935320763128 [NXP]

RF Power Field-Effect Transistor;
935320763128
型号: 935320763128
厂家: NXP    NXP
描述:

RF Power Field-Effect Transistor

文件: 总16页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A2T20H330W24S  
Rev. 0, 5/2015  
Freescale Semiconductor  
Technical Data  
RF Power LDMOS Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
This 58 W asymmetrical Doherty RF power LDMOS transistor is designed for  
cellular base station applications requiring very wide instantaneous bandwidth  
capability covering the frequency range of 1880 to 2025 MHz.  
A2T20H330W24SR6  
Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,  
DQA = 700 mA, VGSB = 0.3 Vdc, Pout = 58 W Avg., Input Signal  
PAR = 9.9 dB @ 0.01% Probability on CCDF.  
I
1880–2025 MHz, 58 W AVG., 28 V  
AIRFAST RF POWER LDMOS  
TRANSISTOR  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
Frequency  
1880 MHz  
1960 MHz  
2025 MHz  
(dB)  
16.5  
16.9  
16.3  
(%)  
50.9  
50.5  
50.1  
7.9  
7.8  
7.8  
–33.1  
–36.0  
–36.8  
Features  
Advanced High Performance In--Package Doherty  
Designed for Wide Instantaneous Bandwidth Applications  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
NI--1230S--4L2L  
Able to Withstand Extremely High Output VSWR and Broadband Operating  
Conditions  
Designed for Digital Predistortion Error Correction Systems  
(2)  
6
5
VBW  
A
Carrier  
RF /V  
1
2
RF /V  
outA DSA  
inA GSA  
(1)  
RF /V  
inB GSB  
RF /V  
outB DSB  
4
3
Peaking  
(2)  
VBW  
B
(Top View)  
Figure 1. Pin Connections  
1. Pin connections 4 and 5 are DC coupled  
and RF independent.  
2. Device cannot operate with V current  
DD  
supplied through pin 3 and pin 6.  
Freescale Semiconductor, Inc., 2015. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
–0.5, +65  
–6.0, +10  
32, +0  
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
–65 to +150  
–40 to +125  
–40 to +225  
T
C
C  
(1,2)  
Operating Junction Temperature Range  
T
J
C  
CW Operation @ T = 25C  
Derate above 25C  
CW  
268  
1.2  
W
W/C  
C
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
0.25  
C/W  
JC  
Case Temperature 79C, 58 W W--CDMA, 28 Vdc, I  
= 700 mA,  
DQA  
V
= 0.3 Vdc, f = 1960 MHz  
GSB  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2
B
IV  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
5
Adc  
Adc  
Adc  
DSS  
DSS  
GSS  
(V = 65 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 32 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
(4)  
On Characteristics -- Side A, Carrier  
Gate Threshold Voltage  
V
1.4  
2.2  
0.1  
1.3  
2.6  
2.2  
3.0  
0.3  
Vdc  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 140 Adc)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 700 mAdc, Measured in Functional Test)  
V
GSA(Q)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.4 Adc)  
V
0.15  
DS(on)  
GS  
D
(4)  
On Characteristics -- Side B, Peaking  
Gate Threshold Voltage  
V
0.8  
0.1  
1.2  
1.6  
0.3  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 180 Adc)  
DS  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.8 Adc)  
V
0.15  
DS(on)  
GS  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.  
4. V and V must be tied together and powered by a single DC power supply.  
DDA  
DDB  
(continued)  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
= 700 mA, V = 0.3 Vdc,  
GSB  
Max  
Unit  
(1,2,3)  
Functional Tests  
(In Freescale Doherty Test Fixture, 50 ohm system) V = 28 Vdc, I  
DD  
DQA  
P
= 58 W Avg., f = 1880 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.  
out  
ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.  
Power Gain  
G
15.5  
48.5  
7.2  
16.5  
50.9  
7.9  
18.5  
dB  
%
ps  
D
Drain Efficiency  
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
PAR  
dB  
dBc  
ACPR  
–33.1  
–29.0  
(3)  
Load Mismatch (In Freescale Doherty Test Fixture, 50 ohm system) I  
= 700 mA, V  
= 0.3 Vdc, f = 1960 MHz  
GSB  
DQA  
VSWR 10:1 at 32 Vdc, 354 W Pulse Output Power  
(3 dB Input Overdrive from 240 W Pulse Rated Power)  
No Device Degradation  
(3)  
Typical Performance  
(In Freescale Doherty Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 700 mA, V = 0.3 Vdc,  
GSB  
DD  
DQA  
1880–2025 MHz Bandwidth  
P
P
@ 1 dB Compression Point, CW  
P1dB  
P3dB  
240  
380  
–19  
W
W
out  
out  
(4)  
@ 3 dB Compression Point  
AM/PM  
(Maximum value measured at the P3dB compression point across  
the 1880–2025 MHz bandwidth)  
VBW Resonance Point  
(IMD Third Order Intermodulation Inflection Point)  
VBW  
140  
0.6  
MHz  
res  
Gain Flatness in 145 MHz Bandwidth @ P = 58 W Avg.  
G
dB  
out  
F
Gain Variation over Temperature  
G  
0.005  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
(–30C to +85C)  
P1dB  
0.006  
dB/C  
(5)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
Package  
A2T20H330W24SR6  
R6 Suffix = 150 Units, 56 mm Tape Width, 13--Reel  
NI--1230S--4L2L  
1. V  
and V  
must be tied together and powered by a single DC power supply.  
DDB  
DDA  
2. Part internally matched both on input and output.  
3. Measurement made with device in an asymmetrical Doherty configuration.  
4. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
5. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
3
- -  
C19  
V
V
DDA  
GGA  
R4  
C13  
C16  
C17  
C5  
C1  
D64762  
R1  
R2  
C10  
C9  
C
P
C8  
C6  
C11  
C3  
C4  
Z1  
R3  
C12  
A2T20H330W24S  
Rev. 0  
C14  
R5  
C7  
C18  
C2  
C15  
- -  
V
V
GGB  
DDB  
C20  
Note: V  
and V  
must be tied together and powered by a single DC power supply.  
DDB  
DDA  
Figure 2. A2T20H330W24SR6 Test Circuit Component Layout  
Table 6. A2T20H330W24SR6 Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
ATC  
C1, C2, C3, C4, C5, C6, C7 8.2 pF Chip Capacitors  
ATC600F8R2BT250XT  
ATC600F5R6BT250XT  
ATC600F0R8BT250XT  
ATC600F0R6AT250XT  
C5750X7S2A106K230KB  
C8  
5.6 pF Chip Capacitor  
0.8 pF Chip Capacitors  
0.6 pF Chip Capacitors  
10 F Chip Capacitors  
ATC  
ATC  
ATC  
TDK  
C9, C10  
C11, C12  
C13, C14, C15, C16, C17,  
C18  
C19, C20  
R1, R2  
R3  
220 F, 63 V Electrolytic Capacitors  
2.2 , 1/4 W Chip Resistor  
SK063M0220B5S-1012  
CRCW12062R20JNEA  
CW12010T0050GBK  
CRCW12061K00FKEA  
X3C19P1-05S  
Yageo  
Vishay  
ATC  
50 , 10 W Chip Resistor  
R4, R5  
Z1  
1 K, 1/4 W Chip Resistors  
Vishay  
Anaren  
MTL  
1700–2000 MHz Band, 90, 5 dB Directional Coupler  
PCB  
Rogers RO4350B, 0.020, = 3.66  
D64762  
r
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
4
TYPICAL CHARACTERISTICS  
54  
53  
52  
51  
50  
17.6  
17.4  
17.2  
17  
V
V
= 28 Vdc, P = 58 W (Avg.), I  
= 700 mA  
DD  
out  
DQA  
= 0.3 Vdc, Single--Carrier W--CDMA, 3.84 MHz  
GSB  
Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
D
16.8  
16.6  
16.4  
16.2  
16  
–1.8  
–1.9  
–2  
–32  
–33  
–34  
G
ps  
ACPR  
–2.1  
–2.2  
–2.3  
–35  
–36  
15.8  
PARC  
15.6  
–37  
1850 1875 1900 1925 1950 1975 2000 2025 2050  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 58 Watts Avg.  
20  
IM3--U  
30  
IM3--L  
IM5--L  
IM5--U  
40  
50  
60  
70  
IM7--L  
IM7--U  
V
V
= 28 Vdc, P = 30 W (PEP), I = 700 mA  
DQA  
= 0.3 Vdc, Two--Tone Measurements  
DD  
out  
GSB  
(f1 + f2)/2 = Center Frequency of 1960 MHz  
1
10  
100  
300  
TWO--TONE SPACING (MHz)  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
18  
1
0
60  
–20  
V
= 28 Vdc, I  
= 700 mA, V = 0.3 Vdc, f = 1960 MHz  
GSB  
DD  
DQA  
Single--Carrier W--CDMA  
D
50  
40  
30  
20  
10  
0
–25  
–30  
–35  
–40  
–45  
–50  
17.5  
–1 dB = 34.7 W  
–1  
–2  
–3  
–4  
–5  
17  
16.5  
16  
ACPR  
–2 dB = 53.5 W  
–3 dB = 73.5 W  
G
ps  
15.5  
15  
3.84 MHz Channel Bandwidth, Input Signal  
PAR = 9.9 dB @ 0.01% Probability on CCDF  
PARC  
5
30  
55  
80  
105  
130  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
0
V
= 28 Vdc, I  
= 700 mA, V  
= 0.3 Vdc  
GSB  
DD  
DQA  
Single--Carrier W--CDMA  
–10  
–20  
–30  
–40  
–50  
–60  
1880 MHz  
ACPR  
G
1960 MHz  
1880 MHz  
ps  
2025 MHz  
1960 MHz  
2025 MHz  
D
2025 MHz  
1960 MHz  
1880 MHz  
3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
1
10  
100  
500  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
21  
18  
Gain  
15  
12  
9
V
P
= 28 Vdc  
= 0 dBm  
DD  
in  
6
3
I
= 700 mA  
= 0.3 Vdc  
DQA  
V
GSB  
1600 1700 1800 1900 2000 2100 2200 2300 2400  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
6
Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning  
V
= 28 Vdc, I  
= 774 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQA  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
59.4  
59.6  
58.7  
Gain (dB)  
19.2  
(dBm)  
52.2  
(W)  
167  
165  
(MHz)  
1880  
1960  
2025  
1.73 – j3.99  
3.43 – j5.25  
6.42 – j5.02  
1.65 + j4.16  
1.09 – j3.27  
1.18 – j3.50  
1.20 – j3.67  
–12  
–13  
–13  
3.31 + j5.46  
6.81 + j5.80  
19.3  
52.2  
19.5  
52.1  
163  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
61.1  
60.6  
60.2  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.73 – j3.99  
1.54 + j4.30  
1.07 – j3.44  
1.15 – j3.65  
1.22 – j3.82  
17.0  
53.0  
199  
–16  
–17  
–17  
3.43 – j5.25  
6.42 – j5.02  
3.22 + j5.82  
7.20 + j6.40  
17.0  
17.3  
52.9  
52.9  
196  
194  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 28 Vdc, I  
= 774 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQA  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
72.8  
71.5  
69.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.73 – j3.99  
3.43 – j5.25  
6.42 – j5.02  
1.80 + j4.54  
2.56 – j2.40  
2.29 – j2.45  
2.00 – j2.60  
22.3  
50.1  
103  
–18  
–19  
–18  
3.81 + j5.93  
8.06 + j5.78  
22.2  
22.2  
50.2  
50.4  
104  
110  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
74.9  
73.0  
72.0  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.73 – j3.99  
1.73 + j4.63  
2.72 – j2.37  
2.29 – j2.41  
2.06 – j2.48  
20.4  
50.6  
114  
–25  
–26  
–25  
3.43 – j5.25  
6.42 – j5.02  
3.70 + j6.23  
8.59 + j6.16  
20.3  
20.4  
50.8  
50.9  
120  
123  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
7
Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning  
V
= 28 Vdc, V  
= 0.6 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
GSB  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
57.0  
57.7  
59.4  
Gain (dB)  
14.6  
(dBm)  
53.5  
(W)  
222  
226  
(MHz)  
1880  
1960  
2025  
1.21 – j4.59  
1.07 + j4.59  
1.71 – j3.44  
1.77 – j3.38  
1.67 – j3.37  
–33  
–33  
–35  
1.99 – j5.85  
3.66 – j7.62  
1.82 + j6.09  
3.48 + j7.91  
15.0  
53.5  
15.2  
53.7  
235  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
58.0  
58.5  
60.0  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.21 – j4.59  
1.07 + j4.78  
1.63 – j3.56  
1.77 – j3.58  
1.82 – j3.65  
12.4  
54.3  
268  
–39  
–40  
–42  
1.99 – j5.85  
3.66 – j7.62  
1.92 + j6.43  
3.91 + j8.48  
12.8  
13.0  
54.3  
54.4  
270  
276  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 28 Vdc, V  
= 0.6 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
GSB  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
67.3  
67.7  
69.5  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.21 – j4.59  
0.93 + j4.56  
3.89 – j2.29  
3.07 – j2.05  
2.72 – j1.91  
15.8  
51.9  
156  
–37  
–37  
–39  
1.99 – j5.85  
3.66 – j7.62  
1.61 + j6.06  
3.07 + j7.90  
16.2  
16.3  
52.3  
52.3  
170  
170  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
66.8  
67.7  
68.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1880  
1960  
2025  
1.21 – j4.59  
0.99 + j4.78  
3.44 – j3.07  
3.25 – j2.35  
2.92 – j2.29  
13.6  
53.1  
204  
–44  
–46  
–47  
1.99 – j5.85  
3.66 – j7.62  
1.75 + j6.42  
3.60 + j8.50  
14.1  
14.2  
53.0  
53.2  
200  
207  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
8
P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 1960 MHz  
–1.5  
–2  
–1.5  
48  
48.5  
48.5  
–2  
49  
49.5  
E
E
–2.5  
–3  
–2.5  
50  
50.5  
70  
68  
–3  
51  
52  
51.5  
–3.5  
–3.5  
P
P
66  
64  
–4  
–4  
56  
62  
50.5  
58  
60  
–4.5  
–4.5  
1
1.5  
2
3
3.5  
0.5  
2.5  
1
1.5  
2
3
3.5  
0.5  
2.5  
REAL ()  
REAL ()  
Figure 8. P1dB Load Pull Output Power Contours (dBm)  
Figure 9. P1dB Load Pull Efficiency Contours (%)  
–1.5  
–1.5  
–2  
–20  
–22  
23  
–26  
–24  
–28  
–2  
–18  
22.5  
E
E
–2.5  
–2.5  
–3  
22  
–16  
–3  
21.5  
–3.5  
P
–3.5  
P
–14  
21  
20.5  
20  
19  
–4  
–4  
19.5  
–12  
–4.5  
–4.5  
1
1.5  
2
3
3.5  
1
1.5  
2
3
3.5  
0.5  
2.5  
0.5  
2.5  
REAL ()  
REAL ()  
Figure 10. P1dB Load Pull Gain Contours (dB)  
Figure 11. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
9
P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 1960 MHz  
–1.5  
–2  
–1.5  
49  
49.5  
49  
–2  
50  
E
E
–2.5  
–3  
–2.5  
50.5  
72  
68  
–3  
51.5  
51  
70  
–3.5  
–3.5  
P
P
52  
52.5  
66  
–4  
–4  
64  
58  
62  
60  
–4.5  
–4.5  
1
1.5  
2
3
3.5  
0.5  
2.5  
1
1.5  
2
3
3.5  
0.5  
2.5  
REAL ()  
REAL ()  
Figure 12. P3dB Load Pull Output Power Contours (dBm)  
Figure 13. P3dB Load Pull Efficiency Contours (%)  
–1.5  
–1.5  
–28  
–26  
–24  
–22  
–20  
21  
–30  
–2  
–2.5  
–2  
–2.5  
–3  
20.5  
E
E
20  
–3  
19.5  
19  
–3.5  
–3.5  
–18  
–16  
P
P
18.5  
18  
–4  
–4  
17.5  
17  
1.5  
–14  
–4.5  
0.5  
–4.5  
1
2
3
3.5  
1
1.5  
2
3
3.5  
2.5  
0.5  
2.5  
REAL ()  
REAL ()  
Figure 14. P3dB Load Pull Gain Contours (dB)  
Figure 15. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 1960 MHz  
0
0
–1  
–2  
–3  
–4  
–5  
50  
56  
50  
50.5  
49.5  
–1  
–2  
–3  
–4  
–5  
64  
60  
51  
E
E
51.5  
62  
66  
52  
P
P
52.5  
53.5  
58  
56  
54  
53  
52  
52  
52  
52.5  
54  
2
3
4
6
7
1
5
2
3
4
6
7
1
5
REAL ()  
REAL ()  
Figure 16. P1dB Load Pull Output Power Contours (dBm)  
Figure 17. P1dB Load Pull Efficiency Contours (%)  
0
0
–46  
–44  
–42  
–40  
–38  
–1  
–1  
–2  
–3  
–4  
–5  
–2  
E
E
16  
–36  
–3  
P
P
15.5  
–34  
–4  
14  
15  
13  
–32  
14.5  
13.5  
–5  
2
3
4
6
7
2
3
4
6
7
1
5
1
5
REAL ()  
REAL ()  
Figure 18. P1dB Load Pull Gain Contours (dB)  
Figure 19. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
11  
P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 1960 MHz  
0
0
–1  
–2  
–3  
–4  
–5  
50.5  
50.5  
–1  
51  
51.5  
–2  
E
E
52  
52.5  
53  
66  
64  
–3  
–4  
–5  
P
54  
62  
53.5  
P
60  
58  
54  
56  
52  
52  
53  
54  
2
3
4
6
7
1
5
2
3
4
6
7
1
5
REAL ()  
REAL ()  
Figure 20. P3dB Load Pull Output Power Contours (dBm)  
Figure 21. P3dB Load Pull Efficiency Contours (%)  
0
–1  
–2  
0
–48  
–50  
–52  
–46  
–44  
–1  
–2  
–3  
–4  
–5  
E
E
–42  
–40  
14  
–3  
13.5  
P
P
–4  
12  
13  
–38  
11  
12.5  
11.5  
–38  
–5  
2
3
4
6
7
2
3
4
6
7
1
5
1
5
REAL ()  
REAL ()  
Figure 22. P3dB Load Pull Gain Contours (dB)  
Figure 23. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
PACKAGE DIMENSIONS  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
13  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
14  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.freescale.com/rf  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
May 2015  
Initial Release of Data Sheet  
A2T20H330W24SR6  
RF Device Data  
Freescale Semiconductor, Inc.  
15  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All  
other product or service names are the property of their respective owners.  
E 2015 Freescale Semiconductor, Inc.  
Document Number: A2T20H330W24S  
Rev. 0, 5/2015  

相关型号:

935320773528

Power Supply Support Circuit
NXP

935320773557

Power Supply Support Circuit
NXP

935320792528

Switching Regulator
NXP

935320919118

RF Power Field-Effect Transistor
NXP

935320955557

Microprocessor
NXP

935320956557

Microprocessor
NXP

935320957557

Microprocessor
NXP

935320986557

Digital Signal Processor
NXP

935320988557

Digital Signal Processor
NXP

935320989574

Microcontroller
NXP

935321088557

RISC Microcontroller
NXP

935321089557

RISC Microcontroller
NXP