ISP1520BD-S [NXP]

IC,BUS CONTROLLER,CMOS,QFP,64PIN;
ISP1520BD-S
型号: ISP1520BD-S
厂家: NXP    NXP
描述:

IC,BUS CONTROLLER,CMOS,QFP,64PIN

控制器
文件: 总51页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISP1520  
Hi-Speed Universal Serial Bus hub controller  
Rev. 02 — 04 May 2004  
Product data  
1. General description  
The ISP1520 is a stand-alone Universal Serial Bus (USB) hub controller IC that  
complies with Universal Serial Bus Specification Rev. 2.0. It supports data transfer at  
high-speed (480 Mbit/s), full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s).  
The upstream facing port can be connected to a Hi-Speed USB host or hub or to an  
Original USB host or hub. If the upstream facing port is connected to a Hi-Speed USB  
host or hub, then the ISP1520 will operate as a Hi-Speed USB hub. That is, it will  
support high-speed, full-speed and low-speed devices connected to its downstream  
facing ports. If the upstream facing port is connected to an Original USB host or hub,  
then the ISP1520 will operate as an Original USB hub. That is, high-speed devices  
that are connected to its downstream facing ports will operate in full-speed mode  
instead.  
The ISP1520 is a full hardware USB hub controller. All Original USB devices  
connected to the downstream facing ports are handled using a single Transaction  
Translator (TT), when operating in a cross-version environment. This allows the  
whole 480 Mbit/s upstream bandwidth to be shared by all the Original USB devices  
on its downstream facing ports.  
The ISP1520 has four downstream facing ports. If not used, ports 3 and 4 can be  
disabled. The vendor ID, product ID and string descriptors on the hub are supplied by  
the internal ROM; they can also be supplied by an external I2C-bus™ EEPROM or a  
microcontroller.  
The ISP1520 IC is suitable for self-powered hub designs.  
An analog overcurrent detection circuitry is built into the ISP1520, which can also  
accept digital overcurrent signals from external circuits; for example, Micrel MOSFET  
switch MIC2026. The circuitry can be configured to trip on a global or an individual  
overcurrent condition.  
Each port comes with two status indicator LEDs.  
Target applications of the ISP1520 are monitor hubs, docking stations for notebooks,  
internal USB hub for motherboards, hub for extending Intel® Easy PCs, hub boxes,  
and so on.  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
2. Features  
Complies with:  
Universal Serial Bus Specification Rev. 2.0  
Advanced Configuration and Power Interface (ACPI™), OnNow™ and USB  
power management requirements.  
Supports data transfer at high-speed (480 Mbit/s), full-speed (12 Mbit/s) and  
low-speed (1.5 Mbit/s)  
Self-powered capability  
USB suspend mode support  
Configurable number of ports  
Internal power-on reset and low voltage reset circuit  
Port status indicators  
Integrates high performance USB interface device with hub handler, Philips Serial  
Interface Engine (SIE) and transceivers  
Built-in overcurrent detection circuit  
Individual or ganged power switching, individual or global overcurrent protection,  
and non-removable port support by I/O pins configuration  
Simple I2C-bus (master/slave) interface to read device descriptor parameters,  
language ID, manufacturer ID, product ID, serial number ID and string descriptors  
from a dedicated external EEPROM, or to allow the microcontroller to set up hub  
descriptors  
Visual USB traffic monitoring (GoodLink™) for the upstream facing port  
Uses 12 MHz crystal oscillator with on-chip Phase-Locked Loop (PLL) for low  
ElectroMagnetic Interference (EMI)  
Full industrial operating temperature range from 0 °C to 70 °C  
Available in LQFP64 package.  
3. Applications  
Monitor hubs  
Docking stations for notebooks  
Internal hub for USB motherboards  
Hub for extending Easy PCs  
Hub boxes.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
2 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
4. Abbreviations  
ACPI — Advanced Configuration and Power Interface  
EMI — ElectroMagnetic Interference  
ESD — ElectroStatic Discharge  
NAK — Not AcKnowledge  
PID — Packet Identifier  
PLL — Phase-Locked Loop  
SIE — Serial Interface Engine  
TT — Transaction Translator  
USB — Universal Serial Bus.  
5. Ordering information  
Table 1:  
Ordering information  
Type number Package  
Name  
Description  
Version  
ISP1520BD  
LQFP64 plastic low profile quad flat package; 64 leads; body SOT314-2  
10 × 10 × 1.4 mm  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
3 of 51  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
upstream port 0  
12 MHz  
RPU  
5
RREF  
7
DM0  
DP0  
XTAL1  
XTAL2  
34  
3
4
33  
PLL  
RAM  
ROM  
9, 39  
V
V
V
V
CC1  
CC2  
CC3  
CC4  
13, 45  
23, 57  
11, 41  
2
ANALOG TRANSCEIVER  
• ORIGINAL USB  
BIT CLOCK  
RECOVERY  
I C-bus  
PHILIPS PIE  
64  
63  
• HI-SPEED USB  
SDA  
SCL  
2
I C-BUS  
CONTROLLER  
TRANSACTION  
TRANSLATOR  
8, 12,  
18, 38  
31  
62  
1
RESET_N  
HUBGL_N  
SUSPEND  
TEST_HIGH  
TEST_HIGH  
HUB  
CONTROLLER  
PHILIPS SIE  
17  
HUB REPEATER  
• ORIGINAL USB  
• HI-SPEED USB  
2, 6, 10,  
14, 21,  
22, 35,  
40, 42,  
46, 58,  
59  
MINI-HOST  
CONTROLLER  
ISP1520  
32  
49  
ADOC  
NOOC  
PORT  
CONTROLLER  
GND  
ROUTING LOGIC  
24, 56  
V
REF(5V0)  
PORT 1  
PORT 2 to 3  
PORT 4  
POWER  
SWITCH  
POWER  
SWITCH  
ANALOG  
ANALOG  
TRANSCEIVER  
• ORIGINAL USB  
• HI-SPEED USB  
TRANSCEIVER  
• ORIGINAL USB  
• HI-SPEED USB  
OVERCURRENT  
DETECTION  
OVERCURRENT  
DETECTION  
LINK LEDS  
LINK LEDS  
15  
16  
19  
20 60  
61  
47  
48  
25  
26 50 51  
DM1  
DP1  
PSW1_N AMB1_N  
OC1_N GRN1_N  
downstream  
PSW4_N AMB4_N  
OC4_N GRN4_N  
downstream  
DM4  
DP4  
downstream  
port 1  
port 2 to port 3  
port 4  
004aaa169  
Fig 1. Block diagram.  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
7. Pinning information  
7.1 Pinning  
1
48  
47  
46  
45  
DP4  
SUSPEND  
2
GND  
DM4  
GND  
DM0  
3
4
DP0  
RPU  
V
CC2  
5
44 DP3  
GND  
6
43  
42  
41  
40  
39  
38  
DM3  
GND  
RREF  
7
TEST_HIGH  
8
V
ISP1520BD  
CC4  
V
9
GND  
CC1  
10  
11  
V
GND  
CC1  
V
TEST_HIGH  
CC4  
TEST_HIGH 12  
37 DP2  
V
13  
14  
15  
16  
36  
35  
34  
DM2  
CC2  
GND  
DM1  
DP1  
GND  
XTAL2  
33 XTAL1  
004aaa164  
Fig 2. Pin configuration.  
7.2 Pin description  
Table 2:  
Pin description[1]  
Symbol[2]  
Pin  
Type  
Description  
SUSPEND  
1
O
suspend indicator output; HIGH indicates that the hub is in  
the suspend mode  
GND  
DM0  
DP0  
RPU  
2
3
4
5
-
ground supply  
AI/O  
AI/O  
AI  
upstream facing port Dconnection (analog)  
upstream facing port D+ connection (analog)  
pull-up resistor connection; connect this pin through a  
resistor of 1.5 kΩ ± 5 % to 3.3 V  
GND  
6
-
ground supply  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
5 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 2:  
Pin description[1]…continued  
Symbol[2]  
Pin  
Type  
Description  
RREF  
7
AI  
reference resistor connection; connect this pin through a  
resistor of 12 kΩ ± 1 % to an analog band gap ground  
reference  
TEST_HIGH  
VCC1  
8
-
test pin; connect to 3.3 V  
9
-
analog supply voltage 1 (3.3 V)  
ground supply  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
-
VCC4  
-
crystal and PLL supply voltage 4 (3.3 V)  
test pin; connect to 3.3 V  
TEST_HIGH  
VCC2  
-
-
transceiver supply voltage 2 (3.3 V)  
GND  
-
ground supply  
DM1  
AI/O  
AI/O  
-
downstream facing port 1 Dconnection (analog)[3]  
downstream facing port 1 D+ connection (analog)[3]  
connect to GND  
DP1  
TEST_LOW  
TEST_HIGH  
OC1_N  
-
connect to +5.0 V through a 10 kresistor  
AI/I  
overcurrent sense input for downstream facing port 1  
(analog/digital)  
PSW1_N  
20  
I/O  
output — power switch control output (open-drain) with an  
internal pull-up resistor for downstream facing port 1  
input — function of the pin when used as an input is given in  
Table 5  
GND  
21  
22  
23  
24  
-
-
-
-
ground supply  
GND  
ground supply  
VCC3  
digital supply voltage 3 (3.3 V)  
VREF(5V0)  
reference voltage (5 V ± 5 %); used to power internal pull-up  
resistors of PSWn_N pins and also for the analog  
overcurrent detection  
OC4_N  
25  
26  
AI/I  
I/O  
overcurrent sense input for downstream facing port 4  
(analog/digital)  
PSW4_N  
output — power switch control output (open-drain) with an  
internal pull-up resistor for downstream facing port 4  
input — function of the pin when used as an input is given in  
Table 5  
OC3_N  
27  
28  
AI/I  
I/O  
overcurrent sense input for downstream facing port 3  
(analog/digital)  
PSW3_N  
output — power switch control output (open-drain) with an  
internal pull-up resistor for downstream facing port 3  
input — function of the pin when used as an input is given in  
Table 5  
OC2_N  
29  
30  
AI/I  
I/O  
overcurrent sense input for downstream facing port 2  
(analog/digital)  
PSW2_N  
output — power switch control output (open-drain) with an  
internal pull-up resistor for downstream facing port 2  
input — function of the pin when used as an input is given in  
Table 5  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
6 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 2:  
Pin description[1]…continued  
Symbol[2]  
Pin  
Type  
Description  
RESET_N  
31  
I
asynchronous reset input; when reset is active, the internal  
switch to the 1.5 kexternal resistor is opened, and all pins  
DPn and DMn are three-state; it is recommended that you  
connect to VBUS through an RC circuit; refer to the  
schematics in the ISP1520 Hub Demo Board User’s Guide  
ADOC  
32  
I
analog or digital overcurrent detect selection input; a LOW  
selects the digital mode and a HIGH (3.3 V) selects the  
analog mode  
XTAL1  
XTAL2  
GND  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
I
crystal oscillator input (12 MHz)  
O
crystal oscillator output (12 MHz)  
-
ground supply  
DM2  
AI/O  
downstream facing port 2 Dconnection (analog)[3]  
downstream facing port 2 D+ connection (analog)[3]  
test pin; connect to 3.3 V  
DP2  
AI/O  
TEST_HIGH  
VCC1  
-
-
analog supply voltage 1 (3.3 V)  
GND  
-
ground supply  
VCC4  
-
crystal and PLL supply voltage 4 (3.3 V)  
GND  
-
ground supply  
DM3  
AI/O  
downstream facing port 3 Dconnection (analog)[4]  
downstream facing port 3 D+ connection (analog)[4]  
transceiver supply voltage 2 (3.3 V)  
ground supply  
downstream facing port 4 Dconnection (analog)[4]  
downstream facing port 4 D+ connection (analog)[4]  
DP3  
AI/O  
VCC2  
-
GND  
-
DM4  
AI/O  
AI/O  
I
DP4  
NOOC  
no overcurrent protection selection input; connect this pin to  
HIGH (3.3 V) to select no overcurrent protection; if no  
overcurrent is selected, all OCn_N pins must be connected  
to VREF(5V0)  
GRN4_N  
AMB4_N  
GRN3_N  
AMB3_N  
50  
51  
52  
53  
I/O  
I/O  
I/O  
I/O  
output — green LED port indicator (open-drain) for  
downstream facing port 4  
input — function of the pin when used as an input is given in  
Table 9  
output — amber LED port indicator (open-drain) for  
downstream facing port 4  
input — function of the pin when used as an input is given in  
Table 8  
output — green LED port indicator (open-drain) for  
downstream facing port 3  
input — function of the pin when used as an input is given in  
Table 9  
output — amber LED port indicator (open-drain) for  
downstream facing port 3  
input — function of the pin when used as an input is given in  
Table 8  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
7 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 2:  
Pin description[1]…continued  
Symbol[2]  
Pin  
Type  
Description  
GRN2_N  
54  
I/O  
output — green LED port indicator (open-drain) for  
downstream facing port 2  
input — function of the pin when used as an input is given in  
Table 9  
AMB2_N  
55  
56  
I/O  
output — amber LED port indicator (open-drain) for  
downstream facing port 2  
input — function of the pin when used as an input is given in  
Table 8  
VREF(5V0)  
-
reference voltage (5 V ± 5 %); used to power internal pull-up  
resistors of PSWn_N pins and also for the analog  
overcurrent detection  
VCC3  
57  
58  
59  
60  
-
digital supply voltage 3 (3.3 V)  
ground supply  
GND  
-
GND  
-
ground supply  
GRN1_N  
I/O  
output — green LED port indicator (open-drain) for  
downstream facing port 1  
input — function of the pin when used as an input is given in  
Table 9  
AMB1_N  
61  
62  
I/O  
O
output — amber LED port indicator (open-drain) for  
downstream facing port 1  
input — function of the pin when used as an input is given in  
Table 8  
HUBGL_N  
hub GoodLink LED indicator output; the LED is off until the  
hub is configured; a transaction between the host and the  
hub will blink the LED off for 100 ms; this LED is off in the  
suspend mode (open-drain)  
SCL  
SDA  
63  
64  
I/O  
I/O  
I2C-bus clock (open-drain); see Table 11  
I2C-bus data (open-drain); see Table 11  
[1] The maximum current the ISP1520 can sink on a pin is 8 mA.  
[2] Symbol names ending with underscore N (for example, NAME_N) represent active LOW signals.  
[3] Downstream ports 1 and 2 cannot be disabled.  
[4] To disable a downstream port n, connect both pins DPn and DMn to VCC (3.3 V); unused ports must  
be disabled in reverse order starting from port 4.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
8 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
8. Functional description  
8.1 Analog transceivers  
The integrated transceivers directly interface to USB lines. They can transmit and  
receive serial data at high-speed (480 Mbit/s), full-speed (12 Mbit/s) and low-speed  
(1.5 Mbit/s).  
8.2 Hub controller core  
The main components of the hub core are:  
Philips Serial Interface Engine (SIE)  
Routing logic  
Transaction Translator (TT)  
Mini-host controller  
Hub repeater  
Hub controller  
Port controller  
Bit clock recovery.  
8.2.1 Philips serial interface engine  
The Philips SIE implements the full USB protocol layer. It is completely hardwired for  
speed and needs no firmware intervention. The functions of this block include:  
synchronization, pattern recognition, parallel or serial conversion, bit (de-)stuffing,  
CRC checking and generation, Packet IDentifier verification and generation, address  
recognition, and handshake evaluation and generation.  
8.2.2 Routing logic  
The routing logic directs signaling to the appropriate modules (mini-host controller,  
Original USB repeater and Hi-Speed USB repeater) according to the topology in  
which the hub is placed.  
8.2.3 Transaction translator  
The TT acts as a go-between mechanism that links devices operating in the Original  
USB mode and the Hi-Speed USB upstream mode. For the ‘IN’ direction, data is  
concatenated in TT buffers till the proper length is reached, before the host takes the  
transaction. In the reverse direction (OUT), the mini-host dispenses the data  
contained in TT buffers over a period that fits into the Original USB bandwidth. This  
continues until all outgoing data is emptied. TT buffers are used only on split  
transactions.  
8.2.4 Mini-host controller  
The internal mini-host generates all the Original USB IN, OUT or SETUP tokens for  
the downstream facing ports, while the upstream facing port is in the high-speed  
mode. The responses from the Original USB devices are collected in TT buffers, until  
the end of the complete split transaction clears the TT buffers.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
9 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
8.2.5 Hub repeater  
A hub repeater is responsible for managing connectivity on a per packet basis. It  
implements packet signaling connectivity and resume connectivity. There are two  
repeaters in the ISP1520: a Hi-Speed USB repeater and an Original USB repeater.  
The only major difference between these two repeaters is the speed at which they  
operate. When the hub is connected to an Original USB system, it automatically  
switches itself to function as a pure Original USB hub.  
8.2.6 Hub and port controllers  
The hub controller provides status report. The port controller provides control for  
individual downstream facing port; it controls the port routing module. Any port status  
change will be reported to the host via the hub status change (interrupt) endpoint.  
8.2.7 Bit clock recovery  
The bit clock recovery circuit extracts the clock from the incoming USB data stream.  
8.3 Phase-locked loop clock multiplier  
A 12 MHz to 480 MHz clock multiplier PLL is integrated on-chip. This allows the use  
of low-cost 12 MHz crystals. The low crystal frequency also minimizes  
ElectroMagnetic Interference (EMI). No external components are required for the  
operation of the PLL.  
8.4 I2C-bus controller  
A simple serial I2C-bus interface is provided to transfer vendor ID, product ID and  
string descriptor from an external I2C-bus EEPROM (for example, Philips PCF8582 or  
equivalent) or microcontroller. A master/slave I2C-bus protocol is implemented  
according to the timing requirements as mentioned in the I2C-bus standard  
specifications. The maximum data count during I2C-bus transfers for the ISP1520 is  
256 bytes.  
8.5 Overcurrent detection circuit  
An overcurrent detection circuit is integrated on-chip. The main features of this circuit  
are: self reporting, automatic resetting, low-trip time and low cost. This circuit offers  
an easy solution at no extra hardware cost on the board.  
8.6 GoodLink  
Indication of a good USB connection is provided through GoodLink technology. An  
LED can be directly connected to pin HUBGL_N via an external 330 resistor.  
During enumeration, the LED blinks on momentarily. After successful configuration,  
the LED blinks off for 100 ms upon each transaction.  
This feature provides a user-friendly indication of the status of the hub, the connected  
downstream devices and the USB traffic. It is a useful diagnostics tool to isolate faulty  
USB equipment and helps to reduce field support and hotline costs.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
10 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
8.7 Power-on reset  
The ISP1520 has an internal Power-On Reset (POR) circuit.  
The triggering voltage of the POR circuit is 2.03 V nominal. A POR is automatically  
generated when VCC goes below the trigger voltage for a duration longer than 1 µs.  
POR  
V
CC  
683 µs  
2.03 V  
0 V  
t
1
004aaa388  
At t1: clock is running and available.  
Fig 3. Power-on reset timing.  
POR  
EXTERNAL CLOCK  
004aaa365  
A
Stable external clock is to be available at A.  
Fig 4. External clock with respect to power-on reset.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
11 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
9. Configuration selections  
The ISP1520 is configured through I/O pins and, optionally, through an external  
I2C-bus, in which case the hub can update its configuration descriptors as a master or  
as a slave.  
Table 3 shows the configuration parameters.  
Table 3:  
Configuration parameters  
Mode and selection  
Option  
Configuration method  
Pin control  
Software control  
Affected field  
Control pin  
Reference  
Reference  
Number of downstream 2 ports  
DM1/DP1 to  
DM4/DP4  
see Section 9.1.1 bNbrPorts0  
see Table 22  
facing ports  
3 ports  
4 ports  
Power switching mode ganged  
PSW1_N to  
see Section 9.1.2 wHubCharacteristics:  
bits D1 and D0  
see Table 22  
multiple ganged[1] PSW4_N  
individual  
bPwrOn2PwrGood:  
time interval  
Overcurrent protection none  
mode  
NOOC and  
OC1_N to  
OC4_N  
see Section 9.1.3 wHubCharacteristics:  
bits D4 and D3  
see Table 22  
see Table 22  
global[2]  
multiple ganged  
individual  
Non-removable ports  
any port can be  
non-removable  
AMBn_N  
see Section 9.1.4 wHubCharacteristics:  
bit D2 (compound hub)  
DeviceRemovable:  
bit map  
Port indicator support  
no  
yes  
all GRNn_N  
see Section 9.1.5 wHubCharacteristics:  
bit D7  
see Table 22  
[1] Multiple ganged power mode is reported as individual power mode; refer to the USB 2.0 specification.  
[2] When the hub uses the global overcurrent protection mode, the overcurrent indication is through the wHubStatus field bit 1 (overcurrent)  
and the corresponding change bit (overcurrent change).  
9.1 Configuration through I/O pins  
9.1.1 Number of downstream facing ports  
To discount a physical downstream facing port, connect pins DP and DM of that  
downstream facing port to VCC (3.3 V) starting from the highest port number (4).  
The sum of physical ports configured is reflected in the bNbrPorts field.  
Table 4:  
Downstream facing port number pin configuration  
Number of physical  
DM1/DP1  
DM2/DP2  
DM3/DP3  
DM4/DP4  
downstream facing port  
4
3
2
15 kΩ  
pull-down  
15 kΩ  
pull-down  
15 kΩ  
pull-down  
15 kΩ  
pull-down  
15 kΩ  
pull-down  
15 kΩ  
pull-down  
15 kΩ  
pull-down  
VCC  
15 kΩ  
15 kΩ  
VCC  
VCC  
pull-down  
pull-down  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
12 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
9.1.2 Power switching  
Power switching of downstream ports can be done individually or ganged, where all  
ports are simultaneously switched with one power switch. The ISP1520 supports both  
modes, which can be selected using input PSWn_N; see Table 5.  
Voltage drop requirements: Self-powered hubs are required to provide a minimum  
of 4.75 V to its output port connectors at all legal load conditions. To comply with  
Underwriters Laboratory Inc. (UL) safety requirements, the power from any port must  
be limited to 25 W (5 A at 5 V). Overcurrent protection may be implemented on a  
global or individual basis.  
Assuming a 5 V ± 3 % power supply, the worst-case supply voltage is 4.85 V. This  
only allows a voltage drop of 100 mV across the hub Printed-Circuit Board (PCB) to  
each downstream connector. This includes a voltage drop across the:  
Power supply connector  
Hub PCB (power and ground traces, ferrite beads)  
Power switch (FET on-resistance)  
Overcurrent sense device.  
The PCB resistance and power supply connector resistance may cause a drop of  
25 mV, leaving only 75 mV as the voltage drop allowed across the power switch and  
overcurrent sense device. The individual voltage drop components are shown in  
Figure 5.  
For global overcurrent detection, an increased voltage drop is needed for the  
overcurrent sense device (in this case, a low-ohmic resistor). This can be realized by  
using a special power supply of 5.1 V ± 3 %, as shown in Figure 6.  
voltage drop  
75 mV  
voltage drop  
25 mV  
4.85 V (min)  
4.75 V (min)  
V
5 V  
+
BUS  
POWER SUPPLY  
± 3 % regulated  
hub board  
resistance  
D+  
(1)  
downstream  
port  
low-ohmic  
PMOS switch  
D−  
connector  
ISP1520  
power switch  
GND  
SHIELD  
(PSWn_N)  
004aaa261  
(1) Includes PCB traces, ferrite beads, and so on.  
Fig 5. Typical voltage drop components in the self-powered mode using individual overcurrent detection.  
voltage drop  
100 mV  
voltage drop  
75 mV  
voltage drop  
25 mV  
4.95 V (min)  
4.75 V (min)  
V
5.1 V KICK-UP  
POWER SUPPLY  
± 3 % regulated  
+
BUS  
low-ohmic  
sense resistor  
for overcurrent  
detection  
hub board  
resistance  
D+  
(1)  
downstream  
port  
connector  
low-ohmic  
PMOS switch  
D−  
ISP1520  
power switch  
GND  
SHIELD  
(PSWn_N)  
004aaa262  
(1) Includes PCB traces, ferrite beads, and so on.  
Fig 6. Typical voltage drop components in the self-powered mode using global overcurrent detection.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
13 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
PSWn_N pins have integrated weak pull-up resistors inside the chip.  
Table 5:  
Power switching mode: pin configuration  
Power switching mode  
PSW1_N  
PSW2_N  
PSW3_N  
PSW4_N  
Ganged  
internal  
pull-up  
ground  
ground  
ground  
Individual  
internal  
pull-up  
internal  
pull-up  
internal  
pull-up  
internal  
pull-up  
9.1.3 Overcurrent protection mode  
The ISP1520 supports all overcurrent protection modes: none, global and individual.  
No overcurrent protection mode reporting is selected when pin NOOC = HIGH.  
Global and individual overcurrent protection modes are selected using pins PSWn_N,  
following the power switching modes selection scheme; see Table 6.  
For the global overcurrent protection mode, only PSW1_N and OC1_N are active;  
that is, in this mode, the remaining overcurrent indicator pins are disabled. To inhibit  
the analog overcurrent detection, the OC_N pins must be connected to VREF(5V0)  
.
Table 6:  
Overcurrent protection mode pin configuration  
Power switching mode  
NOOC  
HIGH  
LOW  
PSW1_N PSW2_N PSW3_N PSW4_N  
None  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
Global  
internal  
pull-up  
Individual  
LOW  
internal  
pull-up  
internal  
pull-up  
internal  
pull-up  
internal  
pull-up  
Both analog and digital overcurrent modes are supported; see Table 7.  
For digital overcurrent detection, the normal digital TTL level is accepted on the  
overcurrent input pins. For analog overcurrent detection, the threshold is given in the  
DC characteristics. In this mode, to filter out false overcurrent conditions because of  
in rush and spikes, a dead time of 15 ms is built into the IC, that is, overcurrent must  
persist for 15 ms before it is reported to the host.  
Table 7:  
Pin ADOC  
3.3 V  
Overcurrent detection mode selection pin configuration  
Mode selection  
analog  
Description  
threshold Vtrip  
Ground  
digital  
normal digital TTL level  
9.1.4 Non-removable port  
A non-removable port, by definition, is a port that is embedded inside the hub  
application box and is not externally accessible. The LED port indicators  
(pins AMBn_N) of such a port are not used. Therefore, the corresponding amber LED  
port indicators are disabled to signify that the port is non-removable; see Table 8.  
More than one non-removable port can be specified by appropriately connecting the  
corresponding amber LED indicators. At least one port should, however, be left as a  
removable port.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
14 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
The detection of any non-removable port sets the hub descriptor into a compound  
hub.  
Table 8:  
Non-removable port pin configuration  
AMBn_N (n = 1 to 4)  
Ground  
Non-removable port  
non-removable  
removable  
Pull-up with amber LED  
9.1.5 Port indicator support  
The port indicator support can be disabled by grounding all green port indicators (all  
pins GRNn_N); see Table 9. This is a global feature. It is not possible to disable port  
indicators for only one port.  
Table 9:  
Port indicator support: pin configuration  
GRN1_N to GRN4_N  
Port indicator support  
not supported  
Ground  
LED pull-up green LED for at least one port  
supported  
9.2 Device descriptors and string descriptors settings using I2C-bus  
9.2.1 Background information on I2C-bus  
The I2C-bus is suitable for bi-directional communication between ICs or modules. It  
consists of two bi-directional lines: SDA for data signals and SCL for clock signals.  
Both these lines must be connected to a positive supply voltage through a pull-up  
resistor.  
The basic I2C-bus protocol is defined as:  
Data transfer is initiated only when the bus is not busy.  
Changes in the data line occur when the clock is LOW and must be stable when  
the clock is HIGH. Any changes in data lines when the clock is HIGH will be  
interpreted as control signals.  
Different conditions on I2C-bus: The I2C-bus protocol defines the following  
conditions:  
Not busy — both SDA and SCL remain HIGH  
START — a HIGH-to-LOW transition on SDA, while SCL is HIGH  
STOP — a LOW-to-HIGH transition on SDA, while SCL is HIGH  
Data valid — after a START condition, data on SDA must be stable for the duration of  
the HIGH period of SCL.  
Data transfer: The master initiates each data transfer using a START condition and  
terminates it by generating a STOP condition. To facilitate the next byte transfer, each  
byte of data must be acknowledged by the receiver. The acknowledgement is done by  
pulling the SDA line LOW on the ninth bit of the data. An extra clock pulse needs to  
be generated by the master to accommodate this bit.  
For more detailed information on the operation of the bus, refer to The I2C-bus  
specification.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
15 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
I2C-bus address: The address of the ISP1520 is given in Table 10.  
Table 10: I2C-bus slave address  
MSB  
Slave address  
LSB  
A1  
0
Bit  
A7  
A6  
A5  
A4  
A3  
A2  
R/W  
Value  
0
0
1
1
0
1
0/1  
9.2.2 Architecture of configurable hub descriptors  
MICROCONTROLLER  
SERIAL EEPROM  
2
I C-bus  
signature  
match  
MASTER/SLAVE  
I C-BUS INTERFACE  
2
RAM  
(256 bytes)  
DESCRIPTOR  
GENERATOR  
INTERFACE  
HUB CORE  
MUX  
ROM  
(256 bytes)  
MLD711  
The I2C-bus cannot be shared between the EEPROM and the external microcontroller.  
Fig 7. Configurable hub descriptors.  
The configurable hub descriptors can be masked in the internal ROM memory; see  
Figure 7. These descriptors can also be supplied from an external EEPROM or a  
microcontroller. The ISP1520 implements both the master and slave I2C-bus  
controllers. The information from the external EEPROM or the microcontroller is  
transferred into the internal RAM during the power-on reset. A signature word is used  
to identify correct descriptors. If the signature matches, the content of the RAM is  
chosen instead of the ROM.  
When the external microcontroller mode is selected and while the external  
microcontroller is writing to the internal RAM, any request to configurable descriptors  
will be responded to with a Not AcKnowledge (NAK). There is no specified time-out  
period for the NAK signal. This data is then passed to the host during the  
enumeration process.  
The three configuration methods are selected by connecting pins SCL and SDA in the  
manner given in Table 11.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
16 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 11: Configuration method  
Configuration method  
SCL  
SDA  
Internal ROM  
ground  
ground  
External EEPROM  
External microcontroller  
2.2 to 4.7 kpull-up  
2.2 to 4.7 kpull-up  
2.2 to 4.7 kpull-up  
driven LOW by the  
microcontroller during reset  
9.2.3 ROM or EEPROM map  
00H  
02H  
Signature  
Device Descriptor  
0AH  
10H  
Language ID  
String Descriptor  
(first Language ID):  
iManufacturer string  
iProduct string  
iSerial Number string  
7FH  
80H  
String Descriptor  
(second Language ID):  
iManufacturer string  
iProduct string  
iSerial Number string  
FFH  
MLD714  
Fig 8. ROM or EEPROM map.  
Remark: A 128-byte EEPROM supports one language ID only, and a 256-byte  
EEPROM supports two language IDs.  
9.2.4 ROM or EEPROM detailed map  
Table 12: ROM or EEPROM detailed map  
Address Content  
(Hex)  
Default Example Comment  
(Hex)  
(Hex)  
Signature descriptor  
00  
01  
signature (low  
55  
-
-
signature to signify valid data comment  
signature (high)  
AA  
Device descriptor  
02  
03  
04  
05  
06  
07  
08  
idVendor (low)  
CC  
04  
20  
15  
00  
-
Philips Semiconductors vendor ID  
ISP1520 product ID  
idVendor (high)  
idProduct (low)  
idProduct (high)  
bcdDevice (low)  
-
-
-
-
device release; silicon revision  
increments this value  
bcdDevice (high) 02  
-
RSV, iSN, iP, iM  
-
00  
if all the three strings are supported, the  
value of this byte is 39H  
09  
reserved  
-
FF  
-
String descriptor Index 0 (language ID)  
0A 06  
bLength[1]  
-
two language ID support  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
17 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 12: ROM or EEPROM detailed map…continued  
Address Content Default Example Comment  
(Hex)  
(Hex)  
(Hex)  
03[2]  
09  
0B  
bDescriptorType  
wLANGID[0]  
-
-
-
-
-
STRING  
0C  
LANGID code zero (first language ID)  
(English—USA in this example)  
0D  
04  
0E  
wLANGID[1]  
09  
LANGID code one (second language ID)  
(English—UK in this example)  
0F  
08  
String descriptor Index 1 (iManufacturer)[3]  
10  
bLength  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2E  
03[2]  
string descriptor length (manufacturer ID)  
11  
bDescriptorType  
bString  
STRING  
12 13  
14 15  
16 17  
18 19  
1A 1B  
1C 1D  
1E 1F  
20 21  
22 23  
24 25  
26 27  
28 29  
2A 2B  
2C 2D  
2E 2F  
30 31  
32 33  
34 35  
36 37  
38 39  
3A 3B  
3C 3D  
50 00  
68 00  
69 00  
6C 00  
69 00  
70 00  
73 00  
20 00  
53 00  
65 00  
6D 00  
69 00  
63 00  
6F 00  
6E 00  
64 00  
75 00  
63 00  
74 00  
6F 00  
72 00  
73 00  
P of Philips  
h
i
l
i
p
s
S of Semiconductors  
e
m
i
c
o
n
d
u
c
t
o
r
s
String descriptor Index 2 (iProduct)  
3E  
bLength  
-
-
-
-
-
-
-
-
-
10  
03[2]  
string descriptor length (product ID)  
3F  
bDescriptorType  
bString  
STRING  
40 41  
42 43  
44 45  
46 47  
48 49  
4A 4B  
4C 4D  
49 00  
53 00  
50 00  
31 00  
35 00  
32 00  
30 00  
I of ISP1520  
S
P
1
5
2
0
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
18 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 12: ROM or EEPROM detailed map…continued  
Address Content Default Example Comment  
(Hex) (Hex) (Hex)  
String descriptor Index 3 (iSerialNumber)  
Remark: If supported, this string must be unique.  
4E  
bLength  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3A  
03[2]  
string descriptor length (serial number)  
4F  
bDescriptorType  
bString  
STRING  
50 51  
52 53  
54 55  
56 57  
58 59  
5A 5B  
5C 5D  
5E 5F  
60 61  
62 63  
64 65  
66 67  
68 69  
6A 6B  
6C 6D  
6E 6F  
70 71  
72 73  
74 75  
76 77  
78 79  
7A 7B  
7C 7D  
7E 7F  
80 81  
82 83  
84 85  
86 87  
39 00  
34 00  
37 00  
33 00  
33 00  
37 00  
38 00  
37 00  
37 00  
36 00  
37 00  
38 00  
20 00  
3D 00  
20 00  
77 00  
69 00  
72 00  
65 00  
64 00  
20 00  
73 00  
75 00  
70 00  
70 00  
6F 00  
72 00  
74 00  
9 of 947337877678 = wired support  
4
7
3
3
7
8
7
7
6
7
8
=
w
i
r
e
d
s
u
p
p
o
r
t
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
19 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 12: ROM or EEPROM detailed map…continued  
Address Content Default Example Comment  
(Hex) (Hex) (Hex)  
String descriptor Index 1 (iManufacturer) second language  
88  
bLength  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2E  
03[2]  
string descriptor length (manufacturer ID)  
89  
bDescriptorType  
bString  
STRING  
8A 8B  
8C 8D  
8E 8F  
90 91  
92 93  
94 95  
96 97  
98 99  
9A 9B  
9C 9D  
9E 9F  
A0 A1  
A2 A3  
A4 A5  
A6 A7  
A8 A9  
AA AB  
AC AD  
AE AF  
B0 B1  
B2 B3  
B4 B5  
50 00  
68 00  
69 00  
6C 00  
69 00  
70 00  
73 00  
20 00  
53 00  
65 00  
6D 00  
69 00  
63 00  
6F 00  
6E 00  
64 00  
75 00  
63 00  
74 00  
6F 00  
72 00  
73 00  
P of Philips  
h
i
l
i
p
s
S of Semiconductors  
e
m
i
c
o
n
d
u
c
t
o
r
s
String descriptor Index 2 (iProduct)  
B6  
bLength  
-
-
-
-
-
-
-
-
-
10[1]  
03[2]  
string descriptors (product ID)  
B7  
bDescriptorType  
bString  
STRING  
B8 B9  
BA BB  
BC BD  
BE BF  
C0 C1  
C2 C3  
C4 C5  
49 00  
53 00  
50 00  
31 00  
35 00  
32 00  
30 00  
I of ISP1520  
S
P
1
5
2
0
String descriptor Index 3 (iSerialNumber)  
C6  
bLength  
-
-
-
-
16[1]  
03[2]  
string descriptors (serial number)  
C7  
bDescriptorType  
bString  
STRING  
C8 C9  
CA CB  
36 00  
35 00  
6 of 6568824022  
5
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
20 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 12: ROM or EEPROM detailed map…continued  
Address Content Default Example Comment  
(Hex)  
CC CD  
CE CF  
D0 D1  
D2 D3  
D4 D5  
D6 D7  
D8 D9  
DA DB  
DC DD  
DE DF  
E0 E1  
E2 E3  
E4 E5  
E6 E7  
E8 E9  
EA EB  
EC ED  
EE EF  
F0 F1  
F2 F3  
F4 F5  
F6 F7  
F8 F9  
FA FB  
FC FD  
FE  
(Hex)  
(Hex)  
36 00  
38 00  
38 00  
32 00  
34 00  
30 00  
32 00  
32 00  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF FF  
FF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
8
8
2
4
0
2
2
FF  
FF  
upper boundary of all string descriptors  
[1] If this string descriptor is not supported, this bLength field must be programmed with the value 02H.  
[2] If this string descriptor is not supported, this bDescriptorType field must be used (programmed with  
any value, for example, 03H).  
[3] String descriptor index (iManufacturer) starts from the address 0EH for one language ID support and  
10H for two languages ID support.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
21 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
10. Hub controller description  
Each USB device is composed of several independent logic endpoints. An endpoint  
acts as a terminus of communication flow between the host and the device. At design  
time, each endpoint is assigned a unique number (endpoint identifier; see Table 13).  
The combination of the device address (given by the host during enumeration), the  
endpoint number and the transfer direction allows each endpoint to be uniquely  
referenced.  
The ISP1520 has two endpoints: endpoint 0 (control) and endpoint 1 (interrupt).  
Table 13: Hub endpoints  
Function  
Endpoint  
identifier  
Transfer type  
Direction [1]  
Maximum packet  
size (bytes)  
Hub ports 0 to 4  
0
control  
OUT  
IN  
64  
64  
1
1
interrupt  
IN  
[1] IN: input for the USB host; OUT: output from the USB host.  
10.1 Endpoint 0  
According to the USB specification, all devices must implement a default control  
endpoint. This endpoint is used by the host to configure the USB device. It provides  
access to the device configuration and allows generic USB status and control access.  
The ISP1520 supports the following descriptor information through its control  
endpoint 0:  
Device descriptor  
Device_qualifier descriptor  
Configuration descriptor  
Interface descriptor  
Endpoint descriptor  
Hub descriptor  
Other_speed_configuration descriptor.  
The maximum packet size of this endpoint is 64 bytes.  
10.2 Endpoint 1  
Endpoint 1 can be accessed only after the hub has been configured by the host (by  
sending the Set Configuration command). It is used by the ISP1520 to send the  
status change information to the host.  
Endpoint 1 is an interrupt endpoint. The host polls this endpoint once every 255 ms.  
After the hub is configured, an IN token is sent by the host to request the port change  
status. If the hub detects no change in the port status, it returns a NAK to this  
request, otherwise the Status Change byte is sent. Table 14 shows the content of the  
change byte.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
22 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 14: Status Change byte: bit allocation  
Bit  
Name  
Value Description  
0
Hub Status Change  
0
1
0
1
-
no change in the hub status  
change in the hub status detected  
1 to 4 Port n Status Change  
no change in the status of port n (n = 1 to 4)  
change in the status of port n (n = 1 to 4)  
not used  
5 to 7  
-
11. Descriptors  
The ISP1520 hub controller supports the following standard USB descriptors:  
Device  
Device_qualifier  
Other_speed_configuration  
Configuration  
Interface  
Endpoint  
Hub.  
The hub returns different descriptors based on the mode of operation: full-speed or  
high-speed.  
Table 15: Device descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
bLength  
12  
01  
00  
02  
09  
00  
00  
40  
CC  
04  
20  
15  
00  
02  
01  
02  
03  
12  
01  
00  
02  
09  
00  
01  
40  
CC  
04  
20  
15  
00  
02  
01  
02  
03  
01  
descriptor length = 18 bytes  
type = DEVICE  
1
bDescriptorType  
bcdUSB  
2
see USB specification Rev. 2.0  
3
4
bDeviceClass  
bDeviceSubClass  
bDeviceProtocol  
bMaxPacketSize0  
idVendor  
HUB_CLASSCODE  
5
HubSubClassCode  
6
HubProtocolHSpeedOneTT  
packet size = 64 bytes  
7
8
Philips Semiconductors vendor ID (04CC); can be  
customized  
9
10  
11  
12  
13  
14  
15  
16  
17  
idProduct  
bcdDevice  
the ISP1520 product ID; can be customized  
device ID; can be customized  
iManufacturer  
iProduct  
can be customized  
can be customized  
iSerialNumber  
can be customized; this value must be unique  
one configuration  
bNumConfigurations 01  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
23 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 16: Device_qualifier descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
3
4
5
6
7
8
bLength  
0A  
06  
00  
02  
09  
00  
00  
40  
0A  
06  
00  
02  
09  
00  
01  
40  
01  
descriptor length = 10 bytes  
type = DeviceQualifierType  
see USB specification Rev. 2.0  
bDescriptorType  
bcdUSB  
bDeviceClass  
HUB_CLASSCODE  
bDeviceSubClass  
bDeviceProtocol  
bMaxPacketSize0  
HubSubClassCode  
HubProtocolHSpeedOneTT  
packet size = 64 bytes  
number of configurations  
bNumConfigurations 01  
Table 17: Other_speed_configuration descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
3
4
5
6
7
bLength  
09  
07  
19  
00  
01  
09  
07  
19  
00  
01  
01  
00  
E0  
A0  
00  
descriptor length = 9 bytes  
type = OtherSpeedConfigurationType  
TotalConfByte  
bDescriptorType  
wTotalLength  
bNumInterfaces  
-
bConfigurationValue 01  
-
iConfiguration  
bmAttributes  
00  
E0  
A0  
00  
no string supported  
self-powered  
others  
8
bMaxPower  
self-powered  
Table 18: Configuration descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
3
4
5
6
7
8
bLength  
09  
02  
19  
00  
01  
09  
02  
19  
00  
01  
01  
00  
E0  
00  
descriptor length = 9 bytes  
type = CONFIGURATION  
bDescriptorType  
wTotalLength  
total length of configuration, interface and endpoint  
descriptors = 25 bytes  
bNumInterfaces  
one interface  
bConfigurationValue 01  
configuration value = 1  
no configuration string descriptor  
self-powered  
iConfiguration  
bmAttributes  
bMaxPower[1]  
00  
E0  
00  
self-powered  
[1] Value in units of 2 mA.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
24 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 19: Interface descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
3
4
5
6
7
8
bLength  
09  
04  
00  
00  
01  
09  
09  
04  
00  
00  
01  
09  
00  
00  
00  
descriptor length = 9 bytes  
type = INTERFACE  
-
bDescriptorType  
bInterfaceNumber  
bAlternateSetting  
bNumEndpoints  
bInterfaceClass  
no alternate setting  
status change (interrupt) endpoint  
HUB_CLASSCODE  
HubSubClassCode  
-
bInterfaceSubClass 00  
bInterfaceProtocol  
bInterface  
00  
00  
no interface string descriptor  
Table 20: Endpoint descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
3
4
5
6
bLength  
07  
05  
81  
03  
01  
00  
FF  
07  
05  
81  
03  
01  
00  
0C  
descriptor length = 7 bytes  
type = ENDPOINT  
bDescriptorType  
bEndpointAddress  
bmAttributes  
endpoint 1 at the address number 1  
interrupt endpoint  
wMaxPacketSize  
packet size = 1 byte  
bInterval  
polling interval  
Table 21: Hub descriptor  
Offset  
Field name  
Value (Hex)  
Comments  
(bytes)  
Full-speed  
High-speed  
0
1
2
bDescLength  
bDescriptorType  
bNbrPorts  
09  
29  
04  
03  
02  
09  
29  
04  
03  
02  
A9  
00  
32  
64  
00  
FF  
descriptor length = 9 bytes  
type = HUB  
number of enabled downstream facing ports; selectable by  
DP/DM strapping  
3
4
5
6
7
8
wHubCharacteristics A9  
see Table 22  
00  
bPwrOn2PwrGood[1] 32  
ganged or individual mode = 100 ms  
bHubContrCurrent  
DeviceRemovable  
PortPwrCtrlMask  
64  
00  
FF  
-
four downstream facing ports, no embedded port  
-
[1] Value in units of 2 ms.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
25 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 22: wHubCharacteristics bit description  
Bit  
Function  
Value Description  
D0, D1  
logical power switching mode 00  
ganged  
01  
11  
individual and multiple ganged  
-
D2  
compound hub selection  
0
1
non-compound  
compound  
D3, D4  
overcurrent protection mode 00  
global  
01  
10  
11  
individual and multiple ganged  
none  
-
D5  
D6  
D7  
-
-
-
-
-
-
port indicator  
0
1
global feature  
-
12. Hub requests  
The hub must react to a variety of requests initiated by the host. Some requests are  
standard and are implemented by any USB device whereas others are hub-class  
specific requests.  
12.1 Standard USB requests  
Table 23 shows the supported standard USB requests.  
Table 23: Standard USB requests  
bmRequestType bRequest wValue  
wIndex  
bytes 2, 3 bytes 4, 5  
wLength  
bytes 6, 7 Data response  
(hex)  
Request  
byte 0  
(bits 7 to 0)  
byte 1  
(hex)  
(hex)  
(hex)  
Address  
Set Address  
0000 0000  
05  
device  
address[1]  
00, 00  
00, 00  
none  
Configuration  
Get Configuration  
Set Configuration (0)  
Set Configuration (1)  
Descriptors  
1000 0000  
0000 0000  
0000 0000  
08  
09  
09  
00, 00  
00, 00  
01, 00  
00, 00  
00, 00  
00, 00  
01, 00  
00, 00  
00, 00  
configuration value  
none  
none  
Get Configuration  
Descriptor  
1000 0000  
1000 0000  
06  
00, 02  
00, 00  
length[2]  
configuration interface  
and endpoint descriptors  
Get Device Descriptor  
06  
06  
06  
06  
06  
00, 01  
03, 00  
03, 01  
03, 02  
03, 03  
00, 00  
00, 00  
00, 00  
00, 00  
00, 00  
length[2]  
length[2]  
length[2]  
length[2]  
length[2]  
device descriptor  
language ID descriptor  
manufacturer string  
product string  
Get String Descriptor (0) 1000 0000  
Get String Descriptor (1) 1000 0000  
Get String Descriptor (2) 1000 0000  
Get String Descriptor (3) 1000 0000  
serial number string  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
26 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 23: Standard USB requests…continued  
bmRequestType bRequest wValue  
wIndex  
wLength  
Request  
Feature  
byte 0  
(bits 7 to 0)  
byte 1  
(hex)  
bytes 2, 3 bytes 4, 5  
bytes 6, 7 Data response  
(hex)  
(hex)  
(hex)  
Clear Device Feature  
(Remote_ Wakeup)  
0000 0000  
0000 0010  
0000 0000  
0000 0010  
01  
01  
03  
03  
01, 00  
00, 00  
01, 00  
00, 00  
00, 00  
81, 00  
00, 00  
81, 00  
00, 00  
00, 00  
00, 00  
00, 00  
none  
none  
none  
none  
Clear Endpoint (1)  
Feature (Halt/Stall)  
Set Device Feature  
(Remote_ Wakeup)  
Set Endpoint (1)  
Feature (Halt/Stall)  
Status  
Get Device Status  
Get Interface Status  
1000 0000  
1000 0001  
00  
00  
00  
00  
00, 00  
00, 00  
00, 00  
00, 00  
00, 00  
00, 00  
00/80, 00[3] 02, 00  
02, 00  
02, 00  
device status  
zero  
Get Endpoint (0) Status 1000 0010  
Get Endpoint (1) Status 1000 0010  
endpoint 0 status  
endpoint 1 status  
81, 00 02, 00  
[1] Device address: 0 to 127.  
[2] Returned value in bytes.  
[3] MSB specifies endpoint direction: 0 = OUT, 1 = IN. The ISP1520 accepts either value.  
12.2 Hub class requests  
Table 24 shows the hub class requests.  
Table 24: Hub class requests  
bmRequestType bRequest  
wValue  
bytes 2, 3  
(hex)  
wIndex  
bytes 4, 5  
(hex)  
wLength  
bytes 6, 7  
(hex)  
Request  
byte 0  
byte 1  
(hex)  
Data  
(bits 7 to 0)  
Descriptor  
Get Hub Descriptor  
1010 0000  
0010 0000  
06  
01  
descriptortype 00, 00  
and index  
length[2]  
00, 00  
descriptor  
none  
Feature  
Clear Hub Feature  
00, 00  
00, 00  
(C_LOCAL_POWER)  
Clear Port Feature  
Set Port Feature  
Status  
0010 0011  
0010 0011  
01  
03  
feature[3], 00  
feature[3], 00  
port[4], 00  
port[4], 00  
00, 00  
00, 00  
none  
none  
Get Hub Status  
1010 0000  
1010 0011  
00  
00  
00, 00  
00, 00  
00, 00  
04, 00  
04, 00  
hub status and  
change status  
Get Port Status  
port[4], 00  
port status and  
change status  
TT  
ClearTTBuffer  
0010 0011  
0010 0000  
08  
09  
Dev_Addr,  
EP_nr  
01, 00  
01, 00  
00, 00  
00, 00  
none  
none  
ResetTT  
00, 00  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
27 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 24: Hub class requests…continued  
bmRequestType bRequest  
wValue  
bytes 2, 3  
(hex)  
wIndex  
bytes 4, 5  
(hex)  
wLength  
bytes 6, 7  
(hex)  
Request  
byte 0  
byte 1  
(hex)  
Data  
(bits 7 to 0)  
[1]  
GetTTState  
StopTT  
1010 0011  
0010 0011  
10  
11  
TT-flags  
00, 00  
01, 00  
01, 00  
-
TT state  
none  
00, 00  
Test modes  
Test_J  
0010 0011  
0010 0011  
0010 0011  
0010 0011  
0010 0011  
03  
03  
03  
03  
03  
15, 00  
15, 00  
15, 00  
15, 00  
15, 00  
port[4], 01  
port[4], 02  
port[4], 03  
port[4], 04  
port[4], 05  
00, 00  
00, 00  
00, 00  
00, 00  
00, 00  
none  
none  
none  
none  
none  
Test_K  
Test_SE0_NAK  
Test_Packet  
Test_Force_Enable  
[1] Returns vendor-specific data.  
[2] Returned value in bytes.  
[3] Feature selector value; see Table 25.  
[4] Downstream port identifier: 1 to N with N is number of enabled ports (2 to 4).  
Table 25: Hub class feature selector  
Feature selector name  
C_HUB_LOCAL_POWER  
C_HUB_OVER_CURRENT  
PORT_CONNECTION  
PORT_ENABLE  
Recipient  
hub  
Value  
00  
01  
00  
01  
02  
03  
04  
08  
09  
16  
17  
18  
19  
20  
21  
22  
hub  
port  
port  
port  
port  
port  
port  
port  
port  
port  
port  
port  
port  
port  
port  
PORT_SUSPEND  
PORT_OVER_CURRENT  
PORT_RESET  
PORT_POWER  
PORT_LOW_SPEED  
C_PORT_CONNECTION  
C_PORT_ENABLE  
C_PORT_SUSPEND  
C_PORT_OVER_CURRENT  
C_PORT_RESET  
PORT_TEST  
PORT_INDICATOR  
12.3 Detailed responses to hub requests  
12.3.1 Get configuration  
This request returns the configuration value of the device. This request returns one  
byte of data; see Table 26.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
28 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 26: Get hub configuration response  
Bit  
Function  
Value Description  
0
configuration value  
0
1
0
device is not configured  
device is configured  
-
1 to 7  
reserved  
12.3.2 Get device status  
This request returns two bytes of data; see Table 27.  
Table 27: Get device status response  
Bit  
0
Function  
Value Description  
self-powered  
remote wake-up  
1
0
1
0
self-powered  
disabled  
enabled  
-
1
2 to 15  
reserved  
12.3.3 Get interface status  
The request returns two bytes of data; see Table 28.  
Table 28: Get interface status response  
Bit  
Function  
Value Description  
0 to 15  
reserved  
0
-
12.3.4 Get endpoint status  
The request returns two bytes of data; see Table 29.  
Table 29: Get endpoint status response  
Bit  
Function  
Value Description  
0
halt  
0
1
0
endpoint is not halted  
endpoint is halted  
-
1 to 15  
reserved  
12.3.5 Get hub status  
The request returns four bytes of data; see Table 30.  
Table 30: Get hub status response  
Bit  
Function  
Value Description  
0
local power source  
0
1
0
1
0
local power supply good  
local power supply lost (inactive)  
no overcurrent condition currently exists  
a hub overcurrent condition exists  
-
1
overcurrent indicator  
reserved  
2 to 15  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
29 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 30: Get hub status response…continued  
Bit  
Function  
Value Description  
16  
local power status change  
0
1
0
1
0
no change in the local power status  
local power status has changed  
no change in overcurrent  
overcurrent status has changed  
-
17  
overcurrent indicator change  
18 to 31 reserved  
12.3.6 Get port status  
This request returns four bytes of data. The first word contains the port status bits  
(wPortStatus), and the next word contains the port status change bits  
(wPortChange). The contents of wPortStatus is given in Table 31, and the contents of  
wPortChange is given in Table 32.  
Table 31: Get port status response (wPortStatus)  
Bit  
Function  
Value  
Description  
0
current connect status  
0
1
0
1
0
1
0
1
0
1
0
0
1
0
no device is present  
a device is present on this port  
port is disabled  
1
2
3
4
port enabled or disabled  
suspend  
port is enabled  
port is not suspended  
port is suspended  
overcurrent indicator  
reset  
no overcurrent condition exists  
an overcurrent condition exists  
reset signaling is not asserted  
reset signaling is asserted  
-
5 to 7  
8
reserved  
port power  
port is in the powered-off state  
port is not in the powered-off state  
9
low-speed device attached  
full-speed or high-speed device is  
attached  
1
0
1
0
1
0
1
0
low-speed device is attached  
full-speed device is attached  
high-speed device is attached  
not in the port test mode  
in the port test mode  
10  
11  
12  
high-speed device attached  
port test mode  
port indicator control  
displays default colors  
displays software controlled color  
-
13 to 15 reserved  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
30 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 32: Get port status change response (wPortChange)  
Bit  
Function  
Value  
Description  
0
connect status change  
0
1
0
1
0
1
0
1
0
1
0
no change in the current connect status  
change in the current connect status  
port is enabled  
1
2
3
4
port enable or disable change  
suspend change  
port is disabled  
no change  
resume complete  
overcurrent indicator change  
reset change  
no change in the overcurrent indicator  
change in the overcurrent indicator  
no change  
reset complete  
5 to 15 reserved  
-
12.4 Various get descriptors  
bmRequestType — 10000000B  
bmRequest — GET_DESCRIPTOR = 6  
Table 33: Get descriptor request  
Request name  
wValue  
wIndex  
Data  
Descriptor index  
Descriptor type  
Zero/Language ID  
Get device  
descriptor  
00  
01  
0
device descriptor  
Get configuration  
descriptor  
00  
00  
01  
02  
03  
03  
03  
03  
0
0
n
n
n
configuration interface and  
endpoint descriptors  
Get language ID  
string descriptor  
language ID support string  
Get manufacturer  
string descriptor  
manufacturer string in LANGID n  
product string in LANGID n  
Get product string 02  
descriptor  
Get serial number 03  
string descriptor  
serial number string in LANGID n  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
31 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
13. Limiting values  
Table 34: Absolute maximum ratings  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
+4.6  
+5.25  
+6.0  
+4.6  
+4.6  
100  
Unit  
V
supply voltage 3.3 V  
VREF(5V0)  
VI(5V0)  
VI(3V3)  
VO(3V3)  
Ilu  
input reference voltage 5.0 V  
input voltage on 5 V buffers  
input voltage on 3.3 V buffers  
output voltage on 3.3 V buffers  
latch-up current  
V
[1]  
3.0 V < VCC < 3.6 V  
3.0 V < VCC < 3.6 V  
V
V
V
VI < 0 or VI > VCC  
mA  
V
[2][3]  
[2][3]  
Vesd  
electrostatic discharge voltage  
on pins DM1 to DM4, DP1 to DP4,  
OC1_N to OC4_N, and all  
VREF(5V0) and GND pins; ILI < 1 µA  
4000  
+4000  
on all other pins; ILI < 1 µA  
2000  
40  
+2000  
V
Tstg  
storage temperature  
+125  
°C  
[1] Valid only when supply voltage is present.  
[2] Test method available on request.  
[3] Equivalent to discharging a 100 pF capacitor via a 1.5 kresistor (Human Body Model).  
14. Recommended operating conditions  
Table 35: Recommended operating ranges  
Symbol  
VCC  
Parameter  
Min  
3.0  
4.5  
0
Typ  
3.3  
5.0  
-
Max  
3.6  
Unit  
V
supply voltage 3.3 V  
[1]  
VREF(5V0)  
VI(3V3)  
VI(5V0)  
Tamb  
input reference voltage 5 V  
input voltage on 3.3 V pins  
input voltage on 5 V tolerant pins  
operating temperature  
5.25  
VCC  
V
V
0
-
VREF(5V0)  
70  
V
0
-
°C  
[1] All internal pull-up resistors are connected to this voltage.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
32 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
15. Static characteristics  
Table 36: Static characteristics: supply pins  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Full-speed  
Conditions  
Min  
Typ  
Max  
Unit  
IREF(5V0) supply current 5 V  
-
-
0.5  
91  
-
-
mA  
mA  
[1]  
[2]  
ICC(tot)  
total supply current 3.3 V  
ICC(tot) = ICC1 + ICC2 + ICC3 + ICC4  
High-speed  
ICC(tot)  
total supply current 3.3 V  
suspend mode; internal clock stopped  
no device connected  
-
-
-
-
-
-
0.5  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
136.3  
180  
221  
256  
288  
1 active device connected  
2 active devices connected  
3 active devices connected  
4 active devices connected  
[1] Irrespective of the number of devices connected, the value of ICC is always 91 mA in full-speed.  
[2] Including Rpu drop current.  
Table 37: Static characteristics: digital input and outputs[1]  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Digital input pins  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
ILI  
LOW-level input voltage  
-
-
-
-
0.8  
-
V
HIGH-level input voltage  
input leakage current  
2.0  
1  
V
+1  
µA  
Schmitt-trigger input pins  
Vth(LH)  
Vth(HL)  
Vhys  
positive-going threshold voltage  
1.4  
0.9  
0.4  
-
-
-
1.9  
1.5  
0.7  
V
V
V
negative-going threshold voltage  
hysteresis voltage  
Overcurrent detection pins OC1_N to OC4_N  
Vtrip overcurrent detection trip voltage  
Digital output pins  
V = VCC VOCn_N  
-
84  
-
mV  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
-
-
-
0.4  
-
V
V
2.4  
Open-drain output pins  
IOZ  
OFF-state output current  
1  
-
+1  
µA  
[1] All pins are 5 V tolerant.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
33 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 38: Static characteristics: I2C-bus interface block  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input pin SCL and input/output pin SDA[1]  
VIL  
VIH  
Vhys  
VOL  
tf  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
-
-
0.9  
-
V
2.1  
-
V
0.15  
-
-
V
LOW-level output voltage  
output fall time VIH to VIL  
-
-
-
0.4  
250  
V
[2]  
10 < Cb = 10 pF to 400 pF  
0
ns  
[1] All pins are 5 V tolerant.  
[2] The bus capacitance (Cb) is specified in pF. To meet the specification for VOL and the maximum rise time (300 ns), use an external  
pull-up resistor with Rmax = 850/Cb kand Rmin = (VCC 0.4)/3 k.  
Table 39: Static characteristics: USB interface block (DP0 to DP4 and DM0 to DM4)  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels for high-speed  
VHSSQ  
squelch detection threshold  
(differential signal amplitude)  
squelch detected  
-
-
-
-
100  
-
mV  
mV  
mV  
no squelch detected  
150  
50  
VHSCM  
data signaling common-mode  
voltage range  
+500  
Output levels for high-speed  
VHSOI  
idle state  
10  
360  
10  
700  
900  
-
-
-
-
-
+10  
mV  
mV  
mV  
mV  
mV  
VHSOH  
VHSOL  
VCHIRPJ  
data signaling HIGH  
data signaling LOW  
chirp J level (differential voltage)  
440  
+10  
[1]  
[1]  
1100  
500  
VCHIRPK chirp K level (differential voltage)  
Input levels for full-speed and low-speed  
VIL  
LOW-level input voltage  
-
-
-
-
-
-
0.8  
-
V
V
V
V
V
VIH  
HIGH-level input voltage (drive)  
HIGH-level input voltage (floating)  
differential input sensitivity  
2.0  
2.7  
0.2  
0.8  
VIHZ  
VDI  
3.6  
-
|DP DM|  
VCM  
differential common-mode range  
2.5  
Output levels for full-speed and low-speed  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
0
-
-
-
0.3  
3.6  
2.0  
V
V
V
VOH  
VCRS  
2.8  
1.3  
[2]  
output signal crossover point  
voltage  
Leakage current  
ILZ  
OFF-state leakage current  
1  
-
-
+1  
20  
µA  
Capacitance  
CIN  
transceiver capacitance  
pin to GND  
-
pF  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
34 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 39: Static characteristics: USB interface block (DP0 to DP4 and DM0 to DM4)…continued  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Resistance  
Conditions  
Min  
Typ  
Max  
-
Unit  
MΩ  
V
ZINP  
input impedance  
10  
-
-
Termination  
[3]  
VTERM  
termination voltage for pull-up  
resistor on pin RPU  
3.0  
3.6  
[1] For minimum value, the HS termination resistor is disabled and the pull-up resistor is connected. Only during reset, when both the hub  
and the device are capable of high-speed operation.  
[2] Characterized only, not tested. Limits guaranteed by design.  
[3] In the suspend mode, the minimum voltage is 2.7 V.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
35 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
16. Dynamic characteristics  
Table 40: Dynamic characteristics: system clock timing  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tW(POR)  
internal power-on reset pulse  
width  
0.2  
0.2  
-
-
1
-
µs  
µs  
tW(RESET_N)  
pulse width on pin RESET_N  
Crystal oscillator  
[1][2]  
fclk  
clock frequency  
crystal  
-
-
12  
50  
-
-
MHz  
%
External clock input  
δ
clock duty cycle  
[1] Recommended accuracy of the clock frequency is 500 ppm for the crystal.  
[2] Suggested values for external capacitors when using a crystal are 22 to 27 pF.  
Table 41: Dynamic characteristics: overcurrent sense timing  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Overcurrent sense pins OC1_N to OC4_N  
ttrip  
overcurrent trip response time from see Figure 9  
OCn_N LOW to PSWn_N HIGH  
-
-
15  
ms  
V
CC  
V  
trip  
overcurrent  
input  
0 V  
t
trip  
V
CC  
power switch  
output  
mbl032  
0 V  
Overcurrent input: pins OCn_N; power switch output: pins PSWn_N.  
Fig 9. Overcurrent trip response timing.  
Table 42: Dynamic characteristics: digital pins[1]  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; unless otherwise specified.  
Symbol Parameter  
tt(HL) output transition time  
tt(LH)  
Conditions  
Min  
Typ  
Max  
15  
Unit  
ns  
,
4
-
[1] All pins are 5 V tolerant.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
36 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 43: Dynamic characteristics: high-speed source electrical characteristics  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; test circuit Figure 21; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tHSR  
tHSF  
rise time  
fall time  
10 % to 90 %  
90 % to 10 %  
500  
500  
-
-
-
-
ps  
ps  
Clock timing  
tHSDRAT  
tHSFRAM  
tHSRFI  
data rate  
479.76  
-
480.24  
Mbit/s  
microframe interval  
124.9375 -  
125.0625  
µs  
consecutive microframe interval  
difference  
1
-
four high-speed ns  
bit times  
Table 44: Dynamic characteristics: full-speed source electrical characteristics  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; test circuit Figure 22; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tFR  
rise time  
CL = 50 pF; 10 % to 90 % of  
4
-
-
-
-
-
20  
ns  
ns  
%
|VOH VOL  
CL = 50 pF; 90 % to 10 % of  
|VOH VOL  
|
tFF  
fall time  
4
20  
|
[1]  
tFRFM  
ZDRV  
VCRS  
differential rise and fall time  
matching  
90  
28  
1.3  
111.1  
44  
driver output resistance  
for the driver that is not  
high-speed capable  
[1][2]  
output signal crossover voltage  
2.0  
V
Data source timing[2]  
[1]  
[1]  
tDJ1 source differential jitter for  
see Figure 10  
see Figure 10  
3.5  
4  
-
-
+3.5  
+4  
ns  
ns  
consecutive transitions  
tDJ2  
source differential jitter for paired  
transitions  
tFEOPT  
tFDEOP  
source SE0 interval of EOP  
see Figure 11  
see Figure 11  
160  
-
-
175  
ns  
ns  
source differential data-to-EOP  
transition skew  
2  
+5  
Receiver timing[2]  
tJR1  
receiver data jitter tolerance for  
consecutive transitions  
see Figure 12  
see Figure 12  
18.5  
9  
-
-
-
-
+18.5 ns  
tJR2  
receiver data jitter tolerance for  
paired transitions  
+9  
-
ns  
ns  
ns  
tFEOPR  
tFST  
receiver SE0 width  
accepted as EOP; see  
Figure 11  
82  
width of SE0 interval during  
differential transaction  
rejected as EOP; see Figure 13  
-
14  
Hub timing (downstream ports configured as full-speed)[2]  
tFHDD  
hub differential data delay (without see Figure 14; CL = 0 pF  
cable)  
-
-
44  
ns  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
37 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 44: Dynamic characteristics: full-speed source electrical characteristics…continued  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; test circuit Figure 22; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
5  
Typ  
Max  
+5  
Unit  
ns  
tFSOP  
data bit width distortion after SOP  
see Figure 14  
see Figure 15  
see Figure 15  
-
-
-
tFEOPD  
tFHESK  
hub EOP delay relative to tHDD  
hub EOP output width skew  
0
15  
ns  
15  
+15  
ns  
[1] Excluding the first transition from Idle state.  
[2] Characterized only, not tested. Limits guaranteed by design.  
Table 45: Dynamic characteristics: low-speed source electrical characteristics  
VCC = 3.0 V to 3.6 V; Tamb = 0 °C to 70 °C; test circuit Figure 22; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tLR  
rise time  
fall time  
75  
75  
80  
-
-
-
300  
300  
125  
ns  
ns  
%
tLF  
[1]  
tLRFM  
differential rise and fall time  
matching  
[1][2]  
VCRS  
output signal crossover voltage  
1.3  
-
2.0  
V
Hub timing (downstream ports configured as full-speed)  
tLHDD  
tLSOP  
tLEOPD  
tLHESK  
hub differential data delay  
see Figure 14  
see Figure 14  
see Figure 15  
see Figure 15  
-
-
-
-
-
300  
+60  
200  
+300  
ns  
ns  
ns  
ns  
[2]  
[2]  
[2]  
data bit width distortion after SOP  
hub EOP delay relative to tHDD  
hub EOP output width skew  
60  
0
300  
[1] Excluding the first transition from Idle state.  
[2] Characterized only, not tested. Limits guaranteed by design.  
T
PERIOD  
+3.3 V  
crossover point  
crossover point  
crossover point  
differential  
data lines  
0 V  
mgr870  
consecutive  
transitions  
N × T + t  
PERIOD  
DJ1  
paired  
transitions  
N × T  
+ t  
PERIOD  
DJ2  
TPERIOD is the bit duration corresponding with the USB data rate.  
Fig 10. Source differential data jitter.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
38 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
T
PERIOD  
+3.3 V  
crossover point  
extended  
crossover point  
differential  
data lines  
0 V  
differential data to  
SE0/EOP skew  
N × T + t  
source EOP width: t  
EOPT  
receiver EOP width: t  
EOPR  
mgr776  
PERIOD  
DEOP  
TPERIOD is the bit duration corresponding with the USB data rate.  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timing a prefix ‘L.  
Fig 11. Source differential data-to-EOP transition skew and EOP width.  
T
PERIOD  
+3.3 V  
differential  
data lines  
0 V  
mgr871  
t
t
t
JR2  
JR  
JR1  
consecutive  
transitions  
N × T  
+ t  
PERIOD  
JR1  
paired  
transitions  
N × T  
+ t  
PERIOD  
JR2  
TPERIOD is the bit duration corresponding with the USB data rate.  
tJR is the jitter reference point.  
Fig 12. Receiver differential data jitter.  
t
FST  
+3.3 V  
V
IH(min)  
differential  
data lines  
0 V  
mgr872  
Fig 13. Receiver SE0 width tolerance.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
39 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
+3.3 V  
crossover  
point  
crossover  
point  
upstream  
differential  
data lines  
downstream  
differential  
data  
0 V  
hub delay  
downstream  
hub delay  
upstream  
t
t
HDD  
HDD  
+3.3 V  
crossover  
point  
crossover  
point  
downstream  
differential  
data lines  
upstream  
differential  
data  
0 V  
mgr777  
(A) downstream hub delay  
(B) upstream hub delay  
SOP distortion:  
= t  
t
t  
HDD(SOP)  
SOP  
HDD (next J)  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timing a prefix ‘L.  
Fig 14. Hub differential data delay and SOP distortion.  
+3.3 V  
crossover  
point  
extended  
crossover  
point  
extended  
upstream  
differential  
data lines  
downstream  
port  
0 V  
t
t
t
t
EOP+  
EOP−  
EOP+  
EOP−  
+3.3 V  
crossover  
point  
extended  
crossover  
point  
extended  
downstream  
differential  
data lines  
upstream  
end of cable  
0 V  
mgr778  
(A) downstream EOP delay  
(B) upstream EOP delay  
EOP delay:  
t
= max (t  
, t )  
EOPEOP+  
EOP  
EOP delay relative to t  
:
HDD  
t  
EOP HDD  
t
= t  
EOPD  
EOP skew:  
t
= t  
t  
EOP+ EOP−  
HESK  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timing a prefix ‘L.  
Fig 15. Hub EOP delay and EOP skew.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
40 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Table 46: Dynamic characteristics: I2C-bus (pins SDA and SCL)  
VCC and Tamb within recommended operating range; VDD = +5 V; VSS = VGND ; VIL and VIH between VSS and VDD  
.
Symbol Parameter  
Clock frequency  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
fSCL  
SCL clock frequency  
fXTAL = 12 MHz  
0
93.75 100  
kHz  
General timing  
tLOW  
tHIGH  
tr  
SCL LOW time  
4.7  
-
-
-
-
-
-
µs  
µs  
ns  
ns  
pF  
SCL HIGH time  
4.0  
-
SCL and SDA rise time  
SCL and SDA fall time  
capacitive load for each bus line  
-
-
-
1000  
300  
400  
tf  
Cb  
SDA timing  
tBUF  
bus free time  
4.7  
4.7  
-
-
-
-
µs  
µs  
tSU;STA  
set-up time for (repeated) START  
condition  
tHD;STA  
tSU;DAT  
tHD;DAT  
tSU;STO  
hold time (repeated) START condition  
data set-up time  
4.0  
250  
0
-
-
-
-
-
-
-
-
µs  
ns  
µs  
µs  
data hold time  
set-up time for STOP condition  
4.0  
Additional I2C-bus timing  
tVD;DAT  
SCL LOW to data-out valid time  
-
-
0.4  
µs  
[1] fSCL = 164 × fXTAL  
.
[2] Rise time is determined by Cb and pull-up resistor value Rp (typical 4.7 k).  
SDA  
t
f
t
t
BUF  
r
SCL  
P
P
S
Sr  
t
t
t
t
t
t
t
HD;STA  
SU;DAT HD;DAT  
HIGH  
LOW  
SU;STA  
SU;STO  
004aaa485  
Fig 16. I2C-bus timing.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
41 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
17. Application information  
17.1 Descriptor configuration selection  
upstream  
facing port  
GoodLink  
2
I C-bus  
ROM  
ISP1520  
external microcontroller  
2
acting as I C-bus master  
EEPROM  
green and  
green and  
green and  
green and  
USB function  
amber LEDs, amber LEDs, amber LEDs, amber LEDs,  
(1)  
port 1  
port 2  
port 3  
port 4  
004aaa303  
4 USB downstream facing ports  
The I2C-bus cannot be shared between the EEPROM and the external microcontroller; see Table 11.  
(1) The function on port 4, which is a non-removable port, is optional.  
Fig 17. Descriptors configuration selection application diagram.  
17.2 Overcurrent detection limit adjustment  
For an overcurrent limit of 500 mA per port, a PMOS with RDSON of approximately  
100 mis required. If a PMOS with a lower RDSON is used, analog overcurrent  
detection can be adjusted by using a series resistor; see Figure 18.  
VPMOS = Vtrip = Vtrip(intrinsic) (IOC(nom) × Rtd), where:  
VPMOS = voltage drop on PMOS  
IOC(nom) = 0.6 µA.  
5 V  
I
OC  
(1)  
R
td  
V
PSWn_N  
REF(5V0)  
OCn_N  
ISP1520  
004aaa259  
(1) Rtd is optional.  
Fig 18. Adjusting analog overcurrent detection limit (optional).  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
42 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
17.3 Self-powered hub configurations  
+4.85 V (min)  
+
5 V ± 3 %  
POWER SUPPLY  
3.3 V LDO  
VOLTAGE  
REGULATOR  
downstream  
port connector  
T1  
ferrite bead  
V
BUS  
+4.75 V  
(min)  
V
D+  
CC  
120 µF  
0.1 µF  
47 kΩ  
1
D−  
V
REF(5V0)  
PSW1_N  
OC1_N  
GND  
SHIELD  
GND  
PSW2_N  
OC2_N  
port 2  
to  
HP  
port 3  
ISP1520  
PSW3_N  
OC3_N  
SP/BP_N  
ferrite bead  
+4.75 V  
T4  
V
BUS  
D+  
(min)  
120 µF  
0.1 µF  
47 kΩ  
4
D−  
PSW4_N  
OC4_N  
GND  
SHIELD  
ADOC  
3.3 V  
004aaa305  
Fig 19. Self-powered hub; individual port power switching; individual overcurrent  
detection.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
43 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
+4.95 V (min)  
5.1 V ± 3 %  
POWER SUPPLY  
(kick-up)  
+
low-ohmic  
sense resistor  
for overcurrent  
detection  
3.3 V LDO  
VOLTAGE  
REGULATOR  
downstream  
V
port connector  
CC  
T1  
ferrite bead  
OC1_N  
V
V
REF(5V0)  
GND  
BUS  
+4.75 V  
(min)  
D+  
120 µF  
0.1 µF  
47 kΩ  
1
D−  
PSW1_N  
GND  
SHIELD  
PSW2_N  
PSW3_N  
PSW4_N  
HP  
port 2  
to  
port 3  
ISP1520  
SP/BP_N  
ferrite bead  
+4.75 V  
OC2_N  
OC3_N  
OC4_N  
V
BUS  
+ 5 V  
D+  
(min)  
120 µF  
4
D−  
ADOC  
GND  
SHIELD  
3.3 V  
004aaa307  
Fig 20. Self-powered hub; ganged port power switching; global overcurrent  
detection.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
44 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
18. Test information  
V
CC  
15.8 Ω  
15.8 Ω  
DPn  
50 coax D+  
(1)  
DUT  
DMn  
GND  
50 coax D−  
mdb273  
143 Ω  
143 Ω  
(1) Transmitter: connected to 50 inputs of a high-speed differential oscilloscope.  
Receiver: connected to 50 outputs of a high-speed differential data generator.  
Fig 21. High-speed transmitter and receiver test circuit.  
3.3 V  
1.5 kΩ ± 5%  
RPU  
full-  
speed  
(1)  
DPn  
DMn  
test point  
DUT  
(1)  
(1)  
C
C
15 kΩ  
15 kΩ  
L
test point  
mdb274  
L
(1) CL = 50 pF for full-speed.  
Fig 22. Full-speed test circuit.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
45 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
19. Package outline  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 23. LQFP64 package outline.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
46 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
20. Soldering  
20.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is recommended. In these situations  
reflow soldering is recommended.  
20.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder  
paste material. The top-surface temperature of the packages should preferably be  
kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with  
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all  
times.  
20.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
9397 750 11689  
Product data  
Rev. 02 — 04 May 2004  
47 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in  
most applications.  
20.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
20.5 Package related soldering information  
Table 47: Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, not suitable[4]  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note  
(AN01026); order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
48 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must  
on no account be processed through more than one soldering cycle or subjected to infrared reflow  
soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow  
oven. The package body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom  
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with  
the heatsink on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it  
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or  
larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than  
0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex  
foil by using a hot bar soldering process. The appropriate soldering profile can be provided on  
request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
21. Revision history  
Table 48: Revision history  
Rev Date  
CPCN  
-
Description  
02 20040504  
Product data (9397 750 11689)  
Modifications:  
Removed information on bus-power and hybrid-power  
Changed active LOW pin symbol representation from overscore (for example, NAME) to  
underscore N (NAME_N)  
Globally changed VCC(5V0) to VREF(5V0)  
Table 2: updated  
Updated Section 9.1.3  
Updated Table 7  
Table 34 and Table 35: changed the value of VREF(5V0)  
Globally changed the value of Tamb  
Table 36: removed ICC(5V0)  
Updated Figure 16  
Updated Figure 19 and Figure 20.  
Preliminary data (9397 750 10689)  
01 20030625  
-
9397 750 11689  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 04 May 2004  
49 of 51  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
22. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
performance. When the product is in full production (status ‘Production’),  
23. Definitions  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
25. Licenses  
Purchase of Philips I2C components  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
24. Disclaimers  
26. Trademarks  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
ACPI — is an open industry specification for PC power management,  
co-developed by Intel Corp., Microsoft Corp. and Toshiba.  
GoodLink — is a trademark of Koninklijke Philips Electronics N.V.  
I2C-bus — is a trademark of Koninklijke Philips Electronics N.V.  
OnNow — is a trademark of Microsoft Corporation.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
Intel — is a registered trademark of Intel Corporation.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
50 of 51  
9397 750 11689  
Product data  
Rev. 02 — 04 May 2004  
ISP1520  
Hi-Speed USB hub controller  
Philips Semiconductors  
Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
12.3.4  
12.3.5  
12.3.6  
12.4  
Get endpoint status . . . . . . . . . . . . . . . . . . . . 29  
Get hub status . . . . . . . . . . . . . . . . . . . . . . . . 29  
Get port status . . . . . . . . . . . . . . . . . . . . . . . . 30  
Various get descriptors. . . . . . . . . . . . . . . . . . 31  
13  
14  
15  
16  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 32  
Recommended operating conditions . . . . . . 32  
Static characteristics . . . . . . . . . . . . . . . . . . . 33  
Dynamic characteristics. . . . . . . . . . . . . . . . . 36  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
17  
Application information . . . . . . . . . . . . . . . . . 42  
Descriptor configuration selection . . . . . . . . . 42  
Overcurrent detection limit adjustment. . . . . . 42  
Self-powered hub configurations . . . . . . . . . . 43  
17.1  
17.2  
17.3  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 9  
Analog transceivers . . . . . . . . . . . . . . . . . . . . . 9  
Hub controller core . . . . . . . . . . . . . . . . . . . . . . 9  
Philips serial interface engine. . . . . . . . . . . . . . 9  
Routing logic. . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Transaction translator . . . . . . . . . . . . . . . . . . . . 9  
Mini-host controller . . . . . . . . . . . . . . . . . . . . . . 9  
Hub repeater. . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Hub and port controllers . . . . . . . . . . . . . . . . . 10  
Bit clock recovery . . . . . . . . . . . . . . . . . . . . . . 10  
Phase-locked loop clock multiplier . . . . . . . . . 10  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 10  
Overcurrent detection circuit. . . . . . . . . . . . . . 10  
GoodLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 11  
18  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 45  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.3  
8.4  
8.5  
8.6  
8.7  
19  
20  
20.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Introduction to soldering surface mount  
packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 47  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 47  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 48  
Package related soldering information. . . . . . 48  
20.2  
20.3  
20.4  
20.5  
21  
22  
23  
24  
25  
26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 49  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 50  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
9
9.1  
Configuration selections. . . . . . . . . . . . . . . . . 12  
Configuration through I/O pins . . . . . . . . . . . . 12  
Number of downstream facing ports. . . . . . . . 12  
Power switching . . . . . . . . . . . . . . . . . . . . . . . 13  
Overcurrent protection mode . . . . . . . . . . . . . 14  
Non-removable port . . . . . . . . . . . . . . . . . . . . 14  
Port indicator support . . . . . . . . . . . . . . . . . . . 15  
Device descriptors and string descriptors  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.2  
settings using I2C-bus . . . . . . . . . . . . . . . . . . 15  
Background information on I2C-bus . . . . . . . . 15  
Architecture of configurable hub descriptors . 16  
ROM or EEPROM map. . . . . . . . . . . . . . . . . . 17  
ROM or EEPROM detailed map. . . . . . . . . . . 17  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
10  
10.1  
10.2  
Hub controller description . . . . . . . . . . . . . . . 22  
Endpoint 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Endpoint 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
11  
Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12  
12.1  
12.2  
12.3  
12.3.1  
12.3.2  
12.3.3  
Hub requests . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Standard USB requests . . . . . . . . . . . . . . . . . 26  
Hub class requests . . . . . . . . . . . . . . . . . . . . . 27  
Detailed responses to hub requests . . . . . . . . 28  
Get configuration . . . . . . . . . . . . . . . . . . . . . . 28  
Get device status . . . . . . . . . . . . . . . . . . . . . . 29  
Get interface status. . . . . . . . . . . . . . . . . . . . . 29  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 04 May 2004  
Document order number: 9397 750 11689  

相关型号:

ISP1521

Hi-Speed Universal Serial Bus hub controller
NXP

ISP1521

IC USB HUB CONTROLLER HS 80-LQFP
STMICROELECTR

ISP1521BE

Hi-Speed Universal Serial Bus hub controller
NXP

ISP1561

ISP1561BM
NXP

ISP1561BM

ISP1561BM
NXP

ISP1561BM,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-420-1, LQFP-128, Bus Controller
NXP

ISP1561BM,551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-420-1, LQFP-128, Bus Controller
NXP

ISP1562

Hi-Speed Universal Serial Bus PCI Host Controller
NXP

ISP1562BE

Hi-Speed Universal Serial Bus PCI Host Controller
NXP

ISP1562BE,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-407-1, LQFP-100, Bus Controller
NXP

ISP1562BE,551

USB Bus Controller, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-407-1, LQFP-100
NXP

ISP1563

Hi-Speed Universal Serial Bus PCI Host Controller
NXP