935323765528 [NXP]

Narrow Band High Power Amplifier;
935323765528
型号: 935323765528
厂家: NXP    NXP
描述:

Narrow Band High Power Amplifier

高功率电源 射频 微波
文件: 总23页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMRF2010N  
Rev. 1, 04/2017  
NXP Semiconductors  
Technical Data  
RF LDMOS Wideband Integrated  
Power Amplifiers  
MMRF2010N  
MMRF2010GN  
The MMRF2010N is a 2--stage RFIC designed for IFF transponder  
applications operating from 1030 to 1090 MHz. These devices are suitable for  
use in pulse applications such as IFF and secondary radar transponders.  
Typical Wideband Performance: (52 Vdc, T = 25°C)  
1030–1090 MHz, 250 W PEAK, 50 V  
RF LDMOS INTEGRATED  
POWER AMPLIFIERS  
A
Frequency  
(MHz)  
P
(W)  
G
2nd Stage Eff.  
(%)  
out  
ps  
(1)  
Signal Type  
(dB)  
34.1  
33.4  
33.6  
32.6  
Pulse  
250 Peak  
1030  
1090  
1030  
1090  
61.0  
61.9  
61.5  
62.9  
(128 μsec, 10% Duty Cycle)  
Pulse  
250 Peak  
(2 msec, 20% Duty Cycle)  
TO--270WB--14  
PLASTIC  
MMRF2010N  
Narrowband Performance: (50 Vdc, T = 25°C)  
A
P
Frequency  
(MHz)  
G
(dB)  
2nd Stage Eff.  
(%)  
out  
ps  
Signal Type  
(W)  
(2)  
1090  
Pulse  
250 Peak  
32.1  
61.4  
(128 μsec, 10% Duty Cycle)  
TO--270WBG--14  
PLASTIC  
MMRF2010GN  
Load Mismatch/Ruggedness  
Frequency  
P
(W)  
Test  
Voltage  
in  
Signal Type  
VSWR  
(MHz)  
Result  
(1)  
1090  
Pulse  
> 20:1 at all  
0.316 W  
Peak  
(3 dB  
52  
No Device  
Degradation  
(2 msec, 20% Phase Angles  
Duty Cycle)  
Overdrive)  
1. Measured in 1030–1090 MHz reference circuit.  
2. Measured in 1090 MHz narrowband test circuit.  
Features  
Characterized over 1030–1090 MHz  
On--chip input (50 ohm) and interstage matching  
Single ended  
Integrated ESD protection  
Low thermal resistance  
Integrated quiescent current temperature compensation with  
enable/disable function (3)  
Typical Applications  
Driver PA for high power pulse applications  
IFF and secondary radar  
3. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.  
© 2015, 2017 NXP B.V.  
V
1
2
DS1  
GS2  
V
V
3
GS1  
N.C.  
RF  
RF  
RF  
14  
13  
RF /V  
out DS2  
4
5
in  
in  
in  
V
V
DS1  
6
7
RF  
RF /V  
out DS2  
Stage 1  
Stage 2  
RF  
8
in  
in  
RF /V  
out DS2  
N.C.  
N.C.  
9
10  
11  
12  
Thermal Sense  
RF Sense  
Quiescent Current  
GS1  
GS2  
(1)  
out  
Temperature Compensation  
and Thermal Sense  
V
Thermal Sense  
RF Sense  
(Top View)  
out  
Note: Exposed backside of the package is  
the source terminal for the transistor.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
–0.5, +100  
–6, +10  
Unit  
Vdc  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
50, +0  
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
–65 to +150  
–55 to 150  
–55 to 225  
25  
T
C
°C  
(2,3)  
Operating Junction Temperature Range  
Input Power  
T
J
°C  
P
dBm  
in  
Table 2. Thermal Characteristics  
(3,4)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Impedance, Junction to Case  
Z
θ
°C/W  
JC  
Pulse: Case Temperature 81°C, 250 W Peak, 128 μsec Pulse Width, 10% Duty  
Cycle, 1090 MHz  
Stage 1, 50 Vdc, I  
Stage 2, 50 Vdc, I  
= 80 mA  
= 150 mA  
1.1  
0.15  
DQ1  
DQ2  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
Class 2, passes 2500 V  
Class A, passes 150 V  
Class II, passes 200 V  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
°C  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current  
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.  
2. Continuous use at maximum temperature will affect MTTF.  
3. MTTF calculator available at http://www.nxp.com/RF/calculators.  
4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Stage 1 -- Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 55 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
(V = 1.5 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
Stage 1 -- On Characteristics  
Gate Threshold Voltage  
V
V
1.3  
6.0  
1.8  
7.0  
2.3  
8.0  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 52 μAdc)  
DS  
D
Fixture Gate Quiescent Voltage  
(V = 50 Vdc, I = 80 mAdc, Measured in Functional Test)  
GG(Q)  
DD  
DQ1  
Stage 2 -- Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 55 Vdc, V = 0 Vdc)  
I
DS  
GS  
Gate--Source Leakage Current  
(V = 1.5 Vdc, V = 0 Vdc)  
I
1
GS  
DS  
Stage 2 -- On Characteristics  
Gate Threshold Voltage  
V
V
1.3  
2.2  
1.8  
2.7  
2.3  
3.2  
Vdc  
Vdc  
Vdc  
GS(th)  
GG(Q)  
DS(on)  
(V = 10 Vdc, I = 528 μAdc)  
DS  
D
Fixture Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
DD  
DQ2  
Drain--Source On--Voltage  
V
0.25  
(V = 10 Vdc, I = 1.6 Adc)  
GS  
D
(1,2)  
Functional Tests  
(In NXP Test Fixture, 50 ohm system) V = 50 Vdc, I  
= 80 mA, I  
= 150 mA, P = 250 W Peak  
DQ2 out  
DD  
DQ1  
(25 W Avg.), f = 1090 MHz, 128 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
30.5  
57.0  
32.1  
61.4  
34.0  
dB  
%
ps  
D
2nd Stage Drain Efficiency  
η
Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) I  
= 80 mA, I  
= 150 mA  
DQ2  
DQ1  
Frequency  
(MHz)  
Signal  
Type  
P
in  
(W)  
VSWR  
Test Voltage, V  
Result  
DD  
1090  
Pulse  
(128 μsec,  
10% Duty  
Cycle)  
> 10:1 at all Phase Angles  
0.345 W Peak  
(3 dB Overdrive)  
50  
No Device Degradation  
Table 6. Ordering Information  
Device  
Tape and Reel Information  
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel  
Package  
TO--270WB--14  
TO--270WBG--14  
MMRF2010NR1  
MMRF2010GNR1  
1. Part internally input matched.  
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing  
(GN) parts.  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
3
TYPICAL CHARACTERISTICS  
1.20  
V
I
I
= 50 Vdc  
= 80 mA  
= 150 mA  
DD  
DQ1  
DQ2  
1.15  
1.10  
I
DQ2  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
I
DQ1  
–75  
–50  
–25  
0
25  
50  
75  
100  
T , CASE TEMPERATURE (°C)  
C
Slope  
(mA/°C)  
I
I
–0.000  
+0.143  
DQ1  
DQ2  
Note: Performance measured in reference circuit.  
Figure 3. Normalized IDQ versus Case Temperature  
9
10  
V
= 50 Vdc  
DD  
Pulse Width = 128 μsec  
10% Duty Cycle  
8
10  
I
D
= 6.52 Amps  
7
8.30 Amps  
10  
9.36 Amps  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
Note: MTTF value represents the total cumulative operating time  
under indicated test conditions.  
MTTF calculator available at http://www.nxp.com/RF/calculators.  
Figure 4. MTTF versus Junction Temperature -- Pulse  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
4
1030–1090 MHz REFERENCE CIRCUIT — 1.97x 2.76(5.0 cm x 7.0 cm)  
Table 7. 1030–1090 MHz Performance (In NXP Reference Circuit, 50 ohm system) V = 52 Vdc, I  
= 80 mA, I = 150 mA  
DQ2  
DD  
DQ1  
G
Frequency  
(MHz)  
2nd Stage Eff.  
P
(W)  
ps  
out  
Signal Type  
(dB)  
34.1  
33.4  
33.6  
32.6  
(%)  
61.0  
61.9  
61.5  
62.9  
1030  
1090  
1030  
1090  
Pulse  
250 Peak  
250 Peak  
(128 μsec, 10% Duty Cycle)  
Pulse  
(2 msec, 20% Duty Cycle)  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
5
1030–1090 MHz REFERENCE CIRCUIT — 1.97x 2.76(5.0 cm x 7.0 cm)  
R1  
R2  
C25  
V
DD1  
C17  
C19  
C20  
C18  
C1  
C11  
C26  
C13*  
C14*  
C21  
C23  
C8  
C6  
C24  
Q1  
C7  
C9  
C10  
C12  
C15*  
C16*  
C22  
Rev. B  
V
DD2  
* Stacked components  
Note: Component numbers C2, C3, C4, and C5 are not used.  
Figure 5. MMRF2010N Reference Circuit Component Layout — 1030–1090 MHz  
Table 8. MMRF2010N Reference Circuit Component Designations and Values — 1030–1090 MHz  
Part  
Description  
Part Number  
Manufacturer  
C1, C10  
56 pF Chip Capacitors  
ATC600F560JT250XT  
ATC  
ATC  
C11, C12, C17, C18,  
C19  
51 pF Chip Capacitors  
ATC600F510JT250XT  
C6, C7  
C8  
10 pF Chip Capacitors  
6.8 pF Chip Capacitor  
2.4 pF Chip Capacitor  
10 μF Chip Capacitors  
ATC600F100JT250XT  
ATC600F6R8BT250XT  
ATC600F2R4BT250XT  
C5750X7S2A106M  
ATC  
ATC  
ATC  
C9  
C13, C14, C15, C16,  
C25, C26  
TDK  
C20  
C21, C22  
C23  
C24  
Q1  
1 μF Chip Capacitor  
GRM21BR71H105KA12L  
ATC600F8R2BT250XT  
ATC600F2R7BT250XT  
ATC600F1R5BT250XT  
MMRF2010N  
Murata  
ATC  
8.2 pF Chip Capacitors  
2.7 pF Chip Capacitor  
ATC  
1.5 pF Chip Capacitor  
ATC  
RF Power LDMOS Transistor  
3.9 kΩ, 1/16 W Chip Resistor  
1 kΩ, 1/16 W Chip Resistor  
NXP  
R1  
RR0816P-392-B-T5  
RR0816P-102-B-T5  
Susumu  
Susumu  
MTL  
R2  
PCB  
Taconic RF60A 0.025, ε = 6.15  
r
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
6
TYPICAL CHARACTERISTICS — 1030–1090 MHz  
36  
35  
80  
70  
60  
36  
35  
80  
70  
60  
1090 MHz  
1090 MHz  
34  
33  
32  
31  
30  
29  
28  
34  
33  
32  
31  
30  
29  
28  
1030 MHz  
1030 MHz  
50  
40  
30  
50  
40  
30  
η
η
G
D
G
D
ps  
ps  
1090 MHz  
1090 MHz  
= 150 mA  
1030 MHz  
1030 MHz  
20  
10  
0
20  
10  
0
V
= 52 V, I  
= 80 mA, I  
V
= 52 V, I  
= 80 mA, I  
= 150 mA  
DD  
DQ1 DQ2  
DD  
DQ1  
DQ2  
Pulse Width = 128 μsec, Duty Cycle = 10%  
Pulse Width = 2 msec, Duty Cycle = 20%  
0
50  
100  
150  
200  
250  
300  
350 400  
0
50 100 150 200 250  
300  
350 400  
P
, OUTPUT POWER (WATTS) PEAK  
P , OUTPUT POWER (WATTS) PEAK  
out  
out  
Figure 7. Power Gain and Drain Efficiency versus  
Output Power and Frequency — Long Pulse  
Figure 6. Power Gain and Drain Efficiency versus  
Output Power and Frequency  
350  
350  
300  
250  
1030 MHz  
1030 MHz  
1090 MHz  
300  
250  
200  
150  
100  
1090 MHz  
200  
150  
100  
V
= 52 V, I  
= 80 mA, I  
= 150 mA  
V
= 52 V, I  
= 80 mA, I  
= 150 mA  
DD  
DQ1  
DQ2  
DD  
DQ1  
DQ2  
50  
0
50  
0
Pulse Width = 128 μsec, Duty Cycle = 10%  
Pulse Width = 2 msec, Duty Cycle = 20%  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
P
INPUT POWER (WATTS) PEAK  
P , INPUT POWER (WATTS) PEAK  
in  
in,  
Figure 8. Output Power versus Input Power and Frequency  
Figure 9. Output Power versus Input Power and  
Frequency — Long Pulse  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
7
1030–1090 MHz REFERENCE CIRCUIT  
Z
source  
f = 1090 MHz  
f = 1030 MHz  
Z = 50 Ω  
o
f = 1090 MHz  
f = 1030 MHz  
Z
load  
f
Z
Z
load  
source  
MHz  
1030  
1090  
27.4 + j23.65  
32.5 + j29  
1.57 + j1.07  
1.35 + j1.5  
Z
Z
= Test circuit input impedance as measured from  
gate to ground.  
source  
= Test circuit impedance as measured from  
drain to ground.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
50 Ω  
50 Ω  
Z
Z
load  
source  
Figure 10. Series Equivalent Source and Load Impedance — 10301090 MHz  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
8
1090 MHz REFERENCE CIRCUIT — 1.97x 2.76(5.0 cm x 7.0 cm)  
R1  
R2  
C25  
V
DD1  
C17  
C19  
C20  
C18  
C1  
C26  
C13*  
C14*  
C11  
C23  
C21  
C9  
C8  
C6  
Q1  
C24  
C7  
C10  
C12  
C15*  
C16*  
C22  
Rev. B  
V
DD2  
* Stacked components  
Note: Component numbers C2, C3, C4, and C5 are not used.  
Figure 11. MMRF2010N Reference Circuit Component Layout — 1090 MHz  
Table 9. MMRF2010N Reference Circuit Component Designations and Values — 1090 MHz  
Part  
Description  
Part Number  
Manufacturer  
C1, C10  
56 pF Chip Capacitors  
ATC600F560JT250XT  
ATC  
ATC  
C11, C12, C17, C18,  
C19  
51 pF Chip Capacitors  
ATC600F510JT250XT  
C6, C7  
C8  
10 pF Chip Capacitors  
6.8 pF Chip Capacitor  
2.4 pF Chip Capacitor  
10 μF Chip Capacitors  
ATC600F100JT250XT  
ATC600F6R8BT250XT  
ATC600F2R4BT250XT  
C5750X7S2A106M  
ATC  
ATC  
ATC  
C9  
C13, C14, C15, C16,  
C25, C26  
TDK  
C20  
C21, C22  
C23  
C24  
Q1  
1 μF Chip Capacitor  
GRM21BR71H105KA12L  
ATC600F8R2BT250XT  
ATC600F2R7BT250XT  
ATC600F1R5BT250XT  
MMRF2010N  
Murata  
ATC  
8.2 pF Chip Capacitors  
2.7 pF Chip Capacitor  
ATC  
1.5 pF Chip Capacitor  
ATC  
RF Power LDMOS Transistor  
3.9 kΩ, 1/16 W Chip Resistor  
1 kΩ, 1/16 W Chip Resistor  
NXP  
R1  
RR0816P-392-B-T5  
RR0816P-102-B-T5  
Susumu  
Susumu  
MTL  
R2  
PCB  
Taconic RF60A 0.025, ε = 6.15  
r
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
9
TYPICAL CHARACTERISTICS — 1090 MHz  
REFERENCE CIRCUIT  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
90  
70  
η
D
50  
G
30  
ps  
10  
300  
250  
200  
150  
100  
V
= 50 Vdc, f = 1090 MHz  
P
DD  
out  
I
= 80 mA, I  
= 150 mA  
DQ1  
DQ2  
Pulse Width =128 μsec  
Duty Cycle = 10%  
50  
0
0.35  
0.0  
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
P , INPUT POWER (WATTS) PEAK  
in  
Figure 12. Power Gain, Drain Efficiency and Output  
Power versus Input Power  
300  
250  
200  
150  
100  
50  
V
= 50 Vdc, f = 1090 MHz  
DD  
I
= 80 mA, I  
= 150 mA  
DQ1  
DQ2  
Pulse Width = 128 μsec  
Duty Cycle = 10%  
0
0.0  
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
P , INPUT POWER (WATTS) PEAK  
in  
Figure 13. Output Power versus Input Power  
f
Z
Z
load  
source  
MHz  
1090  
36.7 – j29  
1.3 + j0.60  
Z
Z
= Test circuit input impedance as measured from  
gate to ground.  
source  
= Test circuit impedance as measured from  
drain to ground.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
50 Ω  
50 Ω  
Z
Z
load  
source  
Figure 14. Series Equivalent Source and Load Impedance — 1090 MHz  
MMRF2010N MMRF2010GN  
10  
RF Device Data  
NXP Semiconductors  
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE  
Table 10. 1090 MHz Narrowband Performance (1,2) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ1 = 80 mA,  
I
DQ2 = 150 mA, Pout = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 μsec Pulse Width, 10% Duty Cycle  
Characteristic  
Symbol  
Min  
30.5  
57.0  
Typ  
32.1  
61.4  
Max  
34.0  
Unit  
dB  
Power Gain  
G
ps  
D
2nd Stage Drain Efficiency  
η
%
1. Part internally input matched.  
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing  
(GN) parts.  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
11  
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4x 5(10.2 cm x 12.7 cm)  
C7  
V
DD1  
C17  
C13  
C12  
C20  
V
R1  
R2  
GG2  
C6  
C11  
V
DD2  
V
GG1  
C19  
C9  
C8  
C5  
C4  
C1  
C10  
C2 C3  
R3  
Thermal Sense  
D1  
R4  
U1  
R5  
P
DET  
V
DD2  
C14  
R7  
C21  
R6  
C24  
C23  
V
3
C22  
C15  
C16  
C18  
Rev. 0  
Figure 15. MMRF2010N Narrowband Test Circuit Component Layout — 1090 MHz  
Table 11. MMRF2010N Narrowband Test Circuit Component Designations and Values — 1090 MHz  
Part  
Description  
Part Number  
ATC600F470JT250XT  
ATC100B2R7CT500XT  
ATC100B2R0BW500XT  
GRM31MR71H105KA88L  
ATC100B430JT500XT  
ATC100B100JT500XT  
ATC100B4R7CT500XT  
C5750X752A106M230KB  
MCGPR100V227M16X26-RH  
ATC600F300JT250XT  
C0805C103J5RAC-TU  
C1206C104K1RAC-TU  
ATC800B470JT500XT  
C2012X7R2E102K085AA  
HSMS--2800--TR1G  
CRCW08052K20JNEA  
CWCR08050000Z0EA  
RR1220P-102-D  
Manufacturer  
C1  
C2  
C3  
C4  
47 pF Chip Capacitor  
ATC  
ATC  
ATC  
2.7 pF Chip Capacitor  
2.0 pF Chip Capacitor  
1 μF Chip Capacitor  
Murata  
ATC  
C5, C6, C7, C11, C14  
43 pF Chip Capacitors  
C8, C9  
10 pF Chip Capacitors  
ATC  
C10  
4.7 pF Chip Capacitor  
ATC  
C12, C13, C15, C16, C20  
10 μF Chip Capacitors  
TDK  
C17, C18  
C19  
C21  
C22  
C23  
C24  
D1  
220 μF, 100 V Electrolytic Capacitors  
30 pF Chip Capacitor  
Multicomp  
ATC  
10 nF Chip Capacitor  
Kemet  
0.1 μF Chip Capacitor  
Kemet  
47 pF Chip Capacitor  
ATC  
1000 pF Chip Capacitor  
Diode Schottky RF SGL 70 V SOT-23  
2.2 k, 1/8 W Chip Resistor  
0 , 1 A Chip Resistor  
TDK  
Avago Technologies  
Vishay  
R1  
R2  
Vishay  
R3  
1 k, 1/10 W Chip Resistor  
50 , 10 W Chip Resistor  
15 k, 1/10 W Chip Resistor  
51 , 1/8 W Chip Resistor  
470 k, 1/4 W Chip Resistor  
IC Detector RF PWR 3GHZ SC70--6  
Susumu  
Anaren  
Susumu  
KOA Speer  
Vishay  
R4  
060120A25X50--2  
R5  
RR1220P-153-D  
R6  
RK73B2ATTD510J  
R7  
CRCW1206470KFKEA  
LT5534ESC6#TRMPBF  
U1  
Linear Technology  
MTL  
PCB  
Rogers, RO4350B, 0.020, ε = 3.66  
r
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
12  
TYPICAL CHARACTERISTICS — 1090 MHz  
NARROWBAND PRODUCTION TEST FIXTURE  
56  
55  
54  
53  
52  
70  
60  
34  
V
= 50 Vdc, I  
= 80 mA, I  
= 150 mA  
DD  
DQ1  
DQ2  
f = 1090 MHz, Pulse Width = 128 μsec, 10% Duty Cycle  
33  
32  
50  
40  
30  
20  
10  
G
ps  
51  
50  
49  
31  
30  
29  
28  
48  
47  
η
D
V
= 50 Vdc, I  
= 80 mA, I  
= 150 mA  
DD  
DQ1  
DQ2  
f = 1090 MHz, Pulse Width = 128 μsec, 10% Duty Cycle  
46  
45  
14  
16  
18  
20  
22  
24  
26  
28  
30  
10  
100  
, OUTPUT POWER (WATTS) PEAK  
500  
P , INPUT POWER (dBm) PEAK  
in  
P
out  
f
Figure 17. Power Gain and Drain Efficiency  
versus Output Power and Quiescent Current  
P1dB  
(W)  
P3dB  
(W)  
(MHz)  
1090  
265  
284  
Figure 16. Output Power versus Input Power  
33  
32  
31  
35  
34  
90  
80  
70  
60  
50  
40  
30  
20  
10  
G
V
= 50 Vdc, I  
= 80 mA, I  
= 150 mA  
ps  
DD  
DQ1  
DQ2  
f = 1090 MHz, Pulse Width = 128 μsec  
10% Duty Cycle  
33  
32  
31  
30  
29  
–55_C  
85_C  
30  
29  
28  
27  
26  
25  
T
= –55_C  
C
25_C  
50 V  
25_C  
45 V  
40 V  
η
D
I
= 80 mA, I  
= 150 mA  
35 V  
85_C  
DQ1  
DQ2  
f = 1090 MHz, Pulse Width = 128 μsec  
V
= 30 V  
P
28  
27  
DD  
10% Duty Cycle  
0
50  
100  
150  
200  
250  
300  
350  
10  
100  
, OUTPUT POWER (WATTS) PEAK  
500  
, OUTPUT POWER (WATTS) PEAK  
P
out  
out  
Figure 19. Power Gain versus Output Power  
and Drain--Source Voltage  
Figure 18. Power Gain and Drain Efficiency  
versus Output Power  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
13  
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE  
f
Z
Z
load  
source  
MHz  
1090  
13.6 – j24.4  
1.3 + j0.4  
Z
Z
= Test circuit impedance as measured from  
gate to ground.  
source  
= Test circuit impedance as measured from  
drain to ground.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
50 Ω  
50 Ω  
Z
Z
load  
source  
Figure 20. Narrowband Series Equivalent Source and Load Impedance — 1090 MHz  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
14  
0.221  
(5.61)  
0.180  
(4.57)  
2X SOLDER PADS  
(1)  
(8.94)  
0.352  
(1)  
0.590  
(14.99)  
0.372  
(9.45)  
12X SOLDER PADS  
0.040  
(1.02)  
0.020  
(0.51)  
Inches  
(mm)  
(1)  
0.723  
(18.36)  
1. Slot dimensions are minimum dimensions and exclude milling tolerances.  
Figure 21. PCB Pad Layout for TO--270WB--14  
0.221  
(5.61)  
0.180  
(4.57)  
0.351  
(8.92)  
0.310  
(7.87)  
0.463  
(11.76)  
Solder pad with  
thermal via structure.  
0.020  
(0.51)  
0.040  
(1.02)  
0.720  
(18.29)  
Figure 22. PCB Pad Layout for TO--270WBG--14  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
15  
PACKAGE DIMENSIONS  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
16  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
17  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
18  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
19  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
20  
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
21  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Oct. 2015  
Apr. 2017  
Initial Release of Data Sheet  
Typical Wideband Performance table: added 2 msec, 20% duty cycle operating conditions and data, p. 1  
Table 1, Maximum Ratings: over--temperature range extended to cover case operation from –55°C to  
+150°C and operating junction range from –55°C to +225°C from the previous lower limit of –40°C to allow  
for a cold start after temperature soak at the minimum case operating temperature, p. 2  
Figure 3, Normalized I versus Case Temperature: updated to reflect performance measured in reference  
DQ  
circuit, p. 4  
Table 7, 1030–1090 MHz Performance table: added 2 msec, 20% duty cycle operating conditions and data,  
p. 5  
1030–1090 MHz reference circuit: added performance data and graphs, reference circuit component layout  
and component designations, pp. 5–8  
Figure 5, 1030–1090 MHz Series Equivalent Source and Load Impedances: impedance data updated to  
reflect 1030–1090 MHz reference circuit addition to data sheet, p . 8 (renumbered as Figure 10 after new  
Figures 5--9 added)  
Figure 6, 1090 MHz MMRF2010N Reference Circuit Component Layout: layout updated to reflect actual  
circuit, p. 9 (renumbered as Figure 11 after new Figures 5--9 added)  
Table 8, 1090 MHz reference circuit component designations and values: R1 and R2 chip resistors  
replaced to support changes made to the I compensation circuit to extend the over--temperature range to  
DQ  
cover –55°C to +85°C from the previous lower limit of –40°C, p. 9 (renumbered as Table 9 after new  
Table 8 added)  
Figure 18, Power Gain and Drain Efficiency versus Output Power: T = –40°C changed –55°C to show  
C
current T operation of fixture, p. 13  
C
MMRF2010N MMRF2010GN  
RF Device Data  
NXP Semiconductors  
22  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners.  
E 2015, 2017 NXP B.V.  
Document Number: MMRF2010N  
Rev. 1, 04/2017  

相关型号:

935323778528

Interface Circuit
NXP

935323778557

Interface Circuit
NXP

935323786528

Interface Circuit
NXP

935323786557

Interface Circuit
NXP

935323801557

RISC Microcontroller
NXP

935323808528

RF Power Field-Effect Transistor
NXP

935323815528

Interface Circuit
NXP

935323815557

Interface Circuit
NXP

935323828557

RISC Microcontroller
NXP

935323834557

RISC Microcontroller
NXP

935323854557

RISC Microprocessor
NXP

935323862557

RISC Microprocessor
NXP