935320773557 [NXP]

Power Supply Support Circuit;
935320773557
型号: 935320773557
厂家: NXP    NXP
描述:

Power Supply Support Circuit

文件: 总122页 (文件大小:3219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: PF3000  
Rev. 9.0, 8/2017  
NXP Semiconductors  
Data sheet: Advance Information  
Power management integrated  
circuit (PMIC) for i.MX 7 & i.MX 6SL/  
SX/UL  
PF3000  
The PF3000 is a power management integrated circuit (PMIC) designed  
specifically for use with the NXP i.MX 7 and i.MX 6SL/SX/UL application  
processors. With up to four buck converters, six linear regulators, RTC supply,  
and coin-cell charger, the PF3000 can provide power for a complete system,  
including applications processors, memory, and system peripherals. This device  
is powered by SMARTMOS technology.  
POWER MANAGEMENT  
Features:  
EP SUFFIX  
98ASA00719D  
48 QFN 7.0 X 7.0  
ES SUFFIX  
98ASA00933D  
48 QFN 7.0 X 7.0  
• Four adjustable high efficiency buck regulators: 1.75 A, 1.5 A, 1.25 A, 1.0 A  
• Selectable modes: PWM, PFM, APS  
• 5.0 V, 600 mA boost regulator with PFM or auto mode  
• Six adjustable general purpose linear regulators  
• Input voltage range: 2.8 V to 4.5 V or 3.7 V to 5.5 V  
• OTP (One Time Programmable) memory for device configuration  
• Programmable start-up sequence and timing  
• Selectable output voltage, frequency, soft start  
• I2C control  
Applications:  
• Tablets  
• eReaders  
• Wearables  
• POS terminals  
• Industrial control  
• Medical monitoring  
• Home automation  
• Coin cell charger and always ON RTC supply  
• DDR reference voltage  
• Home security/energy management  
• -40 °C to +125 °C operating junction temperature  
PF3000  
i.MX  
VREFDDR  
DDR MEMORY  
INTERFACE  
Switching regulators  
DDR Memory  
SW3  
0.90 to 1.65 V @ 1.5 A  
Processor  
ARM Core  
SW1A  
0.7 to 1.425 V, 1.8V, 3.3V @ 1.0 A  
SW1B  
0.70 to 1.475 V @ 1.75 A  
Processor SOC  
External AMP  
Microphones  
Speakers  
SW2  
1.50 to 1.85 V @ 1.25 A  
or 2.5 to 3.3 V @ 1.25 A  
SATA - FLASH  
NAND - NOR  
Interfaces  
SD-MMC/  
NAND Mem.  
SATA  
HDD  
SWBST  
5.00 to 5.15 V @ 0.6 A  
Audio  
Codec  
RESETBMCU  
PWRON  
STANDBY  
SD_VSEL  
INTB  
Parallel control/GPIOS  
Linear  
regulators  
I2C  
I2C  
Sensors  
VLDO1  
1.8 to 3.3 V @ 100 mA  
Camera  
Camera  
GPS  
MIPI  
uPCIe  
VLDO2  
0.80 to 1.55 V @ 250 mA  
WAM  
GPS/MIPI  
VCC_SD  
1.80 to 1.85 V @ 100 mA  
or 2.85 to 3.3 V @ 100 mA  
V33  
HDMI  
LDVS Display  
2.85 - 3.3 V @ 350 mA  
VLDO3  
1.8 - 3.3 V @ 100 mA  
USB  
Ethernet  
CAN  
VLDO4  
1.8 - 3.3 V @ 350 mA  
Main Supply  
2.8 – 5.5 V  
COINCELL  
Front USB  
POD  
Rear Seat  
Infotaiment  
Rear USB  
POD  
Cluster/HUD  
Figure 1. PF3000 Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© NXP B.V. 2017.  
Table of Contents  
1
2
3
4
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.3 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.2 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3.1 Control logic and interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3.2 One-time-programmable memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.4 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.3.5 Optional front-end input LDO regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.3.6 Internal core voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.3.7 VREFDDR voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.3.8 Buck regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.3.9 Boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6.3.10 LDO Regulators Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.3.11 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.4 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6.5.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
6.5.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
6.5.3 Performance characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
6.6 Control Interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.6.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
6.6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
6.6.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
6.6.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
6.6.5 Specific registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
6.6.6 Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
9.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
9.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
5
6
6
7
8
9
10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
10.1Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
PF3000  
2
NXP Semiconductors  
ORDERABLE PARTS  
1
Orderable parts  
The PF3000 is available with pre-programmed OTP memory configurations. The devices are identified using the program codes from  
Table 1. Details of the OTP programming for each device can be found in Table 42.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
MC32PF3000A0EP  
MC32PF3000A1EP  
MC32PF3000A2EP  
MC32PF3000A3EP  
MC32PF3000A4EP  
MC32PF3000A5EP  
MC32PF3000A6EP  
MC32PF3000A7EP  
MC32PF3000A8EP  
MC33PF3000A0ES  
MC33PF3000A3ES  
MC33PF3000A4ES  
MC33PF3000A5ES  
MC33PF3000A6ES  
MC33PF3000A7ES  
MC34PF3000A0EP  
MC34PF3000A1EP  
MC34PF3000A2EP  
MC34PF3000A3EP  
MC34PF3000A4EP  
MC34PF3000A5EP  
MC34PF3000A6EP  
MC34PF3000A7EP  
MC34PF3000A8EP  
Package  
Programming options  
0 - Not programmed  
Notes  
A
1 (i.MX 7 with DDR3L)  
2 (i.MX 7 with LPDDR3)  
3 (i.MX 6SX with DDR3L)  
4 (i.MX 6SX with DDR3)  
5 (i.MX 6SL with LPDDR2)  
6 (i.MX 6UL with LPDDR2)  
7 (i.MX 6UL with DDR3L)  
8 (i.MX 6UL with DDR3)  
0 - Not programmed  
-40 °C to 85 °C  
(For use in Consumer  
applications)  
98ASA00719D, 48 QFN 7.0 mm x  
7.0 mm with exposed pad  
(1) (2)  
,
3 (i.MX 6SX with DDR3L)  
4 (i.MX 6SX with DDR3)  
5 (i.MX 6SL with LPDDR2)  
6 (i.MX 6UL with LPDDR2)  
7 (i.MX 6UL with DDR3L)  
0 - Not programmed  
-40 °C to 105 °C  
(For use in Automotive  
applications)  
98ASA00933D, 48 QFN 7.0 mm x  
7.0 mm WF-type (wettable flank)  
(1) (2)  
,
1 (i.MX 7 with DDR3L)  
2 (i.MX 7 with LPDDR3)  
3 (i.MX 6SX with DDR3L)  
4 (i.MX 6SX with DDR3)  
5 (i.MX 6SL with LPDDR2)  
6 (i.MX 6UL with LPDDR2)  
7 (i.MX 6UL with DDR3L)  
8 (i.MX 6UL with DDR3)  
-40 °C to 105 °C  
(For use in Industrial  
applications)  
98ASA00719D, 48 QFN 7.0 mm x  
7.0 mm with exposed pad  
(1) (2)  
,
Notes  
1. For tape and reel, add an R2 suffix to the part number.  
2. The programming options specified in this table are reference for customer application. The part number selection should match the board power  
tree design. Table 42 provides details of the OTP programming for each device.  
PF3000  
NXP Semiconductors  
3
GENERAL DESCRIPTION  
2
General description  
The PF3000 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX 7 series of multi-media  
application processors. It is also capable of providing full power solution to i.MX 6SL/SX/UL processors.  
2.1  
Features  
This section summarizes the PF3000 features.  
• Input voltage range to PMIC: 2.8 V to 4.5 V, or 3.7 V to 5.5 V (3)  
• Buck regulators  
• Configurable three to four channels  
• SW1A/B, 2.75 A (single); 0.7 V to 1.425 V, 1.8 V, 3.3 V  
• SW1A, 1.0 A (independent); 0.7 V to 1.425 V, 1.8 V, 3.3 V  
• SW1B 1.75 A (independent); 0.7 V to 1.475 V  
• SW2, 1.25 A; 1.50 V to 1.85 V or 2.50 V to 3.30 V  
• SW3, 1.5 A; 0.90 V to 1.65 V  
• Dynamic voltage scaling  
• Modes: PWM, PFM, APS  
• Programmable output voltage  
• Programmable current limit  
• Programmable soft start sequence  
• Programmable PWM switching frequency  
• Boost regulator  
• SWBST, 5.0 to 5.15 V, 0.6 A, OTG support  
• Modes: PFM and Auto  
• OCP fault interrupt  
• LDOs  
• VCC_SD, 1.8 V to 1.85 V or 2.85 V to 3.30 V, 100 mA based on SD_VSEL  
• V33, 2.85 V to 3.30 V, 350 mA  
• VLDO1, 1.8 V to 3.3 V, 100 mA  
• VLDO2, 0.80 V to 1.55 V, 250 mA  
• VLDO3, 1.8 V to 3.3 V, 100 mA  
• VLDO4, 1.8 V to 3.3 V, 350 mA  
• Always ON RTC Regulator/Switch VSNVS 3.0 V, 1.0 mA  
• DDR memory reference voltage, VREFDDR, 0.5 V to 0.9 V, 10 mA  
• OTP (One time programmable) memory for device configuration, user-programmable start-up sequence and timing  
• Battery backed memory including coin cell charger  
• I2C interface  
• User programmable standby, sleep/LPSR, and Off modes  
Notes  
3. 2.8 V to 4.5 V when VIN is used at input. 3.7 V to 5.5 V when VPWR is used as input.  
PF3000  
4
NXP Semiconductors  
GENERAL DESCRIPTION  
2.2  
Functional block diagram  
PF3000 functional internal block diagram  
OTP startup configuration  
Power generation  
OTP prototyping  
Voltage  
Switching regulators  
Linear regulators  
VCC_SD  
(1.80 V or 1.85 V, 100 mA)  
or (2.85 V or 3.3 V, 100 mA)  
(Try before burn)  
SW1A  
Sequence and  
timing  
Phasing and  
frequency selection  
(0.7 V to 1.425 V,  
1.8 V, 3.3 V, 1.0 A)  
V33  
( 2.85 V to 3.30 V, 350 mA)  
Bias & references  
SW1B  
(0.70 V to 1.475 V , 1.75 A)  
Internal core voltage reference  
DDR voltage reference  
VLDO1  
(1.8 V to 3.3 V, 100 mA)  
VLDO2  
SW2  
(1.50 V to 1.85 V, 1.25 A)  
or (2.50 V to 3.30 V, 1.25 A)  
(0.80 V to 1.55 V, 250 mA)  
Logic and control  
VLDO3  
(1.8 V to 3.3 V, 100 mA)  
Parallel MCU interface  
Regulator control  
SW3  
I2C communication & registers  
(0.90 V to 1.65 V, 1.5 A)  
VLDO4  
(1.8 V to 3.3 V, 350 mA)  
Fault detection and protection  
Boost regulator  
(5.0 V to 5.15 V, 600 mA)  
USB OTG Supply  
VSNVS  
(1.0 V to 3.0 V, 1.0 mA)  
RTC supply with coin cell  
charger  
Thermal  
Current limit  
VPWR front end LDO overvoltage indicator  
Figure 2. Functional block diagram  
PF3000  
NXP Semiconductors  
5
INTERNAL BLOCK DIAGRAM  
3
Internal block diagram  
SW1AFB  
SW1AIN  
VLDO1IN  
VLDO1  
VLDO1  
100 mA  
PF3000  
O/P  
Drive  
SW1A  
SW1ALX  
1.0 A  
Buck  
VLDO2IN  
VLDO2  
VLDO2  
250 mA  
SW1BFB  
SW1BLX  
VLDO34IN  
VLDO3  
VLDO3  
100 mA  
O/P  
Drive  
SW1B  
SW1BIN  
1.75 A  
Buck  
GNDREF1  
VLDO4  
350 mA  
VLDO4  
Core Control logic  
VCC_SD  
1.8 V/3.15V  
100 mA  
SW2LX  
O/P  
Drive  
VCC_SD  
V33  
Initialization State Machine  
SW2IN  
SW2  
SW2FB  
V33  
1.25 A  
Buck  
GNDREF2  
2.85 V-  
3.30 V  
350 mA  
Supplies  
Control  
OTP  
VIN2  
VDDOTP  
SW3FB  
CONTROL  
SW3  
SW3IN  
SW3LX  
O/P  
Drive  
I2C  
Interface  
1.5 A  
Buck  
VDDIO  
SCL  
SDA  
GNDREF2  
DVS CONTROL  
DVS Control  
VIN2  
SWBSTLX  
SWBSTFB  
O/P  
Drive  
SWBST  
600 mA  
Boost  
I2C Register  
map  
Trim-In-Package  
VCOREDIG  
VCOREREF  
Reference  
Generation  
Clocks and  
resets  
VCORE  
GNDREF  
VPWR  
VREF  
LDO  
LDOG  
Clocks  
32 kHz and  
16 MHz  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
VSNVS  
VREFDDR  
VINREFDDR  
VHALF  
Figure 3. PF3000 simplified internal block diagram  
PF3000  
6
NXP Semiconductors  
PIN CONNECTIONS  
4
Pin connections  
4.1  
Pinout diagram  
Transparent Top View  
1
2
3
4
5
6
7
8
9
LICELL  
36  
35  
34  
33  
32  
31  
INTB  
SD_VSEL  
RESETBMCU  
STANDBY  
ICTEST  
SWBSTLX  
VSNVS  
VCC_SD  
V33  
VPWR  
SW1AFB  
EP  
SW1AIN  
30 LDOG  
SW1ALX  
SW3LX  
SW3IN  
29  
28  
SW1BLX  
SW1BIN 10  
SW1BFB 11  
27 SW3FB  
26 GNDREF2  
GNDREF1  
12  
VREFDDR  
25  
Figure 4. Pinout diagram  
PF3000  
NXP Semiconductors  
7
PIN CONNECTIONS  
4.2  
Pin definitions  
Table 2. Pin definitions  
Pin  
function  
Pin number  
Pin name  
Type  
Definition  
Open drain interrupt signal to processor  
1
INTB  
O
Digital  
Input from i.MX processor to select VCC_SD regulator voltage  
• SD_VSEL=0, VCC_SD = 2.85 V to 3.3 V  
2
SD_VSEL  
I/O  
Digital  
• SD_VSEL= 1, VCC_SD = 1.8 V to 1.85 V  
3
4
RESETBMCU  
STANDBY  
O
I
Digital  
Digital  
Open drain reset output to processor  
Standby input signal from processor  
Digital and  
Analog  
5
ICTEST  
I
Reserved pin. Connect to GND in application  
SW1A output voltage feedback pin. Route this trace separately from the high current  
path and terminate at the output capacitance or near the load, if possible for best  
regulation  
6
7
8
SW1AFB (4)  
SW1AIN (4)  
SW1ALX (4)  
I
I
Analog  
Analog  
Analog  
Input to SW1A regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF  
decoupling capacitor as close to the pin as possible  
Switcher 1A switch node connection. Connect to SW1A inductor when used in SW1A  
independent mode. Connect to SW1BLX and connect to SW1AB inductor when using  
SW1A/B as a single regulator  
O
Switcher 1B switch node connection. Connect to SW1B inductor when used in SW1B  
independent mode. Connect to SW1ALX and connect to SW1AB inductor when using  
SW1A/B as a single regulator  
9
SW1BLX (4)  
O
Analog  
Input to SW1B regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF  
decoupling capacitor as close to the pin as possible  
10  
11  
12  
13  
SW1BIN (4)  
SW1BFB (4)  
GNDREF1  
VLDO1IN  
I
Analog  
Analog  
GND  
SW1B output voltage feedback pin. Route this trace separately from the high current  
path and terminate at the output capacitor or near the load, if possible for best regulation  
I
GND  
I
Ground reference for SW1A/B. Connect to GND. Keep away from high current ground  
return paths  
VLDO1 input supply. Bypass with a 1.0 µF decoupling capacitor as close to the pin as  
possible  
Analog  
14  
15  
16  
17  
18  
VLDO1  
VLDO2  
O
O
I
Analog  
Analog  
Analog  
Analog  
Analog  
VLDO1 regulator output. Bypass with a 2.2 µF ceramic output capacitor  
VLDO2 regulator output. Bypass with a 4.7 µF ceramic output capacitor  
VLDO2 input supply. Bypass with a 1.0 µF decoupling capacitor as close to the pin as  
possible  
VLDO2IN  
SW2LX (4)  
SW2IN (4)  
O
I
Switcher 2 switch node connection.Connect to SW2 inductor  
Input to SW2 regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF  
decoupling capacitor as close to the pin as possible  
SW2 output voltage feedback pin. Route this trace separately from the high current path  
and terminate at the output capacitor or near the load, if possible for best regulation  
19  
20  
21  
SW2FB (4)  
VLDO3  
I
O
I
Analog  
Analog  
Analog  
VLDO3 regulator output. Bypass with a 2.2 µF ceramic output capacitor  
VLDO3 and VLDO4 input supply. Bypass with a 1.0 µF decoupling capacitor as close to  
the pin as possible  
VLDO34IN  
22  
23  
VLDO4  
VHALF  
O
I
Analog  
Analog  
VLDO4 regulator output. Bypass with a 2.2 µF ceramic output capacitor  
Half supply reference for VREFDDR. Bypass with 0.1 µF to ground.  
VREFDDR regulator input. Connect a 0.1 µF capacitor between VINREFDDR and  
VHALF pin. Ensure there is at least 1.0 µF net capacitance from VINREFDDR to ground  
24  
25  
VINREFDDR  
VREFDDR  
I
Analog  
Analog  
O
VREFDDR regulator output.Bypass with 1.0 µF to ground  
PF3000  
8
NXP Semiconductors  
PIN CONNECTIONS  
Table 2. Pin definitions (continued)  
Reference ground for SW2 and SW3 regulators. Connect to GND. Keep away from high  
current ground return paths  
26  
27  
GNDREF2  
SW3FB (4)  
GND  
I
GND  
SW3 output voltage feedback pin. Route this trace separately from the high current path  
and terminate at the output capacitor or near the load, if possible for best regulation  
Analog  
Input to SW3 regulator. Bypass with at least a 4.7 µF ceramic capacitor and a 0.1 µF  
decoupling capacitor as close to the pin as possible  
28  
29  
30  
SW3IN (4)  
SW3LX (4)  
LDOG  
I
Analog  
Analog  
Analog  
O
O
Switcher 3 switch node connection. Connect the SW3 inductor  
Connect to gate of front-end LDO external pass P-MOSFET. Leave floating if VPWR  
LDO is not used  
31  
32  
VPWR  
V33  
I
Analog  
Analog  
Input to optional front-end VPWR LDO for systems with input voltage > 4.5 V  
V33 regulator output. Bypass with a 4.7 µF ceramic output capacitor  
O
33  
34  
VCC_SD  
VSNVS  
O
O
Analog  
Analog  
Output of VCC_SD regulator. Bypass with a 2.2 µF ceramic output capacitor.  
VSNVS regulator/switch output. Bypass with 0.47 µF capacitor to ground.  
SWBST switch node connection. Connect to SWBST inductor and anode of Schottky  
diode  
35  
36  
37  
SWBSTLX (4)  
LICELL  
I/O  
I/O  
I
Analog  
Analog  
Analog  
Coin cell supply input/output. Bypass with 0.1 µF capacitor. Connect to optional coin cell.  
SWBST output voltage feedback pin. Route this trace separately from the high current  
path and terminate at the output capacitor  
SWBSTFB (4)  
Input to VCC_SD, V33 regulators and SWBST control circuitry. Connect to VIN rail and  
bypass with 10 µF capacitor  
38  
39  
VIN2  
I
I
Analog  
Digital &  
Analog  
VDDOTP  
Supply to program OTP fuses. Connect VDDOTP to GND during normal application  
Ground reference for IC core circuitry. Connect to ground. Keep away from high current  
ground return paths  
40  
41  
GNDREF  
VCORE  
GND  
O
GND  
Analog  
Internal analog core supply. Bypass with 1 µF capacitor to ground  
Main IC supply. Bypass with 1.0 µF capacitor to ground. Connect to system input supply  
if voltage 4.5 V. Connect to drain of external PFET when VPWR LDO is used for  
systems with input voltage > 4.5 V  
42  
VIN  
I
Analog  
43  
44  
45  
VCOREDIG  
VCOREREF  
SDA  
O
O
Analog  
Analog  
Digital  
Internal digital core supply. Bypass with 1.0 µF capacitor to ground  
Main band gap reference. Bypass with 220 nF capacitor to ground  
I2C data line (open drain). Pull up to VDDIO with a 4.7 kresistor  
I2C clock. Pull up to VDDIO with a 4.7 kresistor  
I/O  
46  
SCL  
I
Digital  
Supply for I2C bus. Bypass with 0.1 µF ceramic capacitor. Connect to 1.7 to 3.6 V  
supply. Ensure that VDDIO is always lesser than or equal to VIN  
47  
48  
-
VDDIO  
PWRON  
EP  
I
I
Analog  
Digital  
GND  
Power ON/OFF input from processor  
Expose pad. Functions as ground return for buck and boost regulators. Tie this pad to  
the inner and external ground planes through vias to allow effective thermal dissipation  
GND  
Notes  
4. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be  
connected to VIN with a 0.1 μF bypass capacitor.  
PF3000  
NXP Semiconductors  
9
GENERAL PRODUCT CHARACTERISTICS  
5
General product characteristics  
5.1  
Absolute maximum ratings  
Table 3. Absolute maximum voltage ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage  
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Description  
Value  
Unit  
Notes  
Electrical ratings  
VPWR, ICTEST, LDOG, SWBSTLX  
-0.3 to 7.5  
-0.3 to 4.8  
V
V
VIN, VIN2, VLDO1IN, SW1AIN, SW1BIN,  
SW2IN, SW3IN, SW1ALX, SW1BLX, SW2LX,  
SW3LX  
(5)  
VDDOTP  
OTP programming input supply voltage  
Boost switcher feedback  
-0.3 to 10.0  
-0.3 to 5.5  
V
V
SWBSTFB  
INTB, SD_VSEL, RESETBMCU, STANDBY,  
SW1AFB, SW1BFB, SW2FB, SW3FB, VLDO1,  
VLDO2IN, VLDO3, VLDO34IN, VLDO4, VHALF,  
VINREFDDR, VREFDDR, V33, VCC_SD,  
VSNVS, LICELL, VCORE, SDA, SCL, VDDIO,  
PWRON  
-0.3 to 3.6  
V
VLDO2  
VLDO2 linear regulator output  
Digital core supply voltage output  
Bandgap reference voltage output  
-0.3 to 2.5  
-0.3 to 1.65  
-0.3 to 1.5  
V
V
V
VCOREDIG  
VCOREREF  
ESD ratings  
• Human body model  
• Charge device model  
(6)  
V
V
2000  
500  
ESD  
Notes  
5. 10 V maximum voltage rating during OTP fuse programming. 7.5 V maximum DC voltage rated otherwise.  
6. ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM),  
robotic (CZAP = 4.0 pF).  
PF3000  
10  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
5.2  
Thermal Characteristics  
Table 4. Thermal ratings  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal Ratings  
Ambient operating temperature range  
TA  
• Industrial version  
• Consumer version  
-40  
-40  
105  
85  
°C  
(7)  
TJ  
Operating junction temperature range  
Storage temperature range  
-40  
-65  
125  
°C  
°C  
°C  
TST  
150  
(9)  
(8) (9)  
TPPRT  
Peak package reflow temperature  
QFN48 thermal resistance and package dissipation ratings  
Junction to ambient, natural convection  
• Four layer board (2s2p)  
• Eight layer board (2s6p)  
(10) (11)  
(12)  
RθJA  
24  
15  
°C/W  
(13)  
(14)  
RθJB  
Junction to board  
11  
°C/W  
°C/W  
RΘJCBOTTOM  
Junction to case bottom  
1.4  
Junction to package top  
• Natural convection  
(15)  
1.3  
°C/W  
ΨJT  
Notes  
7. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal  
Protection Thresholds for thermal protection features.  
8. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
9. NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and  
moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable  
parts, and review parametrics.  
10. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
11. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
12. Per JEDEC JESD51-6 with the board horizontal.  
13. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
14. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
15. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC  
JESD51-2. When Greek letters ( ) are not available, the thermal characterization parameter is written as Psi-JT.  
Ψ
PF3000  
NXP Semiconductors  
11  
GENERAL PRODUCT CHARACTERISTICS  
5.3  
Current consumption  
The current consumption of the individual blocks is described in detail in the following table.  
Table 5. Current consumption summary  
TA= -40 °C to 105 °C, VPWR= 0 V (External pass FET is not populated), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V,  
VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VPWR = 0 V,  
VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted.  
Mode  
PF3000 conditions  
System conditions  
No load on VSNVS  
Typ.  
Max.  
Unit  
Notes  
VSNVS from LICELL, All other blocks  
off, VIN = 0.0 V  
(16) (17)  
Coin cell  
4.0  
7.0  
μA  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 kHz RC on  
No load on VSNVS, PMIC able to  
wake-up  
(16) (17)  
Off  
16  
25  
μA  
All other blocks off  
VIN UVDET  
VSNVS from VIN  
Wake-up from PWRON active  
Trimmed reference active  
SW3 PFM. All other regulators off.  
Trimmed 16 MHz RC off  
32 kHz RC on  
130 (16)  
200 (19)  
(18)  
(18)  
No load on any of the regulators.  
No load on any of the regulators.  
220 (16)  
μA  
μA  
Sleep LPSR  
VREFDDR disabled  
170 (16)  
260 (19)  
LDO1 & LDO3 activated in addition to  
SW3  
248 (16)  
VSNVS from either VIN or LICELL  
SW1A in PFM  
SW1B in PFM  
SW2 in PFM  
SW3 in PFM  
SWBST off  
(18)  
Standby  
No load on any of the regulators.  
297  
450  
μA  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VLDO1-4 enabled  
V33 enabled  
VCC_SD enabled  
VREFDDR enabled  
VSNVS from VIN  
SW1A in APS  
SW1B in APS  
SW2 in APS  
SW3 in APS  
SWBST off  
ON  
No load on any of the regulators.  
1.2  
mA  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VLDO1-4 enabled  
V33 enabled  
VCC_SD enabled  
VREFDDR enabled  
Notes  
16. At 25 °C only.  
17. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.  
18. For PFM operation, headroom should be 300 mV or greater.  
19. At 105 °C only.  
PF3000  
12  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
5.4  
Electrical characteristics  
Table 6. Electrical characteristics – front-end input LDO  
All parameters are specified at TA = -40 °C to 105 °C, VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VPWR = 5.0 V, VIN = 4.4 V, IVIN = 300 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Front end input LDO (VPWR LDO)  
Operating input voltage  
• In regulation  
• In dropout operation  
(20)  
VPWR  
4.6  
3.7  
5.5  
4.6  
V
V
On mode output voltage, 4.6 V < VPWR < 5.5 V,  
0.0 mA < IVIN < 3000 mA  
VIN  
4.3  
4.4  
4.55  
Operating load current at VIN, 3.7 V < VPWR < 5.5 V  
ON mode quiescent current, no load,  
IVIN  
0.0  
3.0  
10  
A
ILDOGQ  
5.0  
mA  
Low-power mode output voltage, 4.6 V < VPWR < 5.5 V  
0.0 mA < IVIN < 1.0 mA  
VIN  
3.7  
3.2  
4.5  
4.8  
V
V
Off mode output voltage, (CL = 100 μF) 4.6 V < VPWR < 5.5 V,  
0.0 mA < IVIN < 35 μA  
VIN_OFF  
Low-power mode quiescent current, no load (Standby/Sleep/LPSR  
states)  
ILDOQLP  
VPWRUV  
150  
300  
3.7  
μA  
VPWR undervoltage threshold (upon undervoltage condition the  
external pass FET is turned off)  
3.1  
V
VPWR overvoltage threshold (upon overvoltage condition interrupt is  
asserted at INTB)  
VPWROV  
IVINUVILIMIT  
IVINLEAKAGE  
IVPWROFF  
5.5  
6.5  
300  
1.0  
75  
V
VPWR LDO current limit under VIN short-circuit (VIN < UVDET)  
mA  
µA  
μA  
Reverse leakage current from VIN to VPWR, No external pass FET,  
VPWR is grounded, device is in OFF state  
(21)  
VPWR LDO Off mode quiescent current  
Notes  
20. While the front end LDO can handle spikes up to 7.5 V at VPWR for as long as 200 µs, the circuit is not expected to be continuously operated  
when VPWR is above 5.5 V.  
21. This specification gives the leakage current in the VPWR LDO block. Total OFF mode current includes the quiescent current from the other blocks  
as specified in Table 5.  
PF3000  
NXP Semiconductors  
13  
GENERAL PRODUCT CHARACTERISTICS  
Table 7. Static electrical characteristics – SW1  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component  
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V,  
ISW1x = 100 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW1A/B (single phase)  
VSW1AIN  
(22), (23)  
Operating input voltage  
VSW1BIN  
2.8  
4.5  
V
V
VSW1AB  
Nominal output voltage  
Table 53  
Output voltage accuracy  
PWM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75 A  
0.7 V VSW1AB 1.2 V  
PFM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75A  
1.225 V < VSW1AB < 1.425 V  
-25  
-25  
-45  
-6.0  
-6.0  
25  
35  
mV  
mV  
mV  
%
PFM, steady state, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 150 mA  
1.8 V VSW1AB 1.425 V  
PWM, APS, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 2.75A  
1.8 V < VSW1AB < 3.3 V  
VSW1ABACC  
45  
6.0  
6.0  
%
PFM, steady state, 2.8 V < VSW1xIN < 4.5 V, 0 < ISW1AB < 150 mA  
1.8 V VSW1AB 3.3 V  
Rated output load current,  
• 2.8 V VSW1xIN 4.5 V, 0.7 V < VSW1AB < 1.425 V, 1.8V, 3.3V  
ISW1AB  
2750  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode  
ISW1ABQ  
22  
300  
Current limiter peak current detection , current through inductor  
ISW1ABLIM  
• SW1xILIM = 0  
• SW1xILIM = 1  
3.5  
2.6  
5.5  
4.0  
7.5  
5.4  
A
ΔVSW1AB  
Output ripple  
5.0  
mV  
RSW1ABDIS  
Discharge resistance  
600  
Ω
Switch mode supply SW1A (independent)  
(22), (23)  
VSW1AIN  
VSW1A  
Operating input voltage  
Nominal output voltage  
2.8  
4.5  
V
V
Table 53  
Output voltage accuracy  
PWM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A  
0.7 V VSW1A 1.2 V  
APS, 3.0 V VSW1AIN 3.6 V, 0.01 A < ISW1A < 0.75 A  
-25  
-25  
-25  
-45  
-6.0  
-6.0  
25  
25  
mV  
mV  
mV  
mV  
%
VSW1A = 1.225 V, T = 0 °C to 85 °C  
A
PWM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A  
1.225 V < VSW1A 1.425 V  
PFM, steady state, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 50 mA  
0.7 V VSW1A 1.425V  
PWM, APS, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 1.0 A  
1.8 V VSW1A 3.3 V  
PFM, steady state, 2.8 V < VSW1AIN < 4.5 V, 0 < ISW1A < 50 mA  
35  
VSW1AACC  
45  
6.0  
6.0  
%
1.8 V VSW1A 3.3 V  
Rated output load current  
2.8 V < VSW1AIN < 4.5 V, 0.7 V < VSW1A < 1.425 V, 1.8V, 3.3V  
ISW1A  
1000  
mA  
µA  
Switch mode supply SW1a (independent) (Continued)  
Quiescent current  
• PFM mode  
• APS mode  
ISW1AQ  
50  
250  
PF3000  
14  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 7. Static electrical characteristics – SW1 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component  
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V,  
ISW1x = 100 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current limiter peak current detection, current through inductor  
ISW1ALIM  
• SW1AILIM = 0  
• SW1AILIM = 1  
1.78  
1.3  
2.75  
2.0  
3.7  
2.7  
A
ΔVSW1A  
RONSW1AP  
RONSW1AN  
ISW1APQ  
Output Ripple  
5.0  
265  
300  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW1A P-MOSFET RDSON, at VSW1AIN = 3.3 V  
295  
370  
10.5  
3.5  
SW1A N-MOSFET RDSON, at VSW1AIN = 3.3 V  
SW1A P-MOSFET leakage current, VSW1AIN = 4.5 V  
SW1A N-MOSFET leakage current, VSW1AIN = 4.5 V  
Discharge resistance  
ISW1ANQ  
RSW1ADIS  
600  
Switch mode supply SW1B (independent)  
(24), (25)  
VSW1BIN  
VSW1B  
Operating input voltage  
Nominal output voltage  
2.8  
4.5  
V
V
Table 53  
Output voltage accuracy  
• PWM, APS, 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 1.75 A  
0.7 V < VSW1B < 1.2 V  
-25  
-25  
-45  
25  
35  
45  
• PWM, APS, 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 1.75 A  
1.225 V < VSW1B < 1.475 V  
VSW1BACC  
mV  
• PFM, steady state 2.8 V < VSW1BIN < 4.5 V, 0 < ISW1B < 50 mA  
0.7 V < VSW1B < 1.475 V  
Rated output load current  
2.8 V < VSW1BIN < 4.5 V, 0.7 V < VSW1B < 1.475 V  
ISW1B  
1750  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode  
ISW1BQ  
50  
150  
Current limiter peak current detection, current through inductor  
ISW1BLIM  
• SW1BILIM = 0  
• SW1BILIM = 1  
2.4  
1.725  
3.50  
2.65  
4.725  
3.575  
A
ΔVSW1B  
RONSW1BP  
RONSW1BN  
ISW1BPQ  
Output ripple  
5.0  
195  
228  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW1B P-MOSFET RDSON, at VSW1BIN = 3.3 V  
225  
295  
12  
SW1B N-MOSFET RDSON, at VSW1BIN = 3.3 V  
SW1B P-MOSFET leakage current, VSW1BIN = 4.5 V  
SW1B N-MOSFET leakage current, VSW1BIN = 4.5 V  
Discharge resistance during OFF mode  
ISW1BNQ  
4.0  
RSW1BDIS  
600  
Notes  
22. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
23. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
24. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
25. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
PF3000  
NXP Semiconductors  
15  
GENERAL PRODUCT CHARACTERISTICS  
Table 8. Dynamic electrical characteristics - SW1  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, typical external component  
values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW1xIN = 3.6 V, VSW1x = 1.2 V, ISW1x  
100 mA, and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW1A/B (single phase)  
Start-up overshoot, ISW1AB = 0 mA, DVS clk = 25 mV/4 μs, VIN  
VSW1xIN = 4.5 V, VSW1AB = 1.425 V  
=
VSW1ABOSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW1AB = 0 mA, DVS clk =  
25 mV/4 μs, VIN = VSW1xIN = 4.5 V, VSW1AB = 1.425 V  
tONSW1AB  
500  
Switch mode supply SW1A (independent)  
Start-up overshoot, ISW1A = 0 mA, DVS clk = 25 mV/4.0 μs, VIN  
VSW1AIN = 4.5 V, VSW1A = 1.425 V  
=
VSW1AOSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW1A = 0 mA, DVS clk =  
tONSW1A  
500  
25 mV/4.0 μs, VIN = VSW1AIN = 4.5 V, VSW1A = 1.425 V  
Switch mode supply SW1B (independent)  
Start-up overshoot, ISW1B = 0 mA, DVS clk = 25 mV/4.0 μs, VIN  
VSW1BIN = 4.5 V, VSW1B = 1.475 V  
=
VSW1BOSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW1B = 0 mA, DVS clk =  
tONSW1B  
500  
25 mV/4 μs, VIN = VSW1BIN = 4.5 V, VSW1B = 1.475 V  
Table 9. Static electrical characteristics – SW2  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component  
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW2  
(26), (27)  
VSW2IN  
VSW2  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Table 55  
Output voltage accuracy  
• PWM, APS, 2.8 V VSW2IN 4.5 V, 0 ISW2 1.25 A  
• 1.50 V VSW2 1.85 V  
-3.0%  
-6.0%  
3.0%  
6.0%  
VSW2ACC  
• 2.5 V VSW2 3.3 V  
• PFM, 2.8 V VSW2IN 4.5 V, 0 ISW2 50 mA  
• 1.50 V VSW2 1.85 V  
%
-6.0%  
-6.0%  
6.0%  
6.0%  
• 2.5 V VSW2 3.3 V  
Rated output load current, 2.8 V < VSW2IN < 4.5 V,  
1.50 V < VSW2 < 1.85 V, 2.5 V < VSW2 < 3.3 V  
(28)  
ISW2  
1250  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode (low output voltage settings)  
• APS mode (high output voltage settings, SW2_HI=1)  
23  
145  
305  
ISW2Q  
Notes  
26. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
27. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
28. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW2IN - VSW2) = ISW2  
(DCR of Inductor +RONSW2P + PCB trace resistance).  
*
PF3000  
16  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 9. Static electrical characteristics – SW2 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component  
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW2 (continued)  
Current limiter peak current detection, current through inductor  
ISW2LIM  
• SW2ILIM = 0  
• SW2ILIM = 1  
1.625  
1.235  
2.5  
1.9  
3.375  
2.565  
A
ΔVSW2  
RONSW2P  
RONSW2N  
ISW2PQ  
Output ripple  
5.0  
215  
258  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW2 P-MOSFET RDSON at VIN = VSW2IN = 3.3 V  
245  
326  
10.5  
3.0  
SW2 N-MOSFET RDSON at VSW2IN = VSW2IN = 3.3 V  
SW2 P-MOSFET leakage current, VIN = VSW2IN = 4.5 V  
SW2 N-MOSFET leakage current, VIN = VSW2IN = 4.5 V  
Discharge resistance during OFF mode  
ISW2NQ  
RSW2DIS  
600  
Table 10. Dynamic electrical characteristics - SW2  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component  
values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VSW2IN = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW2  
Start-up overshoot, ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN  
VSW2IN = 4.5 V  
=
VSW2OSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW2 = 0.0 mA, DVS clk =  
25 mV/4 μs, VIN = VSW2IN = 4.5 V  
tONSW2  
500  
Table 11. Static electrical characteristics – SW3  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component  
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3  
(29), (30)  
VSW3IN  
VSW3  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Table 57  
Output voltage accuracy  
• PWM, APS, 2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.5 A, 0.9 V < VSW3  
< 1.65 V  
• PFM, steady state (2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 50 mA), 0.9 V  
< VSW3 < 1.65 V  
-3.0%  
-6.0%  
3.0%  
6.0%  
VSW3ACC  
%
Rated output load current, 2.8 V < VSW3IN < 4.5 V, 0.9 V < VSW3  
1.65 V, PWM, APS mode  
<
(31)  
ISW3  
1500  
mA  
Notes  
29. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
30. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
31. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW3IN - VSW3) =  
ISW3* (DCR of Inductor +RONSW3P + PCB trace resistance).  
PF3000  
NXP Semiconductors  
17  
GENERAL PRODUCT CHARACTERISTICS  
Table 11. Static electrical characteristics – SW3 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component  
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3 (continued)  
Quiescent current  
ISW3Q  
• PFM mode  
• APS mode  
50  
150  
µA  
A
Current limiter peak current detection, current through inductor  
• SW3ILIM = 0  
• SW3ILIM = 1  
ISW3LIM  
1.95  
1.45  
3.0  
2.25  
4.05  
3.05  
ΔVSW3  
RONSW3P  
RONSW3N  
ISW3PQ  
Output ripple  
5.0  
205  
250  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW3 P-MOSFET RDSON at VIN = VSW3IN = 3.3 V  
235  
315  
12  
SW3 N-MOSFET RDSON at VIN = VSW3IN = 3.3 V  
SW3 P-MOSFET leakage current, VIN = VSW3IN = 4.5 V  
SW3 N-MOSFET leakage current, VIN = VSW3IN = 4.5 V  
Discharge resistance during Off mode  
ISW3NQ  
4.0  
RSW3DIS  
600  
Table 12. Dynamic electrical characteristics - SW3  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component  
values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VSW3IN = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Start-up overshoot, ISW3 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN  
VSW3IN = 4.5 V  
=
VSW3OSH  
66  
mV  
Turn-on time, enable to 90% of end value, ISW3 = 0 mA, DVS clk =  
25 mV/4 μs, VIN = VSW3IN = 4.5 V  
tONSW3  
500  
µs  
Table 13. Static electrical characteristics - SWBST  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external  
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V,  
ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Unit  
Switch mode supply SWBST  
(32), (33)  
VSWBSTIN  
VSWBST  
Input voltage range  
2.8  
4.5  
V
V
Nominal output voltage  
Table 59  
Continuous load current  
• 2.8 V VIN 3.0 V  
• 3.0 V VIN 4.5 V  
ISWBST  
500  
600  
mA  
Output voltage accuracy, 2.8 V VIN 4.5 V, 0 < ISWBST  
< ISWBSTMAX  
VSWBSTACC  
-4.0  
3.0  
%
ISWBSTQ  
Notes  
32. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
Quiescent current (auto mode)  
222  
289  
μA  
33. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
PF3000  
18  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 13. Static electrical characteristics - SWBST (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external  
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V,  
ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
Switch mode supply SWBST (continued)  
Parameters  
Min.  
Typ.  
Max.  
Unit  
Output ripple, 2.8 V VIN 4.5 V, 0 < ISWBST < ISWBSTMAX, excluding  
reverse recovery of Schottky diode  
ΔVSWBST  
120  
mVp-p  
(34)  
ISWBSTLIM  
RDS(on)BST  
ISWBSTHSQ  
Peak Current Limit  
1400  
2200  
206  
1.0  
3200  
306  
5.0  
mA  
mΩ  
µA  
MOSFET on resistance  
NMOS Off leakage, VSWBST = 4.5 V, SWBSTMODE [1:0] = 00  
Notes  
34. Only in Auto and APS modes.  
Table 14. Dynamic electrical characteristics - SWBST  
All parameters are specified at TA = -40 °C to 105 °C, VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external  
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V,  
ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Switch mode supply SWBST  
VSWBSTOSH  
tONSWBST  
Start-up overshoot, ISWBST = 0.0 mA  
500  
2.0  
mV  
ms  
Turn-on time, enable to 90% of VSWBST, ISWBST = 0.0 mA  
Table 15. Static electrical characteristics - VSNVS  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,  
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise noted.  
Symbol  
VSNVS  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
• Valid coin cell range  
• Valid VIN  
(35)  
VIN  
1.8  
2.25  
3.3  
4.5  
V
Operating load current, VINMIN < VIN < VINMAX  
ISNVS  
1.0  
1000  
μA  
Output voltage  
• 5.0 μA < ISNVS < 1000 μA (OFF), 3.20 V < VIN < 4.5 V  
• 5.0 μA < ISNVS < 1000 μA (ON), 3.20 V < VIN < 4.5 V  
• 5.0 μA < ISNVS < 1000μA (Coin cell mode), 2.84 V < VCOIN < 3.3 V VCOIN-0.10  
-5.0%  
-5.0%  
3.0  
3.0  
7.0%  
5.0%  
VCOIN  
VSNVS  
V
Dropout voltage, 2.85 V < VIN < 2.9 V, 1.0 μA < ISNVS < 1000 μA  
VSNVSDROP  
ISNVSLIM  
110  
mV  
Current limit, VIN > VTH1  
1100  
6750  
μA  
VSNVS DC, SWITCH  
VLiCell  
Operating input voltage, valid coin cell range  
Operating load current  
1.8  
1.0  
3.3  
1000  
100  
V
μA  
Ω
ISNVS  
Internal switch RDS(on), VCOIN = 2.6 V  
RDS(on)SNVS  
Notes  
35. The maximum operating input voltage is 4.55 V when VPWR LDO is used  
PF3000  
NXP Semiconductors  
19  
GENERAL PRODUCT CHARACTERISTICS  
Table 16. Dynamic electrical characteristics - VSNVS  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values, unless  
otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise noted.  
Symbol  
VSNVS  
Parameter  
Min.  
Typ.  
Max.  
Notes  
Unit  
Turn-on time (load capacitor, 0.47 μF), from VIN = VTH1 to 90% of  
VSNVS, VCOIN = 0.0 V, ISNVS = 5.0 μA  
(36),(37)  
VSNVSTON  
24  
ms  
Start-up overshoot, ISNVS = 5.0 μA  
VSNVSOSH  
VSNVSLOTR  
VTL1  
40  
70  
mV  
V
Transient load response, 3.2 < VIN 4.5 V, ISNVS = 100 to 1000 μA  
VIN falling threshold (VIN powered to coin cell powered)  
VIN rising threshold (coin cell powered to VIN powered)  
VIN threshold hysteresis for VTH1-VTL1  
2.8  
2.45  
2.50  
5.0  
2.70  
2.75  
3.05  
3.10  
V
VTH1  
V
VHYST1  
mV  
Output voltage during crossover, VCOIN > 2.9 V, Switch to LDO: VIN  
VTH1, ISNVS = 100 μA, LDO to Switch: VIN < VTL1, ISNVS = 100 μA  
>
VSNVSCROSS  
2.45  
V
Notes  
36. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to 3.0 V.  
37. From coin cell insertion to VSNVS = 1.0 V, the delay time is typically 400 ms.  
Table 17. Static electrical characteristics - VLDO1  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA,  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO1 linear regulator  
Operating input voltage  
• 1.8 V VLDO1NOM 2.5 V  
• 2.6 V VLDO1NOM 3.3 V  
2.8  
VLDO1NOM  
+0.250  
(38), (39)  
VLDO1IN  
4.5  
4.5  
V
VLDO1NOM  
ILDO1  
Nominal output voltage  
Table 62  
V
Rated output load current  
100  
mA  
Output voltage tolerance, VLDO1INMIN < VLDO1IN < 4.5 V, 0.0 mA <  
ILDO1 < 100 mA, VLDO1 = 1.8 V to 3.3 V  
VLDO1TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN, when VLDO1 enabled  
Current limit, ILDO1 when VLDO1 is forced to VLDO1NOM/2  
ILDO1Q  
13  
μA  
ILDO1LIM  
122  
167  
280  
mA  
Notes  
38. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
39. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
PF3000  
20  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 18. Dynamic electrical characteristics - VLDO1  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO1IN = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA,  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO1 linear regulator  
PSRR, ILDO1 = 75 mA, 20 Hz to 20 kHz  
PSRRVLDO1  
35  
52  
40  
60  
dB  
• VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1INMIN + 100 mV  
• VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1NOM + 1.0 V  
Output noise density, VLDO1IN = VLDO1INMIN, ILDO1 = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO1  
dBV/ Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO1IN = VLDO1INMIN to  
4.5 V, ILDO1 = 0.0 mA, all output voltage settings  
tONLDO1  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO1IN = VLDO1INMIN  
ILDO1 = 0.0 mA  
,
tOFFLDO1  
10  
ms  
%
Start-up overshoot, VLDO1IN = VLDO1INMIN to 4.5 V, ILDO1 = 0.0 mA  
LDO1OSHT  
1.0  
2.0  
Table 19. Static electrical characteristics - VLDO2  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2  
10 mA and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO2 linear regulator  
VLDO2IN  
VLDO2NOM  
ILDO2  
Operating input voltage  
1.75  
Table 63  
3.40  
V
V
Nominal output voltage  
Rated output load current  
250  
mA  
Output voltage tolerance, 1.75 V < VLDOIN1 < 3.40 V, 0.0 mA < ILDO2  
< 250 mA, VLDO2 = 0.8 V to 1.55 V  
VLDO2TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO2IN, when VLDO2  
enabled  
ILDO2Q  
16  
μA  
Current limit, ILDO2 when VLDO2 is forced to VLDO2NOM/2  
ILDO2LIM  
333  
417  
612  
mA  
Table 20. Dynamic electrical characteristics - VLDO2  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2  
10 mA and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO2 linear regulator  
PSRR, ILDO2 = 187.5 mA, 20 Hz to 20 kHz  
PSRRVLDO2  
50  
37  
60  
45  
dB  
• VLDO2 = 0.8 V to 1.55 V  
• VLDO2 = 1.1 V to 1.55 V  
Output noise density, VLDO2IN = 1.75 V, ILDO2 = 187.5 mA  
-108  
-118  
-124  
-100  
-108  
-112  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO2  
dBV/Hz  
PF3000  
NXP Semiconductors  
21  
GENERAL PRODUCT CHARACTERISTICS  
Table 20. Dynamic electrical characteristics - VLDO2 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO2IN = 3.0 V, VLDO2 = 1.55 V, ILDO2  
10 mA and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO2 linear regulator (continue)  
Turn-on time, enable to 90% of end value, VLDO2IN = 1.75 V to 3.4 V,  
LDO2 = 0.0 mA  
tONLDO2  
60  
500  
μs  
I
Turn-off time, disable to 10% of initial value, VLDO2IN = 1.75 V,  
ILDO2 = 0.0 mA  
tOFFLDO2  
10  
ms  
%
Start-up overshoot, VLDO2IN = 1.75 V to 3.4 V, ILDO2 = 0.0 mA  
LDO2OSHT  
1.0  
2.0  
Table 21. Static electrical characteristics – VCC_SD  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, typical external component values,  
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, and 25 °C, unless otherwise  
noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC_SD linear regulator  
(40), (41),  
(41)  
VIN  
Operating input voltage  
2.8  
4.5  
V
VCC_SDNOM  
IVCC_SD  
Nominal output voltage  
Table 65  
V
Rated output load current  
100  
mA  
Output voltage accuracy, 2.8 V < VIN < 4.5 V, 0.0 mA < IVCC_SD  
100 mA, VCC_SD[1:0] = 00 to 11  
<
VCC_SDTOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVIN2, when VCC_SD  
enabled  
IVCC_SDQ  
13  
μA  
Current limit, IVCC_SD when VCC_SD is forced to VCC_SDNOM/2  
IVCC_SDLIM  
122  
167  
280  
mA  
Notes  
40. When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V.  
41. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
42. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
Table 22. Dynamic electrical characteristics - VCC_SD  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC_SD linear regulator  
PSRR, IVCC_SD = 75 mA, 20 Hz to 20 kHz  
PSRRVCC_SD  
35  
52  
40  
60  
dB  
• VCC_SD[1:0] = 00 - 10, VIN = 2.8 V + 100 mV  
• VCC_SD[1:0] = 10 - 11, VIN = VCC_SDNOM + 1.0 V  
Output noise density, VIN = 2.8V, IVCC_SD = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
NOISEVCC_SD  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VIN = 2.8 V to 4.5 V,  
IVCC_SD = 0.0 mA  
tONVCC_SD  
60  
500  
PF3000  
22  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 22. Dynamic electrical characteristics - VCC_SD (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCC_SD = 1.85 V, IVCC_SD = 10 mA, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC_SD linear regulator (continued)  
Turn-off time, disable to 10% of initial value, VIN = 2.8 V,  
IVCC_SD = 0.0 mA  
tOFFVCC_SD  
10  
ms  
%
Start-up overshoot, VIN = 2.8 V to 4.5 V, IVCC_SD = 0.0 mA  
VCC_SDOSHT  
1.0  
2.0  
Table 23. Static electrical characteristics – V33  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
V33 linear regulator  
(43), (44),  
(45)  
Operating input voltage, 2.9 V V33NOM 3.6 V  
VIN  
2.8  
4.5  
V
V33NOM  
IV33  
Nominal output voltage  
Table 64  
V
Rated output load current  
350  
mA  
Output voltage tolerance, 2.8 V < VIN < 4.5 V, 0.0 mA < IV33 < 350 mA,  
V33[1:0] = 00 to 11  
V33TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN, when V33 enabled  
Current limit, IV33 when V33 is forced to V33NOM/2  
IV33Q  
IV33LIM  
13  
μA  
435  
584.5  
950  
mA  
Notes  
43. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
44. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
45. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
Table 24. Dynamic electrical characteristics – V33  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
V33 linear regulator  
PSRR, IV33 = 262.5 mA, 20 Hz to 20 kHz, V33[1:0] = 00 - 11, VIN  
V33NOM + 1.0 V  
=
(46)  
PSRRV33  
NOISEV33  
tONV33  
52  
60  
dB  
dBV/Hz  
μs  
Output noise density, VIN = 2.8 V, IV33 = 262.5 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
Turn-on time, enable to 90% of end value, VIN = 2.8 V, to 4.5 V,  
IV33 = 0.0 mA  
60  
500  
PF3000  
NXP Semiconductors  
23  
GENERAL PRODUCT CHARACTERISTICS  
Table 24. Dynamic electrical characteristics – V33 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VIN = 3.6 V, V33 = 3.3 V, IV33 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
V33 linear regulator (continued)  
Turn-off time, disable to 10% of initial value, VIN = 2.8 V, IV33 = 0.0 mA  
Start-up overshoot, VIN = 2.8 V to 4.5 V, IV33 = 0.0 mA  
tOFFV33  
10  
ms  
%
V33OSHT  
1.0  
2.0  
Notes  
46. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
Table 25. Static electrical characteristics – VLDO3  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V,  
ILDO3 = 10 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
VLDO3 linear regulator  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Operating input voltage  
• 1.8 V VLDO3NOM 2.5 V  
• 2.6 V VLDO3NOM 3.3 V  
2.8  
VLDO3NOM  
+0.250  
(47), (48)  
VLDO34IN  
3.6  
3.6  
V
VLDO3NOM  
ILDO3  
Nominal output voltage  
Table 63  
V
Rated output load current  
100  
mA  
Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V, 0.0 mA <  
ILDO3 < 100 mA, VLDO3 = 1.8 V to 3.3 V  
VLDO3TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO34IN, when VLDO3  
enabled  
ILDO3Q  
13  
μA  
Current limit, ILDO3 when VLDO3 is forced to VLDO3NOM/2  
ILDO3LIM  
122  
167  
280  
mA  
Notes  
47. Beyond VLDO34IN rating, the ESD protection can be sensitive to voltage transients.  
48. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
Table 26. Dynamic electrical characteristics – VLDO3  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V,  
ILDO3 = 10 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VLDO3 linear regulator  
PSRR, ILDO3 = 75 mA, 20 Hz to 20 kHz  
PSRRVLDO3  
35  
52  
40  
60  
dB  
• VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV  
• VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO3NOM + 1.0 V  
Output noise density, VLDO34IN = VLDO34INMIN, ILDO3 = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO3  
dBV/Hz  
PF3000  
24  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 26. Dynamic electrical characteristics – VLDO3 (continued)  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V, ILDO3 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO3 = 3.3 V,  
ILDO3 = 10 mA, and 25 °C, unless otherwise noted.  
Notes  
Symbol  
VLDO3 linear regulator (continued)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN to  
4.5 V, ILDO3 = 0.0 mA  
tONLDO3  
60  
500  
μs  
Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN  
ILDO3 = 0.0 mA  
,
tOFFLDO3  
10  
ms  
%
Start-up overshoot, VLDO34IN = VLDO34IN2MIN to 4.5 V, ILDO3 = 0.0 mA  
LDO3OSHT  
1.0  
2.0  
Table 27. Static electrical characteristics - VLDO4  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V,  
ILDO4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VLDO4 linear regulator  
Operating input voltage  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
2.8  
VLDO4NOM  
+0.250  
(49), (50)  
VLDO34IN  
• 1.8 V VLDO4NOM 2.5 V  
• 2.6 V VLDO4NOM 3.3 V  
3.6  
3.6  
V
VLDO4NOM  
ILDO4  
Nominal output voltage  
Table 63  
V
Rated output load current  
350  
mA  
Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V, 0.0 mA <  
ILDO3 < 100 mA, VLDO4 = 1.9 V to 3.3 V  
VLDO4TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO34IN, when VLDO4  
enabled  
ILDO4Q  
13  
μA  
Current limit, ILDO4 when VLDO4 is forced to VLDO4NOM/2  
ILDO4LIM  
435  
584.5  
950  
mA  
PSRR, ILDO4 = 262.5 mA, 20 Hz to 20 kHz  
PSRRVLDO4  
35  
52  
40  
60  
dB  
• VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV  
• VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO4NOM + 1.0 V  
Notes  
49. Beyond VLDO34IN rating, the ESD protection can be sensitive to voltage transients.  
50. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3000 regulator, or external system supply.  
PF3000  
NXP Semiconductors  
25  
GENERAL PRODUCT CHARACTERISTICS  
Table 28. Dynamic electrical characteristics - VLDO4  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V, ILDO4 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDO34IN = 3.6 V, VLDO4 = 3.3 V,  
ILDO4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO4 linear regulator  
Output noise density, VLDO34IN2 = VLDO34INMIN, ILDO4 = 262.5 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO4  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN  
4.5 V, ILDO4 = 0.0 mA  
,
tONLDO4  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN  
ILDO4 = 0.0 mA  
,
tOFFLDO4  
10  
ms  
%
Start-up overshoot, VLDO34IN = VLDO34INMIN, 4.5 V, ILDO4 = 0.0 mA  
LDO4OSHT  
1.0  
2.0  
Table 29. Static electrical characteristics - coin cell  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, typical external component values, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Coin cell  
VCOINACC  
ICOINACC  
Charge voltage accuracy  
Charge current accuracy  
-100  
-30  
-100  
30  
mV  
%
Coin cell charge current  
• ICOINHI (in on mode)  
• ICOINLO (in on mode)  
ICOIN  
60  
10  
μA  
Table 30. Static electrical characteristics - VREFDDR  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VREFDDR linear regulator  
(51)  
VINREFDDR  
VREFDDR  
Operating input voltage range  
1.2  
1.65  
V
V
Output voltage, 1.2 V < VINREFDDR < 1.65 V, 0.0 mA < IREFDDR  
10 mA  
<
VINREFDDR  
2
/
Output voltage tolerance, as a percentage of VINREFDDR, 1.2 V <  
VINREFDDR < 1.65 V, 0.6 mA < IREFDDR < 10 mA  
VREFDDRTOL  
49.5  
50  
50.5  
%
IREFDDR  
IREFDDRQ  
IREFDDRLM  
Rated output load current  
10  
mA  
μA  
(52)  
Quiescent current  
12  
15  
Current limit, IREFDDR when VREFDDR is forced to VINREFDDR/4  
10.5  
25  
mA  
Notes  
51. When using SW3 as input, the VINREFDDR input voltage range specification refers to the voltage set point of SW3 and not the absolute value  
52. When VREFDDR is off there is a quiescent current of a typical 2.0 μA.  
PF3000  
26  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 31. Dynamic electrical characteristics - VREFDDR  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VREFDDR linear regulator  
Turn-on time, enable to 90% of end value, VINREFDDR = 1.2 V to  
1.65 V, IREFDDR = 0.0 mA  
tONREFDDR  
100  
μs  
Turn-off time, disable to 10% of initial value, VINREFDDR = 1.2 V to  
1.65 V, IREFDDR = 0.0 mA  
tOFFREFDDR  
10  
ms  
%
Start-up overshoot, VINREFDDR = 1.2 V to 1.65 V, IREFDDR = 0.0 mA  
VREFDDROSH  
1.0  
6.0  
Table 32. Static electrical characteristics - Digital I/O  
All parameters are specified at TA = -40 °C to 105 °C, VDDIO = 1.7 V to 3.6 V, VPWR = 0 V (external FET not populated), and typical external  
component values and full load current range, unless otherwise noted.  
Pin name  
Parameter  
Load condition  
Min  
Max  
Unit  
Notes  
• VL  
• VH  
0.0  
0.8 * VSNVS  
0.2 * VSNVS  
3.6  
PWRON  
V
• VOL  
• VOH  
-2.0 mA  
Open drain  
0.0  
0.7 * VDDIO  
0.4 * VDDIO  
VDDIO  
RESETBMCU  
SCL  
V
V
• VL  
• VH  
0.0  
0.8 * VDDIO  
0.2 * VDDIO  
3.6  
• VL  
• VH  
• VOL  
• VOH  
0.0  
0.8 * VDDIO  
0.0  
0.2 * VDDIO  
3.6  
0.4 * VDDIO  
VDDIO  
SDA  
V
-2.0 mA  
Open drain  
0.7 * VDDIO  
• VOL  
• VOH  
-2.0 mA  
Open drain  
0.0  
0.7 * VDDIO  
0.4 * VDDIO  
VDDIO  
INTB  
V
V
V
V
• VL  
• VH  
0.0  
0.8 * VSNVS  
0.2 * VSNVS  
3.6  
STANDBY  
SD_VSEL  
VDDOTP  
• VL  
• VH  
0.0  
0.8 * VDDIO  
0.2 * VDDIO  
3.6  
• VL  
• VH  
0.0  
1.1  
0.3  
1.7  
PF3000  
NXP Semiconductors  
27  
GENERAL PRODUCT CHARACTERISTICS  
Table 33. Static electrical characteristics - internal supplies  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values.  
Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCOREDIG (digital core supply)  
Output voltage  
• ON mode  
• Coin cell mode and OFF mode  
(53)  
VCOREDIG  
1.5  
1.3  
V
VCORE (analog core supply)  
Output voltage  
(53)  
(53)  
VCORE  
• ON mode and charging  
2.775  
0.0  
V
• Coin cell mode and OFF mode  
VCOREREF (bandgap regulator reference)  
VCOREREF  
VCOREREFACC  
VCOREREFTACC  
Output voltage at 25 °C  
Absolute trim accuracy  
Temperature Drift  
1.2  
0.5  
V
%
%
0.25  
Notes  
53. 3.1 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF.  
Table 34. Static electrical characteristics - UVDET threshold  
All parameters are specified at TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values.  
Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VIN UVDET threshold  
• Rising  
• Falling  
2.5  
3.1  
VUVDET  
V
PF3000  
28  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6
Functional description and application information  
6.1  
Introduction  
The PF3000 is a highly integrated, low quiescent current power management IC featuring four buck regulators, one boost regulator, seven  
LDO regulators, and a DDR voltage reference. The PF3000 provides all the necessary rails to power a complete system including the  
application processor, memory and peripherals. The PF3000 operates from an input voltage of up to 5.5 V. Output voltage, startup  
sequence, and other functions are set using integrated one-time-programmable (OTP) memory, thus providing flexibility and reducing  
external component count.  
6.2  
Power generation  
The buck regulators in the PF3000 provide supply to the processor cores and to other voltage domains, such as I/O and memory. Dynamic  
voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and other circuitry. The SW1A and SW1B  
buck regulators can either be used as independent 1.0 A and 1.75 A regulators, or can be combined as a single 2.75 A regulator.  
The linear regulators in the PF3000 can be used as general purpose regulators to power peripherals and lower power processor rails. The  
VCC_SD LDO regulator supports the dual voltage requirement by high speed SD card readers. Depending on the system power path  
configuration, the LDO regulators can be directly supplied from the main input supply or from the switching regulators to power peripherals,  
such as audio, camera, Bluetooth, and Wireless LAN, etc.  
A specific VREFDDR voltage reference is included to provide accurate reference voltage for DDR memories. The VSNVS block behaves  
as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be powered from VIN, or from  
a coin cell.  
To accommodate applications that are powered by main supplies of voltages higher than 4.5 V and up to 5.5 V, the PF3000 incorporates  
a front-end LDO regulator using an external pass FET to keep the maximum regulator input voltage of the regulators at 4.5 V. Applications  
with an input voltage lower than 4.5 V can directly power the regulators without using the front-end LDO.  
PF3000 shows a summary of the voltage regulators in the PF3000.  
Table 35. PF3000 power tree  
Supply  
Output voltage (V)  
Programming Step size (mV)  
Maximum load current (mA)  
0.70 to 1.425  
1.8 to 3.3  
25  
(N/A)  
SW1A  
SW1B  
SW2  
1000  
1750  
1250  
0.70 to 1.475  
25  
1.50 to 1.85  
2.50 to 3.30  
50  
variable  
SW3  
0.90 to 1.65  
5.00 to 5.15  
1.8 to 3.3  
50  
50  
50  
50  
1500  
600  
100  
250  
SWBST  
VLDO1  
VLDO2  
0.80 to 1.55  
2.85 to 3.30  
1.80 to 1.85  
150  
50  
VCC_SD  
100  
V33  
VLDO3  
2.85 to 3.30  
1.8 to 3.3  
1.8 to 3.3  
3.0  
150  
100  
100  
NA  
350  
100  
350  
1.0  
10  
VLDO4  
VSNVS  
VREFDDR  
0.5*SW3_OUT  
NA  
PF3000  
NXP Semiconductors  
29  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
PF3000  
i.MX 7  
MCU  
SW1A  
0.700 to 3.3 V  
1.0 A  
1.1 V  
1.0 V  
VDD_ARM  
(A7 Core)  
SW1B  
0.700 to 1.475 V  
1.75 A  
VDD_SOC  
(SOC Logic)  
SW2  
1.8 V  
1.50 to 1.85 V  
or 2.25 to 3.30 V  
1.25 A  
VDDA_1P8  
(I/O)  
VIN  
4.5 V (typ.)  
1.35 V  
SW3  
0.90 to 1.65 V  
1.5 A  
NVCC_DRAM_CKE  
(DDR IO)  
VCC_SD  
1.80 to 1.85 V  
or 2.85 to 3.3 V  
100 mA  
3.3 V  
3.3 V  
VCC_SD_IO  
V33  
2.85 to 3.30 V  
350 mA  
NVCC_3P3  
(3.3 V GPIO PAD)  
SWBST  
5.0 to 5.15 V  
0.6 A  
VDDA_USBx_3P3  
(USB OTG PHY)  
VREFDDR  
0.5*VDDR  
10 mA  
0.675 V  
SW3  
VDD_LPSR  
NVCC_GPIOx  
VIN  
VSNVS  
MUX /  
COIN  
CHRG  
VSNVS_IN  
1.0 to 3.0 V  
1 mA  
Coincell  
0.7 V to 1.425 V,  
1.8 V, 3.3 V, 1.0 A  
OTG  
VLDO1  
1.8 to 3.3 V  
100 mA  
1.8 V  
1.5 V  
VIN  
VLDO2  
0.80 to 1.55 V  
250 mA  
VLDO2INMAX = 3.4 V  
DDR3L  
SW2  
VLDO3  
1.8 to 3.3 V  
100 mA  
Peripherals  
VIN  
VLDO4  
1.8 to 3.3 V  
350 mA  
3.3 V  
3.3 V  
Figure 5. PF3000 typical power map  
Figure 5 shows a simplified power map with various recommended options to supply the different block within the PF3000, as well as the  
typical application voltage domain on the i.MX 7 processors. Note that each application power tree is dependent upon the system’s voltage  
and current requirements, therefore a proper input voltage should be selected for the regulators.  
PF3000  
30  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3  
Functional description  
6.3.1 Control logic and interface signals  
2
The PF3000 is fully programmable via the I C interface. Additional communication is provided by direct logic interfacing including INTB,  
RESETBMCU, STANDBY, PWRON, and SD_VSEL. Refer to Table 30 for logic levels for these pins.  
6.3.1.1  
PWRON  
PWRON is an input signal to the IC that generates a turn-on event. A turn-on event brings the PF3000 out of OFF and sleep modes and  
into the ON mode. Refer to Modes of operation for the various modes (states) of operation of the IC. The PWRON pin can be configured  
using OTP to detect a level, or an edge using the PWRON_CFG bit.  
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and  
PWRONS respectively, is set.  
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits, PWRONI  
and PWRONS respectively, is set.  
Any regulator enabled in the sleep mode remains enabled when transitioning from Sleep to ON, i.e., the regulator is not turned off and  
then on again to match the start-up sequence.  
When PWRON_CFG = 1, the PWRON input can be a mechanical switch debounced through a programmable debouncer  
PWRONDBNC[1:0], to avoid a response to a very short key press. The interrupt is generated for both the falling and the rising edge of  
the PWRON pin. By default, a 31.25 ms interrupt debounce is applied to both falling and rising edges. The falling edge debounce timing  
can be extended with PWRONDBNC[1:0] as defined in the table below. The interrupt is cleared by software, or when cycling through the  
OFF mode.  
Table 36. PWRON hardware debounce bit settings (54)  
Bits  
State  
Turn on debounce (ms)  
Falling edge INT debounce (ms)  
Rising edge INT debounce (ms)  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
PWRONDBNC[1:0]  
750  
750  
Notes  
54. The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.  
6.3.1.2  
STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby  
mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. See Standby mode for more details.  
Note: When operating the PMIC at VIN 2.85 V a coin cell must be present to provide V  
exit the STANDBY mode.  
, or the PMIC does not reliably enter and  
SNVS  
6.3.1.3  
RESETBMCU  
RESETBMCU is an open-drain, active low output OTP configurable for two modes of operation. In its default mode, it is de-asserted 2.0  
ms after the last regulator in the start-up sequence is enabled. In this mode, the signal can be used to bring the processor out of reset  
(POR), or as an indicator that all supplies have been enabled; it is only asserted during a turn-off event. In the default mode, the  
RESETBMCU signal is internal timer based and does not monitor the regulators. When configured for its fault mode, RESETBMCU is de-  
asserted after the start-up sequence is completed only if no faults occurred during start-up. At any time, if a fault occurs and persists for  
1.8 ms, RESETBMCU is asserted LOW. The PF3000 is turned off if the fault persists for more than 100 ms. The PWRON signal can be  
used to restart the part, though if the fault persists, the sequence described above is repeated. To enter the fault mode, set bit  
OTP_PG_EN of register OTP PWRGD EN to “1” during OTP programming.  
PF3000  
NXP Semiconductors  
31  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.1.4  
INTB  
INTB is an open drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is de-  
asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
6.3.1.5  
SD_VSEL  
SD_VSEL is an input pin that sets the output voltage range of the VCC_SD regulator. When SD_VSEL = HIGH, the VCC_SD regulator  
operates in the lower output voltage range. When SD_VSEL = LOW, the VCC_SD regulator operates in the higher output voltage range.  
The SD_VSEL input buffer is powered by the VDDIO supply. When a valid VDDIO voltage is not present, the output of the SD_VSEL buffer  
defaults to a logic high thus keeping the VCC_SD regulator output in the lower voltage range.  
6.3.2 One-time-programmable memory  
One-time-programmable memory is used to store key startup parameters and regulators’ configuration information. This eliminates the  
need to set regulator voltage and sequence using external components. The following parameters are programmable in the PF3000.  
2
General: I C slave address, PWRON pin configuration, RESETBMCU configuration  
Buck regulators: Output voltage, single phase or independent mode configuration for SW1A and SW1B regulators, switching frequency,  
regulator start-up sequence and timing  
Boost regulator and LDOs: Output voltage, regulator start-up sequence and timing  
The PF3000 starts up based on the contents of the TBBOTP registers. During power up, contents of the OTP memory are loaded on to  
the TBBOTP registers. There is an optional Try-before-buy mode of operation available which bypasses loading of the OTP memory onto  
the TBBOTP registers. Instead, regulators directly start up based on the current contents of the TBBOTP registers during this mode of  
operation. This mode is useful when trying to determine a suitable OTP configuration for the system. TBB mode can also be used in lieu  
of OTP programming provided a microcontroller can initiate the TBB sequence is available in the system.  
6.3.2.1  
Register naming convention  
Register and bit names for the TBBOTP registers are prefixed with “OTP”. This is to differentiate them from “functional registers” which  
are responsible for real-time control of regulator settings. For example, “OTP_SW1A_VOLT” refers to the TBBOTP register associated  
with the voltage setting for SW1A regulator. “SW1AVOLT” refers to the functional register which is fed into the SW1A regulator block.  
During power up, contents of the OTP fuses are copied onto the “OTP_SW1A_VOLT” register which is further copied on to the  
“SW1AVOLT” register. During normal operation, writes to the “OTP_SW1A_VOLT” register has no effect on the output voltage of the SW1A  
regulator. Writes to the “SW1AVOLT” register do have an effect.  
6.3.2.2  
Regulator startup sequence programming  
Each regulator has 3-bits or 4-bits allocated to program its start-up time slot from a turn-on event; therefore, each can be placed from  
position one to seven or one to fifteen in the start-up sequence as shown in Table 37. When the sequence is code is set to 0, the regulator  
2
remains off during the startup sequence. It can be enabled using I C after the start up sequence is completed. The delay between each  
position can be programmed to be 0.5 ms or 2.0 ms as shown in Table 38. The start-up sequence terminates at the last programmed  
regulator. RESETBMCU pin is de-asserted HIGH 2.0 ms after the last utilized startup slot.  
Table 37. Start-up sequence  
OTP_SWx_SEQ[2:0]/  
OTP_V33_SEQ[2:0]/  
OTP_VLDOx_SEQ[3:0]/  
Sequence  
OTP_VCC_SD_SEQ[2:0]  
000  
001  
010  
011  
100  
101  
110  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
Off  
SEQ_CLK_SPEED * 1  
SEQ_CLK_SPEED * 2  
SEQ_CLK_SPEED * 3  
SEQ_CLK_SPEED * 4  
SEQ_CLK_SPEED * 5  
SEQ_CLK_SPEED * 6  
PF3000  
32  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 37. Start-up sequence (continued)  
OTP_SWx_SEQ[2:0]/  
OTP_V33_SEQ[2:0]/  
OTP_VLDOx_SEQ[3:0]/  
Sequence  
OTP_VCC_SD_SEQ[2:0]  
111  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
SEQ_CLK_SPEED * 7  
SEQ_CLK_SPEED * 8  
SEQ_CLK_SPEED * 9  
SEQ_CLK_SPEED * 10  
SEQ_CLK_SPEED * 11  
SEQ_CLK_SPEED * 12  
SEQ_CLK_SPEED * 13  
SEQ_CLK_SPEED * 14  
SEQ_CLK_SPEED * 15  
Table 38. Start-up sequence clock speed  
SEQ_CLK_SPEED  
Time (μs)  
0
1
500  
2000  
6.3.2.3  
PWRON pin configuration  
The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input (PWRON_CFG = 1).  
As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it into sleep mode. As  
an edge sensitive input, such as when connected to a mechanical switch, a falling edge turns on the part and if the switch is held low for  
greater than or equal to 4.0 seconds, the part turns off or enters sleep mode.  
Table 39. PWRON configuration  
PWRON_CFG  
Mode  
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or sleep mode  
0
PWRON pin pulled LOW momentarily = ON  
PWRON pin LOW for 4.0 seconds = OFF or sleep mode  
1
2
6.3.2.4  
I C address configuration  
2
2
The I C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I C address to avoid bus conflicts.  
2
Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I C address  
(I2C_SLV_ADDR[2:0]) are programmable as shown in Table 40. The I C address of the PF3000 immediately changes after write  
2
instructions to the OTP_I2C_ADDR register are complete. To continue using the default address of 0x08, set bit 7 (USE_DEFAULT_ADD)  
of the OTP_I2C_ADDR register.  
Table 40. I2C address configuration  
I2C_SLV_ADDR[3] Hard  
I2C_SLV_ADDR[2:0]  
I2C Device Address (Hex)  
Coded  
1
1
1
1
1
000  
001  
010  
011  
100  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
PF3000  
NXP Semiconductors  
33  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 40. I2C address configuration (continued)  
I2C_SLV_ADDR[3] Hard  
I2C_SLV_ADDR[2:0]  
I2C Device Address (Hex)  
Coded  
1
1
1
101  
110  
111  
0x0D  
0x0E  
0x0F  
6.3.2.5  
Buck regulator soft start ramp rate  
The start-up ramp rate ramp rate or soft start ramp rate of buck regulators can be chosen by using the SWDVS_CLK bit during OTP.  
Table 41 shows the startup ramp rate options for the buck regulators in the PF3000.  
Table 41. DVS speed selection for SWx  
SWDVS_CLK  
Function  
0
1
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
6.3.3 Start-up  
Regulators in the PF3000 start up based on the contents of the TBBOTP registers. During cold start, contents from the OTP memory are  
loaded into the TBBOTP registers when VIN > UVDET irrespective of whether the PMIC is powered using the VIN or the VPWR path.  
Contents of the TBBOTP registers are reloaded from the fuses during a turn-on event.  
The PF3000 is available in a number of pre-programmed flavors to suit a wide variety of system configurations. Refer to Table 42 for  
programming details of the different flavors. Refer to Section 6.3.2 for a detailed explanation of the OTP block.  
PF3000  
34  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
(55)  
Table 42. Start-up configuration  
Default  
Non-  
programmed  
Pre-programmed OTP configuration  
configuration  
OTP registers  
All Devices  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
2
Default I C Address  
0x08  
3.0 V  
1.15 V  
1
0x08  
1.0 V  
0.7 V  
OFF  
0x08  
3.0 V  
1.10 V  
1
0x08  
3.0 V  
1.10 V  
1
0x08  
3.0 V  
1.375 V  
2
0x08  
3.0 V  
1.375 V  
1
0x08  
3.0 V  
1.375 V  
1
0x08  
3.0 V  
3.3 V  
3
0x08  
3.0 V  
3.3 V  
3
0x08  
3.0 V  
3.3 V  
3
OTP_VSNVS_VOLT  
OTP_SW1A_VOLT  
OTP_SW1A_SEQ  
OTP_SW1B_VOT  
OTP_SW1B_SEQ  
OTP_SW2_VOLT  
OTP_SW2_SEQ  
1.15 V  
1
0.7 V  
OFF  
1.0 V  
1
1.0 V  
1
1.375 V  
2
1.375 V  
1
1.375 V  
1
1.4 V  
3
1.4 V  
3
1.4 V  
3
1.8 V  
2
1.5 V  
OFF  
1.8 V  
2
1.8 V  
2
3.3 V  
4
3.3 V  
2
3.15 V  
2
3.3 V  
3
3.3 V  
3
3.3 V  
3
OTP_SW3_VOLT  
OTP_SW3_SEQ  
1.2 V  
3
0.9 V  
OFF  
1.35 V  
5
1.2 V  
5
1.35 V  
3
1.5 V  
3
1.2 V  
4
1.2 V  
3
1.35 V  
3
1.5 V  
3
OTP_SWBST_VOLT  
OTP_SWBST_SEQ  
OTP_VLDO1_VOLT  
OTP_VLDO1_SEQ  
OTP_VLDO2_VOLT  
OTP_VLDO2_SEQ  
OTP_VLDO3_VOLT  
OTP_VLDO3_SEQ  
OTP_VLDO4_VOLT  
OTP_VLDO4_SEQ  
OTP_V33_VOLT  
5.0 V  
OFF  
1.8 V  
2
5.0 V  
OFF  
5.0 V  
OFF  
1.8 V  
4
5.0 V  
OFF  
1.8 V  
4
5.0 V  
OFF  
3.3 V  
OFF  
1.5 V  
OFF  
2.5 V  
OFF  
1.8 V  
4
5.0 V  
OFF  
1.8 V  
OFF  
1.2 V  
3
5.0 V  
6
5.0 V  
OFF  
3.3 V  
3
5.0 V  
OFF  
3.3 V  
3
5.0 V  
OFF  
3.3 V  
3
1.8 V  
OFF  
1.8 V  
3
1.2 V  
OFF  
1.8 V  
2
0.8 V  
OFF  
1.5 V  
4
1.5 V  
4
1.5 V  
OFF  
3.1 V  
2
1.5 V  
OFF  
1.8 V  
3
1.5 V  
OFF  
1.8 V  
3
1.5 V  
OFF  
1.8 V  
3
1.8 V  
OFF  
3.3 V  
3
3.3 V  
3
1.8 V  
OFF  
1.8 V  
3
1.8 V  
OFF  
3.15 V  
2
1.8 V  
OFF  
3.3 V  
3
3.3 V  
3
1.8 V  
3
1.8 V  
3
1.8 V  
3
1.8 V  
3
2.85 V  
OFF  
3.3 V  
3
3.3 V  
3
3.0 V  
1
3.3 V  
2
2.85 V  
OFF  
3.3 V  
2
3.3 V  
2
3.3 V  
2
OTP_V33_SEQ  
3.3 V/1.85 3.3 V/1.85 3.3 V/1.85 3.0 V/1.80 3.15 V/1.80 3.3 V/1.85 3.3 V/1.85 3.3 V/1.85  
OTP_VCC_SD_VOLT  
3.15 V/1.80 V  
2.85 V/1.80 V  
V
V
V
V
V
V
V
V
OTP_VCC_SD_SEQ  
3
OFF  
4
4
5
3
2
3
3
3
OTP_SEQ_CLK_SPEED  
500 µs  
500 µs  
2000 µs  
2000 µs  
500 µs  
2000 µs  
2000 µs  
2000 µs  
2000 µs  
2000 µs  
12.5 mV/  
µs  
OTP_SWDVS_CLK  
OTP_PWRON_CFG  
6.25 mV/μs  
12.5 mV/µs  
12.5 mV/µs 6.25 mV/μs 12.5 mV/µs 12.5 mV/µs 12.5 mV/µs 12.5 mV/µs 12.5 mV/µs  
Level  
sensitive  
Level  
Level  
sensitive  
Level  
sensitive  
Level  
sensitive  
Level  
sensitive  
Level  
sensitive  
Level  
sensitive  
Level sensitive  
Level sensitive  
sensitive  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A,  
SW1B  
SW1A, SW1B  
Independent  
Mode, 2.0 MHz  
SW1A, SW1B  
Independent  
Mode, 1.0 MHz  
OTP_SW1_CONFIG  
Independe Independe Independe Independe Independe Independe Independe Independe  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
nt Mode,  
2.0 MHz  
OTP_SW2_FREQ  
OTP_SW3_FREQ  
2.0 MHz  
2.0 MHz  
1.0 MHz  
1.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
RESETBM RESETBM RESETBM RESETBM RESETBM RESETBM RESETBM RESETBM  
RESETBMCU in  
Default Mode  
RESETBMCU in  
Default Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
CU in  
Default  
Mode  
OTP_PG_EN  
Notes  
55. This table specifies the default output voltage of the LDOs and SWx after start-up and/or when the LDOs and SWx are enabled.  
VREFDDR_SEQ is internally fixed to be same as SW3_SEQ. VCC_SD voltage depends on the state of the SD_VSEL pin.  
PF3000  
NXP Semiconductors  
35  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.3.1  
Start-up timing diagram  
The startup timing of the regulators is programmable through OTP and seq_clk_speed. Figure 6 shows the startup timing of the regulators  
as determined by their OTP sequence. The trimmed 32 kHz clock controls all the start up timing.  
UVDET  
td1 is time from VIN > UVDET to VSNVS  
VIN  
starting to rise. td1 is typically 5 ms  
tr1 is time VSNVS takes to go from 1  
tr1  
V to 3 V. Typically it is 650 μs.  
3 V  
td1  
1 V  
VSNVS  
td2 is user determined delay. Can be  
zero if PWRON pulled up to VSNVS  
td2  
PWRON  
td3 is delay of regulator(s) whose OTP sequence is set to 1.  
With SEQ_CLK_SPEED = 0.5 ms, td3 is typically 2 ms with a  
minimum of 1 ms and maximum of 3 ms  
With SEQ_CLK_SPEED = 2 ms, td3 is typically 4.5 ms with a  
minimum of 2.5 ms and maximum of 6.5 ms  
td3  
Regulator  
Outputs  
td4 is controlled by the OTP  
sequence setting of the  
regulator(s). Refer to Table 33.  
td4  
Regulator  
Outputs  
td5 is the time for RESETBMCU to go high from the  
regulator(s) with the last OTP sequence. It is typically  
2 ms with a minimum of 1.8 ms and maximum of 2.2 ms.  
td5  
RESETBMCU  
Figure 6. Startup timing diagram  
6.3.4 16 MHz and 32 kHz clocks  
The PF3000 incorporates two clocks: a trimmed 16 MHz RC oscillator and an untrimmed 32 kHz RC oscillator. The 32 kHz untrimmed  
clock is only used in the following conditions:  
• V < UVDET  
IN  
• All regulators are in sleep mode  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, V > UVDET  
IN  
• PWRON_CFG = 1, for power button debounce timing  
When the 16 MHz is active in the ON mode, the debounce times are referenced to the 32 kHz derived from the 16 MHz clock. The  
exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock. Switching frequency of the  
switching regulators is derived from the trimmed 16 MHz clock.  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By  
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact  
your NXP representative for detailed information on this feature.  
PF3000  
36  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.5 Optional front-end input LDO regulator  
6.3.5.1  
LDO regulator description  
This section describes the optional front-end LDO regulator provided by the PF3000 in order to facilitate the operation with supply voltages  
higher than 4.5 V and up to 5.5 V.  
For non-battery operated applications, when the input supply voltage exceeds 4.5 V, the front-end LDO can be activated by populating  
the external PMOS pass FET MP1 in Figure 7 and connecting the VPWR pin to the main supply. Under this condition, the LDO control  
block self-starts with a local bandgap reference. When the VIN pin reaches UVDET rising threshold, the reference is switched to the main  
trimmed bandgap reference to maintain the required VIN accuracy. In applications using an input supply voltage of 4.5 V or lower, the  
PMOS pass FET should not be populated, VPWR pin should be grounded externally and the VIN pin should be used instead as the main  
supply input pin. The input pins of the switching regulators should always be connected to the VIN net.  
The main components of the LDO regulator are an external power P-channel MOSFET and an internal differential error amplifier. One  
input of the amplifier monitors a fraction of the output voltage at VIN determined by the resistor ratio of R1 and R2 as shown in Figure 7.  
The second input to the differential amplifier is from a stable bandgap voltage reference. If the output voltage rises too high relative to the  
reference voltage, the gate voltage of the power FET is changed to maintain a constant output voltage.  
In order to maintain the power consumption at reasonable levels during PF3000 standby and sleep modes, the LDO circuit enters low-  
power mode of operation using an embedded pass FET while the external pass FET is kept off. When the STBY_LOWPOWER_B bit in  
register LDOGCTL is set the activation of the low-power mode during IC standby mode is disabled; however the LDO low-power mode is  
always activated during the IC sleep mode. Moreover, during IC Off mode, an even simpler internal circuit is used to further reduce the  
power consumption. Refer to Modes of operation for different modes of operation of the IC.  
VP WR  
VPWR  
LDOG  
VREF  
_
+
MP1  
VIN  
R1  
CVI N  
R2  
VP  
WR  
Figure 7. Front-end LDO block diagram  
6.3.5.2  
Undervoltage/short-circuit and overvoltage detection  
Short-circuit to GND at VIN is detected using an under voltage monitor at VIN that would sense excessive droop on the VIN line and  
consequently turn off (disable) the external PMOS pass FET. Overvoltage at VPWR is detected if VPWR exceeds the V threshold  
PWROV  
(typically 6.0 V). Upon the detection of an overvoltage event an interrupt is generated and bit 2 is set in INTSTAT3 register. The INTB pin  
is pulled low if the VPWROVM mask bit is cleared. The interrupt is filtered using a 122 μs debouncing circuit. The VPWROV interrupt is  
2
not asserted if the overvoltage event occurs during start up. The VPWROVS bit can be read using I C to detect an overvoltage condition.  
PF3000  
NXP Semiconductors  
37  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.5.3  
External components  
Table 43 lists the typical component values for the general purpose LDO regulators.  
Table 43. Input LDO external components  
Component  
Value  
Minimum output capacitor on VIN rail  
100 μF (56)  
MP1  
Fairchild FDMA908PZ, Vishay SiA447DJ, or comparable  
Notes  
56. Use X5R/X7R ceramic capacitors with a voltage rating at least two times the nominal voltage. The 100 μF capacitance is the  
total capacitance on the VIN rail including the capacitance at the various regulator inputs. For example, 2 x 22 μF capacitors can  
be used along with 10 μF capacitors at all the SWx and LDOx inputs to achieve a total of 100 μF capacitance.  
6.3.6 Internal core voltages  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. VCOREDIG is a  
1.5 V regulator that powers all the digital logic in the PF3000. VCOREDIG is regulated at 1.28 V in Off and coin cell modes. The VCORE  
supply is used to bias internal analog rails and the OTP fuses. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF.  
VCOREDIG is kept powered as long as there is a valid supply and/or valid coin cell.  
6.3.7 VREFDDR voltage reference  
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input  
voltage. It is typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.  
This divider then uses a voltage follower to drive the load.  
Figure 8. VREFDDR block diagram  
PF3000  
38  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.7.1  
VREFDDR external components  
Table 44. VREFDDR external components (57)  
Capacitor  
Capacitance (μF)  
VINREFDDR (58) to VHALF  
VHALF to GND  
0.1  
0.1  
1.0  
VREFDDR  
Notes  
57. Use X5R or X7R capacitors.  
58. VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output.  
6.3.8 Buck regulators  
The PF3000 integrates four independent buck regulators: SW1A, SW1B, SW2, and SW3. Regulators SW1A and SW1B regulators can  
be configured as a single regulator through OTP. Output of the buck regulators during start up is programmable through OTP. Each  
regulator has associated registers that control its output voltage during On, standby, and sleep modes. During start-up, contents of the  
OTP_SWx_VOLT register is copied onto the SWxVOLT[4:0], SWxSTBY[4:0] and SWxOFF[4:0]. After boot up, contents of the SWxVOLT,  
2
SWxSTBY and SWxOFF registers can be set through I C to set the output voltage during On, standby, and sleep modes respectively.  
VIN  
SWxIN  
CINSWxHF  
SWxMODE  
ISENSE  
CINSWx  
Controller  
SWx  
SWxLX  
EP  
Driver  
LSWx  
COSWx  
SWxFAULT  
I2C  
Interface  
Internal  
Compensation  
Z2  
SWxFB  
Z1  
VREF  
EA  
DAC  
Discharge  
Figure 9. Generic SWx block diagram  
Table 45. SWx regulators external components  
Components  
Description  
Values  
CINSWx  
SWx input capacitor  
4.7 μF  
0.1 μF  
CINSWxHF  
SWx decoupling input capacitor  
2 x 22 μF (10 V or higher voltage  
rated capacitors) or 3 x 22 μF  
(6.3 V rated capacitors)  
COSWx  
SWx output capacitor  
LSWx  
SWx inductor  
1.5 μH  
Use X5R or X7R capacitors with voltage rating at least two times the nominal voltage.  
PF3000  
NXP Semiconductors  
39  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.8.1  
Switching modes  
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur  
2
by any of the following means: I C programming, exiting/entering the standby mode, exiting/entering sleep mode, and load current  
variation. Available switching modes for buck regulators are presented in Table 45.  
Table 46. Switching mode description  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged using an internal resistor  
In this mode, the regulator operates in forced PFM mode. The main error amplifier is turned  
off and a hysteretic comparator is used to regulate output voltage. Use this mode for load  
currents less than 50 mA.  
PFM  
PWM  
APS  
In this mode, the regulator operates in forced PWM mode.  
In this mode, the regulator operates in pulse skipping mode at light loads and switches over  
to PWM modes for heavier load conditions. This is the default mode in which the regulators  
power up during a turn-on event.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms after the  
output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode  
selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. The operating  
mode of the regulator in On and standby modes is controlled using the SWxMODE[3:0] bits associated with each regulator. Table 46  
summarizes the buck regulator programmability for normal and standby modes.  
Table 47. Regulator mode control  
SWxMODE[3:0]  
Normal mode  
Standby mode  
0000  
0001  
Off  
Off  
Off  
PWM  
0010  
Reserved  
PFM  
Reserved  
Off  
0011  
0100  
APS  
Off  
0101  
PWM  
PWM  
0110  
PWM  
APS  
0111  
Reserved  
APS  
Reserved  
APS  
1000 (default)  
1001  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
1010  
1011  
1100  
1101  
PWM  
PFM  
1110  
Reserved  
Reserved  
Reserved  
Reserved  
1111  
Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. When in standby  
mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected by the  
SWxMODE[3:0] bits. Upon exiting standby mode, the regulator returns to its normal switching mode and its output voltage programmed  
in its voltage register.  
PF3000  
40  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Any regulators whose SWxOMODE bit is set to “1” enters sleep mode if a PWRON turn-off event occurs, and any regulator whose  
SWxOMODE bit is set to “0” is turned off. In sleep mode, the regulator outputs the voltage programmed in SWxOFF registers and operates  
in the PFM mode. The regulator exits the sleep mode when a turn-on event occurs. Any regulator whose SWxOMODE bit is set to “1”  
remains on and changes to its normal configuration settings when exiting the Sleep state to the ON state. Any regulator whose  
SWxOMODE bit is set to “0” is powered up with the same delay in the start-up sequence as when powering ON from Off. At this point, the  
regulator returns to its default ON state output voltage and switch mode settings.  
When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as programmed by SW1xOFF[4:0] for  
SW1A/B and by SW2OFF[2:0] for SW2, and SW3OFF[3:0] for SW3.  
6.3.8.2  
Dynamic voltage scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.  
2
1. Normal operation: The output voltage is selected by I C bits SW1x[4:0] for SW1A/B and SW2[2:0] for SW2, and SW3[3:0] for SW3.  
2
A voltage transition initiated by I C is governed by the DVS stepping rates shown in Table 48.  
2
2. Standby mode: The output voltage can be selected by I C bits SW1xSTBY[4:0] for SW1A/B and by bits SW2STBY[2:0] for SW2,  
and SW3STBY[3:0] for SW3. Voltage transitions initiated by a Standby event are governed by the DVS stepping rates shown in  
Table 48.  
3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state  
2
retention voltage of a given processor; it is selected by I C bits SW1xOFF[4:0] for SW1A/B and by bits SW2OFF[2:0] for SW2,  
and SW3OFF[3:0] for SW3. Voltage transitions initiated by a turn-off event are governed by the DVS stepping rates shown in  
Table 48.  
Table 48. DVS speed selection for SWx  
SWxDVSSPEED  
Function  
0
1
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are  
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the  
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in  
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
2
Figure 10 shows the general behavior for the regulators when initiated with I C programming, or standby control. During the DVS period  
the overcurrent condition on the regulator should be masked.  
Figure 10. Voltage stepping with DVS  
Note: In SW1A independent and SW1AB single phase modes, DVS to and from the 1.8 V and 3.3 V output voltage settings is not allowed.  
PF3000  
NXP Semiconductors  
41  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.8.3  
Regulator phase clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 49. By default, each regulator is initialized at 90 ° out  
of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, and SW3 is set to 180 ° by default at power up.  
Table 49. Regulator phase clock selection  
Phase of clock sent to  
SWxPHASE[1:0]  
regulator (degrees)  
00  
01  
10  
11  
0
90  
90  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 51 shows the  
selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, this allows regulators operating at different  
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and  
4.0 MHz, 180 ° are the same in terms of phasing. Table 50 shows the optimum phasing when using more than one switching frequency.  
Table 50. Optimum phasing  
Frequencies  
Optimum Phasing  
1.0 MHz  
2.0 MHz  
0°  
180°  
1.0 MHz  
4.0 MHz  
0°  
180°  
2.0 MHz  
4.0 MHz  
0°  
180°  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0°  
90°  
90°  
Table 51. Regulator frequency configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz (default)  
4.0 MHz  
Reserved  
6.3.8.4  
SW1A/B  
SW1A/B are 1 to 2.75 A buck regulators that can be configured in various phasing schemes, depending on the desired cost/performance  
trade-offs. The following configurations are available:  
• SW1A/B single phase with one inductor  
• SW1A in independent with one inductor and SW1B in independent mode with a second inductor  
The desired configuration is programmed by OTP by using OTP_SW1_CONFIG[1:0] bits in the register map, as shown below in Table 52.  
PF3000  
42  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 52. SW1 configuration  
OTP_SW1_CONFIG[1:0]  
Description  
00  
01  
10  
Unused  
A/B Single Phase  
Unused  
A Independent mode  
B Independent mode  
11  
6.3.8.5  
SW1A/B single phase  
In this configuration, the phases SW1ALX, and SW1BLX, are connected together to a single inductor, thus, providing up to 2.75 A current  
capability for high current applications. The feedback and all other controls are accomplished by use of pin SW1AFB and SW1A control  
registers, respectively. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1B registers should  
be used. The SW1BFB pin should be left floating in this configuration.  
VIN  
SW1AIN  
CINSW1AHF  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1A/B  
SW1ALX  
EP  
Driver  
LSW1A  
COSW1A  
SW1AFAULT  
Internal  
Compensation  
Z2  
SW1AFB  
Z1  
VREF  
EA  
I2C  
Interface  
DAC  
Discharge  
VIN  
SW1BIN  
CINSW1BHF  
SW1BMODE  
SW1BFAULT  
ISENSE  
CINSW1B  
Controller  
SW1BLX  
EP  
Driver  
SW1BFB  
(Floating)  
Figure 11. SW1A/B single phase diagram  
6.3.8.6  
SW1A - SW1B  
Independent mode In this configuration, SW1A is connected as an independent output with a single inductor, while SW1B is used as  
another independent output, using another inductor and configuration parameters. They can be operated with a different voltage set point  
for normal, standby, and sleep modes, as well as switching mode selection and on/off control.  
6.3.8.7  
SW1A/B setup and control registers  
SW1A and SW1AB output voltages are programmable from 0.700 V to 1.425 V in steps of 25 mV. They can additionally be programmed  
at 1.8 V or 3.3 V. SW1B output voltage is programmable from 0.700 V to 1.475 V in steps of 25 mV. The output voltage set point is  
independently programmed for normal, standby, and sleep mode by setting the SW1x[4:0], SW1xSTBY[4:0], and SW1xOFF[4:0] bits  
respectively. Table 53 shows the output voltage coding for SW1A, SW1B or SW1A/B. Values shown in Table 53 are also to be used during  
OTP programming by setting the OTP_SW1A_VOLT and OTP_SW1B_VOLT registers appropriately.  
PF3000  
NXP Semiconductors  
43  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 53. SW1A/B output voltage configuration  
SW1x[4:0]  
SW1x[4:0]  
Set point  
SW1xSTBY[4:0]  
SW1xOFF[4:0]  
SW1x output (V)  
Set point  
SW1xSTBY[4:0]  
SW1xOFF[4:0]  
SW1x output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1.450 (SW1B), 1.8  
(SW1A/SW1AB)  
14  
15  
01110  
01111  
1.050  
1.075  
30  
31  
11110  
11111  
1.475 (SW1B), 3.3  
(SW1A/SW1AB)  
Table 54 provides a list of registers used to configure and operate SW1A/B regulator(s).  
Table 54. SW1A/B register summary  
Register  
SW1AVOLT  
Address  
Output  
0x20  
0x21  
0x22  
0x23  
0x24  
0x2E  
0x2F  
0x30  
0x31  
0x32  
SW1A output voltage set point in normal operation  
SW1A output voltage set point on standby  
SW1A output voltage set point on sleep  
SW1ASTBY  
SW1AOFF  
SW1AMODE  
SW1ACONF  
SW1BVOLT  
SW1BSTBY  
SW1BOFF  
SW1A switching mode selector register  
SW1A DVS, phase, and frequency configuration  
SW1B output voltage set point in normal operation  
SW1B output voltage set point in standby  
SW1B output voltage set point in sleep  
SW1BMODE  
SW1BCONF  
SW1B switching mode selector register  
SW1B DVS, phase, and frequency configuration  
6.3.8.8  
SW2 setup and control registers  
SW2 is a single phase, 1.25 A rated buck regulator. SW2 output voltage is programmable from 1.500 V to 1.850 V in 50 mV steps if the  
OTP_SW2_HI bit is low or from 2.500 V to 3.300 V in 150 mV steps if the bit OTP_SW2_HI is set high. During normal operation, output  
2
voltage of the SW2 regulator can be changed through I C only within the range set by the OTP_SW2_HI bit. The output voltage set point  
is independently programmed for normal, standby, and sleep mode by setting the SW2[2:0], SW2STBY[2:0] and SW2OFF[2:0] bits,  
respectively. Table 55 shows the output voltage coding valid for SW2.  
PF3000  
44  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 55. SW2 output voltage configuration  
Low output voltage range  
(OTP_SW2_HI= 0)  
High output voltage range  
(OTP_SW2_HI=1)  
SW2[2:0]  
SW2[2:0]  
SW2STBY[2:0] SW2 output SW2STBY[2:0] SW2 output  
SW2OFF[2:0]  
SW2OFF[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
000  
001  
010  
011  
100  
101  
110  
111  
2.500  
2.800  
2.850  
3.000  
3.100  
3.150  
3.200  
3.300  
2
Setup and control of SW2 is done through the I C registers listed in Table 56.  
Table 56. SW2 register summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
Output voltage set point on normal operation  
Output voltage set point on Standby  
Output voltage set point on Sleep  
Switching mode selector register  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
DVS, phase, frequency, and ILIM configuration  
6.3.8.9  
SW3 setup and control registers  
SW3 output voltage is programmable from 0.90 V to 1.65 V in 50 mV steps to support different types of DDR memory as listed in Table 57.  
Table 57. SW3 output voltage configuration  
SW3[3:0]  
SW3 Output (V)  
SW3[3:0]  
SW3 Output (V)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
Table 58 provides a list of registers used to configure and operate SW3.  
PF3000  
NXP Semiconductors  
45  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 58. SW3 register summary  
Register  
SW3VOLT  
Address  
Output  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
SW3 output voltage set point on normal operation  
SW3 output voltage set point on Standby  
SW3 output voltage set point on Sleep  
SW3STBY  
SW3OFF  
SW3MODE  
SW3CONF  
SW3 switching mode selector register  
SW3 DVS, phase, frequency and ILIM configuration  
6.3.9 Boost regulator  
SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY  
in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and  
SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. A load switch is recommended on the  
output path to isolate the output for applications where this is not desired. The switching NMOS transistor is integrated on-chip. Figure 12  
shows the block diagram and component connection for the boost regulator.  
VIN  
CINBST  
SWBSTIN  
SWBSTLX  
LBST  
SWBSTMODE  
SWBSTFAULT  
VOBST  
DBST  
Driver  
I2C  
Interface  
OC  
Controller  
RSENSE  
EP  
VREFSC  
VREFUV  
SC  
UV  
SWBSTFB  
Internal  
Compensation  
COSWBST  
Z2  
Z1  
EA  
VREF  
Figure 12. Boost regulator architecture  
PF3000  
46  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.9.1  
SWBST setup and control  
Boost regulator control is done through a single register SWBSTCTL described in Table 59. SWBST is included in the power-up sequence  
if its OTP power-up timing bits, OTP_SWBST_SEQ[2:0], are not all zeros.  
Table 59. Register SWBSTCTL - ADDR 0x66  
Name  
Bit #  
R/W  
Default  
Description  
Set the output voltage for SWBST  
00 = 5.000 V  
SWBST1VOLT  
1:0  
R/W  
0b00  
01 = 5.050 V  
10 = 5.100 V  
11 = 5.150 V  
Set the switching mode on normal operation  
00 = OFF  
01 = PFM  
10 = Auto (Default) (59)  
SWBST1MODE  
Unused  
3:2  
4
R
0b10  
0b0  
11 = APS  
Unused  
Set the switching mode on standby  
00 = OFF  
01 = PFM  
10 = Auto (Default) (59)  
SWBST1STBYMODE  
6:5  
7
R/W  
0b10  
0b0  
11 = APS  
Unused  
Notes  
Unused  
59. In auto mode, the controller automatically switches between PFM and APS modes depending on the load current.  
Regulator switches in auto mode if enabled in the startup sequence.  
6.3.9.2  
SWBST external components  
Table 60. SWBST external component requirements  
Components  
Description  
Values  
10 μF  
(60)  
SWBST input capacitor  
CINBST  
(60)  
SWBST decoupling input capacitor  
0.1 μF  
CINBSTHF  
(60)  
SWBST output capacitor  
SWBST inductor  
2 x 22 μF  
2.2 μH  
COSWBST  
LSBST  
DBST  
SWBST boost diode  
1.0 A, 20 V Schottky  
Notes  
60. Use X5R or X7R capacitors.  
PF3000  
NXP Semiconductors  
47  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.10 LDO Regulators Description  
This section describes the LDO regulators provided by the PF3000. All regulators use the main bandgap as reference. When a regulator  
is disabled, the output is discharged by an internal pull-down resistor.  
VINx  
VI Nx  
VREF  
_
+
VL D OxEN  
VLDOxLPWR  
VLDOx  
VLDOx  
I2C  
Interface  
CLDOx  
VLDOx  
Discharge  
Figure 13. General LDO block diagram  
6.3.10.1 External components  
Table 61 lists the typical component values for the general purpose LDO regulators.  
Table 61. LDO External Components  
Regulator  
Output capacitor (μF)(61)  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
V33  
2.2  
4.7  
2.2  
4.7  
4.7  
2.2  
VCC_SD  
Notes  
61. Use X5R/X7R ceramic capacitors.  
6.3.10.2 Current limit protection  
All the LDO regulators in the PF3000 have current limit protection. In the event of an overload condition, the regulators transitions from a  
voltage regulator to a current regulator that regulates output current per the current limit threshold.  
Additionally, if the REGSCPEN bit in Table 124 is set, the LDO is turned off if the current limit event lasts for more than 8.0 ms. The LDO  
is disabled by resetting its VLDOxEN bit, while at the same time, an interrupt VLDOxFAULTI is generated to flag the fault to the system  
processor. The VLDOxFAULTI interrupt is maskable through the VLDOxFAULTM mask bit. By default, the REGSCPEN is not set;  
therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VLDOxFAULTI, is generated in  
an overload condition regardless of the state of the REGSCPEN bit.  
PF3000  
48  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.10.3 LDO voltage control  
Each LDO is fully controlled through its respective VLDOxCTL register. This register enables the user to set the LDO output voltage  
according toTable 62 for VLDO1 and VLDO2; and uses the voltage set point on Table 63 for VLDO3 and VLDO4. Table 64 lists the voltage  
set points for the V33 LDO and Table 65 provides the output voltage set points for the VCC_SD LDO based on SD_VSEL control signal.  
During power-up, contents of the OTP_VLDO_VOLT register is copied to the VLDOxCTL registers.  
Table 62. VLDO1, VLDO2 output voltage configuration  
VLDO1[3:0]  
VLDO1 Output (V)  
VLDO2 Output (V)  
VLDO2[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
Table 63. VLDO3, VLDO4 output voltage configuration  
VLDO3[3:0]  
VLDO3 or VLDO4 output (V)  
VLDO4[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
PF3000  
NXP Semiconductors  
49  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 64. V33 output voltage configuration  
V33[1:0]  
V33 Output (V)  
00  
01  
10  
11  
2.85  
3.00  
3.15  
3.30  
Table 65. VCC_SD output voltage configuration  
VCC_SD output (V)  
VSD_VSEL= 1  
VCC_SD output (V)  
VCC_SD[1:0]  
VSD_VSEL= 0  
1.80  
00  
01  
10  
11  
2.85  
3.00  
3.15  
3.30  
1.80  
1.80  
1.85  
Along with the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as  
2
programmed to stay “ON” or be disabled when the PMIC enters standby mode. Each regulator has associated I C bits for this. Table 66  
presents a summary of all valid combinations of the control bits on VLDOxCTL register and the expected behavior of the LDO output.  
Table 66. LDO control  
VLDOxEN/  
V33EN/  
VLDOxLPWR/  
V33LPWR/  
VLDOxSTBY/  
V33STBY/  
STANDBY (62)  
VLDOxOUT  
VCC_SDEN  
VCC_SDLPWR  
VCC_SDSTBY  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low Power  
On  
1
Off  
1
Low Power  
Notes  
62. STANDBY refers to a standby event as described earlier.  
6.3.11 VSNVS LDO/switch  
VSNVS powers the low-power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be  
disabled. When powered by both, V takes precedence when above the appropriate comparator threshold. When powered by V ,  
IN  
IN  
VSNVS is an LDO capable of supplying 3.0 V. When powered by coin cell, the VSNVS output tracks the coin cell voltage by means of a  
switch, whose maximum resistance is 100 Ω. In this case, the V voltage is simply the coin cell voltage minus the voltage drop across  
SNVS  
the switch, which is 100 mV at a rated maximum load current of 1000 μA.  
When the coin cell is applied for the very first time, VSNVS outputs 1.0 V. Only when V is applied thereafter does V  
transition to its  
SNVS  
IN  
default value. Upon subsequent removal of V , with the coin cell attached, V  
changes configuration from an LDO to a switch,  
IN  
SNVS  
provided certain conditions are met as described in Table 67.  
PF3000  
50  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
PF3000  
VIN  
VTLI  
4.5 V  
LDO /SWITCH  
Input  
Se nse /  
Selector  
LICELL  
Charger  
VREF  
_
+
VSNVS  
Z
Coin Cell  
1.8 - 3.3 V  
I2C Interface  
Figure 14. VSNVS supply switch architecture  
Table 67 provides a summary of the V  
operation at different input voltage V and with or without coin cell connected to the system.  
SNVS  
IN  
Table 67. SNVS modes of operation  
VSNVSVOLT[2:0]  
VIN  
MODE  
110  
110  
> VTH1  
< VTL1  
VIN LDO 3.0 V  
Coin cell switch  
6.3.11.1 VSNVS control  
The V  
output level is configured through the VSNVSVOLT[2:0] bits on VSNVSCTL register as shown in table Table 68.  
SNVS  
Table 68. Register VSNVSCTL - ADDR 0x6B  
Name  
Bit #  
R/W Default  
Description  
Configures VSNVS output voltage.(63)  
000 = RSVD  
001 = RSVD  
010 = RSVD  
VSNVSVOLT  
Unused  
2:0  
7:3  
R/W  
0b000  
011 = RSVD  
100 = RSVD  
101 = RSVD  
110 = 3.0 V (default)  
111 = RSVD  
0b00000 Unused  
Notes  
63. Only valid when a valid input voltage is present.  
6.3.11.2 VSNVS external components  
Table 69. VSNVS external components  
Capacitor  
Value (μF)  
VSNVS  
0.47  
PF3000  
NXP Semiconductors  
51  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.11.3 Coin cell battery backup  
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the V  
IN  
threshold (VTL1), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The supply  
for internal logic and the VSNVS rail switches over to the LICELL pin when V goes below VTL1, even in the absence of a voltage at the  
IN  
LICELL pin, resulting in clearing of memory and turning off VSNVS. Applications concerned about this behavior can tie the LICELL pin to  
any system voltage between 1.8 V and 3.0 V. A 0.47 μF capacitor should be placed from LICELL to ground under all circumstances.  
6.3.11.4 Coin cell charger control  
The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for  
rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable  
through the VCOIN[2:0] bits on register COINCTL on Table 70. The coin cell charger voltage is programmable. In the ON state, the charger  
current is fixed at ICOINHI. In sleep and standby modes, the charger current is reduced to a typical 10 μA. In the OFF state, coin cell  
charging is not available as the main battery could be depleted unnecessarily. The coin cell charging is stopped when V is below UVDET.  
IN  
Table 70. Coin cell charger voltage  
VCOIN[2:0]  
VCOIN (V) (64)  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Notes  
64. Coin cell voltages selected based on the type of LICELL used on the system.  
Table 71. Register COINCTL - ADDR 0x1A  
Name  
Bit #  
R/W Default  
Description  
Coin cell charger output voltage selection.  
See Table 70 for all options selectable through these bits.  
VCOIN  
2:0  
R/W  
0x00  
COINCHEN  
Unused  
3
R/W  
0x00  
0x00  
Enable or disable the coin cell charger  
Unused  
7:4  
6.3.11.5 External components  
Table 72. Coin cell charger external components  
Component  
Value  
Units  
LICELL bypass capacitor  
100  
nF  
PF3000  
52  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.4  
Power dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the  
thermal management and to avoid overheating, the PF3000 provides thermal protection. An internal comparator monitors the die  
temperature. Interrupts THERM110, THERM120, THERM125, and THERM130 is generated when the respective thresholds specified in  
Table 73 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register  
INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry shuts down the PF3000. This thermal protection acts above the  
thermal protection threshold listed in Table 73. To avoid any unwanted power downs resulting from internal noise, the protection is  
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured  
such that this protection is not tripped under normal conditions.  
Table 73. Thermal protection thresholds  
Parameter  
Min.  
Typ.  
Max.  
Units  
Thermal 110 °C threshold (THERM110)  
Thermal 120 °C threshold (THERM120)  
Thermal 125 °C threshold (THERM125)  
Thermal 130 °C threshold (THERM130)  
Thermal warning hysteresis  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal protection threshold  
130  
140  
150  
PF3000  
NXP Semiconductors  
53  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5  
Modes of operation  
6.5.1 State diagram  
The operation of the PF3000 can be reduced to five states, or modes: ON, OFF, Sleep, Standby, and Coin Cell. Figure 15 shows the state  
diagram of the PF3000, along with the conditions to enter and exit from each state.  
Coin Cell  
VIN < UVDET  
VIN < UVDET  
VIN > UVDET  
PWRON=0 held >= 4sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
Thermal shudown  
Sleep/LPSR  
OFF  
VIN < UVDET  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG =0)  
Or  
PWRON= 0 < 4sec  
& VIN > UVDET  
(PWRON_CFG=1)  
(LPSR if  
VLDO1OMODE &  
VLDO3OMODE =1)  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
VIN < UVDET  
PWRON = 0  
PWRON=0 held >= 4sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
PWRON = 0 held >=4 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG =0)  
Or  
PWRON= 0 < 4sec  
& VIN > UVDET  
(PWRON_CFG=1)  
ON  
Thermal shudown  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
STANDBY asserted  
STANDBY de-asserted  
PWRON = 0 held >=4 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
Thermal shudown  
Standby  
(Suspend)  
* VIN should be above UVDET to allow a power up and VIN must have crossed above the UVDET rising threshold without decaying below the  
UVDET falling threshold.  
Figure 15. State diagram  
To complement the state diagram in Figure 15, a description of the states is provided in following sections. Note that V must exceed the  
IN  
2
rising UVDET threshold to allow a power up. Refer to Table 32 for the UVDET thresholds. Additionally, I C control is not possible in the  
coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and ON states.  
6.5.1.1  
ON mode  
The PF3000 enters the On mode after a turn-on event. RESETBMCU is de-asserted, and pulled high via an external pull-up resistor, in  
this mode of operation. To enter the On mode, V voltage must surpass the rising UVDET threshold and PWRON must be asserted. From  
IN  
the On mode, when the voltage at V drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin  
IN  
cell mode.  
PF3000  
54  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5.1.2  
OFF mode  
The PF3000 enters the Off mode after a turn-off event. Only VCOREDIG and VSNVS are powered in the mode of operation. To exit the  
Off mode, a valid turn-on event is required. RESETBMCU is asserted, LOW, in this mode. Turn off events can be achieved using the  
PWRON pin, thermal protection, as described below.  
6.5.1.3  
PWRON pin  
The PWRON pin is used to power off the PF3000. The PWRON pin can be configured with OTP to power off the PMIC under the following  
two conditions:  
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.  
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
6.5.1.4  
Thermal protection  
If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event  
does not power on the PMIC while it is in thermal protection. The part remains in Off mode until the die temperature decreases below a  
given threshold. See Power dissipation section for more detailed information.  
6.5.1.5  
Standby mode  
• Depending on STANDBY pin configuration, Standby is entered when the STANDBY pin is asserted. This is typically used for low-power  
mode of operation.  
• When STANDBY is de-asserted, standby mode is exited.  
A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control  
of going in and out of such deep sleep modes (DSM). When a product is in DSM, it may be able to reduce the overall platform current by  
lowering the regulator output voltage, changing the operating mode of the regulators or disabling some regulators. The configuration of  
2
the regulators in standby is pre-programmed through the I C interface. Note that the STANDBY pin is programmable for Active High or  
Active Low polarity, and that decoding of a standby event takes into account the programmed input polarity as shown in Table 74. When  
the PF3000 is powered up first, regulator settings for the standby mode are mirrored from the regulator settings for the ON mode. To  
change the STANDBY pin polarity to Active Low, set the STANDBYINV bit via software first, and then change the regulator settings for  
standby mode as required. For simplicity, STANDBY is generally be referred to as active high throughout this document.  
Table 74. Standby pin and polarity control  
STANDBY (Pin) (66)  
STANDBYINV (I2C bit) (67)  
STANDBY Control (65)  
0
0
1
1
0
1
0
1
0
1
1
0
Notes  
65. STANDBY = 0: System is not in standby, STANDBY = 1: system is in standby  
66. The state of the STANDBY pin only has influence in On mode.  
67. Bit 6 in Power Control register (ADDR - 0x1B)  
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond  
to the pin level changes. A programmable delay is provided to hold off the system response to a standby event. This allows the processor  
and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into  
standby mode.  
When enabled (STBYDLY = 01, 10, or 11) per Table 75, STBYDLY delays the standby initiated response for the entire IC, until the  
STBYDLY counter expires. An allowance should be made for three additional 32 kHz cycles required to synchronize the standby event.  
PF3000  
NXP Semiconductors  
55  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 75. STANDBY delay - initiated response  
STBYDLY[1:0] (68)  
Function  
00  
01  
10  
11  
No delay  
One 32 kHz period (default)  
Two 32 kHz periods  
Three 32 kHz periods  
Notes  
68. Bits [5:4] in Power Control register (ADDR - 0x1B)  
6.5.1.6  
Sleep/LPSR mode  
• Depending on PWRON pin configuration, sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.  
• To exit sleep mode, assert the PWRON pin.  
In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[3:0] for SW1A/B and by SWxOFF[2:0] for SW2 and SW3.  
The activated regulators maintains settings for this mode and voltage until the next turn-on event. Table 76 shows the control bits in sleep  
mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event. If LPSR is activated by requesting  
VDD_LPSR and VCC_GPIO to stay ON, LDO1 and LDO3 enables in low-power mode.  
Table 76. Regulator mode control  
SWxOMODE  
Off operational mode (sleep) (69)  
0
1
Off  
PFM  
Notes  
69. For sleep mode, activated switching regulators, should use the Off mode  
set point as programmed by SW1xOFF[4:0] for SW1A/B and  
SW2OFF[2:0] for SW2, and SW3OFF[3:0] for SW3.  
6.5.1.7  
Coin cell mode  
In the Coin Cell state, the coin cell is the only valid power source to the PMIC. No turn-on event is accepted in the Coin Cell state. Transition  
to the OFF state requires that V surpasses UVDET threshold. RESETBMCU is held low in this mode. If the coin cell is depleted, a  
IN  
2
complete system reset occurs. At the next application of power and the detection of a turn-on event, the system re-initializes with all I C  
bits including, those that reset on COINPORB are restored to their default states.  
PF3000  
56  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5.2 State machine flow summary  
Table 77 provides a summary matrix of the PF3000 flow diagram to show the conditions needed to transition from one state to another.  
Table 77. State machine flow summary  
Next state  
STATE  
OFF  
Coin cell  
VIN < UVDET  
X
Sleep  
Standby  
ON  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
OFF  
X
X
X
X
PWRON_CFG = 1  
PWRON = 0 < 4.0 s  
& VIN > UNDET  
Coin cell  
VIN > UVDET  
X
X
X
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
LPSR (LDO1 & LDO3 or  
V33 Enabled) if  
VLDO1OMODE =1  
& VLDO3OMODE=1 or  
V33OMODE=1  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
Sleep/  
LPSR  
V
IN < UVDET  
X
PWRON_CFG = 1  
PWRON = 0 < 4.0 s &  
VIN > UNDET  
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
Standby  
VIN < UVDET  
X
Standby de-asserted  
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
ON  
V
IN < UVDET  
Standby asserted  
X
PF3000  
NXP Semiconductors  
57  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5.3 Performance characteristics curves  
(V = 3.6 V, SW1A  
= 1.0 V; SW1B  
= 1.0 V, SW2  
= 1.8 V, SW3  
= 1 V, SWBST  
= 5.0 V Switching frequency = 2.0 MHz,  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
Mode = APS; LDO1  
otherwise noted)  
= 1.8 V, LDO2  
= 1.0 V, LDO3  
= 1.8 V, LDO4  
= 1.8 V, V33  
= 3.3 V, VCC_SD  
= 3.3 V, unless  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Figure 18. Load transient response - LDO2  
Figure 16. Typical startup waveforms  
Figure 19. Load transient response - LDO4 and V33  
Figure 17. Load transient response - LDO1, LDO3 and  
VCC_SD  
PF3000  
58  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Figure 21. Load transient response - SWBST  
Figure 22. Switching frequency vs. temperature  
Figure 20. Load transient response - buck regulators  
Figure 23. Quiescent current - buck regulators in APS mode  
PF3000  
NXP Semiconductors  
59  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
31  
29  
SW1A, SW1B  
27  
25  
23  
SW2, Vout = 3.3 V  
21  
SW3  
19  
SW2, Vout = 1.5 V  
17  
15  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (ŀ)  
Figure 24. Quiescent current - buck regulators in PFM mode  
Figure 27. Load regulation - LDOs  
Figure 25. Quiescent current - LDOs  
Figure 28. SW1A efficiency - APS and PWM modes  
Figure 26. Load regulation - buck regulators  
Figure 29. SW1A efficiency - PFM mode  
PF3000  
60  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Figure 32. Dropout voltage - VLDO4, V33 - VOUT = 3.3 V  
Figure 30. Dropout voltage - VLDO1, VLDO3, VCC_SD -  
OUT = 3.3 V  
V
Figure 33. Dropout voltage - VLDO4 - VOUT = 1.8 V  
Figure 31. Dropout voltage - VLDO1, VLDO3,  
VCC_SD - VOUT = 1.8 V  
2
6.6  
Control Interface I C block description  
2
2
The PF3000 contains an I C interface port which allows access by a processor, or any I C master, to the register set. Via these registers  
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL  
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be  
2
accomplished by reducing the drive strength of the I C master via software. It is recommended to use a drive strength of 80 Ω or higher  
to increase the edge times. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example,  
use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 kΩ.  
6.6.1 I2C device ID  
2
2
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I C address is set to 0x08.  
PF3000  
NXP Semiconductors  
61  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.2 I2C operation  
2
The I C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation  
(exceptions to the standard are noted to be 7-bit only addressing and no support for general call addressing.)  
The I²C interface is configured as “Slave”.  
2
Timing diagrams, electrical specifications, and further details can be found in the I C specification, which is available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
2
I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte  
is sent out unless a STOP command or NACK is received prior to completion.  
2
PF3000 only supports single-byte I C transactions for read and write. The host initiates and terminates all communication. The host sends  
a master command packet after driving the start condition. The device responds to the host if the master command packet contains the  
corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from the  
host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.  
PF3000 uses the “repeated start” operation for reads as shown in Figure 35  
.
Figure 34. Data transfer on the I2C bus  
Figure 35. Read operation  
PF3000  
62  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.3 Interrupt handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving  
the INTB pin low. Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt remains set until cleared.  
Each interrupt can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this causes the INTB pin to go high. If  
there are multiple interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the  
processor clears an existing interrupt bit, the INTB pin remains low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB  
pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling  
for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any  
interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the  
INTB pin goes low after unmasking.  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are  
read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable  
throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT  
summary Table 78. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.6.4 Interrupt bit summary  
Table 78 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to  
the related chapters.  
Table 78. Interrupt, mask, and sense bits  
Interrupt  
LOWVINI  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce time (ms)  
Low input voltage detect  
Sense is 1 if below 2.70 V threshold  
H to L  
3.9 (70)  
Power on button event  
H to L  
L to H  
31.25 (70)  
31.25  
PWRONI  
PWRONM  
PWRONS  
Sense is 1 if PWRON is high.  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM110M  
THERM110S  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
THERM120  
THERM120M  
THERM120S  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
THERM125  
THERM125M  
THERM125S  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
THERM130  
THERM130M  
THERM130S  
Dual  
Regulator 1A overcurrent limit  
Sense is 1 if above current limit  
SW1AFAULTI  
SW1BFAULTI  
SW2FAULTI  
SW3FAULTI  
SWBSTFAULTI  
VLDO1FAULTI  
VLDO2FAULTI  
VCC_SDFAULTI  
SW1AFAULTM  
SW1BFAULTM  
SW2FAULTM  
SW3FAULTM  
SWBSTFAULTM  
VLDO1FAULTM  
VLDO2FAULTM  
VCC_SDFAULTM  
SW1AFAULTS  
SW1BFAULTS  
SW2FAULTS  
SW3FAULTS  
SWBSTFAULTS  
VLDO1FAULTS  
VLDO2FAULTS  
VCC_SDFAULTS  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Regulator 1C overcurrent limit  
Sense is 1 if above current limit  
Regulator 2 overcurrent limit  
Sense is 1 if above current limit  
Regulator 3 overcurrent limit  
Sense is 1 if above current limit  
SWBST overcurrent limit  
Sense is 1 if above current limit  
VLDO1 overcurrent limit  
Sense is 1 if above current limit  
VLDO2 overcurrent limit  
Sense is 1 if above current limit  
VCC_SD overcurrent limit  
Sense is 1 if above current limit  
PF3000  
NXP Semiconductors  
63  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 78. Interrupt, mask, and sense bits (continued)  
Interrupt  
V33FAULTI  
Mask  
Sense  
Purpose  
V33 overcurrent limit  
Trigger  
Debounce time (ms)  
V33FAULTM  
V33FAULTS  
L to H  
8.0  
Sense is 1 if above current limit  
VLDO3 overcurrent limit  
Sense is 1 if above current limit  
VLDO3FAULTI  
VLDO4FAULTI  
OTP_ECCI  
VLDO3FAULTM  
VLDO4FAULTM  
OTP_ECCM  
VLDO1FAULTS  
VLDO4FAULTS  
OTP_ECCS  
L to H  
L to H  
L to H  
8.0  
8.0  
-
VLDO4 overcurrent limit  
Sense is 1 if above current limit  
1 or 2 bit error detected in OTP registers  
Sense is 1 if error detected  
Interrupt to indicate completion of fuse  
auto blow  
OTP_AUTO_BLOW OTP_AUTO_BLOWM OTP_AUTO_BLOWS  
L to H  
L to H  
-
VPWROVI  
Notes  
VPWROVM  
VPWROVS  
VPWR pin overvoltage interrupt  
0.122  
70. Debounce timing for the falling edge can be extended with PWRONDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Table 79 to Table 90.  
Table 79. Register INTSTAT0 - ADDR 0x05  
Name  
PWRONI  
Bit #  
R/W  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
Default  
Description  
Power on interrupt bit  
0
1
0
LOWVINI  
0
Low-voltage interrupt bit  
110 °C Thermal interrupt bit  
120 °C Thermal interrupt bit  
125 °C Thermal interrupt bit  
130 °C Thermal interrupt bit  
Unused  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
Unused  
2
0
0
3
4
0
5
0
7:6  
0b00  
Table 80. Register INTMASK0 - ADDR 0x06  
Name  
PWRONM  
Bit #  
R/W  
Default  
Description  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
Power on interrupt mask bit  
Low-voltage interrupt mask bit  
110 °C thermal interrupt mask bit  
120 °C thermal interrupt mask bit  
125 °C thermal interrupt mask bit  
130 °C thermal interrupt mask bit  
Unused  
LOWVINM  
1
THERM110M  
THERM120M  
THERM125M  
THERM130M  
Unused  
2
1
1
3
4
1
5
1
7:6  
0b00  
PF3000  
64  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 81. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Power on sense bit  
PWRONS  
0
R
0
0 = PWRON low  
1 = PWRON high  
Low-voltage sense bit  
0 = VIN > 2.7 V  
1 = VIN 2.7 V  
LOWVINS  
1
2
3
4
R
R
R
R
0
0
0
0
110 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
120 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
125 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
130 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM130S  
ICTESTS  
5
6
7
R
R
R
0
0
0
0 = ICTEST pin is grounded  
1 = ICTEST to VCOREDIG or greater  
Additional VDDOTP voltage sense pin  
0 = VDDOTP grounded  
VDDOTPS  
1 = VDDOTP to VCOREDIG or greater  
Table 82. Register INTSTAT1 - ADDR 0x08  
Name  
SW1AFAULTI  
SW1BFAULTI  
Unused  
Bit #  
R/W  
Default  
Description  
SW1A overcurrent interrupt bit  
SW1B overcurrent interrupt bit  
Unused  
0
1
2
3
4
5
6
7
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
0
0
SW2FAULTI  
SW3FAULTI  
Unused  
SW2 Overcurrent interrupt bit  
SW3 Overcurrent interrupt bit  
Unused  
Unused  
Unused  
Unused  
Unused  
Table 83. Register INTMASK1 - ADDR 0x09  
Name  
SW1AFAULTM  
SW1BFAULTM  
Unused  
Bit #  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
SW1A overcurrent interrupt mask bit  
SW1B overcurrent interrupt mask bit  
Unused  
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
0
SW2FAULTM  
SW3FAULTM  
Unused  
SW2 overcurrent interrupt mask bit  
SW3 overcurrent interrupt mask bit  
Unused  
Unused  
Unused  
Unused  
Unused  
PF3000  
NXP Semiconductors  
65  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 84. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1A overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
SW1AFAULTS  
Unused  
0
1
2
R
R
R
0
0
0
Unused  
SW1B overcurrent sense bit  
0 = Normal operation  
SW1BFAULTS  
1 = Above current limit  
SW2 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
SW2FAULTS  
SW3FAULTS  
3
4
R
R
0
0
SW3 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
Unused  
Unused  
Unused  
5
6
7
R
R
0
0
0
Unused  
Unused  
Unused  
Table 85. Register INTSTAT3 - ADDR 0x0E  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTI  
Unused  
0
1
R/W1C  
0
SWBST overcurrent limit interrupt bit  
Unused  
0b0  
High when overvoltage event is detected in the  
front-end LDO circuit. This bit defaults to 0b1  
when VPWR is grounded and the VIN path is  
used to power the PF3000.  
VPWROVI  
2
R/W1C  
0b0  
Unused  
5:3  
6
0b0  
0b0  
0
Unused  
OTP AUTO BLOW  
OTP_ECCI  
R/W1C  
R/W1C  
High after auto fuse blow sequence is completed  
OTP error interrupt bit  
7
Table 86. Register INTMASK3 - ADDR 0x0F  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTM  
Unused  
0
1
R/W  
1
SWBST overcurrent limit interrupt mask bit  
0
1
Unused  
VPWROVM  
Unused  
2
R/W  
VPWR overvoltage interrupt mask bit  
Unused  
5:3  
0b000  
OTP_AUTO_BLOW_  
DONE_M  
6
7
R/W  
R/W  
1
1
OTP auto blow mask bit  
OTP_ECCM  
OTP error interrupt mask bit  
PF3000  
66  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 87. Register INTSENSE3 - ADDR 0x10  
Name  
Bit #  
R/W  
Default  
Description  
SWBST overcurrent limit sense bit  
0 = Normal operation  
SWBSTFAULTS  
0
R
0
1 = Above current limit  
Unused  
1
2
R
0b0  
0
Unused  
VPWROVS  
Unused  
VPWR overvoltage interrupt sense bit  
Unused  
5:3  
0b000  
OTP auto blow sense bit. This bit is high while  
the auto blow sequence is running. Do not read/  
write the OTP TBB registers while this bit is 1.  
OTP_AUTO_BLOW_  
DONE_S  
6
7
R
R
0
0
OTP error sense bit  
0 = No error detected  
1 = OTP error detected  
OTP_ECCS  
Table 88. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
VLDO1FAULTI  
VLDO2FAULTI  
VCC_SDFAULTI  
V33FAULTI  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
VLDO1 overcurrent interrupt bit  
VLDO2 overcurrent interrupt bit  
VCC_SD overcurrent interrupt bit  
V33 overcurrent interrupt bit  
VLDO3 overcurrent interrupt bit  
VLDO4 overcurrent interrupt bit  
Unused  
0
2
0
0
3
VLDO3FAULTI  
VLDO4FAULTI  
Unused  
4
0
5
0
7:6  
0b00  
Table 89. Register INTMASK4 - ADDR 0x12  
Name  
VLDO1FAULTM  
VLDO2FAULTM  
VCC_SDFAULTM  
V33FAULTM  
Bit #  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
VLDO1 overcurrent interrupt mask bit  
VLDO2 overcurrent interrupt mask bit  
VCC_SD overcurrent interrupt mask bit  
V33 overcurrent interrupt mask bit  
VLDO3 overcurrent interrupt mask bit  
VLDO4 overcurrent interrupt mask bit  
Unused  
0
1
1
1
2
1
1
3
VLDO3FAULTM  
VLDO4FAULTM  
Unused  
4
1
5
1
7:6  
0b00  
Table 90. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
VLDO1 overcurrent sense bit  
0 = Normal operation  
VLDO1FAULTS  
0
R
0
1 = Above current limit  
VLDO2 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VLDO2FAULTS  
1
2
R
R
0
0
VCC_SD overcurrent sense bit  
0 = Normal operation  
VCC_SDFAULTS  
1 = Above current limit  
PF3000  
NXP Semiconductors  
67  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 90. Register INTSENSE4 - ADDR 0x13 (continued)  
Name  
Bit #  
R/W  
Default  
Description  
V33 overcurrent sense bit  
V33FAULTS  
3
R
0
0 = Normal operation  
1 = Above current limit  
VLDO3 overcurrent sense bit  
0 = Normal operation  
VLDO3FAULTS  
4
R
0
1 = Above current limit  
VLDO4 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VLDO4FAULTS  
Unused  
5
R
0
7:6  
0b00  
Unused  
6.6.5 Specific registers  
6.6.5.1  
IC and version identification  
The IC and other version details can be read via identification bits. These are hard-wired on the chip and described in Table 91 to Table 93.  
Table 91. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
FAMILY  
Bit #  
R/W  
Default  
Description  
3:0  
7:4  
R
R
0x0  
0x3  
0000 = PF3000  
0011 = PF3000  
Table 92. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
0x0  
Pass 0.15 = 1111  
Represents the full mask revision  
Pass 1.0 = 0001  
FULL_LAYER_REV  
7:4  
R
0x1  
Pass 15.0 = 1111  
Table 93. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
R
0b00  
0b00  
FAB  
3:2  
7:4  
R
R
Represents the wafer manufacturing facility  
Unused  
0b0000 Unused  
PF3000  
68  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.2  
Embedded memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0],  
MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The  
contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell  
backup.  
Table 94. Register MEMA ADDR 0x1C  
Name  
Bit #  
R/W  
Default  
Description  
Description  
Description  
Description  
MEMA  
7:0  
R/W  
0x00  
Memory bank A  
Memory bank B  
Memory bank C  
Memory bank D  
Table 95. Register MEMB ADDR 0x1D  
Name  
Bit #  
R/W  
Default  
MEMB  
7:0  
R/W  
0x00  
Table 96. Register MEMC ADDR 0x1E  
Name  
Bit #  
R/W  
Default  
MEMC  
7:0  
R/W  
0x00  
Table 97. Register MEMD ADDR 0x1F  
Name  
Bit #  
R/W  
Default  
MEMD  
7:0  
R/W  
0x00  
6.6.5.3  
Register descriptions  
This section describes all the PF3000 registers and their individual bits. Address order is as listed in Register map.  
6.6.5.3.1  
Interrupt status register 0 (INTSTAT0)  
INSTAT0 is one of the four status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag.  
Table 98. Status interrupt register 0 (INTSTAT0)  
Address: 0x05 functional page  
5
Access: User read/write (71)  
1
7
6
4
3
2
0
R
W
THERM130I  
0
THERM125I  
0
THERM120I  
0
THERM110I  
0
LOWVINI  
0
PWRONI  
0
Default  
0
0
= Unimplemented or Reserved  
Notes  
71. Read: Anytime  
Write: Anytime  
PF3000  
NXP Semiconductors  
69  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 99. INTSTAT0 field descriptions  
Field  
Description  
130 °C Thermal interrupt bit — THERM130I is set to 1 when the THERM130 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
5
0
1
Die temperature has not crossed THERM130 threshold.  
Die temperature has crossed THERM130 threshold.  
THERM130I  
125 °C Thermal interrupt bit — THERM125I is set to 1 when the THERM125 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
Die temperature has not crossed THERM125 threshold.  
Die temperature has crossed THERM125 threshold.  
THERM125I  
120 °C Thermal interrupt bit — THERM120I is set to 1 when the THERM120 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
Die temperature has not crossed THERM120 threshold.  
Die temperature has crossed THERM120 threshold.  
THERM120I  
110 °C Thermal interrupt bit — THERM110I is set to 1 when the THERM110 threshold specified in  
2
is crossed in either direction (bi-directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
THERM110I  
0
1
Die temperature has not crossed THERM110 threshold.  
Die temperature has crossed THERM110 threshold.  
Low-voltage interrupt bit — LOWVINI is set to 1 when a low-voltage event occurs on VIN. This flag can only be cleared by writing a  
1. Writing a 0 has no effect.  
1
0
1
VIN > 2.7 V (typical)  
VIN < 2.7 V (typical)  
LOWVINI  
Power on interrupt bit —PWRONI is set to 1 when the turn on event occurs. This flag can only be cleared by writing a 1. Writing a 0  
has no effect.  
0
0
1
Power on has not occurred.  
Power on has occurred.  
PWRONI  
6.6.5.3.2  
Interrupt status mask register 0 (INTMASK0)  
INTMASK0 is the mask register for the status interrupt register INTSTAT0. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 100. Interrupt status mask register 0 (INTMASK0)  
Address: 0x06 functional page  
Access: User read/write (72)  
1
7
6
5
4
3
2
0
R
W
THERM130M  
1
THERM125M  
1
THERM120M  
1
THERM110M  
1
LOWVINM  
1
PWRONM  
1
Default  
0
0
= Unimplemented or Reserved  
Notes  
72. Read: Anytime  
Write: Anytime  
PF3000  
70  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 101. INTMASK0 field descriptions  
Field  
Description  
130 °C Thermal interrupt mask bit  
5
0
1
THERM130I Unmasked  
THERM130I Masked  
THERM130M  
125 °C Thermal interrupt mask bit  
4
0
1
THERM125I Unmasked  
THERM125I Masked  
THERM125M  
120 °C Thermal interrupt mask bit  
3
0
1
THERM120I Unmasked  
THERM120I Masked  
THERM120M  
110 °C Thermal interrupt mask bit  
2
0
1
THERM110I Unmasked  
THERM110I Masked  
THERM110M  
Low-voltage interrupt mask bit  
1
0
1
LOWVINI Unmasked  
LOWVINI Masked  
LOWVINM  
Power on interrupt mask bit  
0
0
1
PWRONI Unmasked  
PWRONI Masked  
PWRONM  
6.6.5.3.3  
Interrupt sense register 0 (INTSENSE0)  
This register has seven read-only sense bits. These sense bits reflects the actual state of the corresponding function.  
Table 102. Interrupt sense register 0 (INTSENSE0)  
Address: 0x07 functional page  
Access: User read-only (73)  
7
6
5
4
3
2
1
0
R
W
VDDOTPS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
PWRONS  
Default  
X (77)  
0
X (76)  
X (76)  
X (76)  
X (76)  
X (75)  
X (74)  
= Unimplemented or Reserved  
Notes  
73. Read: Anytime  
74. Default value depends on the initial PWRON pin state.  
75. Default value depends on the initial VIN voltage.  
76. Default value depends on the initial temperature of the die.  
77. Default value depends on the initial VDDOTP pin state.  
Table 103. INTSENSE0 field descriptions  
Field  
Description  
VDDOTP voltage sense bit  
7
0
1
VDDOTP grounded.  
VDDOTP to VCOREDIG or greater.  
VDDOTPS  
130 °C thermal interrupt sense bit  
5
0
1
Die temperature below THERM130 threshold.  
Die temperature above THERM130 threshold.  
THERM130S  
125 °C thermal interrupt sense bit  
4
0
1
Die temperature below THERM125 threshold.  
Die temperature has crossed THERM125 threshold.  
THERM125S  
PF3000  
NXP Semiconductors  
71  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 103. INTSENSE0 field descriptions (continued)  
Field  
Description  
120 °C thermal interrupt sense bit  
3
0
1
Die temperature below THERM120 threshold.  
Die temperature has crossed THERM120 threshold.  
THERM120S  
110 °C thermal interrupt sense bit  
2
0
1
Die temperature below THERM110 threshold.  
Die temperature has crossed THERM110 threshold.  
THERM110S  
Low-voltage interrupt sense bit  
1
0
1
VIN > 2.7 V (typical)  
VIN < 2.7 V (typical)  
LOWVINS  
Power on interrupt sense bit  
0
0
1
PWRON low.  
PWRON high.  
PWRONS  
6.6.5.3.4  
Interrupt status register 1 (INTSTAT1)  
INSTAT1 is one of the four status interrupt registers. This register contains four status flags. Write a logic 1 to clear a flag.  
Table 104. Status interrupt register 1 (INTSTAT1)  
Address: 0x08 functional page  
Access: User read/write (78)  
1 0  
7
6
5
4
3
2
R
W
SW3FAULTI  
0
SW2FAULTI  
0
SW1BFAULTI SW1AFAULTI  
Default  
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
78. Read: Anytime  
Write: Anytime  
Table 105. INTSTAT1 field descriptions  
Field  
Description  
SW3 overcurrent interrupt bit — SW3FAULTI is set to 1 when the SW3 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
SW3 in normal operation  
SW3 above current limit  
SW3FAULTI  
SW2 overcurrent interrupt bit — SW2FAULTI is set to 1 when the SW2 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
SW2 in normal operation  
SW2 above current limit  
SW2FAULTI  
SW1B overcurrent interrupt bit — SW1BFAULTI is set to 1 when the SW1B regulator is in current limit protection. This flag can only  
be cleared by writing a 1. Writing a 0 has no effect.  
1
0
1
SW1B in normal operation  
SW1B above current limit  
SW1BFAULTI  
SW1A overcurrent interrupt bit — SW1AFAULTI is set to 1 when the SW1A regulator is in current limit protection. This flag can only  
be cleared by writing a 1. Writing a 0 has no effect.  
0
0
1
SW1A in normal operation  
SW1A above current limit  
SW1AFAULTI  
PF3000  
72  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.5  
Interrupt status mask register 1 (INTMASK1)  
INTMASK1 is the mask register for the status interrupt register INTSTAT1. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 106. Interrupt status mask register 1 (INTMASK1)  
Address: 0x09 functional page  
Access: User read/write (79)  
1 0  
7
6
5
4
3
2
R
W
SW3FAULTM  
1
SW2FAULTM  
1
SW1BFAULTM SW1AFAULTM  
Default  
0
0
0
0
1
1
= Unimplemented or Reserved  
Notes  
79. Read: Anytime  
Write: Anytime  
Table 107. INTMASK1 field descriptions  
Field  
Description  
SW3 overcurrent interrupt mask bit  
4
0
1
SW3FAULTI Unmasked  
SW3FAULTI Masked  
SW3FAULTM  
SW2 overcurrent interrupt mask bit  
3
0
1
SW2FAULTI Unmasked  
SW2FAULTI Masked  
SW2FAULTM  
SW1B overcurrent interrupt mask bit  
1
0
1
SW1BFAULTI Unmasked  
SW1BFAULTI Masked  
SW1BFAULTM  
SW1A overcurrent interrupt mask bit  
0
0
1
SW1AFAULTI Unmasked  
SW1AFAULTI Masked  
SW1AFAULTM  
6.6.5.3.6  
Interrupt sense register 1 (INTSENSE1)  
This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function.  
Table 108. Interrupt sense register 1 (INTSENSE1)  
Address: 0x0A functional page  
Access: User read-only (80)  
7
6
5
4
3
2
1
0
R
W
SW3FAULTS  
SW2FAULTS  
SW1BFAULTS SW1AFAULTS  
Default  
0
0
0
X (81)  
X (81)  
0
X (81)  
X (81)  
= Unimplemented or Reserved  
Notes  
80. Read: Anytime  
81. Default value depends on the regulator initial state  
PF3000  
NXP Semiconductors  
73  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 109. INTSENSE1 field descriptions  
Field  
Description  
SW3 overcurrent sense bit  
4
0
1
SW3 in normal operation  
SW3 above current limit  
SW3FAULTS  
SW2 overcurrent sense bit  
3
0
1
SW2 in normal operation  
SW2 above current limit  
SW2FAULTS  
SW1B overcurrent sense bit  
1
0
1
SW1B in normal operation  
SW1B above current limit  
SW1BFAULTS  
SW1A overcurrent sense bit  
0
0
1
SW1A in normal operation  
SW1A above current limit  
SW1AFAULTS  
6.6.5.3.7  
Interrupt status register 3 (INTSTAT3)  
INSTAT3 is one of the four status interrupt registers. This register contains four status flags. Write a logic 1 to clear a flag.  
Table 110. Status Interrupt Register 3 (INTSTAT3)  
Address: 0x0E functional page  
Access: User read/write (82)  
1
7
6
5
4
3
2
0
R
W
OTP_AUTO_BL  
OW_DONEI  
OTP_ECCI  
0
VPWROVI  
0
SWBSTFAULTI  
0
Default  
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
82. Read: Anytime  
Write: Anytime  
Table 111. INTSTAT3 field descriptions  
Field  
Description  
OTP error interrupt bit — OTP_ECCI is set to 1 when an error is detected in OTP registers. This flag can only be cleared by writing  
a 1. Writing a 0 has no effect.  
7
0
1
No error detected  
OTP error detected  
OTP_ECCI  
OTP auto fuse blow interrupt bit — OTP_AUTO_BLOW_DONEI is set to 1 after the auto fuse blow sequence is completed. This  
flag can only be cleared by writing a 1. Writing a 0 has no effect.  
6
OTP_AUTO_BL  
OW_DONEI  
0
1
OTP auto fuse blow sequence not completed  
OTP auto fuse blow sequence completed  
VPWR overvoltage interrupt bit — High when an overvoltage event is detected in the front-end LDO circuit. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
2
0
1
VPWR in normal operation range.  
VPWR in overvoltage range.  
VPWROVI  
SWBST overcurrent limit interrupt bit — SWBSTFAULTI is set to 1 when the SWBST regulator is in current limit protection. This  
flag can only be cleared by writing a 1. Writing a 0 has no effect.  
0
0
1
SWBST in normal operation  
SWBST above current limit  
SWBSTFAULTI  
PF3000  
74  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.8  
Interrupt status mask register 3 (INTMASK3)  
INTMASK3 is the mask register for the status interrupt register INTSTAT3. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 112. Interrupt status mask register 3 (INTMASK3)  
Address: 0x0F functional page  
Access: User read/write (83)  
1
7
6
5
4
3
2
0
R
W
OTP_AUTO_BL  
OW_DONEM  
OTP_ECCM  
1
VPWROVM  
1
SWBSTFAULTM  
1
Default  
1
0
0
0
0
= Unimplemented or Reserved  
Notes  
83. Read: Anytime  
Write: Anytime  
Table 113. INTMASK3 field descriptions  
Field  
Description  
OTP error interrupt mask bit  
7
0
1
OTP_ECCI Unmasked  
OTP_ECCI Masked  
OTP_ECCM  
OTP auto blow mask bit  
6
0
1
OTP_AUTO_BLOW_DONEI Unmasked  
OTP_AUTO_BLOW_DONEI Masked  
OTP_AUTO_BLO  
W_DONEM  
VPWR overvoltage interrupt mask bit  
2
0
1
VPWROVI Unmasked  
VPWROVI Masked  
VPWROVM  
SWBST overcurrent limit interrupt mask bit  
0
0
1
SWBSTFAULTI Unmasked  
SWBSTFAULTI Masked  
SWBSTFAULTM  
6.6.5.3.9  
Interrupt sense register 3 (INTSENSE3)  
This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function.  
Table 114. Interrupt sense register 3 (INTSENSE3)  
Address: 0x10 functional page  
Access: User read-only (84)  
7
6
5
4
3
2
1
0
OTP_AUTO_B  
LOW_DONES  
R
OTP_ECCS  
VPWROVS  
SWBSTFAULTS  
W
Default  
0
0
0
0
0
0
0
X (85)  
= Unimplemented or Reserved  
Notes  
84. Read: Anytime  
85. Default value depends on the regulator initial state  
PF3000  
NXP Semiconductors  
75  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 115. INTSENSE3 field descriptions  
Field  
Description  
OTP error sense bit  
7
0
1
No error detected  
OTP error detected  
OTP_ECCS  
OTP auto blow sense bit — This bit is high while the auto blow sequence is running. Do not read/write the OTP TBB registers  
while this bit is 1.  
6
OTP_AUTO_BLO  
W_DONES  
0
1
SW2 in normal operation  
SW2 at current limit  
VPWR overvoltage interrupt sense bit  
2
0
1
VPWR in normal operation range.  
VPWR in overvoltage range.  
VPWROVS  
SWBST overcurrent limit sense bit  
0
0
1
SWBST in normal operation  
SWBST above current limit  
SWBSTFAULTS  
6.6.5.3.10 Interrupt status register 4 (INTSTAT4)  
INSTAT4 is one of the four status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag.  
Table 116. Status interrupt register 4 (INTSTAT4)  
Address: 0x11 functional page  
Access: User read/write (86)  
1
7
6
5
4
3
2
0
R
W
VCC_SDFAULT  
I
VLDO4FAULTI VLDO3FAULTI  
V33FAULTI  
0
VLDO2FAULTI VLDO1FAULTI  
Default  
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
86. Read: Anytime  
Write: Anytime  
Table 117. INTSTAT4 field descriptions  
Field  
Description  
VLDO4 overcurrent interrupt bit — VLDO4FAULTI is set to 1 when the VLDO4 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
5
0
1
VLDO4 in normal operation  
VLDO4 above current limit  
VLDO4FAULTI  
VLDO3 overcurrent interrupt bit — VLDO3FAULTI is set to 1 when the VLDO3 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
VLDO3 in normal operation  
VLDO3 above current limit  
VLDO3FAULTI  
V33 overcurrent interrupt bit — V33FAULTI is set to 1 when the V33 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
V33 in normal operation  
V33 above current limit  
V33FAULTI  
PF3000  
76  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 117. INTSTAT4 field descriptions (continued)  
Field  
Description  
VCC_SD overcurrent interrupt bit — VCC_SDFAULTI is set to 1 when the VCC_SD regulator is in current limit protection. This  
flag can only be cleared by writing a 1. Writing a 0 has no effect.  
2
0
1
VCC_SD in normal operation  
VCC_SD above current limit  
VCC_SDFAULTI  
VLDO2 overcurrent interrupt bit — VLDO2FAULTI is set to 1 when the VLDO2 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
1
0
1
VLDO2 in normal operation range.  
VLDO2 above current limit  
VLDO2FAULTI  
VLDO1 overcurrent interrupt bit — SWBSTFAULTI is set to 1 when the SWBST regulator is in current limit protection. This flag  
can only be cleared by writing a 1. Writing a 0 has no effect.  
0
0
1
VLDO1 in normal operation range.  
VLDO1 above current limit  
VLDO1FAULTI  
6.6.5.3.11 Interrupt status mask register 4 (INTMASK4)  
INTMASK4 is the mask register for the status interrupt register INTSTAT4. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 118. Interrupt status mask register 4 (INTMASK4)  
Address: 0x12 functional page  
Access: User read/write (87)  
1
7
6
5
4
3
2
0
R
W
VLDO4FAULT VLDO3FAULT  
VCC_SDFAUL VLDO2FAULT  
V33FAULTM  
1
VLDO1FAULTM  
1
M
M
TM  
M
Default  
0
0
1
1
1
1
= Unimplemented or Reserved  
Notes  
87. Read: Anytime  
Write: Anytime  
Table 119. INTMASK4 field descriptions  
Field  
Description  
VLDO4 overcurrent interrupt mask bit  
5
0
1
VLDO4FAULTI Unmasked  
VLDO4FAULTI Masked  
VLDO4FAULTM  
VLDO3 overcurrent interrupt mask bit  
4
0
1
VLDO3FAULTI Unmasked  
VLDO3FAULTI Masked  
VLDO3FAULTM  
V33 overcurrent interrupt mask bit  
3
0
1
V33FAULTI Unmasked  
V33FAULTI Masked  
V33FAULTM  
VCC_SD overcurrent interrupt mask bit  
2
0
1
VCC_SDFAULTI Unmasked  
VCC_SDFAULTI Masked  
VCC_SDFAULTM  
VLDO2 Overcurrent interrupt mask bit  
1
0
1
VLDO2FAULTI Unmasked  
VLDO2FAULTI Masked  
VLDO2FAULTM  
VLDO1 overcurrent interrupt mask bit  
0
0
1
VLDO1FAULTI Unmasked  
VLDO1FAULTI Masked  
VLDO1FAULTM  
PF3000  
NXP Semiconductors  
77  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.12 Interrupt sense register 4 (INTSENSE4)  
This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function.  
Address: 0x13 functional page  
Access: User read-only (88)  
7
6
5
4
3
2
1
0
VCC_SDFAULT  
S
R
VLDO4FAULTS VLDO3FAULTS V33FAULTS  
VLDO2FAULTS VLDO1FAULTS  
W
Default  
0
0
X (89)  
X (89)  
X (89)  
X (89)  
X (89)  
X (89)  
= Unimplemented or Reserved  
Notes  
88. Read: Anytime  
89. Default value depends on the regulator initial state  
Table 120. INTSENSE4 Field Descriptions  
Field  
Description  
VLDO4 overcurrent sense bit  
5
0
1
VLDO4 in normal operation  
VLDO4 above current limit  
VLDO4FAULTS  
VLDO3 overcurrent sense bit  
4
0
1
VLDO3 in normal operation  
VLDO3 above current limit  
VLDO3FAULTS  
V33 overcurrent sense bit  
3
0
1
V33 in normal operation  
V33 above current limit  
V33FAULTS  
VCC_SD overcurrent sense bit  
2
0
1
VCC_SD in normal operation  
VCC_SD above current limit  
VCC_SDFAULT  
S
VLDO2 overcurrent sense bit  
1
0
1
VLDO2 in normal operation  
VLDO2 above current limit  
VLDO2FAULTS  
VLDO1 overcurrent sense bit  
0
0
1
VLDO1 in normal operation  
VLDO1 above current limit  
VLDO1FAULTS  
PF3000  
78  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.13 Coin cell control register (COINCTL)  
This register is used to control the coin cell charger.  
Table 121. Coin cell control register (COINCTL)  
Address: 0x1A functional page  
Access: User read/write (90)  
7
6
5
4
3
2
1
0
R
W
COINCHEN  
0
VCOIN  
0
Default  
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
90. Read: Anytime  
Write: Anytime  
Table 122. COINCTL field descriptions  
Field  
Description  
Coin cell charger enable bit  
3
0
1
Coin cell charger disabled.  
Coin cell charger enabled.  
COINCHEN  
2:0  
Coin cell charger output voltage selection — This field is used to set the coin cell charging voltage from 2.50 V to 3.30 V. See  
Table 70 for all options selectable through these bits.  
VCOIN  
6.6.5.3.14 Power control register (PWRCTL)  
Table 123. Power control register (PWRCTL)  
Address: 0x1B functional page  
Access: User read/write (91)  
1 0  
7
6
5
4
3
2
R
W
PWRONRSTE  
REGSCPEN STANDBYINV  
STBYDLY  
PWRONBDBNC  
RESTARTEN  
0
N
Default  
0
0
0
1
0
0
0
= Unimplemented or Reserved  
Notes  
91. Read: Anytime  
Write: Anytime  
PF3000  
NXP Semiconductors  
79  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 124. PWRCTL field descriptions  
Field  
Description  
Short-circuit protection enable bit — When REGSCPEN is set to 1, whenever a current limit event occurs on a LDO regulator, this  
regulator is shutdown.  
7
0
1
Short-circuit protection disabled  
Short-circuit protection enabled  
REGSCPEN  
STANDBY inversion bit —STANDBYINV is used to control the polarity of the STANDBY pin.  
0 STANDBY pin is active high  
1 STANDBY pin is active low  
6
STANDBYINV  
STANDBY delay bits — STBYDLY is used to set the delay between a standby request from the STANDBY pin and the entering in  
standby mode.  
00 No delay  
4:3  
01 One 32 kHz period (default)  
10 Two 32 kHz periods  
11 Three 32 kHz periods  
STBYDLY  
3:2  
PWRON programmable debouncer bits — PWRONDBNC is used to set the debounce time for the PWRON input pin. For  
configuration, see Table 36.  
PWRONDBNC  
PWRON reset enable bit — When set to 1, the PF3000 can enter OFF mode when the PWRON pin is held low for 4 seconds or  
longer. See PWRON Pin section for details.  
1
0
1
Disallow OFF mode after PWRON held low  
Allow OFF mode after PWRON held low  
PWRONRSTEN  
Restart enable bit — When set to 1, the PF3000 restarts automatically after a power off event generated by the PWRON (held low  
for 4 seconds or longer) when PWR_CFG bit = 1.  
0
0
1
Automatic restart disabled.  
Automatic restart enabled.  
RESTARTEN  
6.6.5.3.15 Embedded memory register A (MEMA)  
Table 125. Embedded memory register A (MEMA)  
Address: 0x1C functional page  
Access: User read/write (92)  
7
6
5
4
3
2
1
0
R
W
MEMA  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
92. Read: Anytime  
Write: Anytime  
Table 126. MEMA field descriptions  
Field  
Description  
7:0  
Memory bank A — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMA  
PF3000  
80  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.16 Embedded memory register B (MEMB)  
Table 127. Embedded memory register B (MEMB)  
Address: 0x1D functional page  
Access: User read/write  
7
6
5
4
3
2
1
0
R
W
MEMB  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
93. Read: Anytime  
Write: Anytime  
Table 128. MEMB field descriptions  
Field  
Description  
7:0  
Memory bank B — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMB  
6.6.5.3.17 Embedded memory register C (MEMC)  
Table 129. Embedded Memory Register C (MEMC)  
Address: 0x1E functional page  
Access: User read/write (94)  
7
6
5
4
3
2
1
0
R
W
MEMC  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
94. Read: Anytime  
Write: Anytime  
Table 130. MEMC field descriptions  
Field  
Description  
7:0  
Memory bank C — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMC  
PF3000  
NXP Semiconductors  
81  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.18 Embedded memory register D (MEMD)  
Table 131. Embedded memory register D (MEMD)  
Address: 0x1F functional page  
Access: User read/write (95)  
7
6
5
4
3
2
1
0
R
W
MEMD  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
95. Read: Anytime  
Write: Anytime  
Table 132. MEMD field descriptions  
Field  
Description  
7:0  
Memory bank D — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMD  
6.6.5.3.19 SW1A voltage control register (SW1AVOLT)  
This register is used to set the output voltage of the SW1A regulator in normal operation.  
Table 133. SW1A voltage control register (SW1AVOLT)  
Address: 0x20 functional page  
Access: User read/write (96)  
1
7
6
5
4
3
2
0
R
W
SW1A  
X (97)  
Default  
0
0
0
X (97)  
X (97)  
X (97)  
X (97)  
= Unimplemented or Reserved  
Notes  
96. Read: Anytime  
Write: Anytime  
97. Default value depends on OTP content.  
Table 134. SW1AVOLT field descriptions  
Field  
Description  
4:0  
SW1A  
SW1A output voltage — Refer to Table 53  
PF3000  
82  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.20 SW1A standby voltage control register (SW1ASTBY)  
This register is used to set the output voltage of the SW1A regulator in standby operation.  
Table 135. SW1A standby voltage control register (SW1ASTBY)  
Address: 0x21 functional page  
Access: User read/write (98)  
1
7
6
5
4
3
2
0
R
W
SW1ASTBY  
X (99)  
Default  
0
0
0
X (99)  
X (99)  
X (99)  
X (99)  
= Unimplemented or Reserved  
Notes  
98. Read: Anytime  
Write: Anytime  
99. Default value depends on OTP content.  
Table 136. SW1ASTBY field descriptions  
Field  
Description  
4:0  
SW1ASTBY  
SW1A standby output voltage — Refer to Table 53  
6.6.5.3.21 SW1A sleep mode voltage control register (SW1AOFF)  
This register is used to set the output voltage of the SW1A regulator in sleep mode operation.  
Table 137. SW1A sleep mode voltage control register (SW1AOFF)  
Address: 0x22 functional page  
Access: User read/write (100)  
1
7
6
5
4
3
2
0
R
W
SW1AOFF  
X (101)  
Default  
0
0
0
X (101)  
X (101)  
X (101)  
X (101)  
= Unimplemented or Reserved  
Notes  
100. Read: Anytime  
Write: Anytime  
101. Default value depends on OTP content.  
Table 138. SW1AOFF field descriptions  
Field  
Description  
4:0  
SW1ASTBY  
SW1A sleep mode output voltage — Refer to Table 53  
PF3000  
NXP Semiconductors  
83  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.22 SW1A switching mode selector register (SW1AMODE)  
This register is used to set the switching mode of the SW1A regulator.  
Table 139. SW1A switching mode selector register (SW1AMODE)  
Address: 0x23 functional page  
Access: User read/write (102)  
7
6
5
4
3
2
1
0
R
W
SW1AOMODE  
0
SW1AMODE  
Default  
0
0
0
X (103)  
X (103)  
X (103)  
X (103)  
= Unimplemented or Reserved  
Notes  
102. Read: Anytime  
Write: Anytime  
103. Default value depends on OTP content.  
Table 140. SW1AMODE field descriptions  
Field  
Description  
SW1A Off mode bit— This bit configures the mode entered by SW1A after a turn-off event  
5
0
1
OFF mode entered after a turn-off event.  
Sleep mode entered after a turn-off event.  
SW1AOMODE  
3:0  
SW1A switching mode selector — Refer to Table 47  
SW1AMODE  
6.6.5.3.23 SW1A configuration register (SW1ACONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1A regulator.  
Table 141. SW1A configuration register (SW1ACONF)  
Address: 0x24 functional page  
Access: User read/write (104)  
7
6
5
4
3
2
1
0
R
W
SW1ADVSSPE  
ED  
SW1APHASE  
SW1AILIM  
X (105)  
SW1AFREQ  
Default  
0
X (105)  
0
0
X (105)  
X (105)  
0
= Unimplemented or Reserved  
Notes  
104. Read: Anytime  
Write: Anytime  
105. Default value depends on OTP content.  
PF3000  
84  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 142. SW1ACONF field descriptions  
Field  
Description  
SW1A DVS speed bit— This bit configures the DVS stepping rates speed for SW1A. Refer to the Table 48.  
6
0
1
25 mV step each 2.0 μs.  
25 mV step each 4.0 μs.  
SW1ADVSSPEED  
5:4  
SW1A phase clock bit— SW1APHASE is used to set the phase clock for SW1A. Refer to Table 49.  
SW1APHASE  
3:2  
SW1A switching frequency— SW1APHASE is used to set the desired switching frequency for SW1A. Refer to Table 51.  
SW1A current limiter bit— This bit configures the current limit for SW1A.  
SW1AFREQ  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW1AILIM  
6.6.5.3.24 SW1B voltage control register (SW1BVOLT)  
This register is used to set the output voltage of the SW1B regulator in normal operation.  
Table 143. SW1B voltage control register (SW1BVOLT)  
Address: 0x2E functional page  
Access: User read/write (106)  
1
7
6
5
4
3
2
0
R
W
SW1B  
X (107)  
Default  
0
0
0
X (107)  
X (107)  
X (107)  
X (107)  
= Unimplemented or Reserved  
Notes  
106. Read: Anytime  
Write: Anytime  
107. Default value depends on OTP content.  
Table 144. SW1BVOLT field descriptions  
Field  
Description  
4:0  
SW1B  
SW1B output voltage — Refer to Table 53.  
PF3000  
NXP Semiconductors  
85  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.25 SW1B standby voltage control register (SW1BSTBY)  
This register is used to set the output voltage of the SW1B regulator in standby operation.  
Table 145. SW1B standby voltage control register (SW1BSTBY)  
Address: 0x2F functional page  
Access: User read/write (108)  
1
7
6
5
4
3
2
0
R
W
SW1BSTBY  
X (109)  
Default  
0
0
0
X (109)  
X (109)  
X (109)  
X (109)  
= Unimplemented or Reserved  
Notes  
108. Read: Anytime  
Write: Anytime  
109. Default value depends on OTP content.  
Table 146. SW1BSTBY field descriptions  
Field  
Description  
4:0  
SW1BSTBY  
SW1B standby output voltage — Refer to Table 53.  
6.6.5.3.26 SW1B sleep mode voltage control register (SW1BOFF)  
This register is used to set the output voltage of the SW1B regulator in sleep mode operation.  
Table 147. SW1B sleep mode voltage control register (SW1BOFF)  
Address: 0x30 functional page  
Access: User read/write (110)  
1
7
6
5
4
3
2
0
R
W
SW1BOFF  
X (111)  
Default  
0
0
0
X (111)  
X (111)  
X (111)  
X (111)  
= Unimplemented or Reserved  
Notes  
110. Read: Anytime  
Write: Anytime  
111. Default value depends on OTP content.  
Table 148. SW1BOFF field descriptions  
Field  
Description  
4:0  
SW1BSTBY  
SW1B sleep mode output voltage — Refer to Table 53.  
PF3000  
86  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.27 SW1B switching mode selector register (SW1BMODE)  
This register is used to set the switching mode of the SW1B regulator.  
Table 149. SW1B switching mode selector register (SW1BMODE)  
Address: 0x31 functional page  
Access: User read/write (112)  
7
6
5
4
3
2
1
0
R
W
SW1BOMOD  
E
SW1BMODE  
Default  
0
0
0
0
X (113)  
X (113)  
X (113)  
X (113)  
= Unimplemented or Reserved  
Notes  
112. Read: Anytime  
Write: Anytime  
113. Default value depends on OTP content.  
Table 150. SW1BMODE field descriptions  
Field  
Description  
SW1B Off mode bit— This bit configures the mode entered by SW1B after a turn-off event  
5
0
1
OFF mode entered after a turn-off event.  
Sleep mode entered after a turn-off event.  
SW1BOMODE  
3:0  
SW1B switching mode selector — Refer to Table 47.  
SW1BMODE  
6.6.5.3.28 SW1B configuration register (SW1BCONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1B regulator.  
Table 151. SW1B configuration register (SW1BCONF)  
Address: 0x32 functional page  
Access: User read/write X (114)  
7
6
5
4
3
2
1
0
R
W
SW1BDVSSPEED  
X (115)  
SW1BPHASE  
SW1BFREQ  
SW1BILIM  
X (115)  
Default  
0
0
0
X (115)  
X (115)  
0
= Unimplemented or Reserved  
Notes  
114. Read: Anytime  
Write: Anytime  
115. Default value depends on OTP content.  
PF3000  
NXP Semiconductors  
87  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 152. SW1BCONF field descriptions  
Field  
Description  
SW1B DVS speed bit— This bit configures the DVS stepping rates speed for SW1B. Refer to the Table 48.  
6
0
1
25 mV step each 2.0 μs.  
25 mV step each 4.0 μs.  
SW1BDVSSPEED  
5:4  
SW1B phase clock bit— SW1BPHASE is used to set the phase clock for SW1B. Refer to Table 49.  
SW1BPHASE  
3:2  
SW1B switching frequency— SW1BPHASE is used to set the desired switching frequency for SW1B. Refer to Table 51.  
SW1B current limiter bit— This bit configures the current limit for SW1B.  
SW1BFREQ  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW1BILIM  
6.6.5.3.29 SW2 voltage control register (SW2VOLT)  
This register is used to set the output voltage of the SW2 regulator in normal operation.  
Table 153. SW2 voltage control register (SW2VOLT)  
Address: 0x35 functional page  
Access: User read/write (116)  
1
7
6
5
4
3
2
0
R
W
SW2_HI  
X (117)  
SW2  
Default  
0
0
X (117)  
X (117)  
X (117)  
X (117)  
X (117)  
= Unimplemented or Reserved  
Notes  
116. Read: Anytime  
Write: Anytime  
117. Default value depends on OTP content.  
Table 154. SW2VOLT field descriptions  
Field  
Description  
4:0  
SW2  
SW2 output voltage — Refer to Table 55.  
SW2 Output voltage range —This bit configures the range of SW2 Output voltage. Refer to Table 55.  
0 Low output voltage settings  
1 High output voltage settings  
5
SW2_HI  
PF3000  
88  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.30 SW2 standby voltage control register (SW2STBY)  
This register is used to set the output voltage of the SW2 regulator in standby operation.  
Table 155. SW2 standby voltage control register (SW2STBY)  
Address: 0x36 functional page  
Access: User read/write (118)  
1
7
6
5
4
3
2
0
R
W
SW2_HI  
X (119)  
SW2STBY  
X (119)  
Default  
0
0
X (119)  
X (119)  
X (119)  
X (119)  
= Unimplemented or Reserved  
Notes  
118. Read: Anytime  
Write: Anytime  
119. Default value depends on OTP content.  
Table 156. SW2STBY field descriptions  
Field  
Description  
4:0  
SW2STBY  
SW2 standby output voltage — Refer to Table 55.  
SW2 output voltage range —This bit configures the range of SW2 Output voltage. Refer to Table 55.  
0 Low output voltage settings  
1 High output voltage settings  
5
SW2_HI  
6.6.5.3.31 SW2 sleep mode voltage control register (SW2OFF)  
This register is used to set the output voltage of the SW2 regulator in sleep mode operation.  
Table 157. SW2 sleep mode voltage control register (SW2OFF)  
Address: 0x37 functional page  
Access: User read/write (120)  
1
7
6
5
4
3
2
0
R
W
SW2_HI  
X (121)  
SW2OFF  
X (121)  
Default  
0
0
X (121)  
X (121)  
X (121)  
X (121)  
= Unimplemented or Reserved  
Notes  
120. Read: Anytime  
Write: Anytime  
121. Default value depends on OTP content.  
PF3000  
NXP Semiconductors  
89  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 158. SW2OFF field descriptions  
Field  
Description  
4:0  
SW2STBY  
SW2 sleep mode output voltage — Refer to Table 55.  
SW2 output voltage range —This bit configures the range of SW2 Output voltage. Refer to Table 55.  
0 Low output voltage settings  
1 High output voltage settings  
5
SW2_HI  
6.6.5.3.32 SW2 switching mode selector register (SW2MODE)  
This register is used to set the switching mode of the SW2 regulator.  
Table 159. SW2 switching mode selector register (SW2MODE)  
Address: 0x38 functional page  
Access: User read/write (122)  
7
6
5
4
3
2
1
0
R
W
SW2OMODE  
0
SW2MODE  
Default  
0
0
0
X (123)  
X (123)  
X (123)  
X (123)  
= Unimplemented or Reserved  
Notes  
122. Read: Anytime  
Write: Anytime  
123. Default value depends on OTP content.  
Table 160. SW2MODE field descriptions  
Field  
Description  
SW2 Off mode bit— This bit configures the mode entered by SW2 after a turn-off event  
5
0
1
OFF mode entered after a turn-off event.  
Sleep mode entered after a turn-off event.  
SW2OMODE  
3:0  
SW2MODE  
SW2 switching mode selector — Refer to Table 47.  
PF3000  
90  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.33 SW2 configuration register (SW2CONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW2 regulator.  
Table 161. SW2 configuration register (SW2CONF)  
Address: 0x39 functional page  
Access: User read/write (124)  
7
6
5
4
3
2
1
0
R
W
SW2DVSSPEE  
D
SW2PHASE  
SW2FREQ  
SW2ILIM  
X (125)  
Default  
0
X (125)  
0
0
X (125)  
X (125)  
0
= Unimplemented or Reserved  
Notes  
124. Read: Anytime  
Write: Anytime  
125. Default value depends on OTP content.  
Table 162. SW2CONF field descriptions  
Field  
Description  
SW2 DVS speed bit- This bit configures the DVS stepping rates speed for SW2. Refer to the Table 48.  
6
0
1
25 mV step each 2.0 μs.  
25 mV step each 4.0 μs.  
SW2DVSSPEED  
5:4  
SW2PHASE  
SW2 phase clock bit— SW2PHASE is used to set the phase clock for SW2. Refer to Table 49.  
3:2  
SW2FREQ  
SW2 switching frequency— SW2PHASE is used to set the desired switching frequency for SW2. Refer to Table 51.  
SW2 current limiter bit— This bit configures the current limit for SW2.  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW2ILIM  
6.6.5.3.34 SW3 voltage control register (SW3VOLT)  
This register is used to set the output voltage of the SW3 regulator in normal operation.  
Table 163. SW3 voltage control register (SW3VOLT)  
Address: 0x3C functional page  
Access: User read/write (126)  
1
7
6
5
4
3
2
0
R
W
SW3  
Default  
0
0
0
X (127)  
X (127)  
X (127)  
X (127)  
X (127)  
= Unimplemented or Reserved  
Notes  
126. Read: Anytime  
Write: Anytime  
127. Default value depends on OTP content.  
PF3000  
NXP Semiconductors  
91  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 164. SW3VOLT field descriptions  
Field  
Description  
4:0  
SW3  
SW3 output voltage — Refer to Table 57.  
6.6.5.3.35 SW3 standby voltage control register (SW3STBY)  
This register is used to set the output voltage of the SW3 regulator in standby operation.  
Table 165. SW3 standby voltage control register (SW3STBY)  
Address: 0x3D functional page  
Access: User read/write (128)  
1
7
6
5
4
3
2
0
R
W
SW3STBY  
X (129)  
Default  
0
0
0
X (129)  
X (129)  
X (129)  
X (129)  
= Unimplemented or Reserved  
Notes  
128. Read: Anytime  
Write: Anytime  
129. Default value depends on OTP content.  
Table 166. SW3STBY field descriptions  
Field  
Description  
4:0  
SW3STBY  
SW3 standby output voltage — Refer to Table 57.  
6.6.5.3.36 SW3 sleep mode voltage control register (SW3OFF)  
This register is used to set the output voltage of the SW3 regulator in sleep mode operation.  
Table 167. SW3 sleep mode voltage control register (SW3OFF)  
Address: 0x3E functional page  
Access: User read/write (130)  
1
7
6
5
4
3
2
0
R
W
SW3OFF  
X (131)  
Default  
0
0
0
X (131)  
X (131)  
X (131)  
X (131)  
= Unimplemented or Reserved  
Notes  
130. Read: Anytime  
Write: Anytime  
131. Default value depends on OTP content.  
PF3000  
92  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 168. SW3OFF field descriptions  
Field  
Description  
SW3 sleep mode output voltage — Refer to Refer to Table 57.  
4:0  
SW3STBY  
6.6.5.3.37 SW3 switching mode selector register (SW3MODE)  
This register is used to set the switching mode of the SW3 regulator.  
Table 169. SW3 switching mode selector register (SW3MODE)  
Address: 0x3F functional page  
Access: User read/write (132)  
7
6
5
4
3
2
1
0
R
W
SW3OMODE  
0
SW3MODE  
Default  
0
0
0
X (133)  
X (133)  
X (133)  
X (133)  
= Unimplemented or Reserved  
Notes  
132. Read: Anytime  
Write: Anytime  
133. Default value depends on OTP content.  
Table 170. SW3MODE field descriptions  
Field  
Description  
SW3 Off mode bit— This bit configures the mode entered by SW3 after a turn-off event  
5
0
1
OFF mode entered after a turn-off event.  
Sleep mode entered after a turn-off event.  
SW3OMODE  
3:0  
SW3MODE  
SW3 switching mode selector — Refer to Table 47.  
6.6.5.3.38 SW3 configuration register (SW3CONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW3 regulator.  
Table 171. SW3 configuration register (SW3CONF)  
Address: 0x40 functional page  
Access: User read/write (134)  
7
6
5
4
3
2
1
0
R
W
SW3DVSSPEE  
D
SW3PHASE  
SW3FREQ  
SW3ILIM  
X (135)  
Default  
0
X (135)  
0
0
X (135)  
X (135)  
0
= Unimplemented or Reserved  
Notes  
134. Read: Anytime  
Write: Anytime  
135. Default value depends on OTP content.  
PF3000  
NXP Semiconductors  
93  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 172. SW3CONF field descriptions  
Field  
Description  
SW3 DVS speed bit— This bit configures the DVS stepping rates speed for SW3. Refer to the Table 48.  
6
0
1
25 mV step each 2.0 μs.  
25 mV step each 4.0 μs.  
SW3DVSSPEED  
5:4  
SW3 phase clock bit— SW3PHASE is used to set the phase clock for SW3. Refer to Table 49.  
SW3PHASE  
3:2  
SW3FREQ  
SW3 switching frequency— SW3PHASE is used to set the desired switching frequency for SW3. Refer to Table 51.  
SW3 current limiter bit— This bit configures the current limit for SW3.  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW3ILIM  
6.6.5.3.39 SWBST setup and control register (SWBSTCTL)  
This register is used to configure both the output voltage and switching modes of the SWBST regulator.  
Table 173. SWBST configuration register (SWBSTCTL)  
Address: 0x66 functional page  
Access: User read/write (136)  
7
6
5
4
3
2
1
0
R
W
SWBST1STBYMODE  
X (137) X (137)  
SWBST1MODE  
SWBST1VOLT  
Default  
0
0
X (137)  
X (137)  
X (137)  
X (137)  
= Unimplemented or Reserved  
Notes  
136. Read: Anytime  
Write: Anytime  
137. Default value depends on OTP content.  
Table 174. SWBSTCTL field descriptions  
Field  
Description  
SWBST switching mode in standby— SWBST1MODE is used to set the switching mode in standby mode.  
00 OFF  
01 PFM  
10 Auto (138)  
11 APS  
6:5  
SWBST1STBYMODE  
SWBST switching mode in normal operation— SWBST1MODE is used to set the switching mode on normal operation.  
00 OFF  
01 PFM  
10 Auto (138)  
11 APS  
3:2  
SWBST1MODE  
SWBST output voltage— SWBST1VOLT is used to set the output voltage for SWBST.  
00 5.000 V (typ.)  
01 5.050 V (typ.)  
10 5.100 V (typ.)  
11 5.150 V (typ.)  
1:0  
SWBST1VOLT  
Notes  
138. In auto mode, the controller automatically switches between PFM and APS modes depending on the load current. Regulator switches in auto mode  
if enabled in the startup sequence.  
PF3000  
94  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.40 Front-end LDO control register (LDOGCTL)  
This register is used to configure the front-end LDO standby mode operation.  
Table 175. Front-end LDO control register (LDOGCTL)  
Address: 0x69 functional page  
Access: User read/write (139)  
7
6
5
4
3
2
1
0
R
W
STBY_LOWPO  
WER_B  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
139. Read: Anytime  
Write: Anytime  
Table 176. LDOGCTL field descriptions  
Field  
Description  
Front-end LDO standby mode operation bit— When STBY_LOWPOWER_B bit is set to 1, the front-end LDO does not enter  
in low-power mode during IC standby mode.  
0
0
1
Low-power mode enabled during IC standby mode.  
Low-power mode disabled during IC standby mode.  
STBY_LOWPOWER_B  
6.6.5.3.41 VREFDDR control register (VREFDDRCTL)  
This register is used to control the VREFDDR supply operation.  
Table 177. VREFDDR control register (VREFDDRCTL)  
Address: 0x6A functional page  
Access: User read/write (140)  
7
6
5
4
3
2
1
0
R
W
VREFDDREN  
0
Default  
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
140. Read: Anytime  
Write: Anytime  
Table 178. VREFDDR field descriptions  
Field  
Description  
VREFDDR supply enable bit— VREFDDREN is used to enable or disable the VREFDDR supply.  
0
0
1
VREFDDR supply disabled  
VREFDDR supply enabled  
VREFDDREN  
PF3000  
NXP Semiconductors  
95  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.42 VSNVS control register (VSNVSCTL)  
This register is used to control the VSNVS supply operation.  
Table 179. VSNVS control register (VSNVSCTL)  
Address: 0x6B functional page  
Access: User read/write (141)  
7
6
5
4
3
2
1
0
R
W
VSNVSVOLT  
X (142)  
Default  
0
0
0
0
0
X (142)  
X (142)  
= Unimplemented or Reserved  
Notes  
141. Read: Anytime  
Write: Anytime  
142. Default value depends on OTP content.  
Table 180. VSNVSCTL field descriptions  
Field  
Description  
VSNVS output voltage configuration— VSNVSVOLT is used to configure the VSNVS output voltage. Values below are  
typical voltages.  
000 = RSVD  
001 = RSVD  
010 = RSVD  
011 = RSVD  
100 = RSVD  
101 = RSVD  
110 = 3.0 V (default)  
111 = RSVD  
2:0  
VSNVSVOLT  
6.6.5.3.43 VLDO1 control register (VLDO1CTL)  
This register is used to configure output voltage, normal and standby mode operation of the VLDO1 regulator.  
Table 181. VLDO1 control register (VLDO1CTL)  
Address: 0x6C functional page  
Access: User read/write (143)  
7
6
5
4
3
2
1
0
R
W
LDO1OMODE VLDO1LPWR  
VLDO1STBY  
0
VLDO1EN  
X (144)  
VLDO1  
Default  
0
0
X (144)  
X (144)  
X (144)  
X (144)  
= Unimplemented or Reserved  
Notes  
143. Read: Anytime  
Write: Anytime  
144. Default value depends on OTP content.  
PF3000  
96  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 182. VLDO1CTL field descriptions  
Field  
Description  
VLDO1 OFF mode bit—LDO1OMODE is used to configure VLDO1 operating mode when a PWRON turn-off event occurs.  
7
0
1
VLDO1 in OFF mode if a PWRON turn off event occurs  
VLDO1 in sleep mode if a PWRON turn off event occurs  
LDO1OMODE  
VLDO1 Low-power mode enable bit— When VLDO1LPWR is set to 1, VLDO1 can enter Low-power mode per the conditions in  
the Table 66.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
VLDO1LPWR  
VLDO1 standby enable bit— When VLDO1STBY is set to 1, VLDO1 is turned off during standby mode. Refer to Table 66.  
5
0
1
VLDO1 is ON during standby mode.  
VLDO1 is OFF during standby mode.  
VLDO1STBY  
VLDO1 enable bit — VLDO1EN is used to enable or disable the VLDO1 regulator.  
4
0
1
VLDO1 disabled  
VLDO1 enabled  
VLDO1EN  
3:0  
VLDO1  
VLDO1 output voltage configuration— Refer to Table 62.  
6.6.5.3.44 VLDO2 control register (VLDO2CTL)  
This register is used to configure output voltage, normal, and standby mode operation of the VLDO2 regulator.  
Table 183. VLDO2 control register (VLDO2CTL)  
Address: 0x6D functional page  
Access: User read/write (145)  
7
6
5
4
3
2
1
0
R
W
LDO2OMODE VLDO2LPWR  
VLDO2STBY  
0
VLDO2EN  
X (146)  
VLDO2  
Default  
0
0
X (146)  
X (146)  
X (146)  
X (146)  
= Unimplemented or Reserved  
Notes  
145. Read: Anytime  
Write: Anytime  
146. Default value depends on OTP content.  
PF3000  
NXP Semiconductors  
97  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 184. VLDO2CTL field descriptions  
Field  
Description  
VLDO2 OFF mode bit—LDO2OMODE is used to configure VLDO2 operating mode when a PWRON turn-off event occurs.  
7
0
1
VLDO2 in OFF mode if a PWRON turn off event occurs  
VLDO2 in Sleep mode if a PWRON turn off event occurs  
LDO2OMODE  
VLDO2 low-power mode enable bit— When VLDO2LPWR is set to 1, VLDO2 can enter low-power mode per the conditions in  
the LDO control table.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
VLDO2LPWR  
VLDO2 standby enable bit— When VLDO2STBY is set to 1, VLDO2 is turned off during standby mode. Refer to Table 66.  
5
0
1
VLDO2 is ON during standby mode.  
VLDO2 is OFF during standby mode.  
VLDO2STBY  
VLDO2 enable bit — VLDO2EN is used to enable or disable the VLDO2 regulator.  
4
0
1
VLDO2 disabled  
VLDO2 enabled  
VLDO2EN  
3:0  
VLDO2  
VLDO2 output voltage configuration— Refer to Table 62.  
6.6.5.3.45 VCC_SD control register (VCC_SDCTL)  
This register is used to configure output voltage, normal and standby mode operation of the VCC_SD regulator.  
Table 185. CC_SD control register (VCC_SDCTL)  
Address: 0x6E functional page  
Access: User read/write (147)  
7
6
5
4
3
2
1
0
R
W
VCC_SDOMOD  
E
VCC_SDLPWR VCC_SDSTBY  
VCC_SDEN  
X (148)  
VCC_SD  
Default  
0
0
0
0
0
X (148)  
X (148)  
= Unimplemented or Reserved  
Notes  
147. Read: Anytime  
Write: Anytime  
148. Default value depends on OTP content.  
PF3000  
98  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 186. VCC_SDCTL field descriptions  
Field  
Description  
VCC_SD OFF mode bit— VCC_SDOMODE is used to configure VCC_SD operating mode when a PWRON turn-off event occurs.  
7
0
1
VCC_SD in OFF mode if a PWRON turn off event occurs  
VCC_SD in Sleep mode if a PWRON turn off event occurs  
VCC_SDOMODE  
VCC_SD low-power mode enable bit— When VCC_SDLPWR is set to 1, VCC_SD can enter low-power mode per the conditions  
in the Table 66.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
VCC_SDLPWR  
VCC_SD standby enable bit— When VCC_SDSTBY is set to 1, VCC_SD is turned off during standby mode. Refer to Table 66.  
5
0
1
VCC_SD is ON during standby mode.  
VCC_SD is OFF during standby mode.  
VCC_SDSTBY  
VCC_SD enable bit — VCC_SDEN is used to enable or disable the VCC_SD regulator.  
4
0
1
VCC_SD disabled  
VCC_SD enabled  
VCC_SDEN  
1:0  
VCC_SD  
VCC_SD output voltage configuration— Refer to Table 65.  
6.6.5.3.46 V33 control register (V33CTL)  
This register is used to configure output voltage, normal, and standby mode operation of the V33 regulator.  
Table 187. V33 control register (V33CTL)  
Address: 0x6F functional page  
Access: User read/write (149)  
7
6
5
4
3
2
1
0
R
W
V33OMODE  
0
V33LPWR  
0
V33STBY  
0
V33EN  
X (150)  
V33  
Default  
0
0
X (150)  
X (150)  
= Unimplemented or Reserved  
Notes  
149. Read: Anytime  
Write: Anytime  
150. Default value depends on OTP content.  
Table 188. V33CTL field descriptions  
Field  
Description  
V33 OFF mode bit— V33OMODE is used to configure V33 operating mode when a PWRON turn-off event occurs.  
7
0
1
V33 in OFF mode if a PWRON turn off event occurs  
V33 in sleep mode if a PWRON turn off event occurs  
V33OMODE  
V33 low-power mode enable bit— When V33LPWR is set to 1, V33 can enter low-power mode per the conditions in the Table 66.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
V33LPWR  
V33 standby enable bit— When V33STBY is set to 1, V33 is turned off during standby mode. Refer to Table 66.  
5
0
1
V33 is ON during standby mode.  
V33 is OFF during standby mode.  
V33STBY  
V33 Enable bit — V33EN is used to enable or disable the VLDO2 regulator.  
4
0
1
V33 disabled  
V33 enabled  
V33EN  
1:0  
V33  
V33 output voltage configuration— Refer to Table 64.  
PF3000  
NXP Semiconductors  
99  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.47 VLDO3 control register (VLDO3CTL)  
This register is used to configure output voltage, normal, and standby mode operation of the VLDO3 regulator.  
Table 189. VLDO3 control register (VLDO3CTL)  
Address: 0x70 functional page  
Access: User read/write (151)  
7
6
5
4
3
2
1
0
R
W
LDO3OMODE VLDO3LPWR  
VLDO3STBY  
0
VLDO3EN  
X (152)  
VLDO3  
Default  
0
0
X (152)  
X (152)  
X (152)  
X (152)  
= Unimplemented or Reserved  
Notes  
151. Read: Anytime  
Write: Anytime  
152. Default value depends on OTP content.  
Table 190. VLDO3CTL field descriptions  
Field  
Description  
VLDO3 OFF mode bit—LDO3OMODE is used to configure VLDO3 operating mode when a PWRON turn-off event occurs.  
7
0
1
VLDO3 in OFF mode if a PWRON turn off event occurs  
VLDO3 in sleep mode if a PWRON turn off event occurs  
LDO3OMODE  
VLDO3 low-power mode enable bit— When VLDO3LPWR is set to 1, VLDO3 can enter low-power mode per the conditions in  
the Table 66.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
VLDO3LPWR  
VLDO3 standby enable bit— When VLDO3STBY is set to 1, VLDO3 is turned off during standby mode. Refer to Table 66.  
5
0
1
VLDO3 is ON during standby mode.  
VLDO3 is OFF during standby mode.  
VLDO3STBY  
VLDO3 enable bit — VLDO3EN is used to enable or disable the VLDO3 regulator.  
4
0
1
VLDO3 disabled  
VLDO3 enabled  
VLDO3EN  
3:0  
VLDO3  
VLDO3 output voltage configuration— Refer to Table 63.  
PF3000  
100  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.48 VLDO4 control register (VLDO4CTL)  
This register is used to configure output voltage, normal, and standby mode operation of the VLDO4 regulator.  
Table 191. VLDO4 control register (VLDO4CTL)  
Address: 0x71 functional page  
Access: User read/write (153)  
7
6
5
4
3
2
1
0
R
W
LDO4OMODE VLDO4LPWR  
VLDO4STBY  
0
VLDO4EN  
X (154)  
VLDO4  
Default  
0
0
X (154)  
X (154)  
X (154)  
X (154)  
= Unimplemented or Reserved  
Notes  
153. Read: Anytime  
Write: Anytime  
154. Default value depends on OTP content.  
Table 192. VLDO4CTL field descriptions  
Field  
Description  
VLDO4 OFF mode bit—LDO4OMODE is used to configure VLDO4 operating mode when a PWRON turn-off event occurs.  
7
0
1
VLDO4 in OFF mode if a PWRON turn off event occurs  
VLDO4 in sleep mode if a PWRON turn off event occurs  
LDO4OMODE  
VLDO4 low-power mode enable bit— When VLDO4LPWR is set to 1, VLDO4 can enter low-power mode per the conditions in  
the Table 66.  
6
0
1
Low-power mode disabled  
Low-power mode enabled  
VLDO4LPWR  
VLDO4 standby enable bit— When VLDO4STBY is set to 1, VLDO4 is turned off during standby mode. Refer to Table 66.  
5
0
1
VLDO4 is ON during standby mode.  
VLDO4 is OFF during standby mode.  
VLDO4STBY  
VLDO4 enable bit — VLDO4EN is used to enable or disable the VLDO4 regulator.  
4
0
1
VLDO4 disabled  
VLDO4 enabled  
VLDO4EN  
3:0  
VLDO4  
VLDO4 output voltage configuration— Refer to Table 63.  
6.6.5.3.49 Page selection register  
This register is used to access the extended register pages.  
Table 193. Page selection register  
Address: 0x7F functional page  
Access: User read/write (155)  
7
6
5
4
3
2
1
0
R
W
PAGE  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
155. Read: Anytime  
Write: Anytime  
PF3000  
NXP Semiconductors  
101  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 194. Page register field descriptions  
Field  
Description  
Register page selection — The PAGE field is used to select one of the three available register pages.  
0000 Functional page selected  
3:0  
PAGE  
0001 Extended page 1 selected  
0010 Extended page 2 selected  
6.6.6 Register map  
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can  
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,  
the functional registers are the same, but the extended registers are different. To access registers in Extended page 1, one must first write  
0x01 to the page register at address 0x7F, and to access registers Extended page 2, one must first write 0x02 to the page register at  
address 0x7F. To access the Functional page from one of the extended pages, no write to the page register is necessary.  
Registers that are missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The  
contents of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit  
Bit #: The bit location in the register (7-0)  
R/W: Read / Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by SC and VCOREDIG_PORB  
Bits reset by PWRON or loaded default or OTP configuration  
Bits reset by DIGRESETB  
Bits reset by PORB or RESETBMCU  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
• “X” corresponds to Read/Write bits that are initialized at start-up, based on the OTP fuse settings or default if V  
= 1.5 V. Bits are  
DDOTP  
2
subsequently I C modifiable, when their reset has been released. “X” may also refer to bits that may have other dependencies. For  
example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the interrupts.  
PF3000  
102  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.6.1  
Register map  
Table 195. Functional page  
BITS[7:0]  
Register  
name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
1
1
DEVICE ID [3:0]  
00  
DeviceID  
R
8'b0011_0000  
0
0
0
0
0
0
0
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
SILICONREVI  
D
03  
04  
05  
06  
07  
08  
09  
0A  
R
R
8'b0001_0000  
8'b0000_0000  
8'b0000_0000  
8'b0011_1111  
8'b00xx_xxxx  
8'b0000_0000  
8'b0111_1111  
8'b0xxx_xxxx  
0
0
0
1
0
0
FAB[1:0]  
FIN[1:0]  
FABID  
0
0
0
0
0
0
0
PWRONI  
0
THERM130I  
0
THERM125I  
0
THERM120I  
0
THERM110I  
0
LOWVINI  
INTSTAT0  
INTMASK0  
INTSENSE0  
INTSTAT1  
INTMASK1  
INTSENSE1  
RW1C  
R/W  
R
0
0
0
THERM130M THERM125M THERM120M THERM110M  
LOWVINM  
PWRONM  
0
0
1
1
1
1
1
1
VDDOTPS  
ICTESTS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
x
PWRONS  
x
0
0
0
0
0
0
1
x
x
0
1
x
x
x
x
x
1
x
SW3FAULTI  
0
SW2FAULTI  
0
SW1BFAULTI SW1AFAULTI  
RW1C  
R/W  
R
0
0
SW3FAULTM SW2FAULTM  
SW1BFAULTM SW1AFAULTM  
1
1
1
1
SW3FAULTS  
x
SW2FAULTS  
x
SW1BFAULTS SW1AFAULTS  
x
x
SWBSTFAULT  
I
OTP AUTO  
BLOW DONE  
OTP_ECCI  
VPWROVI  
0E  
INTSTAT3  
RW1C  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OTP_AUTO_B  
LOW_DONEM  
SWBSTFAULT  
M
OTP_ECCM  
VPWROVI  
0F  
10  
11  
12  
INTMASK3  
INTSENSE3  
INTSTAT4  
INTMASK4  
R/W  
R
8'b1100_0101  
8'b0000_000x  
8'b0000_0000  
8'b0011_1111  
1
1
0
1
1
OTP_AUTO_B  
LOW_DONES  
SWBSTFAULT  
S
OTP_ECCS  
VPWROVS  
0
0
0
0
0
0
0
0
0
VCC_SDFAUL  
TI  
VLDO4FAULTI VLDO3FAULTI  
V33FAULTI  
0
VLDO2FAULTI VLDO1FAULTI  
RW1C  
R/W  
0
0
0
0
0
VLDO4  
FAULTM  
VLDO3  
FAULTM  
V33  
FAULTM  
VCC_SDFAUL VLDO2FAULT VLDO1FAULT  
TM  
M
M
1
1
1
1
1
1
VLDO4  
FAULTS  
VLDO3  
FAULTS  
V33  
FAULTS  
VCC_SD  
FAULTS  
VLDO2  
FAULTS  
VLDO1  
FAULTS  
13  
INTSENSE4  
COINCTL  
R
8'b00xx_xxxx  
8'b0000_0000  
0
0
0
0
x
0
x
0
x
x
x
x
COINCHEN  
0
VCOIN[2:0]  
0
1A  
R/W  
0
0
PF3000  
NXP Semiconductors  
103  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 195. Functional page (continued)  
BITS[7:0]  
Register  
name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
PWRONRSTE  
N
REGSCPEN STANDBYINV  
STBYDLY[1:0]  
PWRONBDBNC[1:0]  
RESTARTEN  
0
1B  
PWRCTL  
R/W  
8'b0001_0000  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MEMA[7:0]  
MEMB[7:0]  
MEMC[7:0]  
MEMD[7:0]  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
MEMA  
MEMB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
0
0
0
0
MEMC  
MEMD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SW1A[4:0]  
SW1AVOLT  
SW1ASTBY  
SW1AOFF  
SW1AMODE  
SW1ASTBY[4:0]  
SW1AOFF[4:0]  
x
SW1AOMODE  
0
SW1AMODE[3:0]  
0
SW1AILIM  
0
SW1ADVSSP  
EED  
SW1APHASE[1:0]  
SW1AFREQ[1:0]  
24  
SW1ACONF  
R/W  
8'bxx00_0100  
x
0
0
0
0
-1  
x
0
0
1
1
0
0
0
SW1B[4:0]  
2E  
2F  
30  
31  
SW1BVOLT  
SW1BSTBY  
SW1BOFF  
R/W  
R/W  
R/W  
R/W  
8'b0xx1_0010  
8'b0xx1_0010  
8'b0xx1_0010  
8'b0001_1000  
x
0
0
1
1
0
0
0
x
SW1BSTBY[4:0]  
x
0
x
SW1BOFF[4:0]  
0
x
1
0
SW1BOMODE  
0
SW1BMODE[3:0]  
SW1BMODE  
SW1BILIM  
0
SW1BDVS  
SPEED  
SW1BPHASE[1:0]  
SW1BFREQ[1:0]  
32  
SW1BCONF  
R/W  
8'bx100_0100  
x
0
0
0
x
x
x
0
x
x
x
0
x
x
x
0
SW2_HI  
SW2[2:0]  
35  
36  
37  
SW2VOLT  
SW2STBY  
SW2OFF  
R/W  
R/W  
R/W  
8'b0xxx_0110  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
–-  
–-  
–-  
SW2_HI  
SW2STBY[2:0]  
SW2_HI  
SW2STBY[2:0]  
PF3000  
104  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 195. Functional page (continued)  
BITS[7:0]  
Register  
name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
SW2OMODE  
1
0
SW2MODE[3:0]  
38  
SW2MODE  
R/W  
8'b0010_1000  
1
0
0
0
0
SW2ILIM  
0
SW2DVS  
SPEED  
SW2PHASE[1:0]  
SW2FREQ[1:0]  
39  
SW2CONF  
R/W  
8'bxx01_0100  
x
0
0
0
0
x
x
x
0
0
1
x
x
x
1
1
SW3[3:0]  
3C  
3D  
3E  
3F  
SW3VOLT  
SW3STBY  
SW3OFF  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_1100  
8'b0xxx_1100  
8'b0xxx_1100  
8'b0011_1000  
x
SW3STBY[3:0]  
SW3OFF[3:0]  
x
x
SW3OMODE  
1
SW3MODE[3:0]  
SW3MODE  
0
0
0
SW3ILIM  
0
SW3DVS  
SPEED  
x
SW3PHASE[1:0]  
SW3FREQ[1:0]  
0
40  
66  
SW3CONF  
SWBSTCTL  
R/W  
R/W  
8'bxx10_0100  
8'b0xx0_10xx  
1
0
SWBST1MODE[1:0]  
SWBST1STBYMODE[1:0]  
SWBST1VOLT[1:0]  
0
0
0
0
x
0
0
x
0
0
0
x
0
0
x
0
STBY_LP_B  
69  
6A  
6B  
6C  
6D  
LDOGCTL  
VREFDDRCTL  
VSNVSCTL  
VLDO1CTL  
VLDO2CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxx0  
8'b000x_0000  
8'b0000_0110  
8'b010x_1110  
8'b000x_1000  
x
x
x
0
VREFDDREN  
0
VSNVSVOLT[2:0]  
1
0
1
0
LDO1OMODE VLDO1LPWR VLDO1STBY  
VLDO1EN  
VLDO1[3:0]  
0
0
0
VLDO2EN  
–-  
–-  
LDO2OMODE VLDO2LPWR VLDO2STBY  
VLDO2[3:0]  
0
0
0
VCC_SDOMO VCC_SDLPW  
VCC_SDSTBY VCC_SDEN  
VCC_SD[1:0]  
DE  
R
6E  
6F  
70  
VCC_SDCTL  
V33CTL  
R/W  
R/W  
R/W  
8'b000x_xx10  
8'b000x_xx10  
8'b010x_0000  
0
0
V33LPWR  
0
0
V33STBY  
0
V33EN  
x
x
x
x
V33OMODE  
0
V33[1:0]  
VLDO3OMOD  
E
VLDO3LPWR VLDO3STBY  
VLDO3EN  
VLDO3[3:0]  
VLDO4[3:0]  
VLDO3CTL  
0
0
0
VLDO4EN  
VLDO4OMOD  
E
VLDO4LPWR VLDO4STBY  
71  
7F  
VLDO4CTL  
R/W  
R/W  
8'b000x_xxxx  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
PAGE[4:0]  
0
Page Register  
0
PF3000  
NXP Semiconductors  
105  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 196. Extended page 1  
BITS[7:0]  
Register  
Name  
Address  
TYPE  
Default  
7
6
5
0
4
x
3
2
1
x
0
OTP FUSE  
READ EN  
OTP FUSE  
READ EN  
80  
R/W  
8'b000x_xxx0  
0
0
x
x
x
FORCE  
PWRCTL  
RL OTP  
FUSE  
START  
RL PWBRTN  
RL PWRCTL  
RL OTP  
RL OTP ECC  
RL TRIM FUSE  
OTP LOAD  
MASK  
84  
R/W  
8'b0000_0000  
0
x
0
x
0
x
0
ECC5_SE  
0
0
ECC4_SE  
0
0
ECC3_SE  
0
0
ECC2_SE  
0
0
ECC1_SE  
0
8A  
8B  
8C  
8D  
A0  
A1  
A2  
A8  
A9  
AA  
AC  
AD  
AE  
B0  
B1  
B2  
BC  
OTP ECC SE1  
RSVD  
R
R
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
8'b00xx_xxxx  
x
x
x
ECC5_DE  
0
ECC4_DE  
0
ECC3_DE  
0
ECC2_DE  
0
ECC1_DE  
0
OTP ECC DE1  
RSVD  
R
R
OTP_SW1A_VOLT[4:0]  
x
OTP SW1A  
VOLT  
R/W  
x
x
x
x
x
x
x
OTP_SW1A_SEQ[2:0]  
OTP SW1A  
SEQ  
x
x
x
x
OTP_SW1_CONFIG[1:0]  
OTP_SW1x_FREQ[1:0]  
OTP SW1x  
CONFIG  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b000x_xxXx  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_00xx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_00xx  
x
x
x
x
x
x
x
x
x
x
x
OTP_SW1B_VOLT[4:0]  
x
OTP SW1B  
VOLT  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
OTP_SW1B_SEQ[2:0]  
x
OTP SW1B  
SEQ  
x
x
x
RSVD  
x
x
OTP_SW2_HI  
OTP_SW2_VOLT[2:0]  
OTP SW2  
VOLT  
x
x
x
x
OTP_SW2_SEQ[2:0]  
x
OTP SW2 SEQ  
x
0
x
0
x
0
x
x
x
x
0
OTP_SW2_FREQ[1:0]  
OTP SW2  
CONFIG  
x
x
x
x
OTP_SW3_VOLT[3:0]  
OTP SW3  
VOLT  
x
x
x
x
x
x
x
x
x
x
OTP_SW3_SEQ[2:0]  
x
OTP SW3 SEQ  
x
x
0
x
OTP_SW3_FREQ[1:0]  
OTP SW3  
CONFIG  
x
0
x
0
x
0
x
0
x
0
x
x
OTP_SWBST_VOLT[1:0]  
OTP SWBST  
VOLT  
0
0
PF3000  
106  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 196. Extended page 1 (continued)  
BITS[7:0]  
Register  
Name  
Address  
BD  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
x
3
0
0
x
2
1
0
OTP_SWBST_SEQ[2:0]  
OTP SWBST  
SEQ  
8'b0000_xxxx  
8'b0000_0xxx  
8'b000x_x0xx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
8'b0000_xxxx  
0
0
0
OTP_VSNVS_VOLT[2:0]  
OTP VSNVS  
VOLT  
C0  
0
x
0
x
0
x
C4  
RSVD  
OTP_VLDO1_VOLT[3:0]  
OTP VLDO1  
VOLT  
C8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
x
x
x
x
x
x
OTP_VLDO1_SEQ[3:0]  
OTP VLDO1  
SEQ  
C9  
x
x
OTP_VLDO2_VOLT[3:0]  
OTP VLDO2  
VOLT  
CC  
CD  
D0  
x
x
OTP_VLDO2_SEQ[3:0]  
OTP VLDO2  
SEQ  
x
x
x
x
x
x
x
x
OTP_VCC_SD_VOLT[2:0]  
OTP VCC_SD  
VOLT  
x
x
x
OTP_VCC_SD_SEQ[2:0]  
x
OTP VCC_SD  
SEQ  
D1  
0
x
x
x
x
x
x
OTP_V33_VOLT[2:0]  
OTP V33  
VOLT  
D4  
x
x
x
x
x
x
x
OTP_V33_SEQ[3:0]  
x
D5  
OTP V33 SEQ  
OTP_VLDO3_VOLT[3:0]  
OTP VLDO3  
VOLT  
D8  
x
x
OTP_VLDO3_SEQ[3:0]  
OTP VLDO3  
SEQ  
D9  
x
x
OTP_VLDO4_VOLT[3:0]  
OTP VLDO4  
VOLT  
DC  
DD  
x
x
OTP_VLDO4_SEQ[3:0]  
OTP VLDO4  
SEQ  
x
x
OTP_PWRON  
_CFG  
OTP_SWDVS  
_CLK  
OTP_SEQ_CL  
K_SPEED  
OTP PU  
CONFIG1  
E0  
R/W  
8'b000x_xxxx  
x
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
x
x
0
0
0
TBB_POR  
OTP FUSE  
POR1  
E4  
E5  
E6  
R/W  
R/W  
R/W  
8'b0000_00x0  
8'b0000_00x0  
8'b0000_00x0  
0
0
0
RSVD  
RSVD  
PF3000  
NXP Semiconductors  
107  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 196. Extended page 1 (continued)  
BITS[7:0]  
Register  
Name  
Address  
TYPE  
R
Default  
7
0
0
0
0
0
6
0
0
0
0
0
5
0
0
0
0
0
4
0
0
3
0
0
2
0
0
1
0
E7  
E8  
F0  
F1  
F7  
RSVD  
8'b0000_00x0  
8'b0000_000x  
8'b000x_xxxx  
8'b000x_xxxx  
8'b0000_000x  
0
x
OTP_PG_EN  
0
OTP PWRGD  
EN  
R/W/M  
R/W  
R/W  
R/W  
RSVD  
RSVD  
x
x
x
x
x
x
0
x
0
x
0
x
0
x
OTP_BLOWN  
x
OTP BLOWN  
USE_DEFAUL  
T_ADD  
I2C_SLV  
ADDR[3]  
0
OTP_I2C_SLV ADDR[2:0]  
x
OTP I2C  
ADDR  
FF  
R/W  
8'b0000_1xxx  
0
0
0
1
x
x
Table 197. Extended page 2  
BITS[7:0]  
Register  
Name  
Address  
TYPE  
R/W  
R
Default  
7
6
5
4
3
2
1
0
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW1A_PWRSTG[2:0]  
1
SW1A  
PWRSTG  
81  
83  
8'b1111_1111  
8'b1111_1111  
1
1
SW1B_PWRSTG[2:0]  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SW1B  
PWRSTG  
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
1
1
1
1
1
SW2_PWRSTG[2:0]  
RSVD  
84  
85  
SW2 PWRSTG  
SW3 PWRSTG  
R
R
8'b1111_1111  
8'b1111_1111  
1
SW3_PWRSTG[2:0]  
RSVD  
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
1
0
1
OTP_PWRGD  
_EN  
PG_SHDWN_  
EN  
0
0
0
0
0
PWRCTRL  
OTP CTRL  
88  
R
8'b0000_0001  
0
1
0
0
0
I2C_WRITE_ADDRESS_TRAP[7:0]  
I2C WRITE  
ADDRESS  
TRAP  
8D  
8E  
8F  
90  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b00xx_xxxx  
0
0
RSVD  
0
0
RSVD  
0
0
0
0
0
0
0
LET_IT_ ROLL  
0
I2C_TRAP_PAGE[4:0]  
0
I2C TRAP  
PAGE  
0
0
I2C_WRITE_ADDRESS_COUNTER[7:0]  
I2C TRAP  
CNTR  
0
0
0
0
0
0
SDA_DRV[1:0]  
RSVD  
INTB_DRV[1:0]  
RESETBMCU_DRV[1:0]  
IO DRV  
0
0
0
0
x
0
x
x
x
x
x
AUTO_ECC  
_BANK5  
AUTO_ECC AUTO_ECC_B AUTO_ECC AUTO_ECC_B  
_BANK4  
ANK3  
_BANK2  
ANK1  
OTP AUTO  
ECC0  
D0  
D8  
D9  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
AUTO_BLOW_TIME[7:0]  
Reserved  
Reserved  
0
START  
0
0
RELOAD  
0
0
EN_RW  
0
0
0
0
0
0
AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_  
BLOW5  
BLOW4  
BLOW3  
BLOW2  
BLOW1  
0
0
0
0
0
PF3000  
108  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 197. Extended page 2 (continued)  
BITS[7:0]  
Register  
Name  
Address  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
7
6
5
4
3
2
1
0
ECC1_CALC_  
CIN  
RSVD  
ECC1_CIN_TBB[5:0]  
OTP ECC  
CTRL1  
E1  
E2  
E3  
E4  
E5  
F1  
F2  
F3  
F4  
F5  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ECC2_CALC_  
CIN  
RSVD  
ECC2_CIN_TBB[5:0]  
OTP ECC  
CTRL2  
0
0
0
0
ECC3_CALC_  
CIN  
RSVD  
ECC3_CIN_TBB[5:0]  
OTP ECC  
CTRL3  
0
0
0
0
ECC4_CALC_  
CIN  
RSVD  
ECC4_CIN_TBB[5:0]  
OTP ECC  
CTRL4  
0
0
0
0
ECC5_CALC_  
CIN  
RSVD  
ECC5_CIN_TBB[5:0]  
OTP ECC  
CTRL5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R  
BYPASS1  
N
OAD  
W
OTP FUSE  
CTRL1  
0
0
0
0
ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R  
BYPASS2  
N
OAD  
W
OTP FUSE  
CTRL2  
0
0
0
0
ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R  
BYPASS3  
N
OAD  
W
OTP FUSE  
CTRL3  
0
0
0
0
ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R  
BYPASS4  
N
OAD  
W
OTP FUSE  
CTRL4  
0
0
0
0
BYPASS5  
0
ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R  
N
OAD  
W
OTP FUSE  
CTRL5  
0
0
0
PF3000  
NXP Semiconductors  
109  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Application diagram  
SW1AOUT  
VIN  
1.5uH  
VIN  
4.7uF  
SW1ALX  
SW1AIN  
1.0uF  
O/P  
Drive  
VLDO1IN  
VLDO1  
PF3000  
SW1A  
1.0 A  
Buck  
2.2uF  
1.0uF  
4.7uF  
VLDO1  
VLDO2IN  
VLDO2  
100 mA  
100nF  
2 x 22uF  
V33  
VIN  
VLDO2  
250 mA  
SW1AFB  
1.0uF  
2.2uF  
VLDO34IN  
VLDO3  
SW1BOUT  
VLDO3  
100 mA  
1.5uH  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN  
SW1B  
1.75 A  
Buck  
VLDO4  
350 mA  
2 x 22uF  
100nF  
4.7uF  
4.7uF  
2.2uF  
VLDO4  
SW1BFB  
Core Control logic  
GNDREF1  
VCC_SD  
100 mA  
VCC_SD  
SW2OUT  
Initialization State Machine  
1.5uH  
SW2LX  
SW2IN  
V33  
350 mA  
O/P  
Drive  
4.7uF  
10uF  
V33  
VIN  
SW2  
1.25 A  
Buck  
2 x 22uF  
100nF  
4.7uF  
VIN  
VIN2  
OTP  
Supplies  
Control  
SW2FB  
VDDOTP  
VDDIO  
VDDIO  
CONTROL  
SW3OUT  
100nF  
I2C  
Interface  
1.5uH  
SW3LX  
SW3IN  
O/P  
Drive  
VIN  
SCL  
SDA  
SW3  
1.5 A  
Buck  
To  
MCU  
2 x 22uF  
100nF  
4.7uF  
DVS CONTROL  
DVS Control  
SW3FB  
GNDREF2  
VIN  
10uF  
VIN2  
I2C  
Register  
map  
2.2uH  
1.0uF  
Trim-In-Package  
VCOREDIG  
VCOREREF  
SWBSTLX  
SWBSTFB  
O/P  
Drive  
SWBST  
600 mA  
Boost  
SWBSTOUT  
2 x 22uF  
220nF  
1.0uF  
Reference  
Generation  
Clocks and  
resets  
VCORE  
GNDREF  
1.0uF  
VREFDDR  
SW3OUT  
VINREFDDR  
100nF  
100nF  
Clocks  
32kHz and 16MHz  
VHALF  
1.0uF  
+5V  
VPWR  
LDOG  
V
REF  
Package Pin Legend  
2 x 47uF  
4.7uF  
100nF  
Output Pin  
Input Pin  
LDO  
Bi-directional Pin  
VIN*  
VIN  
Best  
of  
Supply  
100nF  
1.0uF  
2 x 47uF  
Li Cell  
Charger  
LICELL  
Coin Cell  
Battery  
220nF  
VSNVS  
Notes:  
*: The PF3000 can also be powered through VIN directly (ie. 3.7V Li-ion Battery  
application). In this case, the Front-End LDO regulator is not used : the external  
MOSFET has to be unpopulated and VPWR pin must be connected to GND .  
The capacitors on VPWR can be removed and only a 2.2uF capacitor on VIN to  
ground is necessary in this case.  
VDDIO  
VDDIO  
0.47uF  
- Unused BUCK and BOOST: Connect input pin SWxIN to VIN with a 0.1 uF  
bypass capacitor to ground. Leave LX and FB pins floating.  
- Unused LDO: output can be left floating. Connect input pin to GND if not shared  
with other LDOs.  
To/From Processor  
Figure 36. Typical application schematic  
PF3000  
110  
NXP Semiconductors  
BILL OF MATERIALS  
8
Bill of materials  
The following table provides a complete list of the recommended components on a full featured system using the PF3000 Device for  
-40 °C to 85 °C applications. Components are provided with an example part number; equivalent components may be used.  
Table 198. Bill of materials for -40 °C to 85 °C applications  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
PMIC  
N/A  
1
Power management IC  
PF3000  
NXP  
IC  
Buck regulators  
IND PWR 1.5 μH at 1.0 MHz 2.9 A  
SW1A, SW1B, SW2, SW3  
inductors  
DFE201610E-1R5M  
BRL3225T1R5M  
TOKO INC.  
Taiyo Yuden  
Murata  
20% 2016  
1.5 µH  
4
IND PWR 1.5 μH at 1.0 MHz 2.2 A  
20% 1210  
Alternate for low-power  
applications  
CAP CER 4.7 µF 10 V 20% X5R  
0402  
SW1A, SW1B, SW2, SW3 input  
capacitors  
4.7 µF  
0.1 µF  
4
4
8
GRM155R61A475MEAA  
GRM033R61A104ME84  
GRM188R61A226ME15  
CAP CER 0.1 µF 10 V 20% X5R  
0201  
SW1A, SW1B, SW2, SW3 input  
capacitors (optional)  
Murata  
CAP CER 22 µF 10 V 20% X5R  
0603  
SW1A, SW1B, SW2, SW3 output  
capacitors  
22 µF  
Murata  
Boost regulator  
IND PWR 2.2 µH at 1.0 MHz 2.4 A  
20% 2016  
DFE201610E-2R2M  
BRL3225T2R2M  
TOKO INC.  
Taiyo Yuden  
Murata  
SWBST inductor  
2.2 µH  
1
IND PWR 2.2 µH at 1.0 MHz  
1.85 A 20% 1210  
Alternate for low-power  
applications  
CAP CER 10 µF 10 V 20% X5R  
0402  
10 µF  
N/A  
1
1
2
GRM155R61A106ME11  
MBR120LSFT3G  
SWBST input capacitor  
SWBST diode  
DIODE SCH PWR RECT 1.0 A  
20 V SMT  
ON Semi  
Murata  
CAP CER 22 µF 10 V 20% X5R  
0603  
22 µF  
GRM188R61A226ME15D  
SWBST output capacitors  
Linear regulators  
CAP CER 1.0 µF 10 V 20% X5R  
0201  
VLDO1, VLDO2, VLDO3 and  
VLDO4 input capacitors  
1.0 µF  
2.2 µF  
10 µF  
3
3
1
3
GRM033R61A105ME44  
GRM033R61A225ME47  
GRM155R61A106ME11  
GRM155R61A475MEAA  
Murata  
Murata  
Murata  
Murata  
CAP CER 2.2 µF 10 V 20% X5R  
0201  
VLDO1, VLDO3, VCC_SD  
output capacitors  
CAP CER 10 µF 10 V 20% X5R  
0402  
V33 and VCC_SD input  
capacitor  
CAP CER 4.7 µF 10 V 20% X5R  
0402  
VLDO2, VLDO4, V33 output  
capacitors  
4.7 µF  
Miscellaneous  
VCORE, VCOREDIG,  
VREFDDR, VINREFDDR  
capacitors  
CAP CER 1.0 µF 10 V 20% X5R  
0201  
1.0 µF  
4
GRM033R61A105ME44  
Murata  
CAP CER 0.22 µF 10 V 20% X5R  
0201  
VCOREREF and Coin Cell  
output capacitors  
0.22 µF  
0.47 µF  
47 µF  
2
1
4
GRM033R61A224ME90  
GRM033R61A474ME90  
GRM21BR61A476ME15  
Murata  
Murata  
Murata  
CAP CER 0.47 µF 10 V 20% X5R  
0201  
VSNVS output capacitor  
CAP CER 47 µF 10 V 20% X5R  
0805  
Front-end LDO capacitors for  
VIN and VPWR.  
PF3000  
NXP Semiconductors  
111  
BILL OF MATERIALS  
Table 198. Bill of materials for -40 °C to 85 °C applications (continued)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
CAP CER 2.2 µF 10 V 20% X5R  
0201  
VIN input capacitor when not  
using Front-end LDO  
2.2 µF  
1
GRM033R61A225ME47  
Murata  
CAP CER 0.1 µF 10 V 10% X5R  
0201  
VDDIO, VHALF, VPWR, VIN  
input capacitors (optional)  
0.1 µF  
N/A  
5
1
GRM033R61A104KE84  
PMPB15XP  
Murata  
NXP  
TRAN PMOS 11. A 12 V 12 SOT-  
1220  
External MOSFET  
100 k  
4.7 k  
2
2
RES MF 100 k 1/16 W 1% 0402  
RES MF 4.70 k 1/20 W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
Yageo America Pull-up resistors  
Yageo America I²C pull-up resistors  
The following table provides a complete list of the recommended components on a full featured system using the PF3000 Device for  
-40 °C to 105 °C applications. Components are provided with an example part number, equivalent components may be used.  
Table 199. Bill of materials for -40 °C to 105 °C applications  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
PMIC  
N/A  
1
Power management IC  
PF3000  
NXP  
IC  
Buck regulators  
IND PWR 1.5 µH at 1.0 MHz 2.9 A  
20% 2016  
SW1A, SW1B, SW2, SW3  
inductors  
DFE201610E-1R5M  
BRL3225T1R5M  
Toko Inc.  
Taiyo Yuden  
Murata  
1.5 µH  
4
IND PWR 1.5 µH at 1.0 MHz 2.2 A  
20% 1210  
Alternate for low-power  
applications  
CAP CER 4.7 µF 10 V 10% X7S  
0603  
SW1A, SW1B, SW2, SW3 input  
capacitors  
4.7 µF  
0.1 µF  
4
4
8
GRM188C71A475KE11  
GRM033C71A104KE14  
GRM21BD71A226ME44  
CAP CER 0.1 µF 10 V 10% X7S  
0201  
SW1A, SW1B, SW2, SW3 input  
capacitors (optional)  
Murata  
CAP CER 22 µF 10 V 20% X7T  
0805  
SW1A, SW1B, SW2, SW3 output  
capacitors  
22 µF  
Murata  
Boost regulator  
IND PWR 2.2 µH at 1.0 MHz 2.4 A  
20% 2016  
DFE201610E-2R2M  
BRL3225T2R2M  
Toko Inc.  
Taiyo Yuden  
Murata  
SWBST Inductor  
2.2 µH  
1
IND PWR 2.2 µH at 1.0 MHz  
1.85 A 20% 1210  
Alternate for low-power  
applications  
CAP CER 10 µF 10 V 20% X7T  
0603  
10 µF  
N/A  
1
1
2
GRM188D71A106MA73  
MBR120LSFT3G  
SWBST input capacitor  
SWBST diode  
DIODE SCH PWR RECT 1.0 A  
20 V SMT  
ON Semi  
Murata  
CAP CER 22 µF 10 V 20% X5R  
0603  
22 µF  
GRM188R61A226ME15D  
SWBST output capacitors  
Linear regulators  
CAP CER 1.0 µF 10 V 10% X7S  
0402  
VLDO1, VLDO2, VLDO3 and  
VLDO4 input capacitors  
1.0 µF  
2.2 µF  
10 µF  
3
3
1
GRM155C71A105KE11  
GRM155C71A225KE11  
GRM188D71A106MA73  
Murata  
Murata  
Murata  
CAP CER 2.2 µF 10 V 10% X7S  
0402  
VLDO1, VLDO3, VCC_SD  
output capacitors  
CAP CER 10 µF 10 V 20% X7T  
0603  
V33 and VCC_SD input capacitor  
PF3000  
112  
NXP Semiconductors  
BILL OF MATERIALS  
Table 199. Bill of materials for -40 °C to 105 °C applications (continued)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
CAP CER 4.7 µF 10 V 10% X7S  
0603  
VLDO2, VLDO4, V33 output  
capacitors  
4.7 µF  
3
GRM188C71A475KE11  
Murata  
Miscellaneous  
VCORE, VCOREDIG,  
VREFDDR, VINREFDDR  
capacitors  
CAP CER 1.0 µF 10 V 10% X7R  
0402  
1.0 µF  
4
GRM155C71A105KE11  
Murata  
CAP CER 0.22 µF 10 V 10% X7R  
0402  
VCOREREF and coin cell output  
capacitors  
0.22 µF  
0.47 µF  
47 µF  
2.2 µF  
0.1 µF  
N/A  
2
1
4
1
5
1
GRM155R71A224KE01  
GRM155R71A474KE01  
GRM32ER71A476ME15  
GRM155C71A225KE11  
GRM033C71A104KE14  
PMPB15XP  
Murata  
Murata  
Murata  
Murata  
Murata  
NXP  
CAP CER 0.47 µF 10 V 20% X5R  
0201  
VSNVS output capacitor  
CAP CER 47 µF 10 V 20% X7R  
1210  
Front-end LDO capacitors for  
VIN and VPWR.  
CAP CER 2.2 µF 10 V 10% X7S  
0402  
VIN input capacitor when not  
using front-end LDO  
CAP CER 0.1 µF 10 V 10% X7S  
0201  
VDDIO, VHALF, VPWR, VIN  
input capacitors (optional)  
TRAN PMOS 11. A 12 V 12 SOT-  
1220  
External MOSFET  
100 k  
4.7 k  
2
2
RES MF 100k 1/16 W 1% 0402  
RES MF 4.70k 1/20 W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
Yageo America Pull-up resistors  
Yageo America I²C pull-up resistors  
PF3000  
NXP Semiconductors  
113  
THERMAL INFORMATION  
9
Thermal information  
9.1  
Rating data  
The thermal rating data of the packages has been simulated with the results listed in Thermal ratings. Junction to ambient thermal  
resistance nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-ambient thermal  
resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) is used for both junction-to-ambient on a  
2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated  
that the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org.  
9.2  
Estimation of junction temperature  
An estimation of the chip junction temperature T can be obtained from the equation:  
J
T = T + (RθJA x P )  
J
A
D
with:  
T = Ambient temperature for the package in °C  
A
RθJA = Junction to ambient thermal resistance in °C/W  
P = Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance.  
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four  
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be  
somewhat degraded in case of significant power dissipated by other components placed close to the device.  
At a known board temperature, the junction temperature T is estimated using the following equation  
J
T = T + (RθJB x P ) with  
J
B
D
T = Board temperature at the package perimeter in °C  
B
RθJB = Junction to board thermal resistance in °C/W  
P = Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
PF3000  
114  
NXP Semiconductors  
PACKAGING  
10 Packaging  
10.1 Packaging dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing's document number. See the Thermal Characteristics section for specific thermal characteristics  
for each package.  
Table 200. Package drawing information  
Package  
Suffix  
EP  
Package outline drawing number  
98ASA00719D  
48-pin QFN 7X7 mm - 0.5mm pitch  
48 QFN 7.0 mm x 7.0 mm WF-type (wettable flank)  
ES  
98ASA00933D  
PF3000  
NXP Semiconductors  
115  
PACKAGING  
PF3000  
116  
NXP Semiconductors  
PACKAGING  
PF3000  
NXP Semiconductors  
117  
PACKAGING  
PF3000  
118  
NXP Semiconductors  
PACKAGING  
PF3000  
NXP Semiconductors  
119  
PACKAGING  
PF3000  
120  
NXP Semiconductors  
REVISION HISTORY  
11 Revision history  
Revision  
Date  
Description of changes  
1.0  
11/2014  
Initial release  
VREFDDR output accuracy spec re-formatted  
Added typical performance waveforms  
Corrected OTP option 1 set points  
LDO current limit specifications updated  
VPWR LDO output voltage accuracy specification updated  
Updated register names of Extended Page 1 registers to maintain consistency throughout document  
Added typical bill of materials  
2.0  
3.0  
2/2015  
2/2015  
Corrected Register INTSENSE0 - ADDR 0x07  
Added orderable part numbers PC32PF3000A5EP and PC34PF3000A5EP  
Included i.MX Series processor  
Redefined voltages for SW1A and SW1A/B  
Corrected typographic errors  
Improved bill of materials capacitors  
Updated SW1A/B, SW1A, and SW1B Output Voltage Accuracy  
Added note on LICELL for Operating Input Voltage  
Improved temperature range to 105 °C  
Updated ILIM max values for Linear regulators  
VCOREDIG/VCOREREF tables updated  
Updated LSL of ISW1BLIM to 2.4 A  
4.0  
6/2015  
Replaced i.MX Series by i.MX 7  
Added i.MX 6UL processor  
Updated Bill of Materials Table 199  
5.0  
6.0  
6/2015  
8/2015  
Added MC32PF3000A6EP, MC34PF3000A6EP, MC32PF3000A7EP, and MC34PF3000A7EP parts  
to the Orderable Part Variations Table  
Updated Table 42  
Removed i.MX 6 DL note on Power Virus  
Updated the definition of rated current for switchers and linear regulators  
Added 98ASA00933D and the page 1 package image for wettable flank  
Changed Table 2, pins 7, 10, 18, and 28, from Bypass with at least a 10 μF to Bypass with at least a  
4.7 μF  
3/2016  
Added PC33PF3000A0ES, PC33PF3000A3ES, PC33PF3000A4ES, PC33PF3000A5ES,  
PC33PF3000A6ES, and PC33PF3000A7ES to Table 1  
7.0  
Changed PC33PF3000A0ES, PC33PF3000A3ES, PC33PF3000A4ES, PC33PF3000A5ES,  
PC33PF3000A6ES, and PC33PF3000A7ES to MC parts in Table 1  
8/2016  
9/2016  
Updated Table 66 LDO Control to accurately describe all modes  
Added MC32PF3000A8EP and MC34PF3000A8EP parts to Table 1  
Added new note (2) to Table 1  
Updated VSW1AACC parameter in Table 7  
8.0  
9.0  
3/2017  
8/2017  
Added OTP configuration for A8 to Table 42  
Updated Table 80 (changed default value to 1)  
Updated notes (47) and (49) as per 201707041I  
PF3000  
NXP Semiconductors  
121  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2017.  
Document Number: PF3000  
Rev. 9.0  
8/2017  

相关型号:

935320792528

Switching Regulator
NXP

935320919118

RF Power Field-Effect Transistor
NXP

935320955557

Microprocessor
NXP

935320956557

Microprocessor
NXP

935320957557

Microprocessor
NXP

935320986557

Digital Signal Processor
NXP

935320988557

Digital Signal Processor
NXP

935320989574

Microcontroller
NXP

935321088557

RISC Microcontroller
NXP

935321089557

RISC Microcontroller
NXP

935321126557

Microprocessor
NXP

935321128557

RISC Microprocessor
NXP