GTL2008PW [NXP]

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs; 12位GTL来的LVTTL翻译与电源良好控制和高阻抗和LVTTL输出GTL
GTL2008PW
型号: GTL2008PW
厂家: NXP    NXP
描述:

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs
12位GTL来的LVTTL翻译与电源良好控制和高阻抗和LVTTL输出GTL

转换器 电平转换器 驱动程序和接口 锁存器 接口集成电路 光电二极管
文件: 总20页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GTL2008; GTL2107  
12-bit GTL to LVTTL translator with power good control and  
high-impedance LVTTL and GTL outputs  
Rev. 02 — 26 September 2006  
Product data sheet  
1. General description  
The GTL2008/GTL2107 is a customized translator between dual Xeon processors,  
Platform Health Management, South Bridge and Power Supply LVTTL and GTL signals.  
Functionally and footprint identical to the GTL2007, the GTL2008/GTL2107 LVTTL and  
GTL outputs were changed to put them into a high-impedance state when EN1 and EN2  
are LOW, with the exception of 11BO because its normal state is LOW, so it is forced  
LOW. EN1 and EN2 will remain LOW until VCC is at normal voltage, the other inputs are in  
valid states and VREF is at its proper voltage to assure that the outputs will remain  
high-impedance through power-up.  
Both the GTL2008/GTL2107 and the GTL2007 are derived from the GTL2006. They add  
an enable function that disables the error output to the monitoring agent for platforms that  
monitor the individual error conditions from each processor. This enable function can be  
used so that false error conditions are not passed to the monitoring agent when the  
system is unexpectedly powered down. This unexpected power-down could be from a  
power supply overload, a CPU thermal trip, or some other event of which the monitoring  
agent is unaware.  
A typical implementation would be to connect each enable line to the system power good  
signal or the individual enables to the VRD power good for each processor.  
Typically Xeon processors specify a VTT of 1.1 V to 1.2 V, as well as a nominal Vref of  
0.73 V to 0.76 V. To allow for future voltage level changes that may extend Vref to 0.63 of  
VTT (minimum of 0.693 V with VTT of 1.1 V) the GTL2008/GTL2107 allows a minimum Vref  
of 0.66 V. Characterization results show that there is little DC or AC performance variation  
between these levels.  
The GTL2008 is the companion chip to the GTL2009 3-bit GTL Front-Side Bus frequency  
comparator that is used in dual-processor Xeon applications.  
The GTL2107 is the Intel designation for the GTL2008.  
2. Features  
I Operates as a GTL to LVTTL sampling receiver or LVTTL to GTL driver  
I EN1 and EN2 disable error output  
I All LVTTL and GTL outputs are put in a high-impedance state when EN1 and EN2 are  
LOW  
I 3.0 V to 3.6 V operation  
I LVTTL I/O not 5 V tolerant  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
I Series termination on the LVTTL outputs of 30  
I ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115, and 1000 V CDM per JESD22-C101  
I Latch-up testing is done to JEDEC Standard JESD78 Class II, Level A which exceeds  
500 mA  
I Package offered: TSSOP28  
3. Quick reference data  
Table 1.  
Quick reference data  
Tamb = 25 °C  
Symbol Parameter  
Conditions  
Min  
Typ  
2.5  
1.5  
Max  
3.5  
Unit  
pF  
Cio  
input/output capacitance  
A port; VO = 3.0 V or 0 V  
B port; VO = VTT or 0 V  
-
-
2.5  
pF  
Vref = 0.73 V; VTT = 1.1 V  
tPLH  
LOW-to-HIGH  
propagation delay  
nA to nBI; see Figure 4  
1
2
4
8
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
13  
18  
tPHL  
HIGH-to-LOW  
propagation delay  
nA to nBI; see Figure 4  
2
2
5.5  
4
10  
10  
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
Vref = 0.76 V; VTT = 1.2 V  
tPLH  
LOW-to-HIGH  
propagation delay  
nA to nBI; see Figure 4  
1
2
4
8
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
13  
18  
tPHL  
HIGH-to-LOW  
propagation delay  
nA to nBI; see Figure 4  
2
2
5.5  
4
10  
10  
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
4. Ordering information  
Table 2.  
Ordering information  
Tamb = 40 °C to +85 °C  
Type  
number  
Topside Package  
mark  
Name  
Description  
Version  
GTL2008PW GTL2008 TSSOP28 plastic thin shrink small outline package; 28 leads; body width 4.4 mm SOT361-1  
GTL2107PW GTL2107 TSSOP28 plastic thin shrink small outline package; 28 leads; body width 4.4 mm SOT361-1  
The GTL2107 is the Intel designation for the GTL2008 and is identical to the GTL2008  
except for the type number and the topside markings.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
2 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
5. Functional diagram  
GTL2008/GTL2107  
1
2
GTL VREF  
1AO  
27  
1BI  
GTL inputs  
LVTTL outputs  
(open-drain)  
26  
2BI  
3
4
2AO  
&
25  
5A  
6A  
7BO1  
LVTTL inputs/outputs  
(open-drain)  
GTL outputs  
5
6
&
24  
7BO2  
LVTTL input EN1  
GTL input 11BI  
23  
EN2  
LVTTL input  
GTL output  
(2)  
7
1
22  
11BO  
(1)  
DELAY  
LVTTL input/output  
8
9
11A  
9BI  
(open-drain)  
21  
20  
19  
18  
5BI  
6BI  
3BI  
4BI  
(1)  
DELAY  
GTL input  
GTL inputs  
10  
11  
3AO  
4AO  
LVTTL outputs  
(open-drain)  
1
1
17  
16  
10BO1  
10BO2  
12  
13  
10AI1  
10AI2  
GTL outputs  
LVTTL inputs  
15  
9AO LVTTL output  
002aab968  
(1) The enable on 7BO1/7BO2 include a delay that prevents the transient condition where 5BI/6BI go from LOW to HIGH, and  
the LOW to HIGH on 5A/6A lags up to 100 ns from causing a LOW glitch on the 7BO1/7BO2 outputs.  
(2) The 11BO output is driven LOW after VCC is powered up with EN2 LOW to prevent reporting of a fault condition before EN2  
goes HIGH.  
Fig 1. Logic diagram of GTL2008/GTL2107  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
3 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
6. Pinning information  
6.1 Pinning  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VREF  
1AO  
2AO  
5A  
V
CC  
1BI  
3
2BI  
4
7BO1  
7BO2  
EN2  
11BO  
5BI  
5
6A  
6
EN1  
11BI  
11A  
7
GTL2008PW  
GTL2107PW  
8
9
9BI  
6BI  
10  
11  
12  
13  
14  
3AO  
4AO  
10AI1  
10AI2  
GND  
3BI  
4BI  
10BO1  
10BO2  
9AO  
002aab969  
Fig 2. Pin configuration for TSSOP28  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
GTL reference voltage  
VREF  
1AO  
2AO  
5A  
1
2
data output (LVTTL), open-drain  
data output (LVTTL), open-drain  
3
4
data input/output (LVTTL), open-drain  
data input/output (LVTTL), open-drain  
enable input (LVTTL)  
6A  
5
EN1  
11BI  
11A  
6
7
data input (GTL)  
8
data input/output (LVTTL), open-drain  
data input (GTL)  
9BI  
9
3AO  
4AO  
10AI1  
10AI2  
GND  
9AO  
10BO2  
10BO1  
4BI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
data output (LVTTL), open-drain  
data output (LVTTL), open-drain  
data input (LVTTL)  
data input (LVTTL)  
ground (0 V)  
data output (LVTTL), 3-state  
data output (GTL)  
data output (GTL)  
data input (GTL)  
3BI  
data input (GTL)  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
4 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
Table 3.  
Symbol  
6BI  
Pin description …continued  
Pin  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Description  
data input (GTL)  
data input (GTL)  
data output (GTL)  
enable input (LVTTL)  
data output (GTL)  
data output (GTL)  
data input (GTL)  
data input (GTL)  
positive supply voltage  
5BI  
11BO  
EN2  
7BO2  
7BO1  
2BI  
1BI  
VCC  
7. Functional description  
Refer to Figure 1 “Logic diagram of GTL2008/GTL2107”.  
7.1 Function tables  
Table 4.  
GTL input signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
Output[1]  
1BI/2BI/3BI/4BI/9BI  
1AO/2AO/3AO/4AO/9AO  
L
L
H
H
[1] 1AO, 2AO, 3AO, 4AO and 5A/6A condition changed by ENn power good signal as described in Table 5 and  
Table 6.  
Table 5.  
EN1 power good signal  
H = HIGH voltage level; L = LOW voltage level.  
EN1  
L
1AO and 2AO  
5A  
1BI and 2BI disconnected (high-Z)  
follows BI  
5BI disconnected  
5BI connected  
H
Table 6.  
EN2 power good signal  
H = HIGH voltage level; L = LOW voltage level.  
EN2  
L
3AO and 4AO  
6A  
3BI and 4BI disconnected (high-Z)  
follows BI  
6BI disconnected  
6BI connected  
H
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
5 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
Table 7.  
SMI signals  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care.  
Inputs  
Output  
10AI1/10AI2  
EN2  
H
9BI  
L
10BO1/10BO2  
L
L
L
L
H
L
H
L
H
H
L
H
H
L
H
H
H
X
L
H
L
X
Table 8.  
PROCHOT signals  
H = HIGH voltage level; L = LOW voltage level.  
Input  
Input/output  
Output  
5BI/6BI  
5A/6A (open-drain)  
7BO1/7BO2  
L
L
H[1]  
H
H
L[2]  
L
H
H
[1] The enable on 7BO1/7BO2 includes a delay that prevents the transient condition where 5BI/6BI go from  
LOW to HIGH, and the LOW to HIGH on 5A/6A lags up to 100 ns from causing a low glitch on the  
7BO1/7BO2 outputs.  
[2] Open-drain input/output terminal is driven to logic LOW state by other driver.  
Table 9.  
NMI signals  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care.  
Inputs  
Input/output  
Output  
11BI  
L
EN2  
H
11A (open-drain)  
11BO  
H
L
L
H
L[1]  
H
H
L
H
H
L
X
L
H
X
L
L[1]  
H
[1] Open-drain input/output terminal is driven to logic LOW state by other driver.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
6 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
8. Application design-in information  
V
V
TT  
TT  
56  
56 Ω  
R
1.5 kto 1.2 kΩ  
V
CC  
2R  
1.5 kΩ  
PLATFORM  
HEALTH  
V
CC  
MANAGEMENT  
CPU1  
VREF  
1AO  
2AO  
5A  
V
CC  
IERR_L  
1BI  
2BI  
CPU1 1ERR_L  
CPU1 THRMTRIP L  
CPU1 PROCHOT L  
CPU2 PROCHOT L  
THRMTRIP L  
FORCEPR_L  
PROCHOT L  
7BO1  
7BO2  
EN2  
6A  
EN1  
11B1  
NMI  
CPU1 DISABLE_L  
11B0  
GTL2008  
GTL2107  
11A  
9BI  
NMI_L  
FORCEPR_L  
PROCHOT L  
IERR_L  
5BI  
6BI  
3AO  
4AO  
CPU2 IERR_L  
CPU2 THRMTRIP L  
CPU1 SMI L  
3BI  
THRMTRIP L  
NMI  
4BI  
10AI1  
10AI2  
GND  
10BO1  
10BO2  
9AO  
CPU2 SMI L  
CPU2 DISABLE_L  
SMI_BUFF_L  
CPU2  
(1)  
SOUTHBRIDGE NMI  
SOUTHBRIDGE SMI_L  
power supply  
POWER GOOD  
002aab970  
(1) If 9AO needs to be HIGH before EN2 goes HIGH, a pull-up resistor is required because it is high-impedance until EN2 goes  
HIGH. All other outputs, both GTL and LVTTL, require pull-up resistors because they are open-drain.  
Fig 3. Typical application  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
7 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
9. Limiting values  
Table 10. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
Min  
Max  
+4.6  
50  
+4.6  
+4.6  
50  
+4.6  
+4.6  
32  
Unit  
V
VCC  
IIK  
supply voltage  
0.5  
input clamping current  
input voltage  
VI < 0 V  
-
mA  
V
VI  
A port (LVTTL)  
0.5[1]  
0.5[1]  
B port (GTL)  
V
IOK  
VO  
output clamping current  
output voltage  
VO < 0 V  
-
mA  
V
output in OFF or HIGH state; A port  
0.5[1]  
0.5[1]  
output in OFF or HIGH state; B port  
V
IOL  
LOW-level output current[2]  
A port  
B port  
A port  
-
mA  
mA  
mA  
°C  
°C  
-
30  
IOH  
HIGH-level output current[3]  
storage temperature  
-
32  
+150  
+125  
Tstg  
60  
[4]  
Tj(max)  
maximum junction temperature  
-
[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.  
[2] Current into any output in the LOW state.  
[3] Current into any output in the HIGH state.  
[4] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction  
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.  
10. Recommended operating conditions  
Table 11. Operating conditions  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
-
Unit  
V
VCC  
VTT  
Vref  
VI  
supply voltage  
3.0  
3.3  
termination voltage  
reference voltage  
input voltage  
GTL  
-
1.2  
V
GTL  
0.64  
0.8  
1.1  
3.6  
3.6  
-
V
A port  
0
3.3  
V
B port  
0
VTT  
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
A port and ENn  
B port  
2
-
-
-
-
-
-
-
-
V
Vref + 0.050  
-
V
A port and ENn  
B port  
-
0.8  
V
-
V
ref 0.050  
V
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
A port  
-
16  
16  
mA  
mA  
mA  
°C  
A port  
-
B port  
-
15  
Tamb  
ambient temperature  
operating in free-air  
40  
+85  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
8 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
11. Static characteristics  
Table 12. Static characteristics  
Recommended operating conditions; voltages are referenced to GND (ground = 0 V). Tamb = 40 °C to +85 °C  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
-
Unit  
V
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
VOH HIGH-level output  
9AO; VCC = 3.0 V to 3.6 V; IOH = 100 µA  
9AO; VCC = 3.0 V; IOH = 16 mA  
A port; VCC = 3.0 V; IOL = 4 mA  
A port; VCC = 3.0 V; IOL = 8 mA  
A port; VCC = 3.0 V; IOL = 16 mA  
B port; VCC = 3.0 V; IOL = 15 mA  
VCC 0.2 3.0  
voltage  
2.1  
2.3  
0.15  
0.3  
0.6  
0.13  
-
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
-
0.4  
0.55  
0.8  
0.4  
±1  
V
V
V
V
IOH  
II  
HIGH-level output  
current  
open-drain outputs; A port other than 9AO;  
VO = VCC; VCC = 3.6 V  
µA  
input current  
A port; VCC = 3.6 V; VI = VCC  
A port; VCC = 3.6 V; VI = 0 V  
-
-
-
-
-
±1  
±1  
±1  
12  
µA  
µA  
µA  
mA  
-
B port; VCC = 3.6 V; VI = VTT or GND  
-
ICC  
supply current  
A or B port; VCC = 3.6 V; VI = VCC or GND;  
IO = 0 mA  
8
[3]  
ICC  
additional supply  
current  
per input; A port or control inputs;  
-
-
500  
µA  
VCC = 3.6 V; VI = VCC 0.6 V  
Cio  
input/output  
capacitance  
A port; VO = 3.0 V or 0 V  
B port; VO = VTT or 0 V  
-
-
2.5  
1.5  
3.5  
2.5  
pF  
pF  
[1] All typical values are measured at VCC = 3.3 V and Tamb = 25 °C.  
[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[3] This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than VCC or GND.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
9 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
12. Dynamic characteristics  
Table 13. Dynamic characteristics  
VCC = 3.3 V ± 0.3 V  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
Vref = 0.73 V; VTT = 1.1 V  
tPLH  
LOW-to-HIGH propagation delay  
nA to nBI; see Figure 4  
9BI to 9AO; see Figure 5  
1
2
2
4
8
ns  
ns  
ns  
5.5  
13  
10  
18  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
9BI to 10BOn  
2
1
2
2
4
6
11  
8
ns  
ns  
ns  
ns  
ns  
11A to 11BO; see Figure 10  
11BI to 11A; see Figure 9  
11BI to 11BO  
4
7.5  
8
11  
13  
12  
5BI to 7BO1 or 6BI to 7BO2;  
see Figure 7  
7
tPHL  
HIGH-to-LOW propagation delay  
nA to nBI; see Figure 4  
9BI to 9AO; see Figure 5  
2
2
2
5.5  
5.5  
4
10  
10  
10  
ns  
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
9BI to 10BOn  
2
6
11  
10  
ns  
ns  
ns  
ns  
ns  
11A to 11BO; see Figure 10  
11BI to 11A; see Figure 9  
11BI to 11BO  
1
5.5  
8.5  
14  
2
13  
[2]  
2
21  
5BI to 7BO1 or 6BI to 7BO2;  
see Figure 7  
100  
205  
350  
tPLZ  
LOW to OFF-state  
propagation delay  
EN1 to nAO or EN2 to nAO;  
see Figure 8  
1
1
2
2
2
1
3
3
7
7
5
4
10  
7
ns  
ns  
ns  
ns  
ns  
ns  
EN1 to 5A (I/O) or EN2 to 6A (I/O);  
see Figure 8  
tPZL  
OFF-state to LOW  
propagation delay  
EN1 to nAO or EN2 to nAO;  
see Figure 8  
10  
10  
10  
10  
EN1 to 5A (I/O) or EN2 to 6A (I/O);  
see Figure 8  
tPHZ  
tPZH  
HIGH to OFF-state  
propagation delay  
EN2 to 9AO; see Figure 11  
OFF-state to HIGH  
propagation delay  
EN2 to 9AO; see Figure 11  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
10 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
Table 13. Dynamic characteristics …continued  
VCC = 3.3 V ± 0.3 V  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
Vref = 0.76 V; VTT = 1.2 V  
tPLH  
LOW-to-HIGH propagation delay  
nA to nBI; see Figure 4  
9BI to 9AO; see Figure 5  
1
2
2
4
8
ns  
ns  
ns  
5.5  
13  
10  
18  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
9BI to 10BOn  
2
1
2
2
4
6
11  
8
ns  
ns  
ns  
ns  
ns  
11A to 11BO; see Figure 10  
11BI to 11A; see Figure 9  
11BI to 11BO  
4
7.5  
8
11  
13  
12  
5BI to 7BO1 or 6BI to 7BO2;  
see Figure 7  
7
tPHL  
HIGH-to-LOW propagation delay  
nA to nBI; see Figure 4  
9BI to 9AO; see Figure 5  
2
2
2
5.5  
5.5  
4
10  
10  
10  
ns  
ns  
ns  
nBI to nA or nAO (open-drain outputs);  
see Figure 14  
9BI to 10BOn  
2
6
11  
10  
ns  
ns  
ns  
ns  
ns  
11A to 11BO; see Figure 10  
11BI to 11A; see Figure 9  
11BI to 11BO  
1
5.5  
8.5  
14  
2
13  
[2]  
2
21  
5BI to 7BO1 or 6BI to 7BO2;  
see Figure 7  
100  
205  
350  
tPLZ  
LOW to OFF-state propagation  
delay  
EN1 to nAO or EN2 to nAO;  
see Figure 8  
1
1
2
2
2
2
3
3
7
7
5
4
10  
7
ns  
ns  
ns  
ns  
ns  
ns  
EN1 to 5A (I/O) or EN2 to 6A (I/O);  
see Figure 8  
tPZL  
OFF-state to LOW  
propagation delay  
EN1 to nAO or EN2 to nAO;  
see Figure 8  
10  
10  
10  
10  
EN1 to 5A (I/O) or EN2 to 6A (I/O);  
see Figure 8  
tPHZ  
tPZH  
HIGH to OFF-state  
propagation delay  
EN2 to 9AO; see Figure 11  
OFF-state to HIGH  
propagation delay  
EN2 to 9AO; see Figure 11  
[1] All typical values are at VCC = 3.3 V and Tamb = 25 °C.  
[2] Includes ~7.6 ns RC rise time of test load pull-up on 11A, 1.5 kpull-up and 21 pF load on 11A has about 23 ns RC rise time.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
11 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
12.1 Waveforms  
VM = 1.5 V at VCC 3.0 V for A ports; VM = Vref for B ports.  
3.0 V  
0 V  
input  
1.5 V  
1.5 V  
t
t
PLH  
PHL  
t
p
V
V
TT  
OH  
output  
V
V
V
V
M
ref  
ref  
M
V
0 V  
OL  
002aab000  
002aaa999  
VM = 1.5 V for A port and Vref for B port  
a. Pulse duration  
A port to B port  
b. Propagation delay times  
Fig 4. Voltage waveforms  
V
1
V
TT  
TT  
input  
V
V
input  
V
V
ref  
ref  
ref  
ref  
1
/ V  
3
/ V  
3 TT  
TT  
t
t
PLZ  
PZL  
t
t
PHL  
PLH  
V
V
CC  
OH  
OL  
output  
1.5 V  
1.5 V  
output  
1.5 V  
V
OL  
+ 0.3 V  
V
002aab001  
002aab002  
PRR 10 MHz; Zo = 50 ; tr 2.5 ns; tf 2.5 ns  
Fig 5. Propagation delay, 9BI to 9AO  
Fig 6. nBI to nA (I/O) or nBI to nAO open-drain outputs  
V
1
3.0 V  
TT  
input  
V
V
input  
1.5 V  
1.5 V  
ref  
ref  
/ V  
3
0 V  
TT  
t
t
t
t
PZL  
PLH  
PHL  
PLZ  
V
V
V
TT  
OL  
OH  
OL  
output  
output  
V
V
ref  
1.5 V  
ref  
V
+ 0.3 V  
OL  
V
002aac195  
002aab005  
Fig 7. 5BI to 7BO1 or 6BI to 7BO2  
Fig 8. EN1 to 5A (I/O) or EN2 to 6A (I/O) or EN1 to nAO  
or EN2 to nAO  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
12 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
V
3.0 V  
0 V  
TT  
input  
V
V
input  
1.5 V  
1.5 V  
ref  
ref  
0 V  
t
t
PZL  
PLZ  
t
t
PHL  
PLH  
V
V
V
V
OH  
OL  
TT  
OL  
output  
output  
V
V
1.5 V  
ref  
ref  
V
OL  
+ 0.3 V  
002aac196  
002aac197  
Fig 9. 11BI to 11A  
Fig 10. 11A to 11BO  
3.0 V  
input  
1.5 V  
1.5 V  
0 V  
t
t
PZH  
PHZ  
V
V
OH  
OL  
output  
1.5 V  
V
+ 0.3 V  
OL  
002aab980  
Fig 11. EN2 to 9AO  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
13 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
13. Test information  
V
CC  
V
V
I
O
PULSE  
GENERATOR  
DUT  
R
500 Ω  
C
50 pF  
L
L
R
T
002aab981  
Fig 12. Load circuit for A outputs (9AO)  
V
TT  
V
CC  
50 Ω  
V
V
O
I
PULSE  
GENERATOR  
DUT  
C
30 pF  
L
R
T
002aab264  
Fig 13. Load circuit for B outputs  
V
CC  
R
V
L
CC  
1.5 kΩ  
V
V
O
I
PULSE  
GENERATOR  
DUT  
C
21 pF  
L
R
T
002aab265  
Fig 14. Load circuit for open-drain LVTTL I/O and open-drain outputs  
6 V  
R
500 Ω  
V
L
CC  
V
V
O
I
PULSE  
GENERATOR  
DUT  
R
500 Ω  
C
50 pF  
L
L
R
T
002aab982  
Fig 15. Load circuit for 9AO OFF-state to LOW and LOW to OFF-state  
RL Load resistor  
CL Load capacitance; includes jig and probe capacitance  
RT Termination resistance; should be equal to Zo of pulse generators.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
14 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
14. Package outline  
TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
D
E
A
X
c
H
v
M
y
A
E
Z
15  
28  
Q
A
2
(A )  
3
A
A
pin 1 index  
1
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
9.8  
9.6  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.8  
0.5  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT361-1  
MO-153  
Fig 16. Package outline SOT361-1 (TSSOP28)  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
15 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
15. Soldering  
15.1 Introduction to soldering surface mount packages  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
15.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow temperatures range from 215 °C to 260 °C depending on solder paste  
material. The peak top-surface temperature of the packages should be kept below:  
Table 14. SnPb eutectic process - package peak reflow temperatures (from J-STD-020C  
July 2004)  
Package thickness  
< 2.5 mm  
Volume mm3 < 350  
240 °C + 0/5 °C  
225 °C + 0/5 °C  
Volume mm3 350  
225 °C + 0/5 °C  
225 °C + 0/5 °C  
2.5 mm  
Table 15. Pb-free process - package peak reflow temperatures (from J-STD-020C July  
2004)  
Package thickness  
Volume mm3 < 350  
Volume mm3 350 to  
2000  
Volume mm3 > 2000  
< 1.6 mm  
260 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
245 °C + 0 °C  
260 °C + 0 °C  
245 °C + 0 °C  
245 °C + 0 °C  
1.6 mm to 2.5 mm  
2.5 mm  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
15.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
16 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
15.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
15.5 Package related soldering information  
Table 16. Suitability of surface mount IC packages for wave and reflow soldering methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
17 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
16. Abbreviations  
Table 17. Abbreviations  
Acronym  
CDM  
CMOS  
CPU  
Description  
Charged Device Model  
Complementary Metal Oxide Semiconductor  
Central Processing Unit  
Device Under Test  
DUT  
ESD  
ElectroStatic Discharge  
Gunning Transceiver Logic  
Human Body Model  
GTL  
HBM  
LVTTL  
MM  
Low Voltage Transistor-Transistor Logic  
Machine Model  
PRR  
Pulse Rate Repetition  
TTL  
Transistor-Transistor Logic  
Voltage Regulator Down  
VRD  
17. Revision history  
Table 18. Revision history  
Document ID  
Release date  
20060926  
Data sheet status  
Change notice  
Supersedes  
GTL2008_GTL2107_2  
Modifications:  
Product data sheet  
-
GTL2008_1  
Added type number GTL2017  
Section 1 “General description”: added new 7th paragraph  
Section 4 “Ordering information”: added type number GTL2107PW to Table 2 “Ordering  
information” and following paragraph  
Table 10 “Limiting values”: removed (old) Table note 1 (information is now in Section 18  
“Legal information”)  
added “DUT” to Table 17 “Abbreviations”  
GTL2008_1  
20060502  
Product data sheet  
-
-
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
18 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.semiconductors.philips.com.  
malfunction of a Philips Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. Philips Semiconductors accepts no liability for inclusion and/or use  
of Philips Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is for the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Philips Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Philips Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local Philips Semiconductors  
sales office. In case of any inconsistency or conflict with the short data sheet,  
the full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — Philips Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.semiconductors.philips.com/profile/terms, including those  
pertaining to warranty, intellectual property rights infringement and limitation  
of liability, unless explicitly otherwise agreed to in writing by Philips  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, Philips Semiconductors does not give any representations  
or warranties, expressed or implied, as to the accuracy or completeness of  
such information and shall have no liability for the consequences of use of  
such information.  
Semiconductors. In case of any inconsistency or conflict between information  
in this document and such terms and conditions, the latter will prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — Philips Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
GTL2008_GTL2107_2  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 02 — 26 September 2006  
19 of 20  
GTL2008; GTL2107  
Philips Semiconductors  
GTL translator with power good control and high-impedance outputs  
20. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Function tables . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application design-in information . . . . . . . . . . 7  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions. . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
9
10  
11  
12  
12.1  
13  
14  
15  
15.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 16  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 16  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 17  
Package related soldering information . . . . . . 17  
15.2  
15.3  
15.4  
15.5  
16  
17  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 18  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 19  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 19  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© Koninklijke Philips Electronics N.V. 2006.  
All rights reserved.  
For more information, please visit: http://www.semiconductors.philips.com.  
For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.  
Date of release: 26 September 2006  
Document identifier: GTL2008_GTL2107_2  

相关型号:

GTL2008PW,118

GTL2008 - 12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs TSSOP2 28-Pin
NXP

GTL2009

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2009PW

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2010

10-bit GTL Processor Voltage Clamp
NXP

GTL2010

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI

GTL2010BS

10-bit bidirectional low voltage translator
NXP

GTL2010BS-T

NXP bidirectional low-voltage translators
NXP

GTL2010DB

VOLTAGE CLAMP|MOS|TSSOP|24PIN|PLASTIC
ETC

GTL2010PW

10-bit GTL Processor Voltage Clamp
NXP

GTL2010PW,112

GTL2010 - 10-bit bidirectional low voltage translator TSSOP2 24-Pin
NXP

GTL2010PW-T

NXP bidirectional low-voltage translators
NXP

GTL2010PWDH

10-bit GTL Processor Voltage Clamp
NXP