935351859178 [NXP]

RF Power Field-Effect Transistor;
935351859178
型号: 935351859178
厂家: NXP    NXP
描述:

RF Power Field-Effect Transistor

文件: 总23页 (文件大小:1199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRFX1K80H  
Rev. 1, 09/2018  
NXP Semiconductors  
Technical Data  
RF Power LDMOS Transistor  
High Ruggedness N--Channel  
Enhancement--Mode Lateral MOSFET  
MRFX1K80H  
This high ruggedness device is designed for use in high VSWR industrial,  
medical, broadcast, aerospace and mobile radio applications. Its unmatched  
input and output design supports frequency use from 1.8 to 400 MHz.  
1.8–400 MHz, 1800 W CW, 65 V  
WIDEBAND  
RF POWER LDMOS TRANSISTOR  
Typical Performance  
Frequency  
(MHz)  
V
DD  
(V)  
P
(W)  
G
D
(%)  
out  
ps  
Signal Type  
(dB)  
27.8  
27.1  
25.1  
23.6  
25.9  
23.5  
23.5  
21.3  
(1)  
27  
CW  
65  
65  
62  
60  
65  
65  
60  
63  
1800 CW  
1800 Peak  
1800 CW  
1600 CW  
1800 Peak  
1800 CW  
1560 CW  
250 Avg.  
75.6  
69.5  
78.7  
82.5  
69.0  
78.0  
75.9  
43.3  
64  
Pulse (100 sec, 10% Duty Cycle)  
81.36  
CW  
(2,3)  
87.5–108  
123/128  
144  
CW  
Pulse (100 sec, 10% Duty Cycle)  
NI--1230H--4S  
CW  
CW  
175  
174–230  
DVB--T (8k OFDM)  
(3)  
Doherty  
(4)  
230  
Pulse (100 sec, 20% Duty Cycle)  
Pulse (12 sec, 10% Duty Cycle)  
65  
63  
1800 Peak  
1700 Peak  
25.1  
22.8  
75.1  
64.9  
Gate A  
Gate B  
Drain A  
Drain B  
3
4
1
2
325  
Load Mismatch/Ruggedness  
Frequency  
P
(W)  
Test  
Voltage  
in  
Signal Type  
VSWR  
(MHz)  
Result  
(4)  
230  
Pulse  
> 65:1 at all  
14 Peak  
(3 dB  
65  
No Device  
Degradation  
(100 sec, 20% Phase Angles  
(Top View)  
Duty Cycle)  
Overdrive)  
Note: The backside of the package is the  
source terminal for the transistor.  
1. Measured in 27 MHz reference circuit (page 6).  
2. Measured in 87.5–108 MHz broadband reference circuit (page 11).  
3. The values shown are the center band performance numbers across the indicated  
frequency range.  
Figure 1. Pin Connections  
4. Measured in 230 MHz production test fixture (page 17).  
Features  
Unmatched input and output allowing wide frequency range utilization  
Device can be used single--ended or in a push--pull configuration  
Qualified up to a maximum of 65 VDD operation  
Characterized from 30 to 65 V for extended power range  
High breakdown voltage for enhanced reliability  
Suitable for linear application with appropriate biasing  
Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation  
Lower thermal resistance option in over--molded plastic package: MRFX1K80N  
Included in NXP product longevity program with assured supply for a minimum of 15 years after launch  
Typical Applications  
Radio and VHF TV broadcast  
Aerospace  
– HF communications  
– Radar  
Industrial, scientific, medical (ISM)  
– Laser generation  
– Plasma generation  
– Particle accelerators  
– MRI, RF ablation and skin treatment  
– Industrial heating, welding and drying systems  
2017–2018 NXP B.V.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
–0.5, +179  
–6.0, +10  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature Range  
Operating Junction Temperature Range  
T
stg  
65 to +150  
–40 to +150  
–40 to +225  
T
C
C  
(1,2)  
T
J
C  
Total Device Dissipation @ T = 25C  
Derate above 25C  
P
2247  
11.2  
W
W/C  
C
D
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
0.09  
C/W  
JC  
CW: Case Temperature 99C, 1800 W CW, 65 Vdc, I  
= 150 mA, 98 MHz  
DQ(A+B)  
Thermal Impedance, Junction to Case  
Z
0.017  
C/W  
JC  
Pulse: Case Temperature 65C, 1800 W Peak, 100 sec Pulse Width, 20% Duty Cycle,  
65 Vdc, I = 100 mA, 230 MHz  
DQ(A+B)  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Charge Device Model (per JESD22--C101)  
2, passes 2500 V  
C3, passes 2000 V  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Gate--Source Leakage Current  
I
179  
193  
1
Adc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 100 mAdc)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 65 Vdc, V = 0 Vdc)  
I
10  
100  
Adc  
mAdc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
(V = 179 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(4)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 740 Adc)  
V
V
2.1  
2.4  
2.5  
2.8  
2.9  
3.2  
Vdc  
Vdc  
Vdc  
S
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 65 Vdc, I  
= 100 mAdc, Measured in Functional Test)  
D(A+B)  
DD  
(4)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 2.76 Adc)  
V
0.21  
44.7  
GS  
D
(4)  
Forward Transconductance  
(V = 10 Vdc, I = 43 Adc)  
g
fs  
DS  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.nxp.com/RF/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
4. Each side of device measured separately.  
(continued)  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 65 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
2.9  
203  
760  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 65 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 65 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In NXP Production Test Fixture, 50 ohm system) V = 65 Vdc, I  
= 100 mA, P = 1800 W Peak (360 W Avg.),  
out  
DD  
DQ(A+B)  
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle  
Power Gain  
G
24.0  
70.0  
25.1  
75.1  
26.5  
dB  
%
ps  
Drain Efficiency  
Input Return Loss  
D
IRL  
–14.4  
–9  
dB  
Table 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) I  
= 100 mA  
DQ(A+B)  
Frequency  
(MHz)  
P
in  
(W)  
Signal Type  
VSWR  
Test Voltage, V  
Result  
DD  
230  
Pulse  
> 65:1 at all  
14 W Peak  
65  
No Device Degradation  
(100 sec, 20% Duty Cycle)  
Phase Angles  
(3 dB Overdrive)  
Table 6. Ordering Information  
Device  
Tape and Reel Information  
Package  
MRFX1K80HR5  
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel  
NI--1230H--4S  
1. Each side of device measured separately.  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
3
TYPICAL CHARACTERISTICS  
2000  
1000  
1.08  
1.06  
V
= 65 Vdc  
DD  
500 mA  
C
C
iss  
I
= 100 mA  
DQ(A+B)  
1.04  
1.02  
1000 mA  
1500 mA  
oss  
100  
10  
1
1.00  
0.98  
0.96  
0.94  
0.92  
Measured with 30 mV(rms)ac @ 1 MHz  
C
rss  
V
= 0 Vdc  
GS  
0
10  
20  
30  
40  
50  
60  
70  
–50  
–25  
0
25  
50  
75  
100  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
T , CASE TEMPERATURE (C)  
C
DS  
Note: Each side of device measured separately.  
I
(mA)  
Slope (mV/C)  
DQ  
Figure 2. Capacitance versus Drain--Source Voltage  
100  
–3.21  
500  
1000  
1500  
–2.79  
–2.69  
–2.61  
Figure 3. Normalized VGS versus Quiescent  
Current and Case Temperature  
9
10  
V
= 65 Vdc  
DD  
8
10  
10  
10  
10  
I
= 28.1 Amps  
D
I
= 32.2 Amps  
D
7
6
5
I
D
= 35.6 Amps  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (C)  
J
Note: MTTF value represents the total cumulative operating time  
under indicated test conditions.  
MTTF calculator available at http:/www.nxp.com/RF/calculators.  
Figure 4. MTTF versus Junction Temperature – CW  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
4
LINEAR MODEL  
890 pF  
2.9 pF  
0.2 nH  
0.2 nH  
0.2  
DRAIN A  
GATE A  
4 pF  
753 pF  
18 V  
3.1   
196 pF  
4 pF  
GSA  
3   
V
GS  
890 pF  
2.9 pF  
0.2 nH  
0.2 nH  
0.2   
DRAIN B  
GATE B  
4 pF  
753 pF  
18 V  
3.1   
196 pF  
4 pF  
GSA  
3   
V
GS  
Figure 5. Simple Linear Model for the MRFX1K80H  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
5
27 MHz REFERENCE CIRCUIT – 2.9  6.9(73 mm 175 mm)  
Table 7. 27 MHz Performance (In NXP Reference Circuit, 50 ohm system)  
I
= 200 mA, P = 3 W, CW  
DQ(A+B)  
in  
Frequency  
(MHz)  
V
(V)  
P
(W)  
G
D
DD  
out  
ps  
(dB)  
26.0  
27.0  
27.8  
(%)  
82.3  
80.1  
75.6  
27  
50  
1200  
1520  
1800  
57.5  
65  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
6
27 MHz REFERENCE CIRCUIT – 2.9  6.9(73 mm 175 mm)  
Temperature Compensation  
D94843  
Q2  
L2  
C12  
C17  
C15  
C7  
C6  
C19  
R1  
R2  
L1  
C10  
C5  
Q1  
T1  
C1  
C2  
C11  
C16  
C8  
C9  
C18 C20  
MRFX1K80H  
T2  
MRF1K50H  
D1  
C13  
MRFE6VP61K25H  
Rev. 0  
R3  
Note: Component numbers C3, C4 and C14 are not used.  
C101  
C109  
C103 C104 C105 C106  
U101  
C110  
Q101  
R101  
R102  
D101  
R103  
R104  
R105  
C108  
C107  
R109  
C102  
R106  
R107  
R108  
D50876  
Temperature Compensation Detail  
T2 Transformer Detail  
Figure 6. MRFX1K80H Reference Circuit Component Layout – 27 MHz  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
7
27 MHz REFERENCE CIRCUIT – 2.9  6.9(73 mm 175 mm)  
Table 8. MRFX1K80H Reference Circuit Component Designations and Values – 27 MHz  
Part  
Description  
Part Number  
Manufacturer  
ATC  
C1, C17, C18  
C2, C15, C16  
C5  
1000 pF Chip Capacitor  
ATC100B102JT50XT  
39 K pF Chip Capacitor  
470 pF Chip Capacitor  
2.2 F Chip Capacitor  
470 pF Chip Capacitor  
22 pF Chip Capacitor  
470 F, 100 V Electrolytic Capacitor  
1000 pF Chip Capacitor  
Green LED, 1206  
ATC200B393KT50XT  
ATC100C471JT2500XT  
HMK432B7225KM-T  
ATC100B471JT200XT  
ATC100B220JT500XT  
MCGPR100V477M16X32-RH  
C2012X7R2E102M  
LG N971-KN-1  
ATC  
ATC  
C6, C8  
Taiyo Yuden  
ATC  
C7, C9, C19, C20  
C10, C11  
C12  
C13  
D1  
ATC  
Multicomp  
TDK  
OSRAM  
Coilcraft  
Belden  
L1  
82 nH Inductor  
1812SMS-82NJLC  
8074  
L2  
7 Turns, #16 AWG, ID = 10 mm Inductor,  
Hand Wound  
Q1  
RF Power LDMOS Transistor  
33 , 3 W Chip Resistor  
MRFX1K80H  
1-2176070-3  
NXP  
R1, R2  
R3  
TE Connectivity  
Vishay  
9.1 k 1/4 W Chip Resistor  
CRCW12069K10FKEA  
D94843  
PCB  
Arlon TC350 0.030  = 3.5  
MTL  
r
Transformer  
T1 Core  
Multi-Aperture Core, 43 Material  
2 Turns, #20 AWG Magnetic Wire  
1 Turn, #24 AWG Teflon Wire  
61 Round Cable Core, x4  
2843000302  
8076  
Fair-Rite  
Belden  
T1 Primary  
T1 Secondary  
T2 Core  
5854/7 BL005  
2661102002  
LH03010  
Alpha Wire  
Fair-Rite  
Mueller  
T2 Primary  
Copper Pipe, Type L, ID = 3/8, OD = 1/2,  
cut to 2.4  
T2 Secondary  
3 Turns, #16 AWG PTFE Covered Wire, Twisted TEF16  
RF Parts Company  
MTL  
T2 PCB  
Arlon TC350 0.030  = 3.5, x2  
D50876  
r
Temperature Compensation  
C101, C102, C104, C106,  
C108, C110  
1 F Chip Capacitor  
GRM21BR71H105KA12L  
Murata  
C103, C105, C107, C109  
1 nF Chip Capacitor  
C2012X7R2E102M  
LH N974-KN-1  
TDK  
D101  
Red LED, 1206  
OSRAM  
ON Semiconductor  
Vishay  
Q101  
NPN Bipolar Transistor  
2.2 k, 1/8 W Chip Resistor  
1.2 k, 1/8 W Chip Resistor  
10 , 1/8 W Chip Resistor  
1 k, 1/8 W Chip Resistor  
3.9 k, 1/8 W Chip Resistor  
200  1/8 W Chip Resistor  
BC847ALT1G  
R101  
CRCW08052K20JNEA  
CRCW08051K20FKEA  
RK73H2ATTD10R0F  
RR1220P-102-D  
R102, R109  
R103  
Vishay  
KOA Speer  
Susumu  
Vishay  
R104  
R105  
CRCW08053K90JNEA  
CRCW0805200RJNEA  
R106  
Vishay  
R107  
5 kMulti--turn Cermet Trimming Potentiometer, 3224W-1-502E  
Bourns  
11 Turns  
R108  
U101  
10  1/4 W Chip Resistor  
CRCW120610R0JNEA  
LP2951ACDMR2G  
Vishay  
Voltage Regulator 5 V, Micro8  
ON Semiconductor  
Note: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 27 MHz heatsink drawing.  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
8
TYPICAL CHARACTERISTICS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
34  
2000  
1800  
1600  
1400  
1200  
1000  
800  
V
= 50 V  
DD  
57.5 V  
V
= 65 V  
57.5 V  
50 V  
DD  
32  
30  
28  
65 V  
D
26  
24  
22  
20  
18  
G
ps  
65 V  
600  
57.5 V  
50 V  
400  
200  
I
= 200 mA, f = 27 MHz  
I
= 200 mA, f = 27 MHz  
DQ(A+B)  
DQ(A+B)  
0
0
1
2
3
4
5
6
7
8
9
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
P
, OUTPUT POWER (WATTS)  
P , INPUT POWER (WATTS)  
in  
out  
Figure 8. Power Gain and Drain Efficiency  
versus CW Output Power and  
Drain--Source Voltage  
P1dB  
(W)  
P
(W)  
f
V
DD  
(V)  
sat  
(MHz)  
50  
825  
1010  
1150  
1250  
1600  
1900  
27  
57.5  
65  
Figure 7. CW Output Power versus Input Power  
and Drain--Source Voltage  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
9
27 MHz REFERENCE CIRCUIT  
f
Z
Z
load  
source  
MHz  
27  
8.70 + j6.28  
6.21 + j2.68  
Z
Z
= Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
= Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
50   
50   
--  
+
load  
Z
Z
source  
Figure 9. Series Equivalent Source and Load Impedance – 27 MHz  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
10  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9  5.1(73 mm 130 mm)  
Table 9. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)  
I
= 200 mA, P = 7 W, CW  
DQ(A+B)  
in  
Frequency  
(MHz)  
V
P
(W)  
G
D
DD  
out  
ps  
(V)  
60  
60  
60  
(dB)  
23.4  
23.6  
23.5  
(%)  
84.9  
82.5  
80.0  
87.5  
98  
1521  
1600  
1556  
108  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
11  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9  5.1(73 mm 130 mm)  
C25  
C26  
C22  
C27  
C21  
D94849  
C28  
C6 C7  
C5  
L4  
R2  
L1  
C20  
C19  
C18  
C17  
C4  
C16  
C24  
R1  
C3  
Q1  
C11  
L3  
C1  
C2  
C23*  
C15*  
L2  
R3  
C14  
C8  
MRFX1K80H  
MRF1K50H  
MRFE6VP61K25H  
C9 C10  
Rev. 0  
*C15 and C23 are mounted vertically.  
Note: Component numbers C12 and C13 are not used.  
0.34  
(9)  
0.45  
(11)  
0.22  
(6)  
Inches  
(mm)  
L3 total wire length = 1.7(43 mm)  
Figure 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout  
Figure 11. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout – Bottom  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
12  
Table 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Designations and Values  
Part  
Description  
Part Number  
Manufacturer  
C1, C3, C6, C9, C18, C19,  
C20, C21, C22  
1000 pF Chip Capacitor  
ATC100B102JT50XT  
ATC  
C2  
33 pF Chip Capacitor  
ATC100B330JT500XT  
ATC200B103KT50XT  
ATC100B471JT200XT  
MIN02-002EC101J-F  
ATC100B120GT500XT  
EEV-FC2A221M  
ATC  
ATC  
ATC  
CDE  
ATC  
C4, C5, C8  
10,000 pF Chip Capacitor  
470 pF Chip Capacitor  
C7, C10, C15, C16, C17, C23  
C11  
100 pF, 300 V Mica Capacitor  
12 pF Chip Capacitor  
C14, C24  
C25, C26, C27  
C28  
220 F, 100 V Electrolytic Capacitor  
22 F, 35 V Electrolytic Capacitor  
17.5 nH Inductor, 6 Turns  
Panasonic--ECG  
Nichicon  
UUD1V220MCL1GS  
B06TJLC  
L1, L2  
L3  
Coilcraft  
1.5 mm Non--Tarnish Silver Plated Copper Wire,  
SP1500NT-001  
Scientific Wire Company  
Total Wire Length = 1.7/43 mm  
L4  
22 nH Inductor  
1212VS-22NMEB  
MRFX1K80H  
Coilcraft  
Q1  
RF Power LDMOS Transistor  
10 , 1/4 W Chip Resistor  
33 , 2 W Chip Resistor  
NXP  
R1  
CRCW120610R0JNEA  
1-2176070-3  
Vishay  
R2, R3  
Thermal Pad  
PCB  
TE Connectivity  
t-Global Technology  
MTL  
TG Series Soft Thermal Conductive Pad  
TG6050-150-150-5.0-0  
D94849  
Arlon TC350 0.030, = 3.5  
r
Note: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing.  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
13  
TYPICAL CHARACTERISTICS – 87.5–108 MHz, 60 V  
BROADBAND REFERENCE CIRCUIT  
27  
26  
90  
85  
D
80  
25  
24  
75  
G
70  
23  
22  
21  
ps  
1700  
1600  
1500  
1400  
1300  
P
out  
20  
19  
18  
V
= 60 Vdc, P = 7 W, l  
= 200 mA  
DQ(A+B)  
DD  
in  
87 89  
91 93 95  
97 99 101 103 105 107 109  
f, FREQUENCY (MHz)  
Figure 12. Power Gain, Drain Efficiency and CW Output  
Power versus Frequency at a Constant Input Power  
1800  
98 MHz  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
108 MHz  
87.5 MHz  
V
= 60 Vdc, I  
= 200 mA  
DD  
DQ(A+B)  
0
2
4
6
8
10  
12  
P
INPUT POWER (WATTS)  
in,  
Figure 13. CW Output Power versus Input Power and Frequency  
34  
32  
30  
28  
26  
24  
22  
20  
90  
80  
70  
60  
50  
40  
30  
20  
f = 87.5 MHz  
G
ps  
108 MHz  
98 MHz  
87.5 MHz  
98 MHz  
D
108 MHz  
= 60 Vdc, l  
V
= 200 mA  
DQ(A+B)  
DD  
0
200 400  
600  
800 1000 1200 1400 1600 1800  
P
, OUTPUT POWER (WATTS)  
out  
Figure 14. Power Gain and Drain Efficiency versus  
CW Output Power and Frequency  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
14  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT  
Z = 10   
o
Z
source  
f = 87.5 MHz  
f = 87.5 MHz  
f = 108 MHz  
f = 108 MHz  
Z
load  
f
Z
Z
load  
source  
MHz  
87.5  
98  
3.69 + j5.19  
3.60 + j4.90  
3.16 + j4.69  
3.90 + j4.73  
3.88 + j3.99  
3.35 + j3.95  
108  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured  
load  
from drain to drain, balanced configuration.  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
50   
50   
--  
+
Z
Z
source  
load  
Figure 15. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHz  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
15  
HARMONIC MEASUREMENTS — 87.5–108 MHz  
BROADBAND REFERENCE CIRCUIT  
F1  
H2  
87.5 MHz  
175 MHz –33 dB  
Fundamental (F1)  
H3 262.5 MHz –28 dB  
H4  
350 MHz –51 dB  
H3  
H4  
H2  
(262.5 MHz) (350 MHz)  
(175 MHz)  
–33 dB  
–28 dB  
–51 dB  
H3  
H2  
H4  
35 MHz  
Span: 350 MHz  
Center: 228.5 MHz  
Figure 16. 87.5 MHz Harmonics @ 1300 W CW  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
16  
230 MHz PRODUCTION TEST FIXTURE – 6.0  4.0(152 mm 102 mm)  
C10  
C28  
C27  
C24  
C12  
C6  
C9  
C26  
D93270  
Coax1  
Coax3  
R1  
L3  
C17*  
C18*  
C2  
L1  
L2  
C13 C14  
C15 C16  
C4*  
C19*  
C20*  
C21*  
C22*  
C3  
C1  
C23*  
L4  
R2  
Coax4  
Coax2  
MRFX1K80H  
Rev. 0  
C25  
C30  
C29  
C11  
C5  
C7  
C31  
C8  
*C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically.  
Figure 17. MRFX1K80H Test Fixture Component Layout – 230 MHz  
Table 11. MRFX1K80H Test Fixture Component Designations and Values – 230 MHz  
Part  
Description  
Part Number  
Manufacturer  
C1, C2, C3  
C4  
22 pF Chip Capacitor  
ATC100B220JT500XT  
ATC  
27 pF Chip Capacitor  
22 F, 35 V Tantalum Capacitor  
0.1 F Chip Capacitor  
220 nF Chip Capacitor  
1000 pF Chip Capacitor  
24 pF Chip Capacitor  
20 pF Chip Capacitor  
ATC100B270JT500XT  
T491X226K035AT  
ATC  
C5, C6  
C7, C9  
C8, C10  
Kemet  
AVX  
CDR33BX104AKWS  
C1812C224K5RACTU  
ATC100B102JT50XT  
ATC800R240JT500XT  
ATC800R200JT500XT  
ATC100B241JT200XT  
ATC100B7R5CT500XT  
Kemet  
ATC  
C11, C12, C24, C25  
C13  
ATC  
C14, C15, C16  
ATC  
C17, C18, C19, C20, C21, C22 240 pF Chip Capacitor  
C23 7.5 pF Chip Capacitor  
C26, C27, C28, C29, C30, C31 470 F, 100 V Electrolytic Capacitor  
ATC  
ATC  
MCGPR100V477M16X32-RH  
Multicomp  
Micro--Coax  
Coilcraft  
Coilcraft  
Vishay  
MTL  
Coax1, 2, 3, 4  
L1, L2  
25 Semi Rigid Coax Cable, 2.2Shield Length UT-141C-25  
5 nH Inductor, 2 Turns  
6.6 nH Inductor, 2 Turns  
10 , 1/4 W Chip Resistor  
A02TJLC  
L3, L4  
GA3093-ALC  
CRCW120610R0JNEA  
D93270  
R1, R2  
PCB  
Arlon AD255A 0.030, = 2.55  
r
MRFX1K80H  
17  
RF Device Data  
NXP Semiconductors  
TYPICAL CHARACTERISTICS — 230 MHz, TC = 25_C  
PRODUCTION TEST FIXTURE  
2500  
V
= 65 Vdc, f = 230 MHz  
DD  
Pulse Width = 100 sec, 20% Duty Cycle  
2000  
1500  
P
= 5.6 W  
in  
1000  
500  
0
P
= 2.8 W  
in  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
, GATE--SOURCE VOLTAGE (VOLTS)  
GS  
Figure 18. Output Power versus Gate--Source  
Voltage at a Constant Input Power  
27  
68  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 65 Vdc, I  
= 100 mA, f = 230 MHz  
V
= 65 Vdc, f = 230 MHz  
DD  
DQ(A+B)  
DD  
Pulse Width = 100 sec, 20% Duty Cycle  
Pulse Width = 100 sec  
20% Duty Cycle  
26  
25  
24  
23  
22  
64  
60  
56  
52  
48  
44  
I
= 900 mA  
DQ(A+B)  
600 mA  
300 mA  
D
G
ps  
900 mA  
21 100 mA  
20  
600 mA  
300 mA  
100 mA  
100  
19  
50  
24  
28  
32  
36  
40  
44  
1000  
3000  
P , INPUT POWER (dBm) PEAK  
in  
P
, OUTPUT POWER (WATTS) PEAK  
out  
f
Figure 20. Power Gain and Drain Efficiency  
versus Output Power and Quiescent Current  
P1dB  
(W)  
P3dB  
(W)  
(MHz)  
230  
2080  
2300  
Figure 19. Output Power versus Input Power  
90  
80  
26  
24  
22  
20  
18  
16  
14  
30  
V
= 65 Vdc, I  
= 100 mA, f = 230 MHz  
DD  
DQ(A+B)  
–40_C  
28 Pulse Width = 100 sec, 20% Duty Cycle  
25_C  
85_C 70  
26  
65 V  
G
ps  
60  
50  
40  
30  
20  
24  
22  
20  
18  
16  
14  
60 V  
T
= –40_C  
D
C
55 V  
50 V  
25_C  
85_C  
40 V  
I
= 100 mA, f = 230 MHz  
DQ  
V
= 30 V  
500  
DD  
Pulse Width = 100 sec, 20% Duty Cycle  
1000 1500  
, OUTPUT POWER (WATTS) PEAK  
10  
4000  
100  
0
2000  
2500  
30  
1000  
P
P
, OUTPUT POWER (WATTS) PEAK  
out  
out  
Figure 22. Power Gain versus Output Power  
and Drain--Source Voltage  
Figure 21. Power Gain and Drain Efficiency  
versus Output Power  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
18  
230 MHZ PRODUCTION TEST FIXTURE  
f
Z
Z
load  
source  
MHz  
230  
1.1 + j2.7  
2.2 + j2.9  
Z
Z
= Test fixture impedance as measured from  
gate to gate, balanced configuration.  
source  
= Test fixture impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
50   
50   
--  
+
load  
Z
Z
source  
Figure 23. Series Equivalent Source and Load Impedance – 230 MHz  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
19  
PACKAGE DIMENSIONS  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
20  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
21  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Aug. 2017  
Sept. 2018  
Initial release of data sheet  
Typical Performance table: updated values for 81.36 MHz reference circuit; added performance information  
for 175 MHz reference circuit and 174–230 MHz Doherty reference circuit, p. 1  
Feature bullets: updated Aerospace feature bullets, p. 1  
Fig. 3, Normalized V versus Quiescent Current and Case Temperature: corrected 50 Vdc to 65 Vdc to  
GS  
reflect actual performance in graph, p. 4  
Fig. 5, Linear Model: added simple linear model for MRFX1K80H, p. 5  
Fig. 10 (previously Fig. 9), 87.5–108 MHz Broadband Reference Circuit: added note regarding components  
not used, p. 12  
Fig. 20 (previously Fig. 19), Power Gain and Drain Efficiency versus Output Power and Quiescent Current:  
updated graph to reflect correct Drain Efficiency performance. Output Power axis value “3” changed to “50”  
to reflect actual output power performance, p. 18  
MRFX1K80H  
RF Device Data  
NXP Semiconductors  
22  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names  
are the property of their respective owners.  
E 2017–2018 NXP B.V.  
Document Number: MRFX1K80H  
Rev. 1, 09/2018  

相关型号:

935351881528

RISC Microcontroller
NXP

935351887528

Interface Circuit
NXP

935351887557

Interface Circuit
NXP

935351921557

Multifunction Peripheral
NXP

935351922557

Multifunction Peripheral
NXP

935352043557

Multifunction Peripheral
NXP

935352045557

Multifunction Peripheral
NXP

935352046557

Multifunction Peripheral
NXP

935352047557

Multifunction Peripheral
NXP

935352721557

Multifunction Peripheral
NXP

935352756128

RF Power Field-Effect Transistor
NXP

935352792528

RISC Microcontroller
NXP