repeatedly  
Pins available as GPIO when timer functionality not in use  
1.5.27 Analog-to-digital converter (ADC) module  
The ADC module provides the following features:  
Analog part:  
2 on-chip AD converters  
— 10-bit AD resolution  
— 1 sample and hold unit per ADC  
— Conversion time, including sampling time, less than 1 µs (at full precision)  
— Typical sampling time is 150 ns min. (at full precision)  
— Differential non-linearity error (DNL) ±1 LSB  
— Integral non-linearity error (INL) ±1.5 LSB  
— TUE <3 LSB  
— Single-ended input signal up to 5.0 V  
— The ADC and its reference can be supplied with a voltage independent from V  
DDIO  
— The ADC supply can be equal or higher than V  
DDIO  
— The ADC supply and the ADC reference are not independent from each other (they are internally bonded to the  
same pad)  
— Sample times of 2 (default), 8, 64, or 128 ADC clock cycles  
Digital part:  
2 × 13 input channels including 4 channels shared between the 2 converters  
4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in  
the appropriate ADC result location,  
2 modes of operation: Normal mode or CTU control mode  
Normal mode features  
— Register-based interface with the CPU: control register, status register, 1 result register per channel  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
17  
— ADC state machine managing 3 request flows: regular command, hardware injected command, software injected  
command  
— Selectable priority between software and hardware injected commands  
— 4 analog watchdogs comparing ADC results against predefined levels (low, high, range)  
— DMA compatible interface  
CTU control mode features  
— Triggered mode only  
— 4 independent result queues (2 × 16 entries, 2 × 4 entries)  
— Result alignment circuitry (left justified; right justified)  
— 32-bit read mode allows to have channel ID on one of the 16-bit part  
— DMA compatible interfaces  
1.5.28 Cross triggering unit (CTU)  
The cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU  
load during the PWM period and with minimized CPU load for dynamic configuration.  
It implements the following features:  
Double buffered trigger generation unit with as many as eight independent triggers generated from external triggers  
Trigger generation unit configurable in sequential mode or in triggered mode  
Each Trigger can be appropriately delayed to compensate the delay of external low pass filter  
Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation  
Double buffered ADC command list pointers to minimize ADC-trigger unit update  
Double buffered ADC conversion command list with as many as 24 ADC commands  
Each trigger has the capability to generate consecutive commands  
ADC conversion command allows to control ADC channel from each ADC, single or synchronous sampling,  
independent result queue selection  
1.5.29 Nexus development interface (NDI)  
The NDI (Nexus Development Interface) block provides real-time development support capabilities for the MPC5604P Power  
Architecture based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for  
MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several  
individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces  
to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard.  
The development support provided includes access to the MCU’s internal memory map and access to the processor’s internal  
registers during run time.  
The Nexus Interface provides the following features:  
Configured via the IEEE 1149.1  
All Nexus port pins operate at V  
Nexus 2+ features supported  
— Static debug  
(no dedicated power supply)  
DDIO  
— Watchpoint messaging  
— Ownership trace messaging  
— Program trace messaging  
— Real time read/write of any internally memory mapped resources through JTAG pins  
— Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of  
information  
MPC5604P Microcontroller Data Sheet, Rev. 8  
18  
Freescale  
— Watchpoint triggering, watchpoint triggers program tracing  
Auxiliary Output Port  
— 4 MDO (Message Data Out) pins  
— MCKO (Message Clock Out) pin  
— 2 MSEO (Message Start/End Out) pins  
— EVTO (Event Out) pin  
Auxiliary Input Port  
— EVTI (Event In) pin  
1.5.30 Cyclic redundancy check (CRC)  
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:  
Support for CRC-16-CCITT (x25 protocol):  
16  
12  
5
x + x + x + 1  
Support for CRC-32 (Ethernet protocol):  
32  
26  
23  
22  
16  
12  
11  
10  
8
7
5
4
2
x + x + x + x + x + x + x + x + x + x + x + x + x + x + 1  
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency  
1.5.31 IEEE 1149.1 JTAG controller  
The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent  
to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format.  
The JTAGC block is compliant with the IEEE standard.  
The JTAG controller provides the following features:  
IEEE Test Access Port (TAP) interface with 4 pins (TDI, TMS, TCK, TDO)  
Selectable modes of operation include JTAGC/debug or normal system operation.  
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:  
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD  
A 5-bit instruction register that supports the additional following public instructions:  
— ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_ONCE  
3 test data registers: a bypass register, a boundary scan register, and a device identification register.  
A TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry.  
1.5.32 On-chip voltage regulator (VREG)  
The on-chip voltage regulator module provides the following features:  
Uses external NPN (negative-positive-negative) transistor  
Regulates external 3.3 V /5.0 V down to 1.2 V for the core logic  
Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
19  
2
Package pinouts and signal descriptions  
2.1  
Package pinouts  
The LQFP pinouts are shown in the following figures.  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
A[4]  
VPP_TEST  
F[12]  
D[14]  
G[3]  
C[14]  
G[2]  
C[13]  
G[4]  
NMI  
A[6]  
D[1]  
F[4]  
F[5]  
VDD_HV_IO0  
VSS_HV_IO0  
F[6]  
9
MDO[0]  
A[7]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
99  
D[12]  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
G[6]  
C[4]  
A[8]  
C[5]  
A[5]  
C[7]  
C[3]  
VDD_HV_FL  
VSS_HV_FL  
D[13]  
VSS_LV_COR1  
VDD_LV_COR1  
A[3]  
VDD_HV_IO2  
VSS_HV_IO2  
TDO  
TCK  
TMS  
TDI  
G[5]  
A[2]  
G[7]  
C[12]  
G[8]  
C[11]  
G[9]  
D[11]  
G[10]  
VSS_LV_COR0  
VDD_LV_COR0  
F[7]  
144 LQFP  
F[8]  
VDD_HV_IO1  
VSS_HV_IO1  
F[9]  
F[10]  
F[11]  
D[9]  
VDD_HV_OSC  
VSS_HV_OSC  
XTAL  
EXTAL  
RESET  
D[8]  
D[5]  
D[6]  
D[10]  
G[11]  
A[1]  
A[0]  
VSS_LV_COR3  
VDD_LV_COR3  
Note: Availability of port pin alternate functions depends on product selection.  
Figure 2. 144-pin LQFP pinout (top view)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
20  
Freescale  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
A[4]  
NMI  
A[6]  
D[1]  
A[7]  
C[4]  
A[8]  
C[5]  
A[5]  
C[7]  
1
2
3
4
5
6
7
8
9
VPP_TEST  
D[14]  
C[14]  
C[13]  
D[12]  
VDD_HV_FL  
VSS_HV_FL  
D[13]  
VSS_LV_COR1  
C[3] 10  
VSS_LV_COR0 11  
VDD_LV_COR0 12  
VDD_HV_IO1 13  
VSS_HV_IO1 14  
D[9] 15  
65 VDD_LV_COR1  
64 A[3]  
63 VDD_HV_IO2  
62 VSS_HV_IO2  
61 TDO  
100 LQFP  
60 TCK  
VDD_HV_OSC 16  
VSS_HV_OSC 17  
XTAL 18  
TMS  
TDI  
A[2]  
59  
58  
57  
56  
55  
54  
53  
52  
51  
EXTAL 19  
C[12]  
C[11]  
D[11]  
D[10]  
A[1]  
RESET 20  
D[8] 21  
D[5] 22  
D[6] 23  
VSS_LV_COR3 24  
VDD_LV_COR3 25  
A[0]  
Note: Availability of port pin alternate functions depends on product selection.  
Figure 3. 100-pin LQFP pinout (top view)  
2.2  
Pin description  
The following sections provide signal descriptions and related information about the functionality and configuration of the  
MPC5604P devices.  
2.2.1  
Power supply and reference voltage pins  
Table 3 lists the power supply and reference voltage for the MPC5604P devices.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
21  
Table 3. Supply pins  
Description  
Supply  
Pin  
Symbol  
100-pin  
144-pin  
VREG control and power supply pins. Pins available on 100-pin and 144-pin package.  
BCTRL  
Voltage regulator external NPN ballast base control pin  
47  
50  
69  
72  
VDD_HV_REG (3.3 V Voltage regulator supply voltage  
or 5.0 V)  
VDD_LV_REGCOR  
1.2 V decoupling pins for core logic and regulator feedback.  
Decoupling capacitor must be connected between this pins  
and VSS_LV_REGCOR  
48  
49  
70  
71  
.
VSS_LV_REGCOR  
1.2 V decoupling pins for core logic and regulator feedback.  
Decoupling capacitor must be connected between this pins  
and VDD_LV_REGCOR  
.
ADC_0/ADC_1 reference and supply voltage. Pins available on 100-pin and 144-pin package.  
1
VDD_HV_ADC0  
VSS_HV_ADC0  
VDD_HV_ADC1  
VSS_HV_ADC1  
ADC_0 supply and high reference voltage  
ADC_0 ground and low reference voltage  
ADC_1 supply and high reference voltage  
ADC_1 ground and low reference voltage  
33  
34  
39  
40  
50  
51  
56  
57  
Power supply pins (3.3 V or 5.0 V). All pins available on 144-pin package.  
Five pairs (VDD; VSS) available on 100-pin package.  
2
VDD_HV_IO0  
Input/Output supply voltage  
Input/Output ground  
13  
14  
63  
62  
87  
88  
69  
68  
16  
17  
6
7
2
VSS_HV_IO0  
VDD_HV_IO1  
VSS_HV_IO1  
VDD_HV_IO2  
VSS_HV_IO2  
VDD_HV_IO3  
VSS_HV_IO3  
VDD_HV_FL  
VSS_HV_FL  
VDD_HV_OSC  
VSS_HV_OSC  
Input/Output supply voltage  
Input/Output ground  
21  
22  
91  
90  
126  
127  
97  
96  
27  
28  
Input/Output supply voltage  
Input/Output ground  
Input/Output supply voltage  
Input/Output ground  
Code and data flash supply voltage  
Code and data flash supply ground  
Crystal oscillator amplifier supply voltage  
Crystal oscillator amplifier ground  
Power supply pins (1.2 V). All pins available on 100-pin and 144-pin package.  
VDD_LV_COR0  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VSS_LV_COR pin.  
12  
18  
MPC5604P Microcontroller Data Sheet, Rev. 8  
22  
Freescale  
Table 3. Supply pins (continued)  
Supply  
Pin  
Symbol  
Description  
100-pin  
144-pin  
VSS_LV_COR0  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VDD_LV_COR pin.  
11  
17  
VDD_LV_COR1  
VSS_LV_COR1  
VDD_LV_COR2  
VSS_LV_COR2  
VDD_LV_COR3  
VSS_LV_COR3  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VSS_LV_COR pin.  
65  
66  
92  
93  
25  
24  
93  
94  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VDD_LV_COR pin.  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VSS_LV_COR pin.  
131  
132  
36  
1.2 V Decoupling pins for core logic. Decoupling capacitor  
must be connected between these pins and the nearest  
VDD_LV_COR pin.  
1.2 V Decoupling pins for on-chip PLL modules. Decoupling  
capacitor must be connected between this pin and  
VSS_LV_COR3  
.
1.2 V Decoupling pins for on-chip PLL modules. Decoupling  
capacitor must be connected between this pin and  
35  
VDD_LV_COR3  
.
1
2
Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a  
double-bonding connection on VDD_HV_ADCx/VSS_HV_ADCx pins.  
Not available on 100-pin package.  
2.2.2  
System pins  
Table 3 and Table 4 contain information on pin functions for the MPC5604P devices. The pins listed in Table 4 are  
single-function pins. The pins shown in Table 5 are multi-function pins, programmable via their respective Pad Configuration  
Register (PCR) values.  
Table 4. System pins  
Pad speed1  
SRC = 0 SRC = 1 100-pin 144-pin  
Dedicated pins. Available on 100-pin and 144-pin package.  
Pin  
Symbol  
Description  
Direction  
MDO[0]  
NMI  
Nexus Message Data Output—line 0  
Non-Maskable Interrupt  
Output only  
Input only  
Fast  
1
9
1
Slow  
XTAL  
Analog output of the oscillator amplifier  
circuit; needs to be grounded if oscillator  
is used in bypass mode  
18  
29  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
23  
Table 4. System pins (continued)  
Pad speed1  
Pin  
Symbol  
Description  
Direction  
SRC = 0 SRC = 1 100-pin 144-pin  
EXTAL  
• Analog input of oscillator amplifier  
circuit, when oscillator not in bypass  
mode  
19  
30  
• Analog input for clock generator when  
oscillator in bypass mode  
TMS  
TCK  
TDI  
JTAG state machine control  
JTAG clock  
Bidirectional  
Input only  
Slow  
Slow  
Slow  
Slow  
Fast  
59  
60  
58  
61  
87  
88  
86  
89  
Test Data In  
Input only  
Medium  
Fast  
TDO  
Test Data Out  
Output only  
Reset pin, available on 100-pin and 144-pin package.  
RESET  
Bidirectional reset with Schmitt trigger  
characteristics and noise filter  
Bidirectional  
Medium  
20  
31  
Test pin, available on 100-pin and 144-pin package.  
VPP_TEST Pin for testing purpose only. To be tied to  
ground in normal operating mode.  
74  
107  
1
SCR values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.  
2.2.3  
Pin muxing  
Table 5 defines the pin list and muxing for the MPC5604P devices.  
Each row of Table 5 shows all the possible ways of configuring each pin, via alternate functions. The default function assigned  
to each pin after reset is the ALT0 function.  
MPC5604P devices provide four main I/O pad types, depending on the associated functions:  
Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission.  
Medium pads provide fast enough transition for serial communication channels with controlled current to reduce  
electromagnetic emission.  
Fast pads provide maximum speed. They are used for improved NEXUS debugging capability.  
Symmetric pads are designed to meet FlexRay requirements.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
For more information, see the data sheet’s “Pad AC Specifications” section.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
24  
Freescale  
Table 5. Pin muxing  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
I/O  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
Port A (16-bit)  
A[0]  
A[1]  
PCR[0]  
PCR[1]  
PCR[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[0]  
ETC[0]  
SCK  
F[0]  
EIRQ[0]  
SIUL  
eTimer_0  
DSPI_2  
FCU_0  
SIUL  
I/O  
I/O  
O
O
I
Slow  
Slow  
Slow  
Medium  
51 73  
52 74  
57 84  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[1]  
ETC[1]  
SOUT  
F[1]  
SIUL  
eTimer_0  
DSPI_2  
FCU_0  
SIUL  
I/O  
I/O  
O
O
I
Medium  
Medium  
EIRQ[1]  
A[2]6  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[2]  
ETC[2]  
A[3]  
SIN  
SIUL  
eTimer_0  
FlexPWM_0  
DSPI_2  
MC_RGM  
SIUL  
I/O  
I/O  
O
I
ABS[0]  
EIRQ[2]  
I
I
A[3]6  
PCR[3]  
PCR[4]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[3]  
ETC[3]  
CS0  
B[3]  
ABS[2]  
EIRQ[3]  
SIUL  
eTimer_0  
DSPI_2  
FlexPWM_0  
MC_RGM  
SIUL  
I/O  
I/O  
I/O  
O
I
I
Slow  
Slow  
Medium  
Medium  
64 92  
A[4]6  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[4]  
ETC[0]  
CS1  
ETC[4]  
FAB  
SIUL  
eTimer_1  
DSPI_2  
eTimer_0  
MC_RGM  
SIUL  
I/O  
I/O  
O
I/O  
I
75 108  
EIRQ[4]  
I
A[5]  
A[6]  
A[7]  
PCR[5]  
PCR[6]  
PCR[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[5]  
CS0  
ETC[5]  
CS7  
SIUL  
DSPI_1  
eTimer_1  
DSPI_0  
SIUL  
I/O  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
8
2
4
14  
2
EIRQ[5]  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[6]  
SCK  
EIRQ[6]  
SIUL  
DSPI_1  
SIUL  
I/O  
I/O  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[7]  
SOUT  
EIRQ[7]  
SIUL  
DSPI_1  
SIUL  
I/O  
O
I
10  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
25  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
A[8]  
PCR[8]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[8]  
SIN  
EIRQ[8]  
SIUL  
DSPI_1  
SIUL  
I/O  
I
Slow  
Medium  
6
12  
I
A[9]  
PCR[9]  
PCR[10]  
PCR[11]  
PCR[12]  
PCR[13]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[9]  
CS1  
B[3]  
SIUL  
DSPI_2  
I/O  
O
O
I
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
94 134  
81 118  
82 120  
83 122  
95 136  
FlexPWM_0  
FlexPWM_0  
FAULT[0]  
A[10]  
A[11]  
A[12]  
A[13]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[10]  
CS0  
B[0]  
X[2]  
EIRQ[9]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
I/O  
O
I/O  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[11]  
SCK  
A[0]  
A[2]  
EIRQ[10]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
I/O  
O
O
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[12]  
SOUT  
A[2]  
B[2]  
EIRQ[11]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
O
O
O
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[13]  
SIUL  
FlexPWM_0  
DSPI_2  
FlexPWM_0  
SIUL  
I/O  
O
I
B[2]  
SIN  
FAULT[0]  
EIRQ[12]  
I
I
A[14]  
A[15]  
PCR[14]  
PCR[15]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[14]  
TXD  
ETC[4]  
SIUL  
Safety Port_0  
eTimer_1  
I/O  
O
I/O  
I
Slow  
Slow  
Medium  
99 143  
EIRQ[13]  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[15]  
ETC[5]  
RXD  
EIRQ[14]  
SIUL  
eTimer_1  
Safety Port_0  
SIUL  
I/O  
I/O  
I
Medium 100 144  
I
MPC5604P Microcontroller Data Sheet, Rev. 8  
26  
Freescale  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
Port B (16-bit)  
B[0]  
B[1]  
PCR[16]  
PCR[17]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[16]  
TXD  
ETC[2]  
DEBUG[0]  
EIRQ[15]  
SIUL  
FlexCAN_0  
eTimer_1  
SSCM  
I/O  
O
I/O  
I
Slow  
Slow  
Medium  
76 109  
77 110  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[17]  
ETC[3]  
DEBUG[1]  
RXD  
SIUL  
eTimer_1  
SSCM  
FlexCAN_0  
SIUL  
I/O  
I/O  
I
Medium  
EIRQ[16]  
I
B[2]  
B[3]  
B[6]  
B[7]  
PCR[18]  
PCR[19]  
PCR[22]  
PCR[23]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[18]  
TXD  
SIUL  
LIN_0  
SSCM  
SIUL  
I/O  
O
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
79 114  
80 116  
96 138  
29 43  
DEBUG[2]  
EIRQ[17]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[19]  
SIUL  
SSCM  
LIN_0  
I/O  
I
DEBUG[3]  
RXD  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[22]  
CLKOUT  
CS2  
SIUL  
MC_CGL  
DSPI_2  
I/O  
O
O
I
EIRQ[18]  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[23]  
AN[0]  
RXD  
SIUL  
ADC_0  
LIN_0  
Input only  
Input only  
Input only  
B[8]  
B[9]  
PCR[24]  
PCR[25]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[24]  
AN[1]  
ETC[5]  
SIUL  
31 47  
ADC_0  
eTimer_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[25]  
AN[11]  
SIUL  
35 52  
ADC_0 / ADC_1  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
27  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
B[10]  
B[11]  
B[12]  
B[13]  
PCR[26]  
PCR[27]  
PCR[28]  
PCR[29]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[26]  
AN[12]  
SIUL  
Input only  
36 53  
ADC_0 / ADC_1  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[27]  
AN[13]  
SIUL  
Input only  
Input only  
Input only  
37 54  
38 55  
42 60  
ADC_0 / ADC_1  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[28]  
AN[14]  
SIUL  
ADC_0 / ADC_1  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[29]  
AN[0]  
RXD  
SIUL  
ADC_1  
LIN_1  
B[14]  
B[15]  
PCR[30]  
PCR[31]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[30]  
SIUL  
Input only  
Input only  
44 64  
AN[1]  
ETC[4]  
EIRQ[19]  
ADC_1  
eTimer_0  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[31]  
SIUL  
ADC_1  
SIUL  
43 62  
AN[2]  
EIRQ[20]  
Port C (16-bit)  
C[0]  
C[1]  
PCR[32]  
PCR[33]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[32]  
SIUL  
ADC_1  
Input only  
Input only  
45 66  
AN[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[33]  
SIUL  
ADC_0  
28 41  
AN[2]  
MPC5604P Microcontroller Data Sheet, Rev. 8  
28  
Freescale  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
C[2]  
C[3]  
C[4]  
C[5]  
PCR[34]  
PCR[35]  
PCR[36]  
PCR[37]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[34]  
SIUL  
ADC_0  
Input only  
30 45  
AN[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[35]  
CS1  
ETC[4]  
TXD  
SIUL  
DSPI_0  
eTimer_1  
LIN_1  
I/O  
O
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
10 16  
EIRQ[21]  
SIUL  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[36]  
CS0  
X[1]  
DEBUG[4]  
EIRQ[22]  
SIUL  
DSPI_0  
FlexPWM_0  
SSCM  
I/O  
I/O  
I/O  
I
5
7
11  
13  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[37]  
SCK  
SIUL  
DSPI_0  
SSCM  
FlexPWM_0  
SIUL  
I/O  
I/O  
I
DEBUG[5]  
FAULT[3]  
EIRQ[23]  
I
C[6]  
C[7]  
C[8]  
C[9]  
C[10]  
PCR[38]  
PCR[39]  
PCR[40]  
PCR[41]  
PCR[42]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[38]  
SOUT  
B[1]  
DEBUG[6]  
EIRQ[24]  
SIUL  
DSPI_0  
FlexPWM_0  
SSCM  
I/O  
I/O  
O
I
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
98 142  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[39]  
A[1]  
DEBUG[7]  
SIN  
SIUL  
FlexPWM_0  
SSCM  
I/O  
O
I
9
15  
DSPI_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[40]  
CS1  
CS6  
FAULT[2]  
SIUL  
DSPI_1  
DSPI_0  
FlexPWM_0  
I/O  
O
O
I
91 130  
84 123  
78 111  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[41]  
CS3  
X[3]  
FAULT[2]  
SIUL  
DSPI_2  
I/O  
O
I/O  
I
FlexPWM_0  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[42]  
CS2  
A[3]  
FAULT[1]  
SIUL  
DSPI_2  
I/O  
O
O
I
FlexPWM_0  
FlexPWM_0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
29  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
C[11]  
C[12]  
C[13]  
PCR[43]  
PCR[44]  
PCR[45]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[43]  
ETC[4]  
CS2  
SIUL  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Medium  
55 80  
56 82  
71 101  
eTimer_0  
DSPI_2  
DSPI_3  
CS0  
I/O  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[44]  
ETC[5]  
CS3  
SIUL  
I/O  
I/O  
O
Medium  
Medium  
eTimer_0  
DSPI_2  
DSPI_3  
CS1  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[45]  
ETC[1]  
SIUL  
eTimer_1  
I/O  
I/O  
I
EXT_IN  
EXT_SYNC  
CTU_0  
FlexPWM_0  
I
C[14]  
C[15]  
PCR[46]  
PCR[47]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[46]  
ETC[2]  
EXT_TGR  
SIUL  
eTimer_1  
CTU_0  
I/O  
I/O  
O
Slow  
Slow  
Medium  
72 103  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[47]  
CA_TR_EN  
ETC[0]  
A[1]  
EXT_IN  
SIUL  
I/O  
O
I/O  
O
I
Symmetric 85 124  
FlexRay_0  
eTimer_1  
FlexPWM_0  
CTU_0  
EXT_SYNC  
FlexPWM_0  
I
Port D (16-bit)  
D[0]  
D[1]  
PCR[48]  
PCR[49]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[48]  
CA_TX  
ETC[1]  
B[1]  
SIUL  
I/O  
O
I/O  
O
Slow  
Slow  
Symmetric 86 125  
FlexRay_0  
eTimer_1  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[49]  
ETC[2]  
EXT_TRG  
CA_RX  
SIUL  
eTimer_1  
CTU_0  
FlexRay_0  
I/O  
I/O  
O
Medium  
Medium  
3
3
I
D[2]  
D[3]  
PCR[50]  
PCR[51]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[50]  
ETC[3]  
X[3]  
SIUL  
eTimer_1  
FlexPWM_0  
FlexRay_0  
I/O  
I/O  
I/O  
I
Slow  
Slow  
97 140  
CB_RX  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[51]  
CB_TX  
ETC[4]  
A[3]  
SIUL  
I/O  
O
I/O  
O
Symmetric 89 128  
FlexRay_0  
eTimer_1  
FlexPWM_0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
30  
Freescale  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
Symmetric 90 129  
D[4]  
D[5]  
D[6]  
PCR[52]  
PCR[53]  
PCR[54]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[52]  
CB_TR_EN  
ETC[5]  
SIUL  
I/O  
O
I/O  
O
Slow  
FlexRay_0  
eTimer_1  
FlexPWM_0  
B[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[53]  
CS3  
F[0]  
SOUT  
SIUL  
I/O  
O
O
Slow  
Slow  
Medium  
Medium  
22 33  
23 34  
DSPI_0  
FCU_0  
DSPI_3  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[54]  
CS2  
SCK  
SIUL  
DSPI_0  
DSPI_3  
I/O  
O
I/O  
I
FAULT[1]  
FlexPWM_0  
D[7]  
D[8]  
PCR[55]  
PCR[56]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[55]  
CS3  
SIUL  
I/O  
O
O
O
I
Slow  
Slow  
Medium  
Medium  
26 37  
DSPI_1  
FCU_0  
DSPI_0  
DSPI_3  
F[1]  
CS4  
SIN  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[56]  
CS2  
CS5  
FAULT[3]  
SIUL  
DSPI_1  
DSPI_0  
FlexPWM_0  
I/O  
O
O
I
21 32  
D[9]  
D[10]  
D[11]  
D[12]  
PCR[57]  
PCR[58]  
PCR[59]  
PCR[60]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[57]  
X[0]  
TXD  
SIUL  
FlexPWM_0  
LIN_1  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
15 26  
53 76  
54 78  
70 99  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[58]  
A[0]  
SIUL  
FlexPWM_0  
DSPI_3  
I/O  
O
I/O  
CS0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[59]  
B[0]  
CS1  
SCK  
SIUL  
FlexPWM_0  
DSPI_3  
I/O  
O
O
DSPI_3  
I/O  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[60]  
X[1]  
RXD  
SIUL  
FlexPWM_0  
I/O  
I/O  
I
LIN_1  
D[13]  
PCR[61]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[61]  
A[1]  
CS2  
SOUT  
SIUL  
FlexPWM_0  
DSPI_3  
I/O  
O
O
Slow  
Medium  
67 95  
DSPI_3  
O
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
31  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
D[14]  
PCR[62]  
PCR[63]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[62]  
B[1]  
SIUL  
FlexPWM_0  
DSPI_3  
I/O  
O
O
I
Slow  
Medium  
73 105  
CS3  
SIN  
DSPI_3  
D[15]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[63]  
SIUL  
ADC_1  
Input only  
41 58  
AN[4]  
Port E(16-bit)  
E[0]  
E[1]  
E[2]  
E[3]  
E[4]  
E[5]  
PCR[64]  
PCR[65]  
PCR[66]  
PCR[67]  
PCR[68]  
PCR[69]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[64]  
SIUL  
ADC_1  
Input only  
Input only  
Input only  
Input only  
Input only  
Input only  
46 68  
27 39  
32 49  
AN[5]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[65]  
SIUL  
ADC_0  
AN[4]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[66]  
SIUL  
ADC_0  
AN[5]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[67]  
SIUL  
ADC_0  
40  
42  
44  
AN[6]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[68]  
SIUL  
ADC_0  
AN[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[69]  
SIUL  
ADC_0  
AN[8]  
MPC5604P Microcontroller Data Sheet, Rev. 8  
32  
Freescale  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
E[6]  
PCR[70]  
PCR[71]  
PCR[72]  
PCR[73]  
PCR[74]  
PCR[75]  
PCR[76]  
PCR[77]  
PCR[78]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[70]  
SIUL  
ADC_0  
Input only  
46  
48  
AN[9]  
E[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[71]  
AN[10]  
SIUL  
ADC_0  
Input only  
Input only  
Input only  
Input only  
Input only  
Input only  
E[8]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[72]  
SIUL  
ADC_1  
59  
AN[6]  
E[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[73]  
SIUL  
ADC_1  
61  
AN[7]  
E[10]  
E[11]  
E[12]  
E[13]  
E[14]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[74]  
SIUL  
ADC_1  
63  
AN[8]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[75]  
SIUL  
ADC_1  
65  
AN[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[76]  
AN[10]  
SIUL  
ADC_1  
67  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[77]  
SCK  
SIUL  
DSPI_3  
SIUL  
I/O  
I/O  
I
Slow  
Slow  
Medium  
Medium  
117  
119  
EIRQ[25]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[78]  
SOUT  
SIUL  
DSPI_3  
SIUL  
I/O  
O
I
EIRQ[26]  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
33  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
E[15]  
PCR[79]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[79]  
SIUL  
DSPI_3  
SIUL  
I/O  
I
Slow  
Medium  
121  
SIN  
EIRQ[27]  
I
Port F (16-bit)  
F[0]  
F[1]  
PCR[80]  
PCR[81]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[80]  
DBG0  
CS3  
SIUL  
FlexRay_0  
DSPI_3  
I/O  
O
O
I
Slow  
Slow  
Medium  
Medium  
133  
135  
EIRQ[28]  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[81]  
DBG1  
CS2  
SIUL  
FlexRay_0  
DSPI_3  
I/O  
O
O
I
EIRQ[29]  
SIUL  
F[2]  
F[3]  
F[4]  
F[5]  
F[6]  
F[7]  
F[8]  
PCR[82]  
PCR[83]  
PCR[84]  
PCR[85]  
PCR[86]  
PCR[87]  
PCR[88]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[82]  
DBG2  
CS1  
SIUL  
FlexRay_0  
DSPI_3  
I/O  
O
O
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Fast  
137  
139  
4
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[83]  
DBG3  
CS0  
SIUL  
FlexRay_0  
DSPI_3  
I/O  
O
I/O  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[84]  
MDO[3]  
SIUL  
NEXUS_0  
I/O  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[85]  
MDO[2]  
SIUL  
NEXUS_0  
I/O  
O
Fast  
5
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[86]  
MDO[1]  
SIUL  
NEXUS_0  
I/O  
O
Fast  
8
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[87]  
MCKO  
SIUL  
NEXUS_0  
I/O  
O
Fast  
19  
20  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[88]  
MSEO1  
SIUL  
NEXUS_0  
I/O  
O
Fast  
MPC5604P Microcontroller Data Sheet, Rev. 8  
34  
Freescale  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
F[9]  
F[10]  
F[11]  
PCR[89]  
PCR[90]  
PCR[91]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[89]  
MSEO0  
SIUL  
NEXUS_0  
I/O  
O
Slow  
Slow  
Slow  
Fast  
23  
24  
25  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[90]  
EVTO  
SIUL  
NEXUS_0  
I/O  
O
Fast  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[91]  
SIUL  
I/O  
I
Medium  
EVTI  
NEXUS_0  
F[12]  
F[13]  
F[14]  
F[15]  
PCR[92]  
PCR[93]  
PCR[94]  
PCR[95]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[92]  
ETC[3]  
SIUL  
eTimer_1  
I/O  
I/O  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
106  
112  
115  
113  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[92]  
ETC[4]  
SIUL  
eTimer_1  
I/O  
I/O  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[94]  
TXD  
SIUL  
LIN_1  
I/O  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[95]  
SIUL  
LIN_1  
I/O  
I
RXD  
Port G (12-bit)  
G[0]  
G[1]  
G[2]  
PCR[96]  
PCR[97]  
PCR[98]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[96]  
F[0]  
SIUL  
FCU_0  
SIUL  
I/O  
O
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
38  
EIRQ[30]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[97]  
F[1]  
SIUL  
FCU_0  
SIUL  
I/O  
O
I
141  
102  
EIRQ[31]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[98]  
SIUL  
FlexPWM_0  
I/O  
I/O  
X[2]  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
35  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin No.  
Pad  
configuration  
register (PCR)  
Port  
pin  
Alternate  
Functions  
Peripheral3  
function1,2  
direction4  
SRC = 0  
SRC = 1  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
G[8]  
PCR[99]  
PCR[100]  
PCR[101]  
PCR[102]  
PCR[103]  
PCR[104]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[99]  
SIUL  
FlexPWM_0  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
104  
100  
85  
A[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[100]  
SIUL  
FlexPWM_0  
I/O  
O
Medium  
Medium  
Medium  
Medium  
Medium  
B[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[101]  
SIUL  
FlexPWM_0  
I/O  
I/O  
X[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[102]  
SIUL  
FlexPWM_0  
I/O  
O
98  
A[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[103]  
SIUL  
FlexPWM_0  
I/O  
O
83  
B[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[104]  
SIUL  
I/O  
I
81  
FAULT[0]  
FlexPWM_0  
G[9]  
G[10]  
G[11]  
PCR[105]  
PCR[106]  
PCR[107]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[105]  
SIUL  
I/O  
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
79  
77  
75  
FAULT[1]  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[106]  
SIUL  
I/O  
I
FAULT[2]  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[107]  
SIUL  
I/O  
I
FAULT[3]  
FlexPWM_0  
1
ALT0 is the primary (default) function for each port after reset.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
36  
Freescale  
2
Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module.  
PCR[PA] = 00 ALT0; PCR[PA] = 01 ALT1; PCR[PA] = 10 ALT2; PCR[PA] = 11 ALT3. This is intended to  
select the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to ‘1’, regardless  
of the values selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
3
4
Module included on the MCU.  
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMI[PADSELx] bitfields inside the SIUL module.  
5
6
Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.  
Weak pull down during reset.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
37  
3
Electrical characteristics  
3.1  
Introduction  
This section contains device electrical characteristics as well as temperature and power considerations.  
This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This can be done by the  
DD  
SS  
internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins.  
The following tables provide the device characteristics and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
CAUTION  
All of the following parameter values can vary depending on the application and must be  
confirmed during silicon characterization or silicon reliability trial.  
3.2  
Parameter classification  
The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications  
listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate.  
Table 6. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
38  
Freescale  
3.3  
Absolute maximum ratings  
1
Table 7. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max2  
VSS  
SR Device ground  
0
0
V
V
3
VDD_HV_IOx SR 3.3 V / 5.0 V input/output supply  
voltage with respect to ground (VSS  
–0.3  
6.0  
)
VSS_HV_IOx SR Input/output ground voltage with  
–0.1  
–0.3  
0.1  
6.0  
V
V
respect to ground (VSS  
)
VDD_HV_FL SR 3.3 V / 5.0 V code and data flash  
supply voltage with respect to ground  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
(VSS  
)
VSS_HV_FL SR Code and data flash ground with  
respect to ground (VSS  
–0.1  
–0.3  
0.1  
V
V
)
VDD_HV_OSC SR 3.3 V / 5.0 V crystal oscillator  
amplifier supply voltage with respect  
6.0  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
to ground (VSS  
)
VSS_HV_OSC SR 3.3 V / 5.0 V crystal oscillator  
amplifier reference voltage with  
–0.1  
–0.3  
0.1  
V
V
respect to ground (VSS  
)
VDD_HV_REG SR 3.3 V / 5.0 V voltage regulator supply  
6.0  
voltage with respect to ground (VSS  
)
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
4
VDD_HV_ADC0 SR 3.3 V / 5.0 V ADC_0 supply and high VDD_HV_REG  
<
>
–0.3  
VDD_HV_REG  
0.3  
+
V
reference voltage with respect to  
ground (VSS  
2.7 V  
)
VDD_HV_REG  
2.7 V  
6.0  
VSS_HV_ADC0 SR ADC_0 ground and low reference  
voltage with respect to ground (VSS  
–0.1  
–0.3  
0.1  
V
V
)
4
VDD_HV_ADC1 SR 3.3 V / 5.0 V ADC_0 supply and high VDD_HV_REG  
<
>
VDD_HV_REG  
0.3  
+
reference voltage with respect to  
ground (VSS  
2.7 V  
)
VDD_HV_REG  
2.7 V  
6.0  
VSS_HV_ADC1 SR ADC_1 ground and low reference  
voltage with respect to ground (VSS  
–0.1  
3.0  
0.1  
V
)
TVDD  
SR Slope characteristics on all VDD  
during power up5 with respect to  
500 x 103  
(0.5 [V/µs])  
V/s  
ground (VSS  
)
VIN  
SR Voltage on any pin with respect to  
–0.3  
6.0  
V
ground (VSS_HV_IOx) with respect to  
ground (VSS  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.  
3
)
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
39  
1
Table 7. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max2  
VDD_HV_REG  
2.7 V  
>
VSS_HV_ADV0 VDD_HV_ADV0 +  
V
V
V
0.3  
0.3  
VDD_HV_ADV0  
ADC0 and shared ADC0/1 analog  
input voltage6  
VINAN0  
SR  
VDD_HV_REG  
2.7 V  
<
>
<
VSS_HV_ADV0  
VDD_HV_REG  
2.7 V  
VSS_HV_ADV1 VDD_HV_ADV1 +  
0.3  
VSS_HV_ADV1  
–10  
0.3  
VDD_HV_ADV1  
10  
VINAN1  
SR ADC1 analog input voltage7  
VDD_HV_REG  
2.7 V  
V
IINJPAD  
IINJSUM  
IVDD_LV  
SR Injected input current on any pin  
during overload condition  
mA  
SR Absolute sum of all injected input  
currents during overload condition  
–50  
50  
mA  
mA  
SR Low voltage static current sink  
through VDD_LV  
155  
TSTG  
TJ  
SR Storage temperature  
–55  
–40  
150  
150  
°C  
°C  
SR Junction temperature under bias  
1
Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
2
3
Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device  
stress have not yet been determined.  
The difference between each couple of voltage supplies must be less than 300 mV,  
|VDD_HV_IOy – VDD_HV_IOx | < 300 mV.  
4
5
6
7
The difference between ADC voltage supplies must be less than 100 mV, |VDD_HV_ADC1 – VDD_HV_ADC0| < 100 mV.  
Guaranteed by device validation  
Not allowed to refer this voltage to VDD_HV_ADV1, VSS_HV_ADV1  
Not allowed to refer this voltage to VDD_HV_ADV0, VSS_HV_ADV0  
Figure 4 shows the constraints of the different power supplies.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
40  
Freescale  
VDD_HV_xxx  
6.0 V  
VDD_HV_IOx  
–0.3 V  
–0.3 V  
6.0 V  
Figure 4. Power supplies constraints (–0.3 V VDD_HV_IOx 6.0 V)  
The MPC5604P supply architecture allows of having ADC supply managed independently from standard V  
Figure 5 shows the constraints of the ADC power supply.  
supply.  
DD_HV  
VDD_HV_ADCx  
6.0 V  
VDD_HV_REG  
–0.3 V  
–0.3 V  
2.7 V  
6.0 V  
Figure 5. Independent ADC supply (–0.3 V VDD_HV_REG 6.0 V)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
41  
3.4  
Recommended operating conditions  
Table 8. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS  
SR Device ground  
0
0
V
V
2
VDD_HV_IOx  
SR 5.0 V input/output supply  
voltage  
4.5  
5.5  
VSS_HV_IOx  
VDD_HV_FL  
SR Input/output ground voltage  
0
0
V
V
SR 5.0 V code and data flash  
supply voltage  
4.5  
5.5  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_FL  
SR Code and data flash ground  
0
0
V
V
VDD_HV_OSC  
SR 5.0 V crystal oscillator amplifier  
supply voltage  
4.5  
5.5  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_OSC  
VDD_HV_REG  
SR 5.0 V crystal oscillator amplifier  
reference voltage  
0
0
V
V
SR 5.0 V voltage regulator supply  
voltage  
4.5  
5.5  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
3
VDD_HV_ADC0  
SR 5.0 V ADC_0 supply and high  
reference voltage  
4.5  
5.5  
V
Relative to  
VDD_HV_REG – 0.1  
VDD_HV_REG  
VSS_HV_ADC0  
SR ADC_0 ground and low  
reference voltage  
0
0
V
V
3
VDD_HV_ADC1  
SR 5.0 V ADC_1 supply and high  
reference voltage  
4.5  
5.5  
Relative to  
VDD_HV_REG – 0.1  
VDD_HV_REG  
VSS_HV_ADC1  
SR ADC_1 ground and low  
reference voltage  
0
0
V
4,5  
4
VDD_LV_REGCOR  
CC Internal supply voltage  
0
0
V
V
VSS_LV_REGCOR SR Internal reference voltage  
4,5  
VDD_LV_CORx  
VSS_LV_CORx  
TA  
CC Internal supply voltage  
0
0
V
4
SR Internal reference voltage  
V
SR Ambient temperature under  
bias  
–40  
125  
°C  
1
2
3
Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full  
functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.  
The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | <  
100 mV.  
The difference between ADC voltage supplies must be less than 100 mV, |VDD_HV_ADC1 VDD_HV_ADC0| < 100 mV.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
42  
Freescale  
4
5
To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced  
by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must  
be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected  
to the external ballast emitter.  
The low voltage supplies (VDD_LV_xxx) are not all independent.  
VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the  
low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted.  
VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx  
.
Table 9. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS  
SR Device ground  
0
0
V
V
2
VDD_HV_IOx  
SR 3.3 V input/output supply  
voltage  
3.0  
3.6  
VSS_HV_IOx  
VDD_HV_FL  
SR Input/output ground voltage  
0
0
V
V
SR 3.3 V code and data flash  
supply voltage  
3.0  
3.6  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_FL  
SR Code and data flash ground  
0
0
V
V
VDD_HV_OSC  
SR 3.3 V crystal oscillator amplifier  
supply voltage  
3.0  
3.6  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_OSC  
VDD_HV_REG  
SR 3.3 V crystal oscillator amplifier  
reference voltage  
0
0
V
V
SR 3.3 V voltage regulator supply  
voltage  
3.0  
3.6  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
3
VDD_HV_ADC0  
SR 3.3 V ADC_0 supply and high  
reference voltage  
3.0  
5.5  
5.5  
V
Relative to  
VDD_HV_REG – 0.1  
VDD_HV_REG  
VSS_HV_ADC0  
SR ADC_0 ground and low  
reference voltage  
0
0
V
V
3
VDD_HV_ADC1  
SR 3.3 V ADC_1 supply and high  
reference voltage  
3.0  
5.5  
5.5  
Relative to  
VDD_HV_REG – 0.1  
VDD_HV_REG  
VSS_HV_ADC1  
SR ADC_1 ground and low  
reference voltage  
0
0
V
V
4,5  
VDD_LV_REGCOR  
CC Internal supply voltage  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
43  
Table 9. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
4
VSS_LV_REGCOR SR Internal reference voltage  
0
0
0
0
V
V
4,5  
VDD_LV_CORx  
VSS_LV_CORx  
TA  
CC Internal supply voltage  
4
SR Internal reference voltage  
V
SR Ambient temperature under  
bias  
–40  
125  
°C  
1
2
3
Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full  
functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.  
The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | <  
100 mV.  
The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_ADC1 – VDD_HV_ADC0  
|
< 100 mV. As long as that condition is met, ADC_0 and ADC_1 can be operated at 5 V with the rest of the device  
operating at 3.3 V.  
4
5
To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced  
by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must  
be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected  
to the external ballast emitter.  
The low voltage supplies (VDD_LV_xxx) are not all independent.  
VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the  
low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted.  
VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx  
.
MPC5604P Microcontroller Data Sheet, Rev. 8  
44  
Freescale  
Figure 6 shows the constraints of the different power supplies.  
VDD_HV_xxx  
5.5 V  
3.3 V  
3.0 V  
VDD_HV_IOx  
5.5 V  
3.0 V  
3.3 V  
Note: IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when  
PAD3V5V is low, and in the range of 4.5–5.5 V when PAD3V5V is high.  
Figure 6. Power supplies constraints (3.0 V VDD_HV_IOx 5.5 V)  
The MPC5604P supply architecture allows the ADC supply to be managed independently from the standard V  
Figure 7 shows the constraints of the ADC power supply.  
supply.  
DD_HV  
VDD_HV_ADCx  
5.5 V  
3.0 V  
VDD_HV_REG  
3.0 V  
5.5 V  
Figure 7. Independent ADC supply (3.0 V VDD_HV_REG 5.5 V)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
45  
3.5  
Thermal characteristics  
3.5.1  
Package thermal characteristics  
Table 10. Thermal characteristics for 144-pin LQFP  
Symbol  
Parameter  
Conditions  
Typical value Unit  
RJA  
Thermal resistance junction-to-ambient,  
natural convection1  
Single layer board—1s  
Four layer board—2s2p  
Four layer board—2s2p  
54.2  
44.4  
29.9  
9.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RJB  
Thermal resistance junction-to-board2  
RJCtop Thermal resistance junction-to-case (top)3 Single layer board—1s  
JB  
JC  
Junction-to-board, natural convection4  
Junction-to-case, natural convection5  
Operating conditions  
Operating conditions  
30.2  
0.8  
1
2
3
Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board  
meets JEDEC specification for this package.  
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets  
JEDEC specification for the specified package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold  
plate temperature is used for the case temperature. Reported value includes the thermal resistance  
of the interface layer.  
4
5
Thermal characterization parameter indicating the temperature difference between the board and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JB.  
Thermal characterization parameter indicating the temperature difference between the case and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JC.  
Table 11. Thermal characteristics for 100-pin LQFP  
Symbol  
Parameter  
Conditions  
Typical value Unit  
RJA  
Thermal resistance junction-to-ambient,  
natural convection1  
Single layer board—1s  
Four layer board—2s2p  
Four layer board—2s2p  
47.3  
35.3  
19.1  
9.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RJB  
Thermal resistance junction-to-board2  
RJCtop Thermal resistance junction-to-case (top)3 Single layer board—1s  
JB  
JC  
Junction-to-board, natural convection4  
Junction-to-case, natural convection5  
Operating conditions  
Operating conditions  
19.1  
0.8  
1
2
3
Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board  
meets JEDEC specification for this package.  
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets  
JEDEC specification for the specified package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold  
plate temperature is used for the case temperature. Reported value includes the thermal resistance  
of the interface layer.  
4
Thermal characterization parameter indicating the temperature difference between the board and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JB.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
46  
Freescale  
5
Thermal characterization parameter indicating the temperature difference between the case and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JC.  
3.5.2  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from Equation 1:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
T
= ambient temperature for the package (°C)  
A
R
= junction to ambient thermal resistance (°C/W)  
= power dissipation in the package (W)  
JA  
P
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value  
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which  
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance  
and a case to ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 2  
JA  
JC  
where:  
R
R
R
= junction to ambient thermal resistance (°C/W)  
= junction to case thermal resistance (°C/W)  
= case to ambient thermal resistance (°C/W)  
JA  
JC  
CA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
JC  
ambient thermal resistance, R  
. For instance, the user can change the size of the heat sink, the air flow around the device, the  
CA  
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit  
board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using Equation 3:  
T = T + (x P )  
Eqn. 3  
J
T
JT  
D
where:  
T
= thermocouple temperature on top of the package (°C)  
= thermal characterization parameter (°C/W)  
= power dissipation in the package (W)  
T
JT  
P
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
References:  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
47  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
(408) 943-6900  
U.S.A.  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at  
800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller  
Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic  
Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in  
Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.  
3.6  
Electromagnetic interference (EMI) characteristics  
Table 12. EMI testing specifications  
Level  
(Max)  
Symbol  
Parameter  
Conditions  
Clocks  
Frequency  
Unit  
VEME Radiated emissions Device configuration, test  
fOSC 8 MHz  
150 kHz–150 MHz 16 dBµV  
conditions and EM testing per fCPU 64 MHz  
150–1000 MHz  
IEC Level  
15  
M
standard IEC61967-2  
No PLL frequency  
modulation  
Supply voltage = 5 V DC  
Ambient temperature = 25 °C  
Worst-case orientation  
fOSC 8 MHz  
150 kHz–150 MHz 15 dBµV  
fCPU 64 MHz  
1% PLL frequency  
modulation  
150–1000 MHz  
IEC Level  
14  
M
3.7  
Electrostatic discharge (ESD) characteristics  
1,2  
Table 13. ESD ratings  
Symbol  
Parameter  
Conditions  
Value  
Unit  
VESD(HBM)  
VESD(CDM)  
SR Electrostatic discharge (Human Body Model)  
SR Electrostatic discharge (Charged Device Model)  
2000  
V
V
750 (corners)  
500 (other)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
48  
Freescale  
3.8  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
3.8.1  
The internal voltage regulator requires an external NPN ballast to be connected as shown in Figure 8. Table 14 contains all  
approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care  
should also be taken to limit the serial inductance of the V  
Table 15.  
, BCTRL and V  
pins to less than L , see  
DD_HV_REG  
DD_LV_CORx Reg  
NOTE  
The voltage regulator output cannot be used to drive external circuits. Output pins are used  
only for decoupling capacitances.  
V
must be generated using internal regulator and external NPN transistor. It is  
DD_LV_COR  
not possible to provide V  
through external regulator.  
DD_LV_COR  
For the MPC5604P microcontroller, capacitors, with total values not below C  
, should be placed between  
DEC1  
V
/V  
close to external ballast transistor emitter. 4 capacitors, with total values not below C  
, should  
DEC2  
DD_LV_CORx SS_LV_CORx  
be placed close to microcontroller pins between each V  
/V  
supply pairs and the  
DD_LV_CORx SS_LV_CORx  
V
/V  
pair . Additionally, capacitors with total values not below C  
, should be placed between  
DEC3  
DD_LV_REGCOR SS_LV_REGCOR  
the V  
/V  
pins close to ballast collector. Capacitors values have to take into account capacitor accuracy,  
DD_HV_REG SS_HV_REG  
aging and variation versus temperature.  
All reported information are valid for voltage and temperature ranges described in recommended operating condition, Table 8  
and Table 9.  
VDD_HV_REG  
CDEC3  
MPC5604P  
BJT(1)  
BCTRL  
RB  
VDD_LV_COR  
CDEC2  
CDEC1  
1
Refer to Table 14.  
Figure 8. Configuration with resistor on base  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
49  
Table 14. Approved NPN ballast components (configuration with resistor on base)  
Part  
Manufacturer  
Approved derivatives1  
BCP68  
ON Semi  
NXP  
BCP68  
BCP68-25  
Infineon  
Infineon  
NXP  
BCP68-25  
BCX68  
BC868  
BC817  
BCX68-10;BCX68-16;BCX68-25  
BC868  
Infineon  
NXP  
BC817-16;BC817-25;BC817SU;  
BC817-16;BC817-25  
BCP56-16  
BCP56  
ST  
Infineon  
ON Semi  
NXP  
BCP56-10;BCP56-16  
BCP56-10  
BCP56-10;BCP56-16  
1
For automotive applications please check with the appropriate transistor vendor for automotive grade  
certification  
Table 15. Voltage regulator electrical characteristics (configuration with resistor on base)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
VDD_LV_REGCOR CC P Output voltage under maximum Post-trimming  
1.15  
1.32  
V
load run supply current  
configuration  
RB  
SR — External resistance on bipolar  
junction transistor (BJT) base  
18  
22 k  
CDEC1  
SR — External decoupling/stability  
ceramic capacitor  
BJT from Table 14. 3  
capacitances (i.e. X7R or X8R  
capacitors) with nominal value  
of 10 µF  
19.5 30  
µF  
BJT BC817, one capacitance 14.3 22  
of 22 µF  
µF  
MPC5604P Microcontroller Data Sheet, Rev. 8  
50  
Freescale  
Table 15. Voltage regulator electrical characteristics (configuration with resistor on base) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
RREG  
SR — Resulting ESR of all three  
capacitors of CDEC1  
BJT from Table 14. 3x10 µF.  
Absolute maximum value  
between 100 kHz and 10 MHz  
50 m  
40 m  
Resulting ESR of the unique BJT BC817, 1x 22 µF.  
10  
capacitor CDEC1  
Absolute maximum value  
between 100 kHz and 10 MHz  
CDEC2  
SR — External decoupling/stability  
ceramic capacitor  
4 capacitances (i.e. X7R or  
X8R capacitors) with nominal  
value of 440 nF  
1200 1760  
19.5 30  
nF  
µF  
CDEC3  
SR — External decoupling/stability  
ceramic capacitor on  
3 capacitances (i.e. X7R or  
X8R capacitors) with nominal  
value of 10 µF; CDEC3 has to  
be equal or greater than  
CDEC1  
VDD_HV_REG  
LReg  
SR — Resulting ESL of VDD_HV_REG  
,
15 nH  
BCTRL and VDD_LV_CORx pins  
VDD_HV_REG  
CDEC3  
MPC5604P  
BCP56,  
BCP68,  
BCX68,  
BC817  
BCTRL  
VDD_LV_COR  
CDEC2  
CDEC1  
Figure 9. Configuration without resistor on base  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
51  
Table 16. Voltage regulator electrical characteristics (configuration without resistor on base)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
VDD_LV_REGCOR CC P Output voltage under maximum Post-trimming  
1.15  
1.32  
V
load run supply current  
configuration  
CDEC1  
RREG  
CDEC2  
CDEC3  
SR — External decoupling/stability  
ceramic capacitor  
4 capacitances  
µF  
m  
nF  
40  
56  
45  
SR — Resulting ESR of all four CDEC1 Absolute maximum value  
between 100 kHz and 10 MHz  
SR — External decoupling/stability  
ceramic capacitor  
4 capacitances of 100 nF each  
400  
SR — External decoupling/stability  
ceramic capacitor on  
µF  
40  
VDD_HV_REG  
LReg  
SR — Resulting ESL of VDD_HV_REG  
,
15 nH  
BCTRL and VDD_LV_CORx pins  
3.8.2  
Voltage monitor electrical characteristics  
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as three low voltage  
detectors to monitor the V and the V voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply  
DD  
LVDHV5 monitors V when application uses device in the 5.0V ± 10% range  
DD  
LVDLVCOR monitors low voltage digital power domain  
Table 17. Low voltage monitor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VPORH  
T
P
P
P
P
P
P
P
Power-on reset threshold  
1.5  
1.0  
2.7  
V
V
V
V
V
V
V
V
VPORUP  
Supply for functional POR module  
TA = 25 °C  
VREGLVDMOK_H  
VREGLVDMOK_L  
VFLLVDMOK_H  
VFLLVDMOK_L  
VIOLVDMOK_H  
VIOLVDMOK_L  
Regulator low voltage detector high threshold  
Regulator low voltage detector low threshold  
Flash low voltage detector high threshold  
Flash low voltage detector low threshold  
I/O low voltage detector high threshold  
I/O low voltage detector low threshold  
2.95  
2.6  
2.95  
2.6  
2.95  
2.6  
MPC5604P Microcontroller Data Sheet, Rev. 8  
52  
Freescale  
Table 17. Low voltage monitor electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VIOLVDM5OK_H  
VIOLVDM5OK_L  
VMLVDDOK_H  
VMLVDDOK_L  
P
P
P
P
I/O 5V low voltage detector high threshold  
I/O 5V low voltage detector low threshold  
Digital supply low voltage detector high  
Digital supply low voltage detector low  
3.8  
4.4  
V
V
V
V
1.145  
1.08  
1
VDD = 3.3V ± 10% / 5.0V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified  
3.9  
Power up/down sequencing  
To prevent an overstress event or a malfunction within and outside the device, the MPC5604P implements the following  
sequence to ensure each module is started only when all conditions for switching it ON are available:  
A POWER_ON module working on voltage regulator supply controls the correct start-up of the regulator. This is a  
key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5V. Associated  
POWER_ON (or POR) signal is active low.  
Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage  
regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active.  
A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active  
high and released to all modules including I/Os, flash memory and RC16 oscillator needed during power-up phase and  
reset phase. When POWER_OK is low the associated module are set into a safe state.  
VLVDHV3H  
VPORH  
3.3V  
VDD_HV_REG  
VPOR_UP  
0V  
3.3V  
POWER_ON  
LVDM (HV)  
0V  
3.3V  
0V  
VMLVDOK_H  
VDD_LV_REGCOR  
1.2V  
0V  
3.3V  
LVDD (LV)  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
~1us  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
P0  
P1  
Figure 10. Power-up typical sequence  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
53  
VLVDHV3L  
3.3V  
VPORH  
VDD_HV_REG  
0V  
3.3V  
LVDM (HV)  
POWER_ON  
0V  
3.3V  
0V  
1.2V  
0V  
VDD_LV_REGCOR  
LVDD (LV)  
3.3V  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
1.2V  
0V  
IDLE  
P0  
Figure 11. Power-down typical sequence  
VLVDHV3H  
VLVDHV3L  
3.3V  
VDD_HV_REG  
0V  
3.3V  
LVDM (HV)  
POWER_ON  
0V  
3.3V  
0V  
1.2V  
0V  
VDD_LV_REGCOR  
LVDD (LV)  
3.3V  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
~1us  
Internal Reset Generation Module  
1.2V  
0V  
FSM  
IDLE  
P0  
P1  
Figure 12. Brown-out typical sequence  
MPC5604P Microcontroller Data Sheet, Rev. 8  
54  
Freescale  
3.10 DC electrical characteristics  
3.10.1 NVUSRO register  
Portions of the device configuration, such as high voltage supply, and watchdog enable/disable after reset are controlled via bit  
values in the non-volatile user options (NVUSRO) register.  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
3.10.1.1 NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 18 shows how NVUSRO[PAD3V5V]  
controls the device configuration.  
Table 18. PAD3V5V field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
Default manufacturing value before flash initialization is ‘1’ (3.3 V).  
3.10.2 DC electrical characteristics (5 V)  
Table 19 gives the DC electrical characteristics at 5 V (4.5 V < V  
< 5.5 V, NVUSRO[PAD3V5V] = 0); see Figure 13.  
DD_HV_IOx  
Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VIL  
D Low level input voltage  
–0.11  
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
P
0.35 VDD_HV_IOx  
VIH  
P High level input voltage  
D
0.65 VDD_HV_IOx  
VDD_HV_IOx + 0.11  
VHYS  
T Schmitt trigger hysteresis  
0.1 VDD_HV_IOx  
VOL_S P Slow, low level output voltage  
VOH_S P Slow, high level output voltage  
VOL_M P Medium, low level output voltage  
VOH_M P Medium, high level output voltage  
VOL_F P Fast, low level output voltage  
VOH_F P Fast, high level output voltage  
VOL_SYM P Symmetric, low level output voltage  
VOH_SYM P Symmetric, high level output voltage  
IOL = 3 mA  
IOH = –3 mA  
IOL = 3 mA  
IOH = –3 mA  
IOL = 3 mA  
IOH = –3 mA  
IOL = 3 mA  
IOH = –3 mA  
VIN = VIL  
VIN = VIH  
0.1 VDD_HV_IOx  
0.8 VDD_HV_IOx  
0.1 VDD_HV_IOx  
0.8 VDD_HV_IOx  
0.1 VDD_HV_IOx  
0.8 VDD_HV_IOx  
0.8 VDD_HV_IOx  
–130  
0.1 VDD_HV_IOx  
IPU  
P Equivalent pull-up current  
–10  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
55  
Table 19. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
IPD  
P Equivalent pull-down current  
VIN = VIL  
10  
–1  
130  
1
µA  
VIN = VIH  
IIL  
IIL  
CIN  
IPU  
P Input leakage current (all  
bidirectional ports)  
TA = –40 to 125 °C  
µA  
µA  
P Input leakage current (all ADC  
input-only ports)  
TA = –40 to 125 °C  
–0.5  
0.5  
D Input capacitance  
VIN = VIL  
VIN = VIH  
–130  
10  
pF  
µA  
D RESET, equivalent pull-up current  
–10  
1
“SR” parameter values must not exceed the absolute maximum ratings shown in Table 7.  
Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value  
Typ Max  
Symbol  
C
Parameter  
Conditions  
Unit  
IDD_LV_CORx  
T
RUN—Maximum mode1  
VDD_LV_CORx  
externally forced at 1.3 V  
40 MHz 62  
64 MHz 71  
40 MHz 45  
64 MHz 52  
64 MHz 60  
77 mA  
88  
56  
65  
75  
RUN—Typical mode2  
P
RUN—Maximum mode3  
HALT mode4  
VDD_LV_CORx  
externally forced at 1.3 V  
VDD_LV_CORx  
externally forced at 1.3 V  
1.5  
1
10  
10  
STOP mode5  
VDD_LV_CORx  
externally forced at 1.3 V  
IDD_FLASH  
T
T
Flash during read  
VDD_HV_FL at 5.0 V  
10  
15  
12  
19  
Flash during erase operation on 1 VDD_HV_FL at 5.0 V  
flash module  
IDD_ADC  
ADC—Maximum mode1  
ADC—Typical mode2  
Oscillator  
VDD_HV_ADC0 at 5.0 V  
VDD_HV_ADC1 at 5.0 V  
fADC = 16 MHz  
ADC_1 3.5  
ADC_0  
ADC_1 0.8  
5
4
1
3
ADC_0 0.005 0.006  
8 MHz 2.6 3.2  
IDD_OSC  
T
VDD_OSC at 5.0 V  
1
2
Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O  
supply current excluded.  
Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
56  
Freescale  
3
Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at  
PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum  
frequency, all peripherals enabled.  
4
5
Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode,  
OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.  
STOP “P” mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories  
OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.  
3.10.3 DC electrical characteristics (3.3 V)  
Table 21 gives the DC electrical characteristics at 3.3 V (3.0 V < V  
Figure 13.  
< 3.6 V, NVUSRO[PAD3V5V] = 1); see  
DD_HV_IOx  
1
Table 21. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
VIL  
VIH  
D Low level input voltage  
–0.12  
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
P
0.35 VDD_HV_IOx  
P High level input voltage  
D
0.65 VDD_HV_IOx  
VDD_HV_IOx + 0.12  
VHYS T Schmitt trigger hysteresis  
0.1 VDD_HV_IOx  
0.5  
VOL_S P Slow, low level output voltage  
VOH_S P Slow, high level output voltage  
VOL_M P Medium, low level output voltage  
VOH_M P Medium, high level output voltage  
VOL_F P Fast, low level output voltage  
VOH_F P Fast, high level output voltage  
VOL_SYM P Symmetric, low level output voltage  
VOH_SYM P Symmetric, high level output voltage  
IOL = 1.5 mA  
IOH = –1.5 mA  
IOL = 2 mA  
IOH = –2 mA  
IOL = 1.5 mA  
IOH = –1.5 mA  
IOL = 1.5 mA  
IOH = –1.5 mA  
VIN = VIL  
VIN = VIH  
VIN = VIL  
VDD_HV_IOx – 0.8  
0.5  
VDD_HV_IOx – 0.8  
0.5  
VDD_HV_IOx – 0.8  
0.5  
VDD_HV_IOx – 0.8  
IPU  
P Equivalent pull-up current  
–130  
–10  
IPD  
P Equivalent pull-down current  
10  
µA  
V
IN = VIH  
130  
1
IIL  
IIL  
CIN  
IPU  
P Input leakage current (all  
bidirectional ports)  
TA = –40 to 125 °C  
TA = –40 to 125 °C  
µA  
µA  
P Input leakage current (all ADC  
input-only ports)  
0.5  
D Input capacitance  
–130  
10  
pF  
µA  
V
IN = VIL  
D RESET, equivalent pull-up current  
VIN = VIH  
–10  
1
These specifications are design targets and subject to change per device characterization.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
57  
2
“SR” parameter values must not exceed the absolute maximum ratings shown in Table 7.  
Table 22. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ Max  
IDD_LV_CORx  
T
RUN—Maximum mode1  
VDD_LV_CORx  
externally forced at 1.3 V  
40 MHz 62  
77  
89  
56  
66  
75  
mA  
64 MHz 71  
40 MHz 45  
64 MHz 53  
64 MHz 60  
RUN—Typical mode2  
P
RUN—Maximum mode3  
HALT mode4  
VDD_LV_CORx  
externally forced at 1.3 V  
VDD_LV_CORx  
externally forced at 1.3 V  
1.5  
1
10  
10  
STOP mode5  
VDD_LV_CORx  
externally forced at 1.3 V  
IDD_FLASH  
T
T
Flash during read on single mode  
VDD_HV_FL at 3.3 V  
VDD_HV_FL at 3.3 V  
8
10  
12  
Flash during erase operation on  
single mode  
10  
IDD_ADC  
ADC—Maximum mode1  
ADC—Typical mode2  
Oscillator  
VDD_HV_ADC0 at 3.3 V  
VDD_HV_ADC1 at 3.3 V  
fADC = 16 MHz  
ADC_1 2.5  
ADC_0  
ADC_1 0.8  
4
4
1
2
ADC_0 0.005 0.006  
8 MHz 2.4  
IDD_OSC  
T
VDD_OSC at 3.3 V  
3
1
Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O  
supply current excluded.  
2
3
Typical mode: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.  
Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at  
PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum  
frequency, all peripherals enabled.  
4
5
Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode,  
OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.  
STOP “P” mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories  
OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.  
3.10.4 Input DC electrical characteristics definition  
Figure 13 shows the DC electrical characteristics behavior as function of time.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
58  
Freescale  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 13. Input DC electrical characteristics definition  
3.10.5 I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 23.  
Table 23. I/O supply segment  
Supply segment  
Package  
1
2
3
4
5
6
7
144  
pin8 – pin20 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5  
LQFP  
100  
pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10  
LQFP  
Table 24 provides the weight of concurrent switching I/Os.  
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain  
below 100%.  
Table 24. I/O weight  
144 LQFP  
Weight 3.3V  
100 LQFP  
Weight 3.3V  
Pad  
Weight 5V  
Weight 5V  
NMI  
1%  
6%  
1%  
5%  
1%  
14%  
14%  
1%  
13%  
12%  
PAD[6]  
PAD[49]  
PAD[84]  
PAD[85]  
5%  
4%  
14%  
9%  
10%  
7%  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
59  
Table 24. I/O weight (continued)  
144 LQFP  
100 LQFP  
Weight 5V Weight 3.3V  
Pad  
Weight 5V  
Weight 3.3V  
PAD[86]  
MODO[0]  
PAD[7]  
9%  
12%  
4%  
6%  
8%  
4%  
4%  
4%  
4%  
4%  
4%  
4%  
9%  
6%  
7%  
11%  
5%  
7%  
11%  
12%  
13%  
22%  
24%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
11%  
11%  
10%  
10%  
9%  
9%  
8%  
10%  
9%  
9%  
9%  
8%  
8%  
7%  
PAD[36]  
PAD[8]  
5%  
5%  
PAD[37]  
PAD[5]  
5%  
5%  
PAD[39]  
PAD[35]  
PAD[87]  
PAD[88]  
PAD[89]  
PAD[90]  
PAD[91]  
PAD[57]  
PAD[56]  
PAD[53]  
PAD[54]  
PAD[55]  
PAD[96]  
PAD[65]  
PAD[67]  
PAD[33]  
PAD[68]  
PAD[23]  
PAD[69]  
PAD[34]  
PAD[70]  
PAD[24]  
PAD[71]  
PAD[66]  
PAD[25]  
PAD[26]  
5%  
5%  
12%  
9%  
10%  
15%  
6%  
8%  
8%  
13%  
14%  
15%  
25%  
7%  
11%  
12%  
13%  
22%  
13%  
14%  
15%  
25%  
27%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
MPC5604P Microcontroller Data Sheet, Rev. 8  
60  
Freescale  
Table 24. I/O weight (continued)  
144 LQFP  
100 LQFP  
Weight 5V Weight 3.3V  
Pad  
Weight 5V  
Weight 3.3V  
PAD[27]  
PAD[28]  
PAD[63]  
PAD[72]  
PAD[29]  
PAD[73]  
PAD[31]  
PAD[74]  
PAD[30]  
PAD[75]  
PAD[32]  
PAD[76]  
PAD[64]  
PAD[0]  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
23%  
21%  
1%  
20%  
18%  
23%  
21%  
20%  
19%  
18%  
17%  
16%  
15%  
14%  
13%  
12%  
11%  
11%  
10%  
1%  
20%  
18%  
17%  
16%  
16%  
15%  
14%  
13%  
13%  
12%  
11%  
10%  
9%  
PAD[1]  
PAD[107]  
PAD[58]  
PAD[106]  
PAD[59]  
PAD[105]  
PAD[43]  
PAD[104]  
PAD[44]  
PAD[103]  
PAD[2]  
19%  
16%  
17%  
15%  
15%  
13%  
13%  
12%  
11%  
10%  
PAD[101]  
PAD[21]  
TMS  
8%  
10%  
1%  
1%  
16%  
4%  
9%  
8%  
1%  
1%  
11%  
3%  
8%  
1%  
TCK  
1%  
1%  
PAD[20]  
PAD[3]  
16%  
4%  
11%  
3%  
PAD[61]  
PAD[102]  
9%  
8%  
11%  
10%  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
61  
Table 24. I/O weight (continued)  
144 LQFP  
100 LQFP  
Weight 5V Weight 3.3V  
Pad  
Weight 5V  
Weight 3.3V  
PAD[60]  
PAD[100]  
PAD[45]  
PAD[98]  
PAD[46]  
PAD[99]  
PAD[62]  
PAD[92]  
VPP_TEST  
PAD[4]  
11%  
12%  
12%  
12%  
12%  
13%  
13%  
13%  
1%  
10%  
10%  
10%  
11%  
11%  
11%  
11%  
12%  
1%  
11%  
10%  
12%  
10%  
12%  
11%  
13%  
11%  
1%  
14%  
13%  
13%  
13%  
1%  
12%  
12%  
11%  
11%  
14%  
13%  
13%  
13%  
12%  
12%  
12%  
11%  
11%  
10%  
10%  
9%  
12%  
12%  
11%  
11%  
11%  
11%  
10%  
10%  
10%  
9%  
PAD[16]  
PAD[17]  
PAD[42]  
PAD[93]  
PAD[95]  
PAD[18]  
PAD[94]  
PAD[19]  
PAD[77]  
PAD[10]  
PAD[78]  
PAD[11]  
PAD[79]  
PAD[12]  
PAD[41]  
PAD[47]  
PAD[48]  
PAD[51]  
PAD[52]  
PAD[40]  
PAD[80]  
PAD[9]  
12%  
10%  
11%  
10%  
9%  
10%  
9%  
8%  
9%  
8%  
9%  
8%  
8%  
7%  
7%  
7%  
7%  
7%  
5%  
4%  
4%  
5%  
6%  
7%  
6%  
4%  
4%  
4%  
4%  
5%  
7%  
6%  
5%  
4%  
4%  
4%  
4%  
4%  
5%  
4%  
5%  
5%  
9%  
8%  
10%  
10%  
9%  
11%  
10%  
PAD[81]  
9%  
MPC5604P Microcontroller Data Sheet, Rev. 8  
62  
Freescale  
Table 24. I/O weight (continued)  
144 LQFP  
100 LQFP  
Weight 5V Weight 3.3V  
Pad  
Weight 5V  
Weight 3.3V  
PAD[13]  
PAD[82]  
PAD[22]  
PAD[83]  
PAD[50]  
PAD[97]  
PAD[38]  
PAD[14]  
PAD[15]  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
9%  
9%  
9%  
9%  
9%  
9%  
9%  
9%  
8%  
8%  
12%  
11%  
13%  
12%  
14%  
12%  
14%  
14%  
15%  
13%  
13%  
13%  
9%  
Table 25. I/O consumption  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
,2  
ISWTSLW  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
for SLOW  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(2)  
ISWTMED  
CC D Dynamic I/O current CL = 25 pF  
for MEDIUM  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
mA  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(2)  
ISWTFST  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
110 mA  
50  
for FAST  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
IRMSSLW  
CC D Root medium square CL = 25 pF, 2 MHz  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
2.3 mA  
3.2  
I/O current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
63  
Table 25. I/O consumption (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
IRMSMED CC D Root medium square CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,  
6.6 mA  
I/O current for  
MEDIUM  
configuration  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
13.4  
18.3  
5
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
11  
CL = 100 pF, 13 MHz  
IRMSFST  
CC D Root medium square CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,  
22  
33  
56  
14  
20  
35  
70  
65  
mA  
I/O current for FAST  
configuration  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
IAVGSEG  
SR D Sum of all the static VDD = 5.0 V ± 10%, PAD3V5V = 0  
I/O current within a  
mA  
V
DD = 3.3 V ± 10%, PAD3V5V = 1  
supply segment  
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
1
2
3.11 Main oscillator electrical characteristics  
The MPC5604P provides an oscillator/resonator driver.  
Table 26. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value  
Symbol  
C
Parameter  
Unit  
Min Max  
fOSC SR — Oscillator frequency  
4
6.5  
1
40 MHz  
25 mA/V  
gm  
P Transconductance  
VOSC  
tOSCSU  
T Oscillation amplitude on XTAL pin  
T Start-up time1,2  
V
8
ms  
1
The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and  
excessive capacitive loads can cause long start-up time.  
2
Value captured when amplitude reaches 90% of XTAL  
MPC5604P Microcontroller Data Sheet, Rev. 8  
64  
Freescale  
Table 27. Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value  
Symbol  
C
Parameter  
Unit  
Min Max  
fOSC  
S
R
— Oscillator frequency  
P Transconductance  
4
40 MHz  
gm  
4
1
8
20 mA/V  
VOSC  
tOSCSU  
T Oscillation amplitude on XTAL pin  
T Start-up time1,2  
V
ms  
1
The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and  
excessive capacitive loads can cause long start-up time.  
2
Value captured when amplitude reaches 90% of XTAL  
Table 28. Input clock characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
fOSC SR Oscillator frequency  
fCLK SR Frequency in bypass  
trCLK SR Rise/fall time in bypass  
tDC SR Duty cycle  
4
50  
40  
64  
MHz  
MHz  
ns  
1
47.5  
52.5  
%
3.12 FMPLL electrical characteristics  
Table 29. FMPLL electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
fref_crystal D PLL reference frequency range2  
fref_ext  
Crystal reference  
4
4
40  
MHz  
MHz  
fPLLIN  
D Phase detector input frequency range (after  
pre-divider)  
16  
fFMPLLOUT D Clock frequency range in normal mode  
16  
20  
120  
150  
MHz  
MHz  
fFREE  
P Free-running frequency  
Measured using clock  
division — typically /16  
tCYC  
fLORL  
D System clock period  
Lower limit  
Upper limit  
1.6  
24  
20  
1 / fSYS  
3.7  
ns  
D Loss of reference frequency window3  
MHz  
fLORH  
56  
fSCM  
D Self-clocked mode frequency4,5  
150  
MHz  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
65  
Table 29. FMPLL electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Short-term jitter10  
Conditions1  
Unit  
Min  
Max  
CJITTER T CLKOUT period  
jitter6,7,8,9  
fSYS maximum  
Long-term jitter (avg. fPLLIN = 16 MHz  
4  
4
% fCLKOUT  
ns  
10  
over 2 ms interval) (resonator), fPLLCLK at  
64 MHz, 4,000 cycles  
tlpll  
tdc  
fLCK  
fUL  
fCS  
D PLL lock time 11, 12  
40  
6  
200  
60  
µs  
D Duty cycle of reference  
%
D Frequency LOCK range  
D Frequency un-LOCK range  
D Modulation depth  
6
% fSYS  
% fSYS  
% fSYS  
-18  
18  
Center spread  
Down spread  
±0.25  
0.5  
±4.013  
8.0  
70  
fDS  
fMOD  
D Modulation frequency14  
kHz  
1
2
3
VDD_LV_CORx = 1.2 V ±10%; VSS = 0 V; TA = –40 to 125 °C, unless otherwise specified  
Considering operation with PLL not bypassed  
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self-clocked  
mode.  
4
5
Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside  
the fLOR window.  
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in  
enhanced mode.  
6
7
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the CJITTER percentage for a given interval.  
8
9
Proper PC board layout procedures must be followed to achieve specifications.  
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and  
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
10 Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.  
11 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits.  
12 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
13 This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz).  
14 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
66  
Freescale  
3.13 16 MHz RC oscillator electrical characteristics  
Table 30. 16 MHz RC oscillator electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ Max  
fRC  
P RC oscillator frequency  
TA = 25 °C  
16  
5
MHz  
%
RCMVAR P Fast internal RC oscillator variation over temperature and  
supply with respect to fRC at TA = 25 °C in high-frequency  
configuration  
–5  
RCMTRIM T Post Trim Accuracy: The variation of the PTF1 from the  
TA = 25 °C  
TA = 25 °C  
–1  
1
%
%
16 MHz  
RCMSTEP T Fast internal RC oscillator trimming step  
1.6  
1
PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and  
temperature  
3.14 Analog-to-digital converter (ADC) electrical characteristics  
The device provides a 10-bit successive approximation register (SAR) analog-to-digital converter.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
67  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
Figure 14. ADC characteristics and error definitions  
3.14.1 Input impedance and ADC accuracy  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge  
during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be  
measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
68  
Freescale  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C and C being  
S
P2  
substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C +C equal to 3 pF, a resistance of 330 kis obtained  
S
P2  
(R = 1 / (fc × (C +C )), where fc represents the conversion rate at the considered channel). To minimize the error induced  
EQ  
S
P2  
by the voltage partitioning between this resistance (sampled voltage on C +C ) and the sum of R + R , the external circuit  
S
P2  
S
F
must be designed to respect the Equation 4:  
Eqn. 4  
R + R  
S
F
1
2
--------------------  
V
-- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path.  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
RS: Source impedance  
RF: Filter resistance  
CF: Filter capacitance  
RL: Current limiter resistance  
RSW1: Channel selection switch impedance  
AD: Sampling switch impedance  
R
CP: Pin capacitance (two contributions, CP1 and CP2  
CS: Sampling capacitance  
)
Figure 15. Input equivalent circuit  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit reported in Figure 15): A charge sharing phenomenon  
A
is installed when the sampling phase is started (A/D switch closed).  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
69  
Voltage Transient on CS  
V
CS  
V
A
V <0.5 LSB  
V
A2  
1
2
1 < (RSW + RAD) CS << TS  
V
A1  
2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 16. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
• A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
S
P1  
P2  
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
Eqn. 5  
C C  
P
S
--------------------  
   
= R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T  
is always much longer than the internal time constant:  
S
Eqn. 6  
R  
+ R  
C « T  
1
SW  
AD  
S
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
C + C + C = V C + C  
A1  
S
P1  
P2  
A
P1  
P2  
A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
R C + C + C  
P1 P2  
2
L
S
MPC5604P Microcontroller Data Sheet, Rev. 8  
70  
Freescale  
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
Eqn. 9  
8.5 = 8.5 R C + C + C T  
P1 P2 S  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
C + C + C + C = V C + V C + C + C   
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (T ). The filter is typically designed to act as anti-aliasing.  
S
Analog Source Bandwidth (V )  
A
T
f
2 R C (Conversion Rate vs. Filter Pole)  
F F  
C
Noise  
f (Anti-aliasing Filtering Condition)  
F
0
2 f f (Nyquist)  
0
C
f
0
f
Anti-Aliasing Filter (f = RC Filter pole)  
Sampled Signal Spectrum (f = conversion Rate)  
C
F
f
f
f
C
F
0
f
f
Figure 17. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (T ). Again the conversion period T is longer than the sampling time T ,  
C
C
S
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time T , so the charge level on C cannot be modified by the analog signal source during the time in which the  
S
S
sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
71  
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
F
V
C
+ C + C + C  
A2  
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
2048 C  
F
S
3.14.2 ADC conversion characteristics  
Table 31. ADC conversion characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VSS_HV_ADV  
VDD_HV_ADV  
ADC0 and shared ADC0/1  
analog input voltage2, 3  
VINAN0 SR  
V
0
0
0.3  
+ 0.3  
VSS_HV_ADV  
VDD_HV_ADV  
VINAN1 SR  
ADC1 analog input voltage2, 4  
V
1
1
0.3  
+ 0.3  
fCK  
SR — ADC clock frequency (depends  
on ADC configuration)  
36  
60  
MHz  
(The duty cycle depends on  
AD_clk5 frequency)  
fs  
SR — Sampling frequency  
1.53  
MHz  
ns  
tADC_S  
D Sample time7  
fADC = 20 MHz,  
INPSAMP = 3  
125  
f
ADC = 9 MHz,  
0.650  
28.2  
µs  
µs  
µs  
INPSAMP = 255  
tADC_C  
P Conversion time8  
fADC = 20 MHz9,  
INPCMP = 1  
tADC_PU SR — ADC power-up delay (time  
needed for ADC to settle  
1.5  
exiting from software power  
down; PWDN bit = 0)  
10  
CS  
D ADC input sampling  
capacitance  
2.5  
pF  
10  
10  
CP1  
CP2  
D ADC input pin capacitance 1  
D ADC input pin capacitance 2  
3
1
pF  
pF  
MPC5604P Microcontroller Data Sheet, Rev. 8  
72  
Freescale  
Table 31. ADC conversion characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
10  
RSW1  
D Internal resistance of analog  
source  
VDD_HV_ADC  
5 V ± 10%  
=
=
0.6  
k  
k  
k  
mA  
VDD_HV_ADC  
3.3 V ± 10%  
–5  
3
2
5
10  
RAD  
D Internal resistance of analog  
source  
IINJ  
T Input current injection  
Current injection on  
one ADC input,  
different from the  
converted one.  
Remains within TUE  
spec.  
INL  
CC P Integral non-linearity  
No overload  
No overload  
–1.5  
–1.0  
±1  
1.5  
1.0  
LSB  
LSB  
LSB  
DNL CC P Differential non-linearity  
OSE CC T Offset error  
GE  
CC T Gain error  
±1  
LSB  
LSB  
TUE CC P Total unadjusted error without  
current injection  
–2.5  
2.5  
TUE CC T Total unadjusted error with  
current injection  
–3  
3
LSB  
1
2
VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = –40 °C to TA MAX, unless otherwise specified and analog input voltage  
from VSS_HV_ADCx to VDD_HV_ADCx  
VAINx may exceed VSS_HV_AD and VDD_HV_AD limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
.
3
4
5
6
7
Not allowed to refer this voltage to VDD_HV_ADV1, VSS_HV_ADV1  
Not allowed to refer this voltage to VDD_HV_ADV0, VSS_HV_ADV0  
AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.  
When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which precision is lost.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the  
end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC_S depend on programming.  
8
9
This parameter includes the sample time tADC_S  
.
20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.  
10 See Figure 15.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
73  
3.15 Flash memory electrical characteristics  
Table 32. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typical1  
Max3  
Tdwprogram  
TBKPRG  
P
P
P
P
P
P
Double Word (64 bits) Program Time4  
Bank Program (512 KB)4, 5  
22  
50  
1.65  
0.21  
500  
500  
33  
µs  
s
1.45  
0.18  
300  
400  
800  
Bank Program (64 KB)4, 5  
4.10  
5000  
5000  
7500  
s
T16kpperase  
T32kpperase  
T128kpperase  
16 KB Block Pre-program and Erase Time  
32 KB Block Pre-program and Erase Time  
128 KB Block Pre-program and Erase Time  
ms  
ms  
ms  
600  
1300  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
5
Actual hardware programming times. This does not include software overhead.  
Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will  
require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).  
Table 33. Flash memory module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
P/E  
C Number of program/erase cycles per block  
for 16 KB blocks over the operating  
temperature range (TJ)  
100,000  
cycles  
P/E  
P/E  
C Number of program/erase cycles per block  
for 32 KB blocks over the operating  
temperature range (TJ)  
10,000 100,000 cycles  
C Number of program/erase cycles per block  
for 128 KB blocks over the operating  
temperature range (TJ)  
1,000  
100,000 cycles  
Retention C Minimum data retention at 85 °C average Blocks with 0–1,000 P/E  
20  
10  
5
years  
years  
years  
ambient temperature1  
cycles  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
74  
Freescale  
Table 34. Flash memory read access timing  
Symbol  
C
Parameter  
Conditions1  
Max value Unit  
fmax  
C
Maximum working frequency at given number of  
wait states in worst conditions  
2 wait states  
0 wait states  
66  
18  
MHz  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified  
3.16 AC specifications  
3.16.1 Pad AC specifications  
Table 35. Output pin transition times  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ttr  
CC D Output transition time output pin2  
CL = 25 pF VDD = 5.0 V ± 10%,  
50  
100  
125  
40  
50  
75  
10  
20  
40  
12  
25  
40  
4
ns  
ns  
ns  
ns  
SLOW configuration  
PAD3V5V = 0  
T
CL = 50 pF  
D
CL = 100 pF  
D
CL = 25 pF VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
T
CL = 50 pF  
D
CL = 100 pF  
ttr  
CC D Output transition time output pin2  
CL = 25 pF VDD = 5.0 V ± 10%,  
MEDIUM configuration  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
T
CL = 50 pF  
D
D
T
CL = 100 pF  
CL = 25 pF VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
CL = 50 pF  
D
CL = 100 pF  
ttr  
CC D Output transition time output pin2  
FAST configuration  
CL = 25 pF VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
CL = 50 pF  
6
CL = 100 pF  
12  
4
CL = 25 pF VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
CL = 50 pF  
7
CL = 100 pF  
12  
4
3
tSYM  
CC T Symmetric transition time, same drive VDD = 5.0 V ± 10%, PAD3V5V = 0  
strength between N and P transistor  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
5
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified  
CL includes device and package capacitances (CPKG < 5 pF).  
Transition timing of both positive and negative slopes will differ maximum 50%  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
75  
VDD_HV_IOx/2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
VOL  
Pad  
Output  
Figure 18. Pad output delay  
3.17 AC timing characteristics  
3.17.1 RESET pin characteristics  
The MPC5604P implements a dedicated bidirectional RESET pin.  
V
DD  
V
DDMIN  
VRESET  
V
IH  
V
IL  
device reset forced by VRESET  
device start-up phase  
TPOR  
Figure 19. Start-up reset requirements  
MPC5604P Microcontroller Data Sheet, Rev. 8  
76  
Freescale  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 20. Noise filtering on reset signal  
Table 36. RESET electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
VIL  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD+0.4  
V
V
V
V
SR P Input low Level CMOS  
(Schmitt Trigger)  
–0.4  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2mA,  
0.1VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
Push Pull, IOL = 1mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 12  
Push Pull, IOL = 1mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
77  
Table 36. RESET electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
ttr  
CC D Output transition time  
output pin3  
CL = 25pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
ns  
MEDIUM configuration  
CL = 50pF,  
20  
40  
12  
25  
40  
40  
1
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 100pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 25pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 50pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 100pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
WFRST SR P RESET input filtered  
pulse  
ns  
ns  
WNFRST SR P RESET input not filtered  
pulse  
500  
tPOR CC D Maximum delay before  
internal reset is released  
after all VDD_HV reach  
Monotonic VDD_HV supply ramp  
ms  
nominal supply  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
10  
10  
150  
150  
250  
µA  
V
DD = 5.0 V ± 10%, PAD3V5V = 14  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
device reference manual).  
3
4
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
3.17.2 IEEE 1149.1 interface timing  
Table 37. JTAG pin AC electrical characteristics  
Value  
No.  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Max  
1
2
3
4
tJCYC  
CC D TCK cycle time  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
tJDC  
CC D TCK clock pulse width (measured at VDD_HV_IOx/2)  
CC D TCK rise and fall times (40% – 70%)  
CC D TMS, TDI data setup time  
tTCKRISE  
tTMSS, TDIS  
t
MPC5604P Microcontroller Data Sheet, Rev. 8  
78  
Freescale  
Table 37. JTAG pin AC electrical characteristics (continued)  
Value  
No.  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Max  
5
6
t
TMSH, tTDIH CC D TMS, TDI data hold time  
25  
0
40  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDOV  
tTDOI  
tTDOHZ  
tBSDV  
CC D TCK low to TDO data valid  
7
CC D TCK low to TDO data invalid  
8
CC D TCK low to TDO high impedance  
40  
50  
50  
11  
12  
13  
14  
15  
CC D TCK falling edge to output valid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
CC D TCK falling edge to output valid out of high impedance  
CC D TCK falling edge to output high impedance  
CC D Boundary scan input valid to TCK rising edge  
CC D TCK rising edge to boundary scan input invalid  
TCK  
2
3
2
1
3
Figure 21. JTAG test clock input timing  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
79  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 22. JTAG test access port timing  
MPC5604P Microcontroller Data Sheet, Rev. 8  
80  
Freescale  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 23. JTAG boundary scan timing  
3.17.3 Nexus timing  
1
Table 38. Nexus debug port timing  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
1
2
3
4
5
tMCYC  
tMDOV  
CC D MCKO cycle time  
32  
6
ns  
ns  
ns  
ns  
ns  
CC D MCKO low to MDO data valid2  
tMSEOV CC D MCKO low to MSEO data valid2  
6
tEVTOV  
tTCYC  
CC D MCKO low to EVTO data valid2  
6
CC D TCK cycle time  
643  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
81  
1
Table 38. Nexus debug port timing (continued)  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
6
tNTDIS  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
CC D TDI data setup time  
6
6
35  
ns  
ns  
ns  
ns  
ns  
ns  
7
10  
10  
6
8
9
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
1
2
3
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.  
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Lower frequency is required to be fully compliant to standard.  
1
MCKO  
2
3
4
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 24. Nexus output timing  
TCK  
EVTI  
EVTO  
5
Figure 25. Nexus event trigger and test clock timings  
MPC5604P Microcontroller Data Sheet, Rev. 8  
82  
Freescale  
TCK  
6
7
TMS, TDI  
9
8
TDO  
Figure 26. Nexus TDI, TMS, TDO timing  
3.17.4 External interrupt timing (IRQ pin)  
1
Table 39. External interrupt timing  
Value  
No.  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
1
2
3
tIPWL  
tIPWH  
tICYC  
CC D IRQ pulse width low  
CC D IRQ pulse width high  
CC D IRQ edge to edge time2  
4
4
tCYC  
tCYC  
tCYC  
4 + N 3  
1
2
IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200 pF  
with SRC = 0b00.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
83  
3
N = ISR time to clear the flag  
IRQ  
1
2
3
Figure 27. External interrupt timing  
3.17.5 DSPI timing  
1
Table 40. DSPI timing  
Value  
No. Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
1
tSCK CC D DSPI cycle time  
Master (MTFE = 0)  
60  
60  
16  
26  
ns  
Slave (MTFE = 0)  
2
3
4
5
6
tCSC CC D CS to SCK delay  
tASC CC D After SCK delay  
tSDC CC D SCK duty cycle  
ns  
ns  
0.4 * tSCK 0.6 * tSCK ns  
tA  
CC D Slave access time  
SS active to SOUT valid  
30  
16  
ns  
ns  
tDIS CC D Slave SOUT disable time  
SS inactive to SOUT high  
impedance or invalid  
7
8
9
tPCSC CC D PCSx to PCSS time  
tPASC CC D PCSS to PCSx time  
tSUI CC D Data setup time for inputs  
13  
13  
35  
4
ns  
ns  
ns  
Master (MTFE = 0)  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
35  
35  
–5  
4
10  
tHI  
CC D Data hold time for inputs  
ns  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
11  
–5  
MPC5604P Microcontroller Data Sheet, Rev. 8  
84  
Freescale  
1
Table 40. DSPI timing (continued)  
Value  
No. Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
11 tSUO CC D Data valid (after SCK edge) Master (MTFE = 0)  
Slave  
–2  
6
12  
36  
12  
12  
ns  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
12  
tHO CC D Data hold time for outputs  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
6
–2  
1
All timing is provided with 50 pF capacitance on output, 1 ns transition time on input signal.  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 40.  
Figure 28. DSPI classic SPI timing – Master, CPHA = 0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
85  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 40.  
Figure 29. DSPI classic SPI timing – Master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 40.  
Figure 30. DSPI classic SPI timing – Slave, CPHA = 0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
86  
Freescale  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 40.  
Figure 31. DSPI classic SPI timing – Slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 40.  
Figure 32. DSPI modified transfer format timing – Master, CPHA = 0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
87  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 40.  
Figure 33. DSPI modified transfer format timing – Master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 40.  
Figure 34. DSPI modified transfer format timing – Slave, CPHA = 0  
MPC5604P Microcontroller Data Sheet, Rev. 8  
88  
Freescale  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 40.  
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 40.  
Figure 36. DSPI PCS strobe (PCSS) timing  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
89  
4
Package characteristics  
Package mechanical data  
4.1  
4.1.1  
144 LQFP mechanical outline drawing  
L
Figure 37. 144 LQFP package mechanical drawing (part 1)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
90  
Freescale  
Figure 38. 144 LQFP package mechanical drawing (part 2)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
91  
4.1.2  
100 LQFP mechanical outline drawing  
Figure 39. 100 LQFP package mechanical drawing (part 1)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
92  
Freescale  
Figure 40. 100 LQFP package mechanical drawing (part 2)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
93  
Figure 41. 100 LQFP package mechanical drawing (part 3)  
MPC5604P Microcontroller Data Sheet, Rev. 8  
94  
Freescale  
Table 41.  
Dimensions  
Symbol  
mm  
Typ  
inches1  
Typ  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
1.400  
0.220  
0.0551  
0.0087  
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
16.200  
14.200  
0.6220  
0.5433  
0.6378  
0.5591  
E1  
E3  
e
L
0.450  
0.750  
0.0177  
0.0295  
L1  
k
0.0°  
7.0°  
0.0°  
7.0°  
ccc2  
0.08  
0.0031  
1
2
Values in inches are converted from millimeters (mm) and rounded to four decimal digits.  
Tolerance  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
95  
5
Ordering information  
Figure 42. Commercial product code structure  
Example code:  
M
PC  
56  
0
4
P
G
F0  
M
LQ  
6
R
Qualification Status  
Power Architecture Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional Fields  
Fab & Mask Revision  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
M = MC status  
S = Automotive qualified  
P = PC status  
Flash Size (z0 core)  
3 = 384 KB  
4 = 512 KB  
Temperature spec.  
V = –40 to 105 °C  
M = –40 to 125 °C  
Product  
P = MPC560xP family  
Package Code  
LL = 100 LQFP  
LQ = 144 LQFP  
Automotive Platform  
56 = Power Architecture in 90 nm  
Optional fields  
Core Version  
0 = e200z0  
E = Data Flash (blank if none)  
F = FlexRay (blank if none)  
G = Data Flash + FlexRay  
Frequency  
4 = 40 MHz  
6 = 64 MHz  
MPC5604P Microcontroller Data Sheet, Rev. 8  
96  
Freescale  
Appendix A Abbreviations  
Table A-1 lists abbreviations used in this document.  
Table A-1. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Device under test  
DUT  
ECC  
Error code correction  
Event out  
EVTO  
GPIO  
MC  
General purpose input/output  
Modulus counter  
MCKO  
MCU  
MDO  
MSEO  
MTFE  
NPN  
Message clock out  
Microcontroller unit  
Message data out  
Message start/end out  
Modified timing format enable  
Negative-positive-negative  
Non-volatile user options register  
Post trimming frequency  
Pulse width modulation  
Resolution bandwidth  
Serial communications clock  
Serial data out  
NVUSRO  
PTF  
PWM  
RBW  
SCK  
SOUT  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
97  
6
Document revision history  
Table 42 summarizes revisions to this document.  
Table 42. Revision history  
Revision  
Date  
Substantive changes  
Rev. 1  
Rev. 2  
Aug 2008 Initial release  
Nov 2008 Table 5:  
TDO and TDI pins (Port pins B[4:5] are single function pins.  
Table 10, Table 11:  
Thermal characteristics added.  
Table 11, Table 12:  
EMI testing specifications split into separate tables for Normal mode and Airbag mode;  
data to be added in a later revision.  
Table 16, Table 17, Table 19, Table 20:  
Supply current specifications split into separate tables for Normal mode and Airbag mode;  
data to be added in a later revision.  
Table 21:  
Values for IOL and IOH (in Conditions column) changed.  
Max values for VOH_S, VOH_M, VOH_F and VOH_SYM deleted.  
VILR max value changed.  
IPUR min and max values changed.  
Table 27:  
Sensitivity value changed.  
Table 30:  
Most values in table changed.  
Rev. 3  
Feb 2009  
Description of system requirements, controller characteristics and how controller  
characteristics are guaranteed updated.  
Electrical parameters updated.  
EMI characteristics are now in one table; values have been updated.  
ESD characteristics are now in one table.  
Electrical parameters are identified as either system requirements or controller  
characteristics. Method used to guarantee each controller characteristic is noted  
in table.  
AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing,  
and DSPI Timing sections deleted  
MPC5604P Microcontroller Data Sheet, Rev. 8  
98  
Freescale  
Table 42. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 4  
24-Jun-2009 Through all document:  
– Replaced all “RESET_B” occurrences with “RESET” through all document.  
– AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and  
DSPI Timing sections inserted again.  
– Electrical parameters updated.  
Table 2  
– Added row for Data Flash.  
Table 3  
– Added a footnote regarding the decoupling capacitors.  
Table 5  
– Removed the “other function“ column.  
– Rearranged the contents.  
Table 15  
– Updated definition of Condition column.  
Table 20  
– merged in an unique Table the power consumption data related to "Maximum  
mode" and "Airbag mode".  
Table 22  
– merged in an unique Table the power consumption data related to "Maximum  
mode" and "Airbag mode".  
Table 30  
– Updated the parameter definition of RCMVAR.  
– Removed the condition definition of RCMVAR.  
Table 30  
– Added tADC_C and TUE rows.  
Table 31  
– Added tADC_C and TUE rows.  
– Removed Rsw2.  
Table 34  
– Added.  
Table 29  
– Updated and added footnotes.  
Section 3.17.1, “RESET pin characteristics  
– Replaces whole section.  
Table 38  
– Renamed the “Flash (KB)“ heading column in “Code Flash / Data Flash (EE) (KB)“  
– Replaced the value of RAM from 32 to 36KB in the last four rows.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
99  
Table 42. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 5  
06-Oct-2009 - Removed B[4] and B[5] rows from “Pin muxing” table and inserted them on “System  
pins” table.  
- Updated package pinout.  
- Rewrote entirely section “Power Up/dpwn Sequencing“ section.  
- Renamend “VDD_LV_PLL“ and “VSS_LV_PLL“ supply pins with respectively “VDD_LV_COR3  
and “VSS_LV_COR3”.  
- Added explicative figures on “Electrical characteristics” section.  
- Updated “Thermal characteristics“ for 100-pin.  
- Proposed two different configuration of “voltage regulator. - Inserted Power Up/Down  
sequence.  
- Added explicative figures on “DC Electrical characteristics”.  
- Added “I/O pad current specification” section.  
- Renamed the “Airbag mode” with “Typical mode“and updated the values on “supply  
current” tables.  
Rev. 6  
12-Feb-2010 Inserted label of Y-axis in the “Independent ADC supply“ figure.  
“Recommended Operating Conditions” tables:  
Updated the TA value  
Moved the TJ row to “Absolute Maximum Ratings“ table.  
Rewrite note 1 and 3  
Inverted Min a Typ value of CDEC2 on ”Voltage Regulator Electrical Characteristics” table.  
Removed an useless duplicate of “Voltage Regulator Electrical Characteristics“ table.  
Inserted the name of CS into “Input Equivalent Circuit“ figure.  
Removed leakage Ivpp from datasheet.  
Updated “Supply Current” tables.  
Added note on “Output pin transition times“ table.  
Updated ”Temperature Sensor Electrical Characteristics” table.  
Updated “16 MHz RC Oscillator Electrical Characteristics” table.  
Removed the note about the condition from “Flash read access timing“ table.  
Removed the notes that assert the values need to be confirmed before validation.  
MPC5604P Microcontroller Data Sheet, Rev. 8  
100  
Freescale  
Table 42. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 7  
07-Apr-2011 Formatting and editorial changes throughout  
Removed all content referencing Junction Temperature Sensor  
Section 1, “Introduction: changed title (was: Overview); reorganized contents  
MPC5604P device comparison:  
• ADC feature: changed “16 channels” to “15-channel”; added footnote to to indicate that  
four channels are shared between the two ADCs  
• removed MPC5602P column  
• indicated that data flash memory is an optional feature  
• indicated that FlexRay is an optional feature  
• changed “dual channel” to “selectable single or dual channel support” in FlexRay  
footnote  
• updated “eTimer” feature  
• updated footnote relative to “Digital power supply” feature  
Updated MPC5604P block diagram  
Added MPC5604P series block summary  
Added Section 1.5, “Feature details  
Section 2.1, “Package pinouts: removed alternate functions from pinout diagrams  
Supply pins: updated descriptions of power supply pins (1.2 V)  
System pins: updated table  
Pin muxing: added rows “B[4]” and “B[5]  
Section 3.3, “Absolute maximum ratings: added voltage specifications to titles of Figure 4  
and Figure 5; in Table 7, changed row “VSS_HV / Digital Ground” to “VSS / Device  
Ground”; updated symbols  
Section 3.4, “Recommended operating conditions: added voltage specifications to titles  
of Figure 6 and Figure 7  
Recommended operating conditions (5.0 V), and Recommended operating conditions  
(3.3 V): changed row “VSS_HV / Digital Ground” to “VSS / Device Ground”; updated  
symbols  
Updated Section 3.5.1, “Package thermal characteristics  
Updated Section 3.6, “Electromagnetic interference (EMI) characteristics  
Section 3.8.1, “Voltage regulator electrical characteristics: amended titles of Table 15 and  
Table 17  
Voltage regulator electrical characteristics (configuration without resistor on base) and  
Voltage regulator electrical characteristics (configuration with resistor on base):  
updated symbol and values for VDD_LV_REGCOR  
Low voltage monitor electrical characteristics: Updated VMLVDDOK_H max value—was  
1.15 V; is 1.145 V  
Section 3.10, “DC electrical characteristics: reorganized contents  
Updated Section 3.10.1, “NVUSRO register (includes adding  
“NVUSRO[OSCILLATOR_MARGIN] field description” table  
Supply current (5.0 V, NVUSRO[PAD3V5V] = 0): updated symbols  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
101  
Table 42. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 7  
(cont’d)  
07-Apr-2011 Corrected parameter descriptions in DC electrical characteristics (3.3 V,  
NVUSRO[PAD3V5V] = 1):  
• VOL_F—was “Fast, high level output voltage”; is “Fast, low level output voltage”  
• VOL_SYM—was “Symmetric, high level output voltage”; is “Symmetric, low level output  
voltage”  
Supply current (3.3 V, NVUSRO[PAD3V5V] = 1): updated symbols  
Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0):  
replaced instances of EXTAL with XTAL  
Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1):  
replaced instances of EXTAL with XTAL  
FMPLL electrical characteristics: replaced “PLLMRFM” with “FMPLL” in table title;  
updated conditions; removed fsys row; updated fFMPLLOUT min value  
ADC conversion characteristics: updated symbols; added row tADC_PU  
Flash memory read access timing: added footnote to “Conditions” column  
Section 3.16.1, “Pad AC specifications: added Pad output delay diagram  
In the range of figures “DSPI Classic SPI Timing — Master, CPHA = 0” to “DSPI PCS  
Strobe (PCSS) Timing”: added note  
Removed Orderable Part Number Summary table  
Updated “Commercial product code structure” figure  
Table A-1: Added abbreviations “DUT”, “NPN”, and “RBW”  
MPC5604P Microcontroller Data Sheet, Rev. 8  
102  
Freescale  
Table 42. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 8  
23-May-2012 Section 1.5.4, “Flash memory: Changed “Data flash memory: 32-bit ECC” to “Data flash  
memory: 64-bit ECC”  
Figure 42 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60  
MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V"  
Table 7 (Absolute maximum ratings), updated TVDD parameter, the minimum value to  
3.0 V/s and the maximum value to 0.5 V/µs  
Table 5 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to  
"O" for the following port pins:  
A[10] with function B[0]  
A[11] with function A[0]  
A[11] with function A[2]  
A[12] with function A[2]  
A[12] with function B[2]  
A[13] with function B[2]  
C[7] with function A[1]  
C[10] with function A[3]  
C[15] with function A[1]  
D[0] with function B[1]  
D[10] with function A[0]  
D[11] with function B[0]  
D[13] with function A[1]  
D[14] with function B[1]  
Updated Section 3.8.1, “Voltage regulator electrical characteristics  
Added Table 25 (I/O consumption)  
Section 3.10, DC electrical characteristics:  
deleted references to “oscillator margin”  
deleted subsection “NVUSRO[OSCILLATOR_MARGIN] field description”  
Table 19 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row  
for RESET pin  
Table 21 (DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)), added IPU row  
for RESET pin  
Table 31 (ADC conversion characteristics), added VINAN entry  
Removed “Order codes” table  
MPC5604P Microcontroller Data Sheet, Rev. 8  
Freescale  
103  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address:http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire,  
C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor  
Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of  
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack,  
ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,  
QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic  
are trademarks of Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners. The Power Architecture and Power.org  
word marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2008–2012 Freescale, Inc.  
Document Number: MPC5604P  
Rev. 8  
07/2012  

相关型号:

935314465528

RISC Microcontroller
NXP

935314499518

Interface Circuit
NXP

935314499574

Interface Circuit
NXP

935314509574

Analog Circuit
NXP

935314523518

Buffer/Inverter Based Peripheral Driver
NXP

935314523574

Buffer/Inverter Based Peripheral Driver
NXP

935314566557

RISC Microcontroller
NXP

935314589557

RISC Microcontroller
NXP

935314604574

Interface Circuit
NXP

935314631557

RISC Microcontroller
NXP

935314638557

RISC Microcontroller
NXP

935314646518

RISC Microcontroller
NXP