GTL2007 [NXP]

13-bit GTL to LVTTL translator with power good control; 13位GTL来的LVTTL翻译与电源良好控制
GTL2007
型号: GTL2007
厂家: NXP    NXP
描述:

13-bit GTL to LVTTL translator with power good control
13位GTL来的LVTTL翻译与电源良好控制

文件: 总19页 (文件大小:99K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GTL2007  
13-bit GTL to LVTTL translator with power good control  
Rev. 01 — 2 June 2005  
Product data sheet  
1. General description  
The GTL2007 is a customized translator between dual Xeon processors, Platform Health  
Management, South Bridge and Power Supply LVTTL and GTL signals.  
The GTL2007 is derived from the GTL2006 with an enable function added that disables  
the error output to the monitoring agent for platforms that monitor the individual error  
conditions from each processor. This enable function can be used so that false error  
conditions are not passed to the monitoring agent when the system is unexpectedly  
powered down. This unexpected power-down could be from a power supply overload, a  
CPU thermal trip, or some other event of which the monitoring agent is unaware.  
A typical implementation would be to connect each enable line to the system power good  
signal or the individual enables to the VRD power good for each processor.  
The Nocona and Dempsey/Blackford Xeon processors specify a VTT of 1.2 V and 1.1 V,  
as well as a nominal Vref of 0.76 V and 0.73 V respectively. To allow for future voltage level  
changes that may extend Vref to 0.63 of VTT (minimum of 0.693 V with VTT of 1.1 V) the  
GTL2009 allows a minimum Vref of 0.66 V. Characterization results show that there is little  
DC or AC performance variation between these levels.  
The GTL2007 is the companion chip to the GTL2009 3-bit GTL Front-Side Bus frequency  
comparator that is used in dual-processor Xeon applications.  
2. Features  
Operates as a GTL to LVTTL sampling receiver or LVTTL to GTL driver  
3.0 V to 3.6 V operation  
LVTTL I/O not 5 V tolerant  
Series termination on the LVTTL outputs of 30  
ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115, and 1000 V CDM per JESD22-C101  
Latch-up testing is done to JEDEC Standard JESD78 which exceeds 500 mA  
Package offered: TSSOP28  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
3. Quick reference data  
Table 1:  
Quick reference data  
Tamb = 25 °C  
Symbol Parameter  
Conditions  
Min  
Typ  
5.5  
5.5  
2.0  
Max Unit  
tPLH  
tPHL  
Cio  
propagation delay;  
An-to-Bn or Bn-to-An  
CL = 50 pF; VCC = 3.3 V  
-
-
-
-
ns  
ns  
pF  
-
input/output capacitance; outputs disabled;  
3.0  
A-to-B  
VI and VO = 0 V or 3.0 V  
input/output capacitance;  
B-to-A  
-
1.5  
2.5  
pF  
4. Ordering information  
Table 2:  
Ordering information  
Tamb = 40 °C to +85 °C  
Type number Topside  
mark  
Package  
Name  
Description  
Version  
GTL2007PW  
GTL2007  
TSSOP28 plastic thin shrink small outline package;  
28 leads; body width 4.4 mm  
SOT361-1  
Standard packing quantities and other packaging data are available at  
www.semiconductors.philips.com/standardics/packaging.  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
2 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
5. Functional diagram  
GTL2007  
1
2
GTL VREF  
1AO  
27  
1BI  
GTL inputs  
LVTTL outputs  
26  
2BI  
3
2AO  
25  
4
5
6
7BO1  
5A  
6A  
LVTTL inputs/outputs  
(open-drain)  
GTL outputs  
24  
7BO2  
23  
LVTTL input EN1  
GTL input 11BI  
EN2  
LVTTL input  
GTL output  
7
8
9
22  
11BO  
(1)  
DELAY  
LVTTL input/output  
11A  
9BI  
(open-drain)  
21  
20  
19  
18  
5BI  
6BI  
3BI  
4BI  
(1)  
DELAY  
GTL input  
GTL inputs  
10  
11  
3AO  
4AO  
LVTTL outputs  
17  
16  
10BO1  
10BO2  
12  
13  
10AI1  
10AI2  
GTL outputs  
LVTTL inputs  
15  
9AO LVTTL output  
002aab210  
(1) The enable on 7BO1/7BO2 include a delay that prevents the transient condition where 5BI/6BI go from LOW to HIGH, and  
the LOW to HIGH on 5A/6A lags up to 100 ns from causing a LOW glitch on the 7BO1/7BO2 outputs.  
Fig 1. Logic diagram of GTL2007  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
3 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
6. Pinning information  
6.1 Pinning  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VREF  
1AO  
2AO  
5A  
V
CC  
1BI  
3
2BI  
4
7BO1  
7BO2  
EN2  
11BO  
5BI  
5
6A  
6
EN1  
11BI  
11A  
7
GTL2007PW  
8
9
9BI  
6BI  
10  
11  
12  
13  
14  
3AO  
4AO  
10AI1  
10AI2  
GND  
3BI  
4BI  
10BO1  
10BO2  
9AO  
002aab209  
Fig 2. Pin configuration for TSSOP28  
6.2 Pin description  
Table 3:  
Symbol  
Pin description  
Pin  
Description  
VREF  
1AO  
2AO  
5A  
1
GTL reference voltage  
data output (LVTTL)  
data output (LVTTL)  
2
3
4
data input/output (LVTTL), open-drain  
data input/output (LVTTL), open-drain  
enable input (LVTTL)  
data input (GTL)  
6A  
5
EN1  
11BI  
11A  
6
7
8
data input/output (LVTTL), open-drain  
data input (GTL)  
9BI  
9
3AO  
4AO  
10AI1  
10AI2  
GND  
9AO  
10BO2  
10BO1  
4BI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
data output (LVTTL)  
data output (LVTTL)  
data input (LVTTL)  
data input (LVTTL)  
ground (0 V)  
data output (LVTTL)  
data output (GTL)  
data output (GTL)  
data input (GTL)  
3BI  
data input (GTL)  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
4 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
Table 3:  
Symbol  
6BI  
Pin description …continued  
Pin  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Description  
data input (GTL)  
data input (GTL)  
data output (GTL)  
enable input (LVTTL)  
data output (GTL)  
data output (GTL)  
data input (GTL)  
data input (GTL)  
positive supply voltage  
5BI  
11BO  
EN2  
7BO2  
7BO1  
2BI  
1BI  
VCC  
7. Functional description  
Refer to Figure 1 “Logic diagram of GTL2007” on page 3.  
7.1 Function tables  
Table 4:  
GTL input signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
Output[1]  
1BI/2BI/3BI/4BI/9BI  
1AO/2AO/3AO/4AO/9AO  
L
L
H
H
[1] 1AO, 2AO, 3AO, 4AO and 5A/6A condition changed by ENn power good signal as described in Table 5 and  
Table 6.  
Table 5:  
EN1 power good signal  
H = HIGH voltage level; L = LOW voltage level.  
EN1  
L
1AO and 2AO  
H
5A  
5BI disconnected  
5BI connected  
H
follows BI  
Table 6:  
EN2 power good signal  
H = HIGH voltage level; L = LOW voltage level.  
EN2  
L
3AO and 4AO  
H
6A  
6BI disconnected  
6BI connected  
H
follows BI  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
5 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
Table 7:  
SMI signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
Input  
9BI  
L
Output  
10AI1/10AI2  
10BO1/10BO2  
L
L
L
L
H
L
H
H
H
L
H
Table 8:  
PROCHOT signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
Input/output  
Output  
5BI/6BI  
5A/6A (open-drain)  
7BO1/7BO2  
L
L
H[1]  
H
H
L[2]  
L
H
H
[1] The enable on 7BO1/7BO2 includes a delay that prevents the transient condition where 5BI/6BI go from  
LOW to HIGH, and the LOW to HIGH on 5A/6A lags up to 100 ns from causing a low glitch on the  
7BO1/7BO2 outputs.  
[2] Open-drain input/output terminal is driven to logic LOW state by other driver.  
Table 9:  
NMI signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
11BI  
L
Input/output  
Output  
11A (open-drain)  
11BO  
H
L
L
L[1]  
H
H
H
L
[1] Open-drain input/output terminal is driven to logic LOW state by other driver.  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
6 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
8. Application design-in information  
V
V
TT  
TT  
56  
56 Ω  
R
V
CC  
1.5 kto 1.2 kΩ  
2R  
1.5 kΩ  
PLATFORM  
HEALTH  
V
CC  
CPU1  
MANAGEMENT  
VREF  
1AO  
2AO  
5A  
V
CC  
IERR_L  
1BI  
2BI  
CPU1 1ERR_L  
CPU1 THRMTRIP L  
CPU1 PROCHOT L  
CPU2 PROCHOT L  
THRMTRIP L  
FORCEPR_L  
PROCHOT L  
7BO1  
7BO2  
EN2  
6A  
EN1  
11B1  
NMI  
CPU1 SMI L  
11B0  
GTL2007  
11A  
NMI_L  
FORCEPR_L  
PROCHOT L  
IERR_L  
5BI  
6BI  
9BI  
3AO  
4AO  
10AI1  
10AI2  
GND  
CPU2 IERR_L  
CPU2 THRMTRIP L  
CPU1 SMI L  
3BI  
THRMTRIP L  
NMI  
4BI  
10BO1  
10BO2  
9AO  
CPU2 SMI L  
CPU2 SMI L  
CPU2  
SMI_BUFF_L  
SOUTHBRIDGE NMI  
SOUTHBRIDGE SMI_L  
power supply  
POWER GOOD  
002aab211  
Fig 3. Typical application  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
7 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
9. Limiting values  
Table 10: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Voltages are referenced to GND (ground = 0 V).  
Symbol  
VCC  
IIK  
Parameter  
Conditions  
Min  
0.5  
-
0.5[3]  
0.5[3]  
-
Max  
+4.6  
50  
Unit  
V
DC supply voltage  
input clamping diode current  
DC input voltage  
VI < 0 V  
mA  
V
VI  
A port (LVTTL)  
B port (GTL)  
VO < 0 V  
+4.6  
+4.6  
50  
V
IOK  
VO  
output diode clamping current  
DC output voltage  
mA  
V
output in OFF or HIGH state;  
A port  
0.5[3]  
+4.6  
output in OFF or HIGH state;  
B port  
0.5[3]  
+4.6  
V
IOL  
current into any output in the LOW state A port  
B port  
-
32  
mA  
mA  
mA  
°C  
-
30  
IOH  
current into any output in the HIGH state A port  
storage temperature  
-
32  
+150  
+125  
Tstg  
60  
[2]  
Tj(max)  
maximum junction temperature  
°C  
[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the  
device at these or any other conditions beyond those indicated under Section 10 “Recommended operating conditions” is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction  
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.  
[3] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.  
10. Recommended operating conditions  
Table 11: Operating conditions  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
-
Unit  
V
VCC  
VTT  
Vref  
VI  
supply voltage  
3.0  
3.3  
termination voltage  
reference voltage  
input voltage  
GTL  
-
1.2  
V
GTL  
0.64  
0.8  
1.1  
3.6  
3.6  
-
V
A port  
0
3.3  
V
B port  
0
VTT  
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
A port and ENn  
B port  
2
-
-
-
-
-
-
-
-
V
Vref + 0.050  
-
V
A port and ENn  
B port  
-
0.8  
V
-
V
ref 0.050  
V
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
A port  
-
16  
16  
mA  
mA  
mA  
°C  
A port  
-
B port  
-
15  
Tamb  
ambient temperature  
operating in free-air  
40  
+85  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
8 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
11. Static characteristics  
Table 12: Static characteristics  
Recommended operating conditions; voltages are referenced to GND (ground = 0 V). Tamb = 40 °C to +85 °C  
Symbol  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
[2]  
VOH  
HIGH-level output  
voltage  
A port; VCC = 3.0 V to 3.6 V;  
VCC 0.2 3.0  
-
V
IOH = 100 µA  
[2]  
[2]  
[2]  
[2]  
[2]  
A port; VCC = 3.0 V; IOH = 16 mA  
A port; VCC = 3.0 V; IOL = 4 mA  
A port; VCC = 3.0 V; IOL = 8 mA  
A port; VCC = 3.0 V; IOL = 16 mA  
B port; VCC = 3.0 V; IOL = 15 mA  
A port; VCC = 3.6 V; VI = VCC  
2.1  
2.3  
0.15  
0.3  
0.6  
0.13  
-
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
-
-
-
-
0.4  
0.55  
0.8  
0.4  
±1  
±1  
±1  
12  
V
V
V
V
II  
input current  
µA  
µA  
µA  
mA  
A port; VCC = 3.6 V; VI = 0 V  
-
B port; VCC = 3.6 V; VI = VTT or GND  
-
ICC  
supply current  
A or B port; VCC = 3.6 V;  
8
VI = VCC or GND; IO = 0 mA  
[3]  
ICC  
additional quiescent  
current (per input)  
A port or control inputs; VCC = 3.6 V;  
VI = VCC 0.6 V  
-
-
500  
µA  
Cio  
input/output  
capacitance  
A port; VO = 3.0 V or 0 V  
B port; VO = VTT or 0 V  
-
-
2.5  
1.5  
3.5  
2.5  
pF  
pF  
[1] All typical values are measured at VCC = 3.3 V and Tamb = 25 °C.  
[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[3] This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than VCC or GND.  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
9 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
12. Dynamic characteristics  
Table 13: Dynamic characteristics  
VCC = 3.3 V ± 0.3 V  
Symbol  
Parameter  
Conditions  
see Figure 4  
see Figure 5  
Min  
Typ [1]  
Max  
Unit  
Vref = 0.73 V; VTT = 1.1 V  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLZ  
propagation delay, An to Bn  
1
2
2
2
2
2
2
2
2
4
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
5.5  
5.5  
6
10  
10  
10  
11  
11  
13  
21  
18  
propagation delay, nBI to nAO  
propagation delay, 9BI to 10BOn  
propagation delay, 11BI to 11BO  
6
8
[2]  
14  
13  
disable time from LOW level,  
nBI to nA (I/O)  
see Figure 6  
tPZL  
enable time to LOW level,  
nBI to nA (I/O)  
2
12  
16  
ns  
tPLH  
tPHL  
tPLH  
tPHL  
tPLZ  
propagation delay,  
5BI to 7BO1 or 6BI to 7BO2  
see Figure 7  
see Figure 8  
see Figure 9  
4
7
12  
350  
10  
10  
7
ns  
ns  
ns  
ns  
ns  
100  
2
205  
6.5  
6.5  
3
propagation delay,  
EN1 to nAO or EN2 to nAO  
2
disable time from LOW level,  
1
EN1 to 5A (I/O) or EN2 to 6A (I/O)  
tPZL  
enable time to LOW level,  
2
7
10  
ns  
EN1 to 5A (I/O) or EN2 to 6A (I/O)  
Vref = 0.76 V; VTT = 1.2 V  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
tPLZ  
propagation delay, An to Bn  
see Figure 4  
see Figure 5  
1
2
2
2
2
2
2
2
2
4
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.5  
5.5  
5.5  
6
10  
10  
10  
11  
11  
13  
21  
18  
propagation delay, nBI to nAO  
propagation delay, 9BI to 10BOn  
propagation delay, 11BI to 11BO  
6
8
[2]  
14  
13  
disable time from LOW level,  
nBI to nA (I/O)  
see Figure 6  
see Figure 7  
tPZL  
enable time to LOW level,  
nBI to nA (I/O)  
2
12  
16  
ns  
tPLH  
tPHL  
propagation delay,  
5BI to 7BO1 or 6BI to 7BO2  
4
7
12  
ns  
ns  
100  
205  
350  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
10 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
Table 13: Dynamic characteristics …continued  
VCC = 3.3 V ± 0.3 V  
Symbol  
tPLH  
Parameter  
Conditions  
Min  
2
Typ [1]  
6.5  
Max  
10  
10  
7
Unit  
ns  
propagation delay,  
EN1 to nAO or EN2 to nAO  
see Figure 8  
tPHL  
2
6.5  
ns  
tPLZ  
disable time from LOW level,  
see Figure 9  
1
3
ns  
EN1 to 5A (I/O) or EN2 to 6A (I/O)  
tPZL  
enable time to LOW level,  
2
7
10  
ns  
EN1 to 5A (I/O) or EN2 to 6A (I/O)  
[1] All typical values are at VCC = 3.3 V and Tamb = 25 °C.  
[2] Includes ~7.6 ns RC rise time of test load pull-up on 11A, 1.5 kpull-up and 21 pF load on 11A has about 23 ns RC rise time.  
12.1 Waveforms  
VM = 1.5 V at VCC 3.0 V for A ports; VM = Vref for B ports.  
3.0 V  
input  
1.5 V  
1.5 V  
0 V  
V
t
t
PHL  
PLH  
t
pulse  
V
OH  
H
output  
V
V
ref  
ref  
V
V
M
M
V
0 V  
OL  
002aab000  
002aaa999  
VM = 3.0 V for A port and VTT for B port  
a. Pulse duration  
A port to B port  
b. Propagation delay times  
Fig 4. Voltage waveforms  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
11 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
V
1
V
1
TT  
TT  
input  
V
V
input  
V
V
ref  
ref  
ref  
ref  
/ V  
3
/ V  
3 TT  
TT  
t
t
PLZ  
PZL  
t
t
PHL  
PLH  
V
V
CC  
OH  
OL  
output  
1.5 V  
1.5 V  
output  
1.5 V  
V
OL  
+ 0.3 V  
V
002aab001  
002aab002  
PRR 10 MHz; ZO = 50 ; tr 2.5 ns; tf 2.5 ns  
Fig 5. Propagation delay, nBI to nAO  
Fig 6. nBI to nA (I/O)  
V
1
3.0 V  
0 V  
TT  
input  
V
V
input  
1.5 V  
1.5 V  
ref  
ref  
/ V  
3
TT  
t
t
t
t
PHL  
PLH  
PHL  
PLH  
V
/V  
V
V
OH TT  
OL  
OH  
OL  
1.5 V  
output  
output  
1.5 V  
V
V
ref  
ref  
V
002aab003  
002aab004  
Fig 7. 5BI to 7BO or 6BI to 7BO2  
Fig 8. EN1 to nAO or EN2 to nAO  
3.0 V  
input  
1.5 V  
1.5 V  
0 V  
t
t
PZL  
PLZ  
V
V
OH  
OL  
output  
1.5 V  
V
+ 0.3 V  
OL  
002aab005  
Fig 9. EN1 to 5A (I/O) or EN2 to 6A (I/O)  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
12 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
13. Test information  
V
CC  
V
V
I
O
PULSE  
GENERATOR  
D.U.T.  
R
500  
C
50 pF  
L
L
R
T
002aab006  
Fig 10. Load circuit for A outputs  
V
TT  
V
CC  
50 Ω  
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
30 pF  
L
R
T
002aab264  
Fig 11. Load circuit for B outputs  
V
CC  
R
V
L
CC  
1.5 kΩ  
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
21 pF  
L
R
T
002aab265  
Fig 12. Load circuit for open-drain LVTTL I/O  
RL Load resistor  
CL Load capacitance; includes jig and probe capacitance  
RT Termination resistance; should be equal to ZOUT of pulse generators.  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
13 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
14. Package outline  
TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
D
E
A
X
c
H
v
M
y
A
E
Z
15  
28  
Q
A
2
(A )  
3
A
A
pin 1 index  
1
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
9.8  
9.6  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.8  
0.5  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT361-1  
MO-153  
Fig 13. Package outline SOT361-1 (TSSOP28)  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
14 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
15. Soldering  
15.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
15.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
15.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
15 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
15.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
15.5 Package related soldering information  
Table 14: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
16 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
16. Abbreviations  
Table 15: Abbreviations  
Acronym  
CDM  
CMOS  
CPU  
Description  
Charged Device Model  
Complementary Metal Oxide Silicon  
Central Processing Unit  
Electrostatic Discharge  
Gunning Transceiver Logic  
Human Body Model  
ESD  
GTL  
HBM  
LVTTL  
MM  
Low Voltage Transistor-Transistor Logic  
Machine Model  
PRR  
Pulse Rate Repetition  
TTL  
Transistor-Transistor Logic  
Voltage Regulator Down  
VRD  
17. Revision history  
Table 16: Revision history  
Document ID  
Release date Data sheet status  
20050602 Product data sheet  
Change notice Doc. number  
9397 750 13264  
Supersedes  
GTL2007_1  
-
-
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
17 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
18. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
21. Trademarks  
Notice — All referenced brands, product names, service names and  
20. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
22. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 13264  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 2 June 2005  
18 of 19  
GTL2007  
Philips Semiconductors  
13-bit GTL to LVTTL translator with power good control  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Function tables . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application design-in information . . . . . . . . . . 7  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions. . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 13  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14  
9
10  
11  
12  
12.1  
13  
14  
15  
15.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 15  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 15  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 16  
Package related soldering information . . . . . . 16  
15.2  
15.3  
15.4  
15.5  
16  
17  
18  
19  
20  
21  
22  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 17  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Contact information . . . . . . . . . . . . . . . . . . . . 18  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 2 June 2005  
Document number: 9397 750 13264  
Published in The Netherlands  

相关型号:

GTL2007PW

13-bit GTL to LVTTL translator with power good control
NXP

GTL2007PW,112

GTL2007 - 12-bit GTL to LVTTL translator with power good control TSSOP2 28-Pin
NXP

GTL2007PW,118

GTL2007 - 12-bit GTL to LVTTL translator with power good control TSSOP2 28-Pin
NXP

GTL2008

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs
NXP

GTL2008PW

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs
NXP

GTL2008PW,118

GTL2008 - 12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs TSSOP2 28-Pin
NXP

GTL2009

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2009PW

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2010

10-bit GTL Processor Voltage Clamp
NXP

GTL2010

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI

GTL2010BS

10-bit bidirectional low voltage translator
NXP

GTL2010BS-T

NXP bidirectional low-voltage translators
NXP