MC33908NAE [NXP]

System Basis Chip, CAN ONLY, 5V , 1.5A VCORE, QFP 48, Tray;
MC33908NAE
型号: MC33908NAE
厂家: NXP    NXP
描述:

System Basis Chip, CAN ONLY, 5V , 1.5A VCORE, QFP 48, Tray

文件: 总123页 (文件大小:1390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33907-MC33908D2  
Rev. 5.0, 10/2016  
NXP Semiconductors  
Data Sheet: Advance Information  
Power system basis chip with high  
speed CAN and LIN transceivers  
33907  
33908  
The 33907/33908 SMARTMOS devices area multi-output, power supply,  
integrated circuit, including HSCAN and/or LIN transceivers, dedicated to the  
automotive market.  
POWER SYSTEM BASIS CHIP  
Multiple switching and linear voltage regulators, including low-power mode  
(32 μA) are available with various wake-up capabilities. An advanced power  
management scheme is implemented to maintain high efficiency over wide input  
voltages (down to 2.7 V) and wide output current ranges (up to 1.5 A).  
The 33907/33908 include enhanced safety features, with multiple fail-safe  
outputs, becoming a full part of a safety oriented system partitioning, to reach a  
high integrity safety level (up to ASIL D).  
The built-in enhanced high-speed CAN interface fulfills the ISO11898-2 and -5  
standards. The LIN interface fulfills LIN protocol specifications 1.3, 2.0, 2.1, 2.2,  
and SAEJ2602-2  
AE SUFFIX (PB-FREE)  
98ASA00173D  
48-PIN LQFP-EP  
Features  
• Battery voltage sensing & MUX output pin  
Applications  
• Highly flexible SMPS pre-regulator, allowing two topologies: non-inverting  
buck-boost and standard buck  
• Switching mode power supply (SMPS) dedicated to MCU core supply, from  
1.2 V to 3.3 V delivering up to 1.5 A  
• Multiple wake-up sources in low-power mode: CAN, LIN, and/or IOs  
• Six configurable I/Os  
• Linear voltage regulator dedicated to auxiliary functions, or to a sensor supply  
(VCCA tracker or independent), 5.0 V or 3.3 V  
• Electrical power steering  
• Engine management  
• Battery management  
• Active suspension  
• Gear box  
• Transmission  
• Electrical vehicle (EV), hybrid electrical vehicle  
(HEV), and inverter  
• Advanced driver assistance systems  
• Linear voltage regulator dedicated to MCU A/D reference voltage or I/Os  
supply (VCCA), 5.0 V or 3.3 V  
+Battery  
(KL30)  
VDD  
33907/33908  
VCORE_SNS  
FB_CORE  
MCU  
VSUP3  
VSENSE  
COMP_CORE  
VCCA_E  
VCCA_B  
VCCA  
VAUX_E  
VAUX_B  
VCCA  
AD ref.  
voltage  
VCORE or  
VCCA  
VDDIO  
VAUX  
VAUX  
SELECT  
CAN-5V  
MOSI  
MISO  
SCLK  
SPI  
NCS  
Ignition Key  
IO_0  
MUX_OUT  
ADC Input  
NMI  
(KL15)  
INTB  
IO_1  
IO_2  
VDDIO  
RSTB  
Reset  
IO_3  
IO_4  
VDDIO  
IO_5  
FS0B  
VPRE  
CANH  
CAN BUS  
DEBUG  
mode  
DEBUG  
CANL  
VSUP3  
TXDL  
RXDL  
LIN BUS  
LIN  
LIN  
GNDA  
GND_COM  
DGND  
TXD RXD  
VDD  
FCCU  
CAN  
Figure 1. 33907/33908 simplified application diagram - buck boost configuration  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© 2016 NXP B.V.  
 
+Battery  
(KL30)  
VDD  
33907/33908  
VCORE_SNS  
FB_CORE  
MCU  
VPRE  
VSUP3  
VSENSE  
COMP_CORE  
VCCA_E  
VPRE  
VCCA_B  
VCCA  
VAUX_E  
VAUX_B  
VCCA  
AD ref.  
voltage  
VCORE or  
VCCA  
VDDIO  
VAUX  
SELECT  
MOSI  
MISO  
SPI  
CAN-5V  
SCLK  
NCS  
MUX_OUT  
Ignition Key  
(KL15)  
ADC Input  
NMI  
IO_0  
IO_1  
IO_2  
INTB  
VDDIO  
RSTB  
Reset  
IO_3  
IO_4  
VDDIO  
IO_5  
FS0B  
VPRE  
CANH  
CAN BUS  
VSUP3  
DEBUG  
mode  
DEBUG  
CANL  
LIN  
TXDL  
RXDL  
LIN BUS  
VDD  
LIN  
GNDA  
GND_COM  
DGND  
TXD RXD  
FCCU  
CAN  
Figure 2. Simplified application diagram - buck configuration, VAUX not used, VCCA = 100 mA  
33907/33908  
2
NXP Semiconductors  
 
1
Orderable parts  
Table 1. Orderable part variations  
Temperature (T )  
VCORE  
Part number  
Package  
CAN  
LIN  
Notes  
A
MC33907NAE  
MC33908NAE  
MC33907LAE  
MC33908LAE  
0
0
1
1
0.8 A  
1.5 A  
0.8 A  
1.5 A  
(1)  
-40 to 125 °C  
48-pin LQFP exposed pad  
1
Notes  
1. To order parts in Tape & Reel, add the R2 suffix to the part number.  
33907/33908  
NXP Semiconductors  
3
 
2
Internal Block Diagram  
VPRE  
VSUP3  
TSD  
TSD  
VPRE SMPS  
VCORE SMPS  
VPRE  
VPRE  
TSD  
TSD  
VCCA_E  
VCCA_B  
VCCA  
VAUX_E  
VAUX_B  
VAUX  
VAUX Linear Regulator  
VCCA Linear Regulator  
VREF  
(2.5 V)  
Die  
Temp  
VSENSE  
GNDA  
VPRE  
VPRE  
VPRE  
VSUP3  
VCAN  
Internal Linear  
Regulator  
TSD  
CAN-5V  
Analog  
Reference #1  
MUX  
Interface  
Charge Pump  
MUX_OUT  
IO_1  
IO_0  
SELECT  
Select  
DEBUG  
INTB  
MOSI  
MISO  
SCLK  
NCS  
IO_0  
IO_1  
IO_2  
IO_3  
IO_4  
V2p5  
Logic  
Main  
OSC  
Main  
Debug  
6
I/Os  
Interface  
Power Management  
State Machine  
SPI  
Main  
IO_5  
MISO FS  
Select  
VDDIO  
VAUX VCCA FB_CORE  
CAN-5V  
VDDIO  
VSUP1&2  
CAN diag VSENSE  
Debug  
V2p5Logic  
FS  
SPI  
FS  
VDDIO  
Voltage Regulator  
SUPERVISOR  
(Over & undervoltage)  
VPRE  
RSTB  
FS0B  
Analog Reference #2  
FS  
5
FAIL SAFE Machine  
VPRE  
VSUP3  
OSC  
FS  
VSENSE  
VSENSE  
RXD  
CAN-5V  
CANH  
HSCAN Interface  
LIN Interface  
TXD  
CANL  
GND_COM  
RXDL  
TXDL  
LIN  
Fail Safe Logic & supply  
Figure 3. 33907L/33908L with CAN and LIN simplified internal block diagram  
33907/33908  
NXP Semiconductors  
4
VPRE  
VSUP3  
TSD  
TSD  
TSD  
VPRE SMPS  
VCORE SMPS  
VPRE  
VPRE  
TSD  
VCCA_E  
VAUX_E  
VAUX_B  
VAUX  
VCCA_B  
VCCA  
VAUX Linear Regulator  
VCCA Linear Regulator  
VREF  
(2.5 V)  
Die  
Temp  
VSENSE  
GNDA  
VPRE  
VPRE  
VPRE  
VSUP3  
VCAN  
Internal Linear  
Regulator  
TSD  
CAN-5V  
Analog  
Reference #1  
MUX  
Interface  
Charge Pump  
MUX_OUT  
IO_1  
IO_0  
SELECT  
Select  
DEBUG  
INTB  
MOSI  
MISO  
SCLK  
NCS  
IO_0  
IO_1  
IO_2  
IO_3  
IO_4  
V2p5  
Logic  
Main  
OSC  
Main  
Debug  
6
I/Os  
Interface  
Power Management  
State Machine  
SPI  
Main  
IO_5  
MISO FS  
VDDIO  
CAN-5V VAUX VCCA FB_CORE  
VDDIO  
VSUP1&2  
CAN diag VSENSE  
Select  
V2p5Logic  
FS  
Debug  
SPI  
FS  
VDDIO  
Voltage Regulator  
SUPERVISOR  
(Over & undervoltage)  
VPRE  
RSTB  
FS0B  
Analog Reference #2  
FS  
5
FAIL SAFE Machine  
VPRE  
VSUP3  
OSC  
FS  
VSENSE  
VSENSE  
RXD  
CAN-5V  
CANH  
HSCAN Interface  
TXD  
CANL  
GND_COM  
Fail Safe Logic & supply  
Figure 4. 33907N/33908N with CAN only simplified internal block diagram  
33907/33908  
NXP Semiconductors  
5
3
Pin connections  
3.1  
Pinout diagram for 33907/33908  
Transparent top view  
BOOT_CORE  
SW_CORE  
VCORE_SNS  
COMP_CORE  
FB_CORE  
SELECT  
VDDIO  
VSUP1  
VSUP2  
VSENSE  
VSUP3  
LIN  
GND_COM  
CAN_5V  
CANH  
INTB  
CANL  
NCS  
IO_4  
SCLK  
IO_5  
MOSI  
IO_0  
MISO  
Figure 5. 33907L/33908L pinout with CAN and LIN  
Transparent top view  
BOOT_CORE  
SW_CORE  
VCORE_SNS  
COMP_CORE  
FB_CORE  
SELECT  
VDDIO  
VSUP1  
VSUP2  
VSENSE  
VSUP3  
NC  
GND_COM  
CAN_5V  
CANH  
CANL  
INTB  
NCS  
IO_4  
SCLK  
IO_5  
MOSI  
IO_0  
MISO  
Figure 6. 33907N/33908N pinout with CAN only  
33907/33908  
6
NXP Semiconductors  
3.2  
Pin definitions  
A functional description of each pin can be found in the functional pin description section beginning on page 26.  
Table 2. 33907/33908 pin definition  
33907L/  
33908L  
33907N/  
33908N  
Pin name  
Type  
Definition  
pin number pin number  
Power supply of the device. An external reverse battery protection diode in series is  
mandatory  
1
2
3
1
2
3
VSUP1  
VSUP2  
A_IN  
A_IN  
A_IN  
Second power supply. Protected by the external reverse battery protection diode used for  
VSUP1. VSUP1 and VSUP2 must be connected together externally.  
Sensing of the battery voltage. Must be connected prior to the reverse battery protection  
diode.  
VSENSE  
Third power supply dedicated to the device supply. Protected by the external reverse battery  
protection diode used for VSUP1. Must be connected between the reverse protection diode  
and the input PI filter.  
4
5
4
VSUP3  
LIN  
A_IN  
LIN single-wire bus transmitter and receiver. NC: pin must be left open for 33907N/33908N  
version  
NC  
A_IN/OUT  
6
7
8
9
6
7
8
9
GND_COM  
CAN_5V  
CANH  
GND  
Dedicated ground for CAN  
A_OUT  
Output voltage for the embedded CAN interface  
A_IN/OUT HSCAN output High  
A_IN/OUT HSCAN output Low  
CANL  
Can be used as digital input (load dump proof) with wake-up capability or as an output gate  
driver  
Digital input: Pin status can be read through the SPI. Can be used to monitor error signals  
from another IC for safety purposes.  
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a  
10  
11  
10  
11  
D_IN  
A_OUT  
IO_4:5  
transition  
Output gate driver: Can drive a logic level low-side NMOS transistor. Controlled by the SPI.  
Can be used as analog or digital input (load dump proof) with wake-up capability (selectable)  
Analog input: Pin status can be read through the MUX output pin  
Digital input: Pin status can be read through the SPI. Can be used to monitor error signals  
from another IC for safety purposes  
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a  
transition  
Rk: For safety purposes, IO_1 can also be used to monitor the middle point of a redundant  
resistor bridge connected on Vcore (in parallel to the one used to set the Vcore voltage).  
12  
13  
12  
13  
A_IN  
D_IN  
IO_0:1  
FS0B  
Output of the safety block (active low). The pin is asserted low at start-up and when a fault  
condition is detected. Open drain structure.  
14  
14  
D_OUT  
D_IN  
15  
16  
15  
16  
DEBUG  
AGND  
Debug mode entry input  
GROUND Analog ground connection  
Multiplexed output to be connected to an MCU ADC input. Selection of the analog parameter  
is available at MUX-OUT through the SPI.  
17  
17  
MUX_OUT  
A_OUT  
D_IN  
Digital input pin with wake-up capability (logic level compatible)  
Digital INPUT: Pin status can be read through the SPI. Can be used to monitor error signals  
from MCU for safety purposes.  
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a  
18  
19  
18  
19  
IO_2:3  
transition.  
Transceiver input from the MCU which controls the state of the HSCAN bus. Internal pull-up  
to VDDIO. Internal pull-up to VDDIO.  
20  
21  
22  
20  
21  
TXD  
RXD  
TXDL  
D_IN  
D_OUT Receiver output which reports the state of the HSCAN bus to the MCU  
Transceiver input from the MCU which controls the state of the LIN bus. Internal pull-up to  
VDDIO. NC: pin must be left open for 33907N/33908N version  
NC  
D_IN  
33907/33908  
NXP Semiconductors  
7
Table 2. 33907/33908 pin definition (continued)  
33907L/  
33908L  
33907N/  
33908N  
Pin name  
Type  
Definition  
pin number pin number  
Receiver output which reports the state of the LIN bus to the MCU. NC: pin must be left open  
for 33907N/33908N version  
23  
24  
NC  
24  
RXDL  
RSTB  
D_OUT  
This output is asserted low when the safety block reports a failure. The main function is to  
D_OUT reset the MCU. Reset input voltage is also monitored in order to detect external reset and  
fault condition. Open drain structure.  
25  
26  
27  
28  
25  
26  
27  
28  
MISO  
MOSI  
SCLK  
NCS  
D_OUT SPI bus. Master Input Slave Output  
D_IN  
D_IN  
D_IN  
SPI bus. Master Output Slave Input  
SPI Bus. Serial clock  
No Chip Select (Active low)  
This output pin generates a low pulse when an Interrupt condition occurs. Pulse duration is  
configurable. Internal pull-up to VDDIO.  
29  
29  
INTB  
D_OUT  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
VDDIO  
SELECT  
A_IN  
D_IN  
A_IN  
A_IN  
A_IN  
A_IN  
Input voltage for MISO output buffer. Allows voltage compatibility with MCU I/Os.  
Hardware selection pin for VAUX and VCCA output voltages  
VCORE voltage feedback. Input of the error amplifier.  
Compensation network. Output of the error amplifier.  
VCORE output voltage sense  
FB_CORE  
COMP_CORE  
VCORE_SNS  
SW_CORE  
VCORE switching point  
BOOT_CORE A_IN/OUT Bootstrap capacitor for VCORE internal NMOS gate drive  
VPRE  
VAUX  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
A_OUT  
VPRE output voltage  
VAUX output voltage. External PNP ballast transistor. Collector connection  
VAUX voltage regulator. External PNP ballast transistor. Base connection  
VAUX voltage regulator. External PNP ballast transistor. Emitter connection  
VCCA voltage regulator. External PNP ballast transistor. Emitter connection  
VCCA voltage regulator. External PNP ballast transistor. Base connection  
VCCA output voltage. External PNP ballast transistor. Collector connection  
Low-side MOSFET gate drive for “Non-inverting Buck-boost” configuration  
VAUX_B  
VAUX_E  
VCCA_E  
VCCA_B  
VCCA  
GATE_LS  
DGND  
GROUND Digital ground connection  
BOOT_PRE A_IN/OUT Bootstrap capacitor for the VPRE internal NMOS gate drive  
SW_PRE2  
SW_PRE1  
A_IN  
A_IN  
Second pre-regulator switching point  
First pre-regulator switching point  
33907/33908  
8
NXP Semiconductors  
4
General product characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Ratings  
Value  
Unit  
Notes  
Electrical ratings  
VSUP1/2/3  
VSENSE  
(2)  
DC Voltage at Power Supply Pins  
DC Voltage at Battery Sense Pin  
-1.0 to 40  
-14 to 40  
-1.0 to 40  
-0.3 to 8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VSW1,2  
DC Voltage at SW_PRE1 and SW_PRE2 Pins  
DC Voltage at VPRE Pin  
VPRE  
VGATE_LS  
VBOOT_PRE  
VSW_CORE  
VCORE_SNS  
VBOOT_CORE  
VFB_CORE  
VCOMP_CORE  
VAUX_E,B  
VAUX  
DC Voltage at Gate_LS pin  
-0.3 to 8  
DC Voltage at BOOT_PRE pin  
DC Voltage at SW_CORE pin  
-1.0 to 50  
-1.0 to 8.0  
0.0 to 8.0  
0.0 to 15  
-0.3 to 2.5  
-0.3 to 2.5  
-0.3 to 40  
-2.0 to 40  
-0.3 to 8.0  
-0.3 to 8.0  
-0.3 to 8.0  
-0.3 to 40  
-0.3 to 40  
-0.3 to 40  
DC Voltage at VCORE_SNS pin  
DC Voltage at BOOT_CORE pin  
DC Voltage at FB_CORE pin  
DC Voltage at COMP_CORE pin  
DC Voltage at VAUX_E, VAUX_B pin  
DC Voltage at VAUX pin  
VCCA_B,E  
VCCA  
DC Voltage at VCCA_B, VCCA_E pin  
DC Voltage at VCCA pin  
VDDIO  
DC Voltage at VDDIO  
VFS0  
DC Voltage at FS0B (with ext R mandatory)  
DC Voltage at DEBUG  
VDEBUG  
VIO_0,1,4,5  
DC Voltage at IO_0:1; 4:5 (with ext R = 5.1 kΩ in series mandatory)  
DC Voltage at INTB, RSTB, MISO, MOSI, NCS, SCLK, MUX_OUT, RXD, TXD,  
RXDL, TXDL, IO_2, IO_3  
V
-0.3 to VDDIO+0.3  
V
DIG  
VSELECT  
DC Voltage at SELECT  
-0.3 to 8.0  
-27 to 40  
V
V
V
DC Voltage on CANL, CANH  
DC Voltage on LIN  
BUS_CAN  
V
-18 to 40V  
-0.3 to 8.0  
-5.0 to 5.0  
V
BUS_LIN  
V
DC Voltage on CAN_5 V  
V
CAN_5V  
I_IO0, 1, 4, 5  
IOs Maximum Current Capability(IO_0, IO_1, IO_4, IO_5)  
mA  
Notes  
2. All Vsups (VSUP1/2/3) shall be connected to the same supply (Figure 58)  
33907/33908  
NXP Semiconductors  
9
 
 
Table 3. Maximum ratings (continued)  
All voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Ratings  
Value  
Unit  
Notes  
ESD Voltage  
Human Body Model (JESD22/A114) - 100 pF, 1.5 kΩ  
• All pins  
VESD-HBM1  
VESD-HBM2  
VESD-HBM3  
VESD-HBM4  
±2.0  
±4.0  
±6.0  
±8.0  
kV  
kV  
kV  
kV  
• VSUP1,VSUP2, VSUP3, VSENSE, VAUX, IO_0:1, IO_4:5,FS0B, DEBUG  
• CANH, CANL  
• LIN  
Charge Device Model (JESD22/C101):  
VESD-CDM1  
VESD-CDM2  
• All Pins  
• Corner Pins  
±500  
±750  
V
V
System level ESD (Gun Test)  
• VSUP1, VSUP2, VSUP3, VSENSE, VAUX, IO_0:1, IO_4:5, FS0B  
330 Ω / 150 pF Unpowered According to IEC61000-4-2:  
330 Ω / 150 pF Unpowered According to OEM LIN, CAN, FLexray Conformance  
2.0 kΩ / 150 pF Unpowered According to ISO10605.2008  
2.0 kΩ / 330 pF Powered According to ISO10605.2008  
• CANH, CANL  
VESD-GUN1  
VESD-GUN2  
VESD-GUN3  
VESD-GUN4  
±8.0  
±8.0  
±8.0  
±8.0  
kV  
kV  
kV  
kV  
(3)  
VESD-GUN5  
VESD-GUN6  
VESD-GUN7  
VESD-GUN8  
330 Ω / 150 pF Unpowered According to IEC61000-4-2:  
330 Ω / 150 pF Unpowered According to OEM LIN, CAN, FLexray Conformance  
2.0 kΩ / 150 pF Unpowered According to ISO10605.2008  
2.0 kΩ / 330 pF Powered According to ISO10605.2008  
• LIN  
±15.0  
±12.0  
±15.0  
±15.0  
kV  
kV  
kV  
kV  
VESD-GUN9  
VESD-GUN10  
VESD-GUN11  
VESD-GUN12  
330 Ω / 150 pF Unpowered According to IEC61000-4-2:  
330 Ω / 150 pF Unpowered According to OEM LIN, CAN, FLexray Conformance  
2.0 kΩ / 150 pF Unpowered According to ISO10605.2008  
2.0 kΩ / 330 pF Powered According to ISO10605.2008  
±15.0  
±15.0  
±12.0  
±15.0  
kV  
kV  
kV  
kV  
Thermal ratings  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
Storage Temperature  
-40 to 125  
-40 to 150  
-55 to 150  
°C  
°C  
°C  
TSTG  
Thermal resistance  
RθJA  
(4)  
(5)  
(6)  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case Top  
Thermal Resistance Junction to Case Bottom  
30  
24.2  
0.9  
°C/W  
°C/W  
°C/W  
RθJCTOP  
RθJCBOTTOM  
Notes  
3. Compared to AGND.  
4. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC - 883 Method 1012.1).  
6. Thermal resistance between the die and the solder par on the bottom of the packaged based on simulation without any interface resistance.  
33907/33908  
10  
NXP Semiconductors  
 
 
 
 
4.2  
Static electrical characteristics  
Table 4. Operating range  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power supply  
ISUP123  
Power Supply Current in Normal Mode (VSUP > VSUP_UV_7  
)
2.0  
3.5  
32  
42  
8.5  
13.0  
5.0  
mA  
mA  
µA  
µA  
V
ISUP3  
Power Supply Current for VSUP3 in Normal Mode (VSUP > VSUP_UV_7  
Power Supply Current in LPOFF (VSUP = 14 V at TA = 25 °C)  
Power Supply Current in LPOFF (VSUP = 18 V at TA = 80 °C)  
Power Supply Undervoltage Warning  
)
ISUP_LPOFF1  
ISUP_LPOFF2  
VSNS_UV  
60  
VSNS_UV_HYST  
VSUP_UV_7  
VSUP_UV_5  
VSUP_UV_L  
VSUP_UV_L_B  
VSUP_UV_HYST  
Power Supply Undervoltage Warning Hysteresis  
0.1  
7.0  
V
Power Supply Undervoltage Lockout (power-up)  
8.0  
5.6  
2.7  
4.6  
V
Power Supply Undervoltage Lockout (power-up)  
V
Power Supply Undervoltage Lockout (falling - Boost config.)  
Power Supply Undervoltage Lockout (falling - Buck config.)  
Power Supply Undervoltage Lockout Hysteresis  
V
(7)  
(8)  
V
0.1  
V
VPRE voltage pre-regulator  
VPRE Output Voltage  
6.25  
VPRE_UV_4  
P3  
6.75  
• Buck mode (VSUP > VSUP_UV_7  
)
VSUP  
RDSON_PR  
E * IPRE  
-
• Buck mode (VSUP_UV_7 VSUP 4.6 V)  
VPRE  
V
A
A
• Boost mode (VSUP 2.7 V)  
6.0  
7.0  
VPRE Maximum Output Current Capability  
• Buck or Boost with VSUP > VSUP_UV_7  
2.0  
0.5  
2.0  
1.0  
0.3  
2.0  
• Buck with VSUP_UV_7 VSUP 4.6 V  
• Boost with VSUP_UV_7 VSUP 6.0 V  
• Boost with 6.0 V VSUP 4.0 V  
• Boost with 4.0 V VSUP 2.7 V  
(8)  
IPRE  
VPRE Maximum Output Current Capability in LPOFF at low VSUP  
voltage  
• Buck with VSUP_UV_7 VSUP 4.6 V  
• Boost with VSUP_UV_7 VSUP 6.0 V  
• Boost with 6.0 V VSUP 4.0 V  
• Boost with 4.0 V VSUP 2.7 V  
0.05  
2.0  
1.0  
0.3  
(8)  
IPRE_LPOFF  
IPRE_LIM  
IPRE_OC  
VPRE_UV  
VPRE Output Current Limitation with VSUP 28 V  
3.5  
5.0  
5.5  
A
A
V
VPRE Overcurrent Detection Threshold (in buck mode only) with VSUP  
28 V  
VPRE Undervoltage Detection Threshold (Falling)  
6.0  
Notes  
7. VSUP_UV_L_B = VPRE_UV_4P3 + RDSON_PRE * IPRE  
8. Guaranteed by design  
33907/33908  
NXP Semiconductors  
11  
 
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPRE voltage pre-regulator (continued)  
(9)  
VPRE_UV_HYST  
VPRE_UV_4P3  
VPRE Undervoltage Hysteresis  
0.05  
4.2  
0.15  
4.5  
V
V
VPRE Shut-off Threshold (Falling - buck and buck/boost)  
VPRE Shut-off Hysteresis  
VPRE_UV_4P3_  
(9)  
0.05  
0.15  
V
HYST  
RDSON_PRE  
LIR_VPRE  
VPRE Pass Transistor On Resistance with VSUP 28 V  
200  
mΩ  
(9)  
(9)  
VPRE Line Regulation  
20  
mV  
VPRE Load Regulation for COUT = 57 µF  
• IPRE from 50 mA to 2.0 A - Buck mode  
LORVPRE_BUCK  
100  
500  
mV  
mV  
mV  
VPRE Load Regulation for COUT = 57 µF  
• IPRE from 50 mA to 2.0 A - Boost mode  
(9)  
LORVPRE_BOOST  
VPRE_LL_H  
VPRE_LL_L  
200  
180  
VPRE Pulse Skipping Thresholds  
TWARN_PRE  
TSD_PRE  
TSD_PRE_HYST  
VSUP_IPFF  
VPRE Thermal Warning Threshold  
VPRE Thermal Shutdown Threshold  
VPRE Thermal Shutdown Hysteresis  
IPFF Input Voltage Detection  
160  
125  
°C  
°C  
°C  
V
(9)  
10  
18  
24  
VSUP_IPFF_HYST IPFF Input Voltage Hysteresis  
0.2  
1.7  
VPRE-1  
V
IPRE_IPFF_PK  
VG_LS_OH  
VG_LS_OL  
IPFF High-side Peak Current Detection with VSUP 28 V  
A
LS Gate Driver High Output Voltage (IOUT = 50 mA)  
LS Gate driver Low Level (IOUT = 50 mA)  
VPRE  
0.5  
V
V
Vcore voltage regulator  
VCORE_FB VCORE Feedback Input Voltage  
0.784  
0.8  
0.816  
V
A
VCORE Output Current Capability in Normal Mode  
• 33907N  
• 33908N  
• 33907L  
• 33908L  
0.8  
1.5  
0.8  
1.5  
ICORE  
VCORE Output Current Limitation  
• 33907N  
1
1.8  
1
2
3.5  
2
ICORE_LIM  
• 33908N  
• 33907L  
• 33908L  
A
1.8  
3.5  
RDSON_CORE  
VCORE Pass Transistor On Resistance  
200  
mΩ  
Notes  
9. Guaranteed by design  
33907/33908  
12  
NXP Semiconductors  
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vcore voltage regulator (continued)  
(10) (11)  
LORVCORE_1.2  
LORVCORE_3.3  
VCORE Transient Load regulation - 1.2 V range  
VCORE Transient Load regulation - 3.3 V range  
-60  
60  
mV  
mV  
,
(10) (11)  
-100  
100  
,
VCORE_LL_H  
VCORE_LL_L  
180  
160  
VCORE Pulse Skipping Thresholds  
mV  
TWARN_CORE  
TSD_CORE  
VCORE Thermal Warning Threshold  
VCORE Thermal Shutdown Threshold  
160  
125  
°C  
°C  
°C  
(10)  
(12)  
TSD_CORE_HYST VCORE Thermal Shutdown Hysteresis  
VCCA voltage regulator  
10  
VCCA Output Voltage  
• 5.0 V config. with Internal ballast at 100 mA  
4.95  
4.9  
4.85  
3.2505  
3.234  
3.201  
5.0  
5.0  
5.0  
3.3  
3.3  
3.3  
5.05  
5.1  
5.15  
3.3495  
3.366  
3.399  
• 5.0 V config with external ballast at 200 mA  
• 5.0 V config with external ballast at 300 mA  
• 3.3 V config with Internal ballast at 100 mA  
• 3.3 V config with external ballast at 200 mA  
• 3.3 V config with external ballast at 300 mA  
VCCA  
V
ICCA_IN  
VCCA Output Current (int. MOSFET)  
100  
300  
675  
675  
200  
1.1  
mA  
mA  
mA  
mA  
mA  
V
ICCA_OUT  
VCCA Output Current (external PNP)  
ICCA_LIM_INT  
ICCA_LIM_OUT  
ICCA_LIM_FB  
VCCA_LIM_FB  
VCCA Output Current Limitation (int. MOSFET)  
VCCA Output Current Limitation (external PNP)  
VCCA Output Current Limitation Foldback  
VCCA Output Voltage Foldback Threshold  
100  
300  
80  
0.5  
0.03  
VCCA_LIM_HYST VCCA Output Voltage Foldback Hysteresis  
0.3  
V
ICCA_BASE_SC  
20  
30  
VCCA Base Current Capability  
ICCA_BASE_SK  
mA  
TWARN_CCA  
TSDCCA  
VCCA Thermal Warning Threshold (int. MOSFET only)  
VCCA Thermal Shutdown Threshold (int. MOSFET only)  
VCCA Thermal Shutdown Hysteresis  
160  
125  
°C  
°C  
°C  
(13)  
(13)  
TSDCCA_HYST  
10  
VCCA Transient Load Regulation  
• ICCA = 10 mA to 100 mA (internal MOSFET)  
LORTVCCA  
1.0  
%
• ICCA = 10 mA to 300 mA (external ballast)  
Notes  
10. Guaranteed by design.  
11. COUT = 40 µF, ICORE = 10 mA to 1.5 A, dICORE/dt 2.0 A/µs  
12. External PNP gain within 150 to 450  
13. Guaranteed by design.  
33907/33908  
NXP Semiconductors  
13  
 
 
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vaux voltage regulator  
VAUX_5  
VAUX_33  
VAUX Output Voltage (5.0 V configuration)  
VAUX Output Voltage (3.3 V configuration)  
VAUX Tracking Error (VAUX_5 and VAUX_33  
VAUX Output Current  
4.85  
3.2  
-15  
5.0  
3.3  
5.15  
3.4  
V
V
VAUX_TRK  
IAUX_OUT  
IAUX_LIM  
)
+15  
300  
700  
530  
1.1  
mV  
mA  
mA  
mA  
V
VAUX Output Current Limitation  
300  
100  
0.5  
0.03  
IAUX_LIM_FB  
VAUX_LIM_FB  
VAUX Output Current Limitation Foldback  
VAUX Output Voltage Foldback Threshold  
VAUX_LIM_HYST VAUX Output Voltage Foldback Hysteresis  
0.3  
V
IAUX_BASE_SC  
7.0  
-7.0  
VAUX Base Current Capability  
IAUX_BASE_SK  
mA  
TSDAUX  
TSDAUX_HYST  
LORVAUX  
VAUX Thermal Shutdown Threshold  
VAUX Thermal Shutdown Hysteresis  
160  
°C  
°C  
(14)  
(14)  
10  
15  
VAUX Static Load Regulation (IAUX_OUT = 10 mA to 300 mA)  
mV  
VAUX Transient Load Regulation  
• IAUX_OUT = 10 mA to 300 mA  
(14)  
LORTVAUX  
1.0  
%
CAN_5V voltage regulator  
VCAN Output Voltage  
VCAN  
VSUP > 6.0 V in Buck mode  
4.8  
5.0  
5.2  
V
VSUP > VSUP_UV_L in Boost mode  
ICAN_OUT  
ICAN_LIM  
VCAN Output Current  
100  
250  
mA  
mA  
°C  
°C  
V
VCAN Output Current Limitation  
VCAN Thermal Shutdown Threshold  
VCAN Thermal Shutdown Hysteresis  
VCAN Undervoltage Detection Threshold  
VCAN Undervoltage Hysteresis  
100  
160  
TSDCAN  
(14)  
TSDCAN_HYST  
VCAN_UV  
VCAN_UV_HYST  
VCAN_OV  
VCAN_OV_HYST  
LORVCAN  
10  
4.25  
0.07  
5.2  
0.07  
4.8  
0.22  
5.55  
0.22  
V
VCAN Overvoltage Detection Threshold  
VCAN Overvoltage Hysteresis  
V
V
(14)  
VCAN Load Regulation (from 0 to 50 mA)  
100  
mV  
Notes  
14. Guaranteed by design.  
33907/33908  
14  
NXP Semiconductors  
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Fail-safe machine voltage supervisor  
VPRE_OV  
VPRE Overvoltage Detection Threshold  
VPRE Overvoltage Hysteresis  
7.2  
0.1  
8.0  
V
V
V
V
(15)  
VPRE_OV_HYST  
VCORE_FB_UV  
VCORE FB Undervoltage Detection Threshold  
0.67  
0.45  
0.773  
0.58  
VCORE_FB_UV_D VCORE FB Undervoltage Detection Threshold - Degraded mode  
VCORE_FB_UV_  
(15)  
(15)  
VCORE FB Undervoltage Hysteresis  
10  
0.84  
10  
27  
0.905  
30  
mV  
V
HYST  
VCORE_FB_OV  
VCORE FB Overvoltage Detection Threshold  
VCORE FB Overvoltage Hysteresis  
VCORE_FB_OV_HYS  
mV  
T
VCORE_FB_DRIFT VCORE_FB Drift versus IO_1  
IPD_CORE VCORE Internal Pull-down Current (active when VCOR E is enabled)  
VCCA_UV_5  
50  
5.0  
4.5  
3.0  
3.0  
100  
12  
150  
25  
mV  
mA  
V
VCCA Undervoltage Detection Threshold (5.0 V config)  
VCCA Undervoltage Detection Threshold (Degraded 5.0 V)  
VCCA Undervoltage Detection Threshold (3.3 V config)  
VCCA Undervoltage Hysteresis  
4.75  
3.2  
3.2  
VCCA_UV_5D  
VCCA_UV_33  
VCCA_UV_HYST  
VCCA_OV_5  
VCCA_OV_33  
VCCA_OV_HYST  
RPD_CCA  
V
V
(15)  
(15)  
0.07  
V
VCCA Overvoltage Detection Threshold (5.0 V config)  
VCCA Overvoltage Detection Threshold (3.3 V config)  
VCCA Overvoltage Hysteresis  
5.25  
3.4  
5.5  
3.6  
V
V
0.15  
V
VCCA Internal Pull-down Resistor (active when VCCA is disabled)  
VAUX Undervoltage Detection Threshold (5.0 V config)  
VAUX Undervoltage Detection Threshold (Degraded 5.0 V)  
VAUX Undervoltage Detection Threshold (3.3 V config)  
VAUX Undervoltage Hysteresis  
50  
160  
4.75  
3.2  
3.2  
Ω
V
VAUX_UV_5  
4.5  
3.0  
3.0  
VAUX_UV_5D  
VAUX_UV_33  
VAUX_UV_HYST  
VAUX_OV_5  
V
V
(15)  
(15)  
0.07  
V
VAUX Overvoltage Detection Threshold (5.0 V config)  
VAUX Overvoltage Detection Threshold (3.3 V config)  
VAUX Overvoltage Hysteresis  
5.25  
3.4  
5.5  
3.6  
V
VAUX_OV_33  
VAUX_OV_HYST  
RPD_AUX  
V
0.07  
V
VAUX Internal Pull-down Resistor (active when VAUX is disabled)  
50  
170  
Ω
Notes  
15. Guaranteed by design.  
33907/33908  
NXP Semiconductors  
15  
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Fail-safe outputs  
VRSTB_OL  
(16)  
Reset Low Output Level (I_RSTB = 2.0 mA and 2.0 V < VSUP < 40 V)  
Reset Output Current Limitation  
12  
1.0  
0.5  
25  
V
mA  
V
IRSTB_LIM  
VRSTB_IL  
External Reset Detection Threshold (falling)  
External Reset Detection Threshold (rising)  
VRSTB_IH  
2.0  
V
VRSTB_IN_HYST External Reset Input Hysteresis  
0.2  
V
VFS0B_OL  
IFS0B_LK  
IFS0B_LIM  
FS0B Low Output Level (I_FS0b = 2.0 mA)  
0.5  
1.0  
12  
V
FS0B Input Current Leakage (VFS0B = 28 V)  
FS0B Output Current Limitation  
µA  
mA  
6.0  
Analog input - multi-purpose IOs  
VIO_ANA_WD  
VIO_ANA_TG  
IIO_IN_ANA  
Measurable Input Voltage (wide range)  
3.0  
3.0  
19  
9.0  
100  
V
V
Measurable Input Voltage (tight range)  
Input Current  
µA  
Digital input  
Digital High Input voltage level (IO_0:1, IO_4:5)  
• Min Limit = 2.7 V at VSUP = 40 V  
VIO_IH  
2.6  
V
VIO23_IH  
VIO_IL  
VIO_HYST  
VIO23_IL  
Digital High Input voltage level (IO_2, IO_3)  
Digital Low Input voltage Level (IO_0:1; IO_4:5)  
Input Voltage Hysteresis (IO_0:1, IO_4:5)  
Digital Low Input voltage Level (IO_2, IO_3)  
Input Voltage Hysteresis (IO_2, IO_3)  
Input Current for IO_0:1  
2.0  
V
V
2.1  
500  
0.9  
700  
100  
1.0  
5.0  
1.0  
(17)  
(17)  
50  
120  
mV  
V
VIO23_HYST  
IIO_IN_0:1  
IIO_IN_1  
200  
-5.0  
-1.0  
-5.0  
-1.0  
450  
mV  
µA  
µA  
µA  
µA  
Input Current for IO_1 when used for FB_Core monitoring  
Input Current for IO_2:5  
IIO_IN_2:5  
IIO_IN_LPOFF  
Input Current for IO_0:5 in LPOFF  
Output gate driver  
VIO_OH  
High Output Level at IIO_OUT = -2.5 mA  
Low Output Level at IIO_OUT = +2.5 mA  
VPRE - 1.5  
0.0  
VPRE  
1.0  
V
V
VIO_OL  
VIO_OUT_SK  
VIO_OUT_SC  
2.5  
-2.5  
Output Current Capability  
mA  
Notes  
16. For VSUP < 2.0 V, all supplies are already off and external pull-up on RSTB (e.g VCORE or VCCA) pulls the line down.  
17. Guaranteed by design.  
33907/33908  
16  
NXP Semiconductors  
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Analog multiplexer  
VAMUX_ACC  
(18)  
Voltage Sense Accuracy (VSNS, IO_0, IO_1) using 5.1 kΩ resistor  
-5.0  
5.0  
%
VAMUX_WD_5  
Divider Ratio (wide input voltage range) at VDDIO = 5.0 V  
5.0  
7.0  
2.0  
3.0  
2.5  
2.5  
9.9  
2.15  
VAMUX_WD_3P3 Divider Ratio (wide input voltage range) at VDDIO = 3.3 V  
VAMUX_TG_5  
VAMUX_TG_3P3  
VAMUX_REF1  
VAMUX_REF2  
VAMUX_TP_CO  
VAMUX_TP  
Divider Ratio (tight input voltage range) at VDDIO = 5.0 V  
Divider Ratio (tight input voltage range) at VDDIO = 3.3 V  
Internal Voltage Reference with 6.0 V < VSUP < 19 V  
Internal Voltage Reference with VSUP 6.0 V or VSUP 19 V  
Internal Temperature sensor coefficient  
2.475  
2.468  
2.525  
2.532  
V
V
(19)  
mV/°C  
V
Temperature Sensor MUX_OUT output voltage (at TJ=165°C)  
2.08  
2.22  
Interrupt  
VINTB_OL  
RPU_INT  
IINT_LK  
Low Output Level (IINT = 2.5 mA)  
Internal Pull-up Resistor (connected to VDDIO)  
Input Leakage Current  
10  
0.5  
V
KΩ  
µA  
1
CAN transceiver  
CAN logic input pin (TXD)  
VTXD_IH TXD High Input Threshold  
VTXD_IL  
0.7 x VDDIO  
0.3 x VDDIO  
50  
V
V
TXD Low Input Threshold  
TXDPULL-UP  
TXDLK  
TXD Main Device Pull-up  
20  
33  
KΩ  
µA  
TXD Input Leakage Current, VTXD = VDDIO  
-1.0  
1.0  
CAN logic output pin (RXD)  
VRXD_OL1 Low Level Output Voltage (I  
VRXD_OL2  
= 250 µA)  
= 1.5 mA)  
0.4  
0.9  
V
V
RXD  
RXD  
Low Level Output Voltage (I  
VDDIO  
0.4V  
-
VOUTHIGH  
High Level Output Voltage (I  
= -250 µA, VDDIO = 3.0 V to 5.5 V)  
V
RXD  
Notes  
18. If a higher resistor value than recommended is used, the accuracy degrades.  
19. Guaranteed by design  
33907/33908  
NXP Semiconductors  
17  
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
CAN output pins (CANH, CANL)  
VDIFF_COM_MODE Differential Input Comparator Common Mode Range  
VIN_DIFF_SLEEP Differential Input Voltage Threshold in Sleep Mode  
-12  
0.5  
50  
12  
0.9  
V
V
VIN_HYST  
RIN_CHCL  
RIN_DIFF  
Differential Input Hysteresis (in TX, RX mode)  
CANH, CANL Input Resistance  
mV  
kΩ  
kΩ  
%
5.0  
10  
50  
CAN Differential Input Resistance  
Input Resistance Matching  
100  
3.0  
RIN_MATCH  
-3.0  
CANH Output Voltage (45 Ω < RBUS < 65 Ω)  
• TX dominant state  
VCANH  
2.75  
2.0  
2.5  
4.5  
3.0  
V
• TX recessive state  
CANL Output Voltage (45 Ω < RBUS < 65 Ω)  
• TX dominant state  
VCANL  
0.5  
2.0  
2.5  
2.25  
3.0  
V
V
• TX recessive state  
VCAN_SYM  
CAN dominant voltage symmetry (VCANL + VCANH  
)
4.5  
5
5.5  
Differential Output Voltage  
• TX dominant state (45 Ω < RBUS < 65 Ω)  
• TX recessive state  
V
OH-VOL  
1.5  
-50  
2.0  
0.0  
3.0  
50  
V
mV  
CANL Sink Current Under Short-circuit Condition (VCANL 12 V, CANL  
ICANL-SK  
ICANH-SC  
RINSLEEP  
VCANLP  
40  
100  
-40  
mA  
mA  
driver ON, TXD low)  
CANH Source Current Under Short-circuit Condition (VCANH = -2.0 V,  
CANH driver ON, TXD low)  
-100  
CANH, CANL Input Resistance Device Supplied and in CAN Sleep  
Mode  
5.0  
50  
kΩ  
CANL, CANH Output Voltage in Sleep Modes. No termination load.  
-0.1  
0.0  
0.1  
V
CANH, CANL Input Current, Device Unsupplied, (VCANH, VCANL =5.0V)  
• VSUP and VCAN connected to GND  
(20)  
ICAN  
-10  
-10  
10  
10  
µA  
µA  
• VSUP and VCAN connected to GND via 47k resistor  
TOT  
Overtemperature Detection  
Overtemperature Hysteresis  
160  
°C  
°C  
THYST  
20  
Digital interface  
MISOH  
MISOL  
IMISO  
High Output Level on MISO (IMISO = 1.5 mA)  
Low Output Level on MISO (IMISO = 2.0 mA)  
Tri-state Leakage Current (VDDIO = 5.0 V)  
Supply Voltage for MISO Output Buffer  
Current consumption on VDDIO  
VDDIO - 0.4  
V
V
0.4  
5.0  
5.5  
3.0  
1.0  
-5.0  
3.0  
µA  
V
VDDIO  
IVDDIO  
1.0  
mA  
µA  
V
SPILK  
SCLK, NCS, MOSI Input Current  
-1.0  
2.0  
200  
VSPI_IH  
RSPI  
SCLK, NCS, MOSI High Input Threshold  
NCS, MOSI Internal Pull-up (pull-up to VDDIO)  
SCLK, NCS, MOSI Low Input Threshold  
400  
800  
0.8  
KΩ  
V
VSPI_IL  
33907/33908  
18  
NXP Semiconductors  
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Debug  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDEBUG_IL  
VDEBUG_IH  
IDEBUG_LK  
Low Input Voltage Threshold  
High Input Voltage Threshold  
Input Leakage Current  
2.1  
4.35  
-10  
2.35  
4.6  
2.6  
4.97  
10  
V
V
µA  
LIN transceiver (when 7.0 V < Vsup1,2,3 < 18 V, unless otherwise specified) (33907L/33908L)  
LIN logic input pin (TXDL)  
VTXDL_IH  
VTXDL_IL  
TXDL High Input Threshold  
2.0  
V
V
TXDL Low Input Threshold  
0.8  
50  
1.0  
TXDLPULL-UP  
TXDLLK  
TXDL Internal Pull-up (to VDDIO)  
TXD Input Leakage Current, VTXDL = VDDIO  
20  
33  
kΩ  
µA  
-1.0  
LIN logic input pin (RXDL)  
VRXDL_OL1 Low Level Output Voltage (I  
VRXDL_OL2  
= 250 µA)  
= 1.5 mA)  
0.4  
0.9  
V
V
V
RXDL  
RXDL  
Low Level Output Voltage (I  
VRXDL_OUT_HIGH High Level Output Voltage (I  
= -250 µA, VDDIO = 3.0 V to 5.5 V) VDDIO-0.4V  
RXDL  
LIN output pin  
Input Leakage Current at the Receiver. Dominant State (Driver OFF,  
BAT = 12 V, VBUS = 0 V)  
(21)  
IBUS_PAS_DOM  
IBUS_PAS_REC  
-1.0  
mA  
µA  
V
Input Leakage Current at the Receiver. Recessive State (Driver OFF,  
20  
8.0 V < VBAT < 18 V, 8.0 V < VBUS < 18 V, VBUS VBAT  
)
VDRIVER_DOM  
VBUS_DOM  
VBUS_REC  
VBUS_WU  
Driver Dominant Voltage  
0.251 VSUP  
0.4 VSUP  
V
V
V
V
V
Receiver Dominant State  
Receiver Recessive State  
0.6 VSUP  
0.4 VSUP  
LIN Wake-up Detection Threshold (7.0 V< VSUP < 18 V)  
VSUP Undervoltage Threshold  
0.6 VSUP  
7.0  
VLIN_UV  
Series Diode Voltage Drop (DSER_MASTER and DSER_INT in pull-up  
path)  
VSER_DIODE  
0.4  
0.7  
1.0  
V
(22)  
(23)  
IBUS_LIM  
RSLAVE  
VSHIFT_GND  
VSHIFT_BAT  
Notes  
Current Limitation for Driver Dominant State (VBUS = 18 V)  
LIN Pull-up Resistor  
40  
20  
200  
60  
mA  
kΩ  
V
Ground Shift (VSHIFT_GND = VGND_ECU - VGND_BATTERY)  
0.0  
0.0  
11.5%VBAT  
11.5%VBAT  
Battery Voltage Shift (VSHIFT_BAT = VBATTERY - VSHIFT_GND- VBAT  
)
V
20. Guaranteed by design and characterization.  
21. VBAT is the voltage at the input of the control unit.  
22. Current flowing inside the pin. A transceiver must be capable to sink at least 40 mA.  
23. VBAT: voltage across the battery connectors of the vehicle. VGND_ECU: voltage on the local ECU ground connector with respect to battery ground  
of the vehicle (VGND_BATTERY).  
33907/33908  
NXP Semiconductors  
19  
 
 
 
Table 4. Operating range (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LIN output pin (continued)  
Difference Between Battery Shift and Ground Shift  
(24)  
(25)  
VSHIFT_DIF  
0.0  
8.0% VBAT  
V
(VSHIFT_DIF = VSHIFT_BAT - VSHIFT_GND  
VBUS_CNT = (VTH_REC + VTH_DOM)/2  
VHYST = VTH_REC - VTH_DOM  
)
VBUS_CNT  
VHYST  
0.475 VSUP  
0.525 VSUP  
0.175 VSUP  
V
V
Ground Disconnection. GND = VSUP, 0 V < VBUS < 18 V, VBAT = 12 V.  
Loss of Local GND does not affect communication in the remaining  
network  
(26)  
IBUS_NO_GND  
-1.0  
1.0  
mA  
µA  
VBAT disconnection. VSUP = GND, 0 V < VBUS < 18 V. Node sustains  
the current that can flow under this condition. BUS remains operational.  
IBUS_NO_BAT  
100  
(27)  
(27)  
LINTSD  
LINTSD_HYST  
CLIN  
LIN Thermal Shutdown  
180  
20  
°C  
°C  
pF  
LIN Thermal Shutdown Hysteresis  
LIN internal capacitor  
10  
Notes  
24. This constraint refers to duty cycle D1 and D2 only.  
25. VTH_DOM: receiver threshold of the recessive to dominant LIN bus edge. VTH_REC receiver threshold of the dominant to recessive LIN bus edge.  
26. VSUP is the voltage at the input of the device (different from Vbat when a reverse current protection diode is implemented.  
27. Guaranteed by design.  
33907/33908  
20  
NXP Semiconductors  
 
 
 
 
4.3  
Dynamic electrical characteristics  
Table 5. Dynamic electrical characteristics  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Digital interface timing  
fSPI  
SPI Operation Frequency (50% DC)  
MISO Transition Speed, 20 - 80%  
0.5  
8.0  
MHz  
ns  
• VDDIO = 5.0 V, CLOAD = 50 pF  
• VDDIO = 5.0 V, CLOAD = 150 pF  
tMISO_TRANS  
5.0  
5.0  
30  
50  
tCLH  
tCLL  
Minimum Time SCLK = HIGH  
62  
62  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Minimum Time SCLK = LOW  
tPCLD  
Propagation Delay (SCLK to data at 10% of MISO rising edge)  
NCS = LOW to Data at MISO Active  
SCLK Low Before NCS Low (setup time SCLK to NCS change H/L)  
SCLK Change L/H after NCS = low  
30  
75  
tCSDV  
tSCLCH  
tHCLCL  
tSCLD  
75  
75  
40  
40  
100  
100  
SDI Input Setup Time (SCLK change H/L after MOSI data valid)  
SDI Input Hold Time (MOSI data hold after SCLK change H/L)  
SCLK Low Before NCS High  
tHCLD  
tSCLCL  
tHCLCH  
tPCHD  
tONNCS  
tNCS_MIN  
SCLK High After NCS High  
NCS L/H to MISO at High-impedance  
NCS Min. High Time  
75  
500  
10  
NCS Filter Time  
40  
NCS  
tONNCS  
tHCLCH  
tSCLCH tHCLCL  
tCLH  
tCLL  
tSCLCL  
SCLK  
MISO  
MOSI  
tPCHD  
z
tPCLD  
Not used  
tCSDV  
Tri-state  
LSB  
MSB  
tHCLD  
MSB  
tSCLD  
LSB  
Figure 7. SPI timing diagram  
500 ns min  
NCS  
3.5 µs min  
Any Fail-safe  
Any main  
Any Fail-safe  
register access  
register access  
register access  
Figure 8. Register access restriction  
33907/33908  
NXP Semiconductors  
21  
Table 5. Dynamic electrical characteristics (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
CAN dynamic characteristics  
tDOUT  
tDOM  
TXD Dominant State Timeout  
Bus Dominant Clamping Detection  
0.8  
0.8  
5.0  
5.0  
ms  
ms  
Propagation Loop Delay TXD to RXD  
• RLOAD = 120 Ω, C between CANH and CANL = 100 pF,  
C at RxD < 15 pF  
tLOOP  
255  
ns  
t1PWU  
t3PWU  
t3PTO1  
t3PTO2  
Single Pulse Wake-up Time  
0.5  
0.5  
5.0  
1.0  
µs  
µs  
µs  
µs  
Multiple Pulse Wake-up Time  
Multiple Pulse Wake-up Timeout (120 µs bit selection)  
Multiple Pulse Wake-up Timeout (360 µs bit selection)  
110  
350  
120  
360  
Delay to Enable CAN by SPI Command (NCS rising edge) to CAN to  
Transmit (device in normal mode and CAN interface in TX/RX mode)  
(28)  
tCAN_READY  
100  
µs  
Fail-safe state machine  
OSCFSSM  
CLKFS_MIN  
tIC_ERR  
Oscillator  
405  
150  
4.0  
7.0  
0.8  
1.0  
495  
kHz  
kHz  
µs  
Fail-safe Oscillator Monitoring  
IO_0:5 Filter Time  
20  
tACK_FS  
Acknowledgement Counter (used for IC error handling IO_1 and IO_5)  
9.7  
1.3  
2.0  
ms  
ms  
ms  
t_DFS_RECOVERY IO_0 Filter Time to Recover from Deep Reset and Fail State  
tIO1_DRIFT_MON IO_1 filter time  
Fail-safe output  
tRSTB_FB  
tFSOB_FB  
tRSTB_BLK  
tFSOB_BLK  
tRSTB_POR  
tRSTB_LG  
tRSTB_ST  
tRSTB_IN  
RSTB Feedback Filter Time  
8.0  
8.0  
180  
180  
12  
15  
15  
µs  
µs  
µs  
µs  
ms  
ms  
ms  
µs  
µs  
FS0B Feedback Filter Time  
RSTB Feedback Blanking Time  
FS0B Feedback Blanking Time  
Reset Delay Time (after a Power On Reset or from LPOFF)  
Reset Duration (long pulse)  
320  
320  
23.6  
10  
(29)  
15.9  
8.0  
1.0  
8.0  
550  
Reset duration (short pulse)  
1.3  
15  
External Reset Delay time  
tDIAG_SC  
Fail-safe Output Diagnostic Counter (FS0B)  
800  
VSUP voltage supply  
CSUP Minimum capacitor on Vsup  
44  
µF  
Notes  
28. For proper CAN operation, TXD must be set to high level before CAN enable by SPI, and must remain high for at least TCAN_READY.  
29. This timing is not guaranteed in case of fault during startup phase (after Power On Reset of from LPOFF)  
33907/33908  
22  
NXP Semiconductors  
 
 
Table 5. Dynamic electrical characteristics (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPRE voltage pre-regulator  
fSW_PRE  
tSW_PRE  
VPRE Switching Frequency  
VSW_PRE On and Off Switching Time  
418  
440  
462  
30  
kHz  
ns  
(30)  
tPRE_SOFT  
tPRE_BLK_LIM  
tIPRE_OC  
VPRE Soft Start Duration (COUT 100 µF)  
VPRE Current Limitation Blanking Time  
VPRE Overcurrent Filtering Time  
500  
200  
30  
20  
3.0  
700  
600  
120  
40  
µs  
ns  
(30)  
ns  
tPRE_UV  
VPRE Undervoltage Filtering Time  
Vpre Shut-off Filtering Time  
µs  
tPRE_UV_4p3  
dIPRE/DT  
tPRE_WARN  
tPRE_TSD  
6.0  
25  
µs  
(30)  
VPRE Load Regulation Variation  
A/ms  
µs  
VPRE Thermal Warning Filtering Time  
VPRE Thermal Detection Filtering Time  
IPFF Input Voltage Filtering Time  
30  
1.3  
1.0  
100  
40  
µs  
tVSUP_IPFF  
tIPRE_IPFF  
tLS_RISE/FALL  
5.0  
300  
50  
µs  
IPFF High-side Peak Current Filter Time  
LS Gate Voltage Switching Time (IOUT = 300 mA)  
ns  
ns  
VSENSE voltage regulator  
tVSNS_UV  
VSNS Undervoltage Filtering Time  
1.0  
3.0  
µs  
VCORE voltage regulator  
tCORE_BLK_LIM  
fSW_CORE  
VCORE Current Limitation Blanking Time  
20  
2.28  
6.0  
2.4  
40  
2.52  
12  
ns  
MHz  
ns  
VCORE Switching Frequency  
tSW_CORE  
VSW_CORE On and Off Switching Time  
VCORE Soft Start (COUT = 100 µF max)  
VCORE Thermal Warning Filtering Time  
VCORE Thermal Detection Filtering Time  
VCORE_SOFT  
tCORE_WARN  
tCORE_TSD  
10  
V/ms  
µs  
30  
40  
0.5  
µs  
VCCA voltage regulator  
tCCA_LIM  
VCCA Output Current Limitation Filter Time  
1.0  
3.0  
µs  
tCCA_LIM_OFF1  
tCCA_LIM_OFF2  
10  
50  
VCCA Output Current Limitation Duration  
ms  
tCCA_WARN  
tCCA_TSD  
dILOAD/dt  
VCCA_SOFT  
Notes  
30. Guaranteed by characterization.  
VCCA Thermal Warning Filtering Time  
VCCA Thermal Detection Filter Time (int. MOSFET)  
VCCA Load Transient  
30  
1.5  
40  
µs  
µs  
(30)  
2.0  
A/ms  
V/ms  
VCCA Soft Start (5.0 V and 3.3 V)  
50  
33907/33908  
NXP Semiconductors  
23  
 
Table 5. Dynamic electrical characteristics (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VAUX voltage regulator  
tAUX_LIM  
VAUX Output Current Limitation Filter Time  
VAUX Output Current Limitation Duration  
1.0  
3.0  
µs  
tAUX_LIM_OFF1  
tAUX_LIM_OFF2  
10  
50  
ms  
tAUX_TSD  
dIAUX/dt  
VAUX Thermal Detection Filter Time  
VAUX Load Transient  
1.5  
2.0  
µs  
(31)  
A/ms  
V/ms  
VAUX_SOFT  
VAUX Soft Start (5.0 V and 3.3 V)  
50  
CAN_5V voltage regulator  
tCAN_LIM  
tCAN_TSD  
tCAN_UV  
tCAN_OV  
dICAN/dt  
Output Current Limitation Filter Time  
2.0  
1.0  
4.0  
100  
4.0  
µs  
µs  
VCAN Thermal Detection Filter Time  
VCAN Undervoltage Filtering Time  
VCAN Overvoltage Filtering Time  
VCAN Load Transient  
7.0  
200  
µs  
µs  
(31)  
100  
A/ms  
Fail-safe machine voltage supervisor  
tPRE_OV  
tCORE_UV  
tCORE_OV  
tCCA_UV  
tCCA_OV  
tAUX_UV  
tAUX_OV  
VPRE Overvoltage Filtering Time  
128  
4.0  
234  
10  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
VCORE FB Undervoltage Filtering Time  
VCORE FB Overvoltage Filtering Time  
VCCA Undervoltage Filtering Time  
VCCA Overvoltage Filtering Time  
VAUX Undervoltage Filtering Time  
VAUX Overvoltage Filtering Time  
128  
4.0  
234  
10  
128  
4.0  
234  
10  
128  
234  
Digital input - multi-purpose ios  
FIO_IN  
Digital Input Frequency Range  
0.0  
100  
10  
kHz  
µs  
Analog multiplexer  
SPI Selection to Data Ready to be Sampled on Mux_out  
• VDDIO = 5.0 V, CMUX_OUT = 1.0 nF  
tMUX_READY  
Interrupt  
tINTB_LG  
tINTB_ST  
INTB Pulse Duration (long)  
INTB Pulse Duration (short)  
90  
20  
100  
25  
µs  
µs  
Functional sate machine  
tWU_GEN General Wake-up Signal Deglitch Time (for any wu signal on IOs)  
Notes  
60  
70  
80  
µs  
31. Guaranteed by characterization.  
33907/33908  
24  
NXP Semiconductors  
 
Table 5. Dynamic electrical characteristics (continued)  
TCASE = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced to  
ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 25).  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LIN dynamic characteristics (when 7.0 V < Vsup1, 2, 3 < 18 V, unless otherwise specified) (33907L/33908L)  
tRX_PD  
Receiver Propagation Delay (TRX_PD = MAX (tREC_PDR, tREC_PDF))  
Symmetry of Receiver Propagation Delay (TRX_SYM = tREC_PDF -  
6.0  
2.0  
µs  
µs  
tRX_SYM  
-2.0  
tREC_PDR  
)
tBUS_WU  
tXD_DOM  
BUS Wake-up Filter Time  
5.0  
15  
250  
µs  
ms  
TXD_L Permanent Dominant State Delay  
tLIN_SHORT_GND LIN Short-circuit to GND Deglitcher  
ms  
BDFAST  
Fast Baud Rate  
100  
KB/s  
Duty Cycle D1  
THREC(max) = 0.744 x VSUP, THDOM(max) = 0.581 x VSUP  
VSUP 7.0 V to 18 V, tBIT = 50 µs  
(32)  
(32)  
(32)  
(32)  
D1  
0.396  
0.581  
%
%
%
%
D1 = tBUS-rec(min)/(2tBIT  
)
Duty Cycle D2  
THREC(min) = 0.422 x VSUP, THDOM(min) = 0.284 x VSUP  
VSUP 7.6 V to 18 V, tBIT = 50 µs  
D2  
D3  
D4  
D2 = tBUS-rec(max)/(2tBIT  
)
Duty Cycle D3  
THREC(max) = 0.778 x VSUP, THDOM(max) = 0.616 x VSUP  
VSUP 7.0 V to 18 V, tBIT = 96 µs  
0.417  
D3 = tBUS-rec(min)/(2tBIT  
)
Duty Cycle D4  
THREC(min) = 0.389 x VSUP, THDOM(min) = 0.251 x VSUP  
VSUP 7.6 V to 18 V, tBIT = 96 µs  
0.59  
D4 = tBUS-rec(max)/(2tBIT  
)
Notes  
32. LIN Driver, Bus load conditions (CBUS,RBUS): 1.0 nF;1.0 kΩ / 6.8 nF;660 Ω / 10 nF;500 Ω  
33907/33908  
NXP Semiconductors  
25  
 
5
Functional pin description  
5.1  
Introduction  
The 33907/33908 is the third generation of the System Basis Chip, combining:  
• High efficiency switching voltage regulator for MCU, and linear voltage regulators for integrated CAN interface, external ICs such as  
sensors, and accurate reference voltage for A to D converters.  
• Built-in enhanced high-speed CAN interface (ISO11898-2 and -5), and LIN interface (LIN up to Rev. 2.2/ SAEJ2602-2), with local and  
bus failure diagnostic, protection, and Fail-safe operation mode.  
• Low-power mode, with ultra low-current consumption.  
• Various wake-up capabilities.  
• Enhanced safety features with multiple fail-safe outputs and scheme to support ASIL D applications.  
5.2  
Power supplies (VSUP1, VSUP2, VSUP3)  
VSUP1 and VSUP2 are the inputs pins for internal supply dedicated to SMPS regulators. VSUP3 is the input pin for internal voltage  
reference. VSUP1, 2, and 3 are robust against ISO7637 pulses.  
VSUP1,2, and 3 shall be connected to the same supply (Figure 58).  
5.3  
Vsense input (VSENSE)  
This pin must be connected to the battery line (before the reverse battery protection diode), via a serial resistor. It incorporates a threshold  
detector to sense the battery voltage, and provide a battery early warning. It also includes a resistor divider to measure the VSENSE  
voltage via the MUX-OUT pin. VSENSE pin is robust against ISO7637 pulses.  
5.4  
Pre-regulator (VPRE)  
A highly flexible SMPS pre-regulator is implemented in the 33907/33908. It can be configured as a “non-inverting buck-boost converter”  
(Figure 27) or “standard buck converter” (Figure 26), depending on the external configuration (connection of pin GATE_LS). The  
configuration is detected automatically during start-up sequence.  
The SMPS pre-regulator is working in current mode control and the compensation network is fully integrated in the device. The high-side  
switching MOSFET is also integrated to make the current control easier. The pre-regulator delivers a typical output voltage of 6.5 V, which  
is used internally. Current limitation, overcurrent, overvoltage, and undervoltage detectors are provided. VPRE is enabled by default.  
5.5  
VCORE Output (from 1.2 V to 3.3 V range)  
The VCORE block is an SMPS regulator. The voltage regulator is a step down DC-DC converter operating in voltage control mode. The  
output voltage is configurable from 1.2 V to 3.3 V range thanks to an external resistor divider connected between VCORE and the  
feedback pin (FB_CORE) (as example in Figure 1, Figure 2, and Figure 58).  
The stability of the converter is done externally, by using the COMP_CORE pin. Current limitation, overvoltage, and undervoltage  
detectors are provided. VCORE can be turned ON or OFF via a SPI command, however it is not recommended to turn OFF VCORE by  
SPI when VCORE is configured safety critical (both overvoltage and undervoltage have an impact on RSTB and FS0B). VCORE  
overvoltage information disables VCORE. Diagnostics are reported in the dedicated register and generate an Interrupt. VCORE is enabled  
by default.  
33907/33908  
26  
NXP Semiconductors  
5.6  
VCCA output, 5.0 V or 3.3 V selectable  
The VCCA voltage regulator is used to provide an accurate voltage output (5.0 V, 3.3 V) selectable through an external resistor connected  
to the SELECT pin.  
The VCCA output voltage regulator can be configured using an internal transistor delivering very good accuracy ( 1.0% for 5.0 V  
configuration and 1.5% for 3.3 V configuration), with a limited current capability (100 mA) for an analog to digital converter, or with an  
external PNP transistor, giving higher current capability (up to 300 mA) with lower output voltage accuracy ( 3.0% for 300 mA) when using  
a local ECU supply.  
Current limitation, overvoltage, and undervoltage detectors are provided. VCCA can be turned ON or OFF via a SPI command, however  
it is not recommended to turn OFF VCCA by SPI when VCCA is configured safety critical (both overvoltage and undervoltage have an  
impact on RSTB and FS0B). VCCA overcurrent (with the use of external PNP only) and overvoltage information disables VCCA.  
Diagnostics are reported in the dedicated register and generate an Interrupt. VCCA is enabled by default.  
5.7  
VAUX output, 5.0 V or 3.3 V selectable  
The VAUX pin provides an auxiliary output voltage (5.0 V, 3.3 V) selectable through an external resistor connected to SELECT pin. It uses  
an external PNP ballast transistor for flexibility and power dissipation constraints. The VAUX output voltage regulator can be used as  
“auxiliary supply” (local ECU supply) or “sensor supply” (external ECU supply) with the possibility to be configured as a tracking regulator  
following VCCA.  
Current limitation, overvoltage, and undervoltage detectors are provided. VAUX can be turned ON or OFF via a SPI command, however  
it is not recommended to turn OFF VAUX by SPI when VAUX is configured safety critical (both overvoltage and undervoltage have an  
impact on RSTB and FS0B). VAUX overcurrent and overvoltage information disables VAUX, reported in the dedicated register, and  
generates an Interrupt. VAUX is enabled by default.  
5.8  
SELECT Input (VCCA, VAUX voltage configuration)  
VCCA and VAUX output voltage configurations are set by connecting an external resistor between SELECT pin and Ground. According  
to the value of this resistor, the voltage of VCCA and VAUX are configured after each Power On Reset, and after a wake-up event when  
device is in LPOFF. Information latches until the next hardware configuration read. Regulator voltage values can be read on the dedicated  
register via the SPI.  
Table 6. VCCA/VAUX Voltage Selection (Figure 59)  
VCCA(V)  
VAUX(V)  
R Select  
Recommended value  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
5.0  
3.3  
<7.0 KΩ  
5.1 KΩ 5.0%  
12 KΩ 5.0%  
24 KΩ 5.0%  
51 KΩ 5.0%  
10.8 << 13.2 KΩ  
21.6 << 26.2 KΩ  
45.9 << 56.1 KΩ  
When VAUX is not used, the output VCCA voltage configuration is set using an external resistor connected between the SELECT and the  
VPRE pin.  
Table 7. VCCA Voltage Selection (VAUX not used, Figure 60, Figure 61)  
VCCA(V)  
R Select  
Recommended Value  
<7.0 KΩ  
5.1 KΩ 5.0%  
24 KΩ 5.0%  
12 KΩ 5.0%  
51 KΩ 5.0%  
3.3  
21.6 << 26.2 KΩ  
10.8 << 13.2 KΩ  
45.9 << 56.1 KΩ  
5.0  
33907/33908  
NXP Semiconductors  
27  
5.9  
CAN_5V voltage regulator  
The CAN_5V voltage regulator is a linear regulator dedicated to the internal HSCAN interface. An external capacitor is required. Current  
limitation, overvoltage, and undervoltage detectors are provided. If the internal CAN transceiver is not used, the CAN_5V regulator can  
supply an external load (CAN_5V voltage regulator). CAN_5V is enabled by default.  
5.10 INTERRUPT (INTB)  
The INTB output pin generates a low pulse when an Interrupt condition occurs. The INTB behavior as well as the pulse duration are set  
through the SPI during INIT phase. INTB has an internal pull-up resistor connected to VDDIO.  
5.11 CANH, CANL, TXD, RXD  
These are the pins of the high speed CAN physical interface. The CAN transceivers provides the physical interface between the CAN  
protocol controller of an MCU and the physical dual wires CAN bus. The CAN interface is connected to the MCU via the RXD and TXD  
pins.  
5.11.1 TXD  
TXD is the device input pin to control the CAN bus level. TXD is a digital input with an internal pull-up resistor connected to VDDIO. In the  
application, this pin is connected to the microcontroller transmit pin.  
In Normal mode, when TXD is high or floating, the CANH and CANL drivers are OFF, setting the bus in a recessive state. When TXD is  
low, the CANH and CANL drivers are activated and the bus is set to a dominant state. TXD has a built-in timing protection that disables  
the bus when TXD is dominant for more than TDOUT. In LPOFF mode, VDDIO is OFF, pulling down this pin to GND.  
5.11.2 RXD  
RXD is the bus output level report pin. In the application, this pin is connected to the microcontroller receive pin. In Normal mode, RXD is  
a push-pull structure. When the bus is in a recessive state, RXD is high. When the bus is dominant, RXD is low. In LPOFF mode, this pin  
is in high-impedance state.  
5.11.3 CANH and CANL  
These are the CAN bus pins. CANL is a low side driver to GND, and CANH is a high side driver to CAN_5V. In Normal mode and TXD  
high, the CANH and CANL drivers are OFF, and the voltage at CANH and CANL is approximately 2.5 V, provided by the internal bus  
biasing circuitry. When TXD is low, CANL is pulled to GND and CANH to CAN_5V, creating a differential voltage on the CAN bus.  
In LPOFF mode, the CANH and CANL drivers are OFF, and these pins are pulled down to GND via the device RIN_CHCL resistors. CANH  
and CANL have integrated ESD protection and extremely high robustness versus external disturbance, such as EMC and electrical  
transients. These pins have current limitation and thermal protection.  
5.12 LIN, TXDL, RXDL  
These pins apply to 33907L and 33908L versions.  
These are the pins of the LIN physical interface. The LIN transceivers provides the physical interface between the MCU and the physical  
single wire LIN bus. The LIN interface is connected to the MCU via the RXDL and TXDL pins.  
33907/33908  
28  
NXP Semiconductors  
5.12.1 TXDL  
The TXDL input pin is the MCU interface to control the state of the LIN output. TXDL is a digital input with an internal pull-up resistor  
connected to VDDIO. In the application, this pin is connected to the microcontroller transmit pin.  
In Normal mode, when TXDL is high or floating, the LIN output transistor is OFF, setting the bus in recessive state. When TXDL is low,  
the LIN output transistor is ON and the bus is set to a dominant state. TXDL has a built-in timing protection that disables the bus when  
TXDL is dominant for more than TXD_DOM. In LPOFF mode, VDDIO is OFF, pulling down this pin to GND.  
5.12.2 RXDL  
RXDL is the bus output level report pin. In the application, this pin is connected to the microcontroller receive pin. In Normal mode, RXD  
is a push-pull structure. When the bus is in a recessive state, RXD is high. When the bus is dominant, RXD is low. In LPOFF mode, this  
pin is in high-impedance state.  
5.12.3 LIN  
This is the LIN bus pin. The LIN driver is a low-side MOSFET with internal overcurrent thermal shutdown. An internal pull-up resistor with  
a serial diode structure is integrated so no external pull-up components are required for the application in a slave node. An additional pull-  
up resistor of 1.0 kΩ must be added when the device is used in the master node. In Normal mode and TXDL high, the LIN transistor is  
OFF, and the voltage at LIN is approximately VSUP3, provided by the pull up resistor with a serial diode structure. When TXD is low, LIN  
is pulled to GND  
The device has two selectable baud rates: 20 kBits/s for Normal Baud rate and 10 kBits/s for slow baud rate. An additional fast baud rate  
(100 kBits/s) is implemented. It can be used to flash the MCU or in the garage for diagnostic. The LIN Consortium specification does not  
specify electrical parameters for this baud rate. The communication only must be guaranteed. In LPOFF mode, the LIN transistor is OFF,  
and this pin is pulled up to VSUP3. LIN has integrated ESD protection and extremely high robustness versus external disturbance, such  
as EMC and electrical transients.  
5.13 Multiplexer output MUX_OUT  
The MUX_OUT pin (Figure 9) delivers analog voltage to the MCU ADC input. The voltage to be delivered to MUX_OUT is selected via  
the SPI, from one of the following parameters:  
• VSENSE  
• VIO_0  
• VIO_1  
• Internal 2.5 V reference  
• Die temperature sensor T(°C) = (VAMUX - VAMUX_TP) / VAMUX_TP_CO + 165  
Voltage range at MUX_OUT is from GND to VDDIO (3.3 V or 5.0 V)  
33907/33908  
NXP Semiconductors  
29  
VSENSE  
R
1
SPI selection  
Mux_out  
R
2
R
3
R
5
R
4
3.3 V  
Ratio#1 Ratio#2  
3.3 V  
5.0 V  
Ratio#1  
5.0 V  
Ratio#2  
SPI selection  
Internal 2.5 V reference  
Same as above  
Same as above  
IO_0  
IO_1  
SPI selection  
Die temperature sensor  
Figure 9. Simplified analog multiplexer block diagram  
5.14 I/O pins (I/O_0:I/O_5)  
The 33907/33908 includes six multi-purpose I/Os (I/O_0 to I/O_5). I/O_0, I/O_1, I/O_4, and I/O_5 are load dump proof and robust against  
ISO7637 pulses. An external serial resistor must be connected to those pins to limit the current during ISO pulses. I/O_2 and I/O_3 are  
not load dump proof.  
Table 8. I/Os configuration  
I/0 number  
Analog input  
Digital input Wake-up capability  
Output gate driver  
IO_0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
IO_1  
IO_2  
IO_3  
IO_4  
IO_5  
X
X
• IO_0:1 are selectable as follows:  
Analog input (load dump proof) sent to the MCU through the MUX_OUT pin. Wake-up input on the rising or falling edge or based on  
the previous state. Digital input (logic level) sent to the MCU through the SPI. Safety purpose: Digital input (logic level) to perform  
an IC error monitoring (both IO_0 AND IO_1 are used if configured as safety inputs, see Figure 11).  
• IO_1 is also selectable as follow:  
Safety purpose: FB_Core using a second resistor bridge (R3/R4 duplicated) connected to IO_1, to detect external resistor drift and  
trigger when FB_Core - IO_1 > 150 mV max.  
• IO_2:3 are selectable as follows:  
Digital input (logic level) sent to the MCU through the SPI. Wake-up input (logic level) on the rising or falling edge or based on the  
previous state. Safety purpose: Digital input (logic level) to monitor MCU error signals (both IO_2 AND IO_3 are used if configured  
as safety inputs). Only bi-stable protocol is available.  
33907/33908  
30  
NXP Semiconductors  
When IO_2:3 are used as safety inputs to monitor FCCU error outputs from the NXP MCU, the monitoring is active only when the  
Fail-safe sate machine is in “normal WD running” state (Figure 14) and all the phases except the “Normal Phase” are considered as  
an Error.  
Config Phase  
Reset Phase Normal Phase  
Error Phase  
FCCU_eout[0]  
FCCU_eout[1]  
Figure 10. IO_2:3 MCU error monitoring: bi-stable protocol  
• IO_4:5 are selectable as follows:  
Digital input (logic level) sent to the MCU through the SPI. Wake-up input (load dump proof) on rising or falling edge or based on  
previous state. Output gate driver (from VPRE) for low-side logic level MOSFET. Safety purpose: Digital input (logic level) to perform  
an IC error monitoring (both IO_4 AND IO_5 are used if configured as safety inputs, see Figure 11).  
Error signal (IO_4 input)  
Acknowledgment counter  
33907_8 Internal IO_4 signal  
latched  
Reset  
counter  
Restart Acknowledgment  
counter  
Acknowledgement signal  
from MCU (IO_5 input)  
Filter time  
RSTB  
FS0B  
The error is acknowledged by the MCU  
then, internal IO_4 signal is released  
The error is NOT  
acknowledged by the MCU  
So, FS0B is activated at the  
end of the counter  
Figure 11. External error signal handling  
5.15 SAFE output pins (FS0B, RSTB)  
FS0B is asserted low when a fault event occurs (See Faults triggering FS0B activation on page 45). The objective of this pin is to drive  
an electrical safe circuitry independent from MCU to deactivate the whole system and set the ECU in a protected and known state.  
After each power on reset or after each wake-up event (LPOFF) the FS0B pin is asserted low. Then the MCU can decide to release the  
FS0B pin, when the application is ready to start. An external pull-up circuitry is mandatory connected to VDDIO or VSUP3.  
• If the pull-up is connected to VDDIO, the value recommended is 5.0kΩ, there will be no current in LPOFF since VDDIO is OFF in  
LPOFF mode.  
• If the pull-up is connected to VSUP3, the value must be above 10 kΩ, there will be a current in the pull-up resistor to consider at  
application level in LPOFF mode.  
33907/33908  
NXP Semiconductors  
31  
 
The RSTB pin must be connected to MCU and is active low. An external pull-up resistor must be connected to VDDIO. In default  
configuration, the RST delay time has three possible values depending on the mode and product configuration:  
• The longest one is used automatically following a Power On Reset or when resulting from LPOFF mode (Low Power Off).  
• The two reset durations are then available in the INIT_FSSM1 register, which are 1.0 ms and 10 ms. The configured duration is  
finally used in the normal operation when a fault occurs leading to a reset activation. The INIT_FSSM1 register is available (writing)  
in the INIT FS phase.  
5.16 DEBUG input (entering in debug mode)  
The DEBUG pin allows the product to enter Debug mode. To activate the Debug mode, voltage applied to the DEBUG pin must be within  
the VDEBUG_IL and VDEBUG_IH range at start-up. If the voltage applied to DEBUG pin is out of these limits, before VCORE ramp-up, the  
device settles into Normal mode. When the Debug mode is activated, the FS0B output is asserted low at start-up. As soon as the FS0B  
is released to “high” via SPI (Good WD answer and FS_OUT writing) this pin is never activated whatever the fault is reported.  
In Debug mode, any errors from watchdog are ignored (No reset and No fail-safe), even if the whole functionality of the watchdog is kept  
ON (Seed, LFSR, Wd_refresh counter, WD error counter). This allows an easy debug of the hardware and software routines (i.e. SPI  
commands). When the Debug mode is activated, the CAN transceiver is set to Normal operation mode. This allows communication with  
the MCU, in case SPI communication is not available (case of MCU not programmed). To exit Debug mode, the pin must be tied to Ground  
through an external pull-down resistor or to VPRE through an external pull-up resistor and a Power On Reset occurs.  
33907/33908  
32  
NXP Semiconductors  
6
Functional device operation  
6.1  
Mode and state description of main state machine  
The device has several operation modes. The transition and conditions to enter or leave each mode are illustrated in the functional state  
diagram (Figure 13). Two state machines are working in parallel. The Main state machine is in charge of the power management (VPRE,  
VCORE, VCCA, VAUX,...) and the fail-safe state machine is in charge of all the safety aspect (WD, RSTB, FS0B,...).  
6.1.1 Buck or buck boost configuration  
An external low side logic level MOSFET (N-type) is required to operate in non-inverting buck-boost converter. The connection of the  
external MOSFET is detected automatically during the start-up phase (after a Power On Reset or From LPOFF).  
• If the external low-side MOSFET is NOT connected (GATE_LS pin connected to PGND), the product is configured as a standard  
buck converter.  
• If the external low-side MOSFET is connected (GATE_LS pin connected to external MOSFET gate), the product is configured as a  
non-inverting buck-boost converter.  
The automatic detection is done by pushing 300 μA current on Gate_LS pin and monitoring the corresponding voltage generated. If a  
voltage >120 mV is detected before the 120 μs timeout, the non-inverting buck-boost configuration is locked. Otherwise, the standard  
buck configuration is locked. The boost driver has a current capability of 300 mA.  
6.1.2 VPRE on  
Pre-regulator is an SMPS regulator. In this phase, the pre-regulator is switched ON and a softstart with a specified duration tPRE_SOFT is  
started to control the VPRE output capacitor charge.  
6.1.3 Select pin configuration  
This phase is detecting the required voltage level on VAUX and VCCA, according to resistor value connected between the SELECT pin  
and ground. If the SELECT pin is connected to VPRE via the resistor, it disables the VAUX regulator at start-up.  
6.1.4 VCORE/VAUX/VCCA on  
In this stage, the three regulators VCORE, VAUX, VCCA are switched ON at the same time with a specified soft start duration. The  
CAN_5V is also started at that time.  
6.1.5 INIT main  
This mode is automatically entered after the device is “Powered ON”. When RSTB is released, initialization phase starts where the device  
can be configured via the SPI. During INIT phase, some registers can only be configured in this mode (refer to Table 15 and Table 16).  
Other registers can be written in this mode, and also in Normal mode.  
Once the INIT registers configurations are complete, a last register called “INIT INT” must be configured to switch to Normal mode. Writing  
data in this register (even same default values), automatically locks the INIT registers, and the product switches automatically to Normal  
mode in the Main state machine.  
6.1.6 Normal  
In this mode, all device functions are available. This mode is entered by a SPI command from the INIT phase by writing in the INIT INT  
register. While in Normal mode, the device can be set to Low Power mode (LPOFF) using secured SPI command.  
33907/33908  
NXP Semiconductors  
33  
6.1.7 Low power mode off  
The Main State Machine has 3 LPOFF modes with different conditions to enter and exit each LPOFF mode as described here after. After  
wake up from LPOFF, all the regulators are enabled by default. In LPOFF, all the regulators are switched OFF. The register configuration,  
the Vpre behavior and the ISO pulse requirement are valid for the 3 LPOFF modes.  
6.1.7.1  
LPOFF - sleep  
Entering in Low Power mode LPOFF - SLEEP is only available if the product is in Normal mode by sending a secured SPI command. In  
this mode, all the regulators are turned OFF and the MCU connected to the VCORE regulator is unsupplied.  
Before entering in LPOFF Power mode OFF-sleep, the Reset Error Counter must go back to value “0” (“N” consecutive good watchdog  
refresh decreases the reset error counter to 0). “N” = RSTb_err_2:0 x (WD_refresh_2:0 + 1). Once the 33907/33908 is in LPOFF - SLEEP,  
the device monitors external events to wake-up and leave the Low Power mode. The wake-up events can occur and depending of the  
device configuration from:  
• CAN  
• LIN  
• I/O inputs  
When a wake-up event is detected, the device starts the main state machine again by detecting the VPRE configuration (BUCK or BUCK-  
BOOST), the wake-up source is reported to the dedicated SPI register, and the Fail-safe state machine is also restarted.  
6.1.7.2  
LPOFF - V  
PRE_UV  
LPOFF- VPRE_UV is entered when the device is in the INIT or Normal mode, and if the VPRE voltage level is passing the VPRE_UV_L_4P3  
threshold (typ 4.3 V). After 1.0 ms the device attempts to recover by switching ON the VPRE again.  
6.1.7.3  
LPOFF - deep FS  
LPOFF - DEEP FS is entered when the device is in Deep Fail-safe and if the Key is OFF (IO_0 is low). To exit this mode, a transition to  
high level on IO_0 is required. IO_0 is usually connected to key ON key OFF signal.  
6.1.7.4  
Register configuration in LPOFF  
In LPOFF, the register settings of the Main State Machine are kept because the internal 2.5 V main digital regulator is available for wake-  
up operation. However, the register settings of the Fail-safe state machine are erased because the 2.5 V fail safe digital regulator is not  
available in LPOFF. As a consequence, after a wake-up event, the configuration of the Fail-safe registers must be done again during  
initialization phase (256 ms open window).  
6.1.7.5  
V
behavior in LPOFF  
PRE  
When device is in LPOFF Sleep mode, and if the VSUP < VSUP_UV_7, VPRE is switched on to maintain internal biasing and wake-up  
capabilities on IOs, CAN or LIN.  
• If VPRE is configured as a non-inverting buck-boost converter, VPRE is switched ON in SMPS mode with boost functionality.  
• If VPRE is configured as a standard buck converter, VPRE is switched ON in Linear mode following VSUP  
.
6.1.7.6  
ISO pulse in LPOFF  
If the application has to sustain ISO pulses on VBAT in LPOFF mode, the connection of a an external zener diode and a serial resistor to  
the ground is mandatory (see Figure 12). During repetitive ISO pulses on Vbat, the capacitors connected on VSUP line are more and more  
charged and cannot be discharged thanks to the extremely low-current needed to maintain wake-up capabilities on IOs, CAN, and LIN.  
As a consequence, if a leakage path is not created artificially with those discrete components the voltage on VSUP line can exceed the  
absolute maximum rating supported by this pin.  
33907/33908  
34  
NXP Semiconductors  
V
BAT  
33907_08  
33907/33908  
VSUP3  
VSENSE  
Figure 12. Components involved under ISO pulse in LPOFF  
6.2  
Mode and state description of fail-safe state machine  
6.2.1 LBIST  
Included in the fail-safe machine, the Logic Built-in Self Test (LBIST) verifies the correct functionality of the FSSM at start-up. The fail-safe  
state machine is fully checked and if an issue is reported, the RSTB stays low and after 8 s, the device enters in DEEP Fail-safe. LBIST  
is run at start-up and after each wake-up event when the device is in LPOFF mode.  
6.2.2 Select pin configuration  
This phase detects the required voltage level to apply on VAUX and VCCA, according to the resistor value connected between the  
SELECT pin and ground, (VAUX used) or between the SELECT pin and VPRE (VAUX not used). This mode is the equivalent mode seen  
in the main state machine. Difference is in the fail-safe machine, this detection is used to internally set the UV/OV threshold on VCCA and  
VAUX for the voltage supervision.  
6.2.3 ABIST  
Included in the fail-safe machine, the Analog Built-in Self Test (ABIST) verifies the correct functionality of the analog part of the device,  
like the overvoltage and undervoltage detections of the voltage supervisor and the RTSTB and FS0B fail-safe outputs feedback (Table 9).  
The ABIST is run at start-up and after each wake-up event when device is in LPOFF mode.  
Table 9. Regulators and fail-safe pins checked during ABIST  
Parameters  
Overvoltage  
Undervoltage  
OK/NOK  
VPRE  
VCORE  
X
X
X
X
X
X
X
VCCA  
VAUX  
IO_1 FB_Core Delta  
RSTB  
X
X
X
FS0B  
6.2.4 Release RSTB  
In this state, the device releases the RSTB pin.  
33907/33908  
NXP Semiconductors  
35  
 
6.2.5 INIT FS  
This mode is automatically entered after the device is “powered on” and only if Built-in Self Tests (Logic and Analog) have been passed  
successfully. This INIT FS mode starts as soon as RSTB is released (means no “Activate RST” faults are present and no external reset  
is requested). Faults leading to an “Activate RST” are described in Reset error counter.  
In this mode, the device can be configured via the SPI within a maximum time of 256 ms, including first watchdog refresh. Some registers  
can only be configured in this mode and is locked when leaving INIT FS mode (refer to Table 15 and Table 16). It is recommended, to  
configure first the device before sending the first WD refresh. As soon as the first good watchdog refresh is sent by the MCU, the device  
leaves this mode and goes into Normal WD mode.  
6.2.6 Normal WD is running  
In this mode, the device waits for a periodic watchdog refresh coming from the MCU, within a specific configured window timing.  
Configuration of the watchdog window period can be set during INIT FS phase or in this mode. This mode is exited if there are consecutive  
bad watchdog refreshes if there is an external reset request, or if a fault occurs leading to a RSTB activation.  
6.2.7 RST delay  
When the reset pin is asserted low by the device, a delay runs, to release the RSTB, if there are no faults present. The reset low duration  
time is configurable via the SPI in the INIT_ FSSM1 register, which is accessible for writing only in the INIT FS phase.  
6.3  
Deep fail safe state  
The Fail-safe state machine monitors the RSTB pin of the device and count the number of reset(s) happening in case of fault detection  
(see Reset error counter). As soon as either the Reset Error Counter reach its final value or the RESET pin remains asserted low for more  
than 8.0 s, the device moves to Deep Fail-safe state, identified by the “Wait Deep Fail-safe” state in the functional state diagram  
(Figure 13).  
When the device is in Deep Fail-safe state, all the regulators are OFF. To exit this state, a Key OFF / Key ON action is needed. IO_0 is  
usually connected to key signal. Key OFF (IO_0 low) will move the device to LPOFF-Deep FS, and Key ON (IO_0 high) will wake-up the  
device.  
The final value of the Reset Error Counter can be configured to 2 or 6 in the register INIT FSSM 2. During power up phase, the 8.0 s timer  
starts when the Fail-safe state machine enters in the “Select pin config detection” state and stop when the RSTB pin is released. During  
“INIT FS” state, the 8.0 s timer can be disabled in the register INIT SUPERVISOR 2. During “Normal WD running” state, the 8.0 s timer is  
activated at each RSTB pin assertion.  
33907/33908  
36  
NXP Semiconductors  
6.4  
Functional state diagram  
VSUP > VSUP_UV_5 Wait  
Fail  
SAFE  
No POR Fail Safe  
PowerDown  
From  
Anywhere  
POR Fail Safe &  
Fail Safe Reg. ON  
& VSUP > VSUP_UV_5  
VSUP < VSUP_UV_L  
PowerDown  
LBIST  
From  
Anywhere  
POR Fail Safe  
VSUP < VSUP_UV_5  
Buck or  
Buck Boost  
configuration  
detection  
- RSTb is asserted low  
LBIST Done &  
PRE>VPRE_UV  
V
120µs elapsed  
VSUP < VSUP_UV_5  
Vpre OFF  
VPRE  
ON  
SELECT pin  
config.  
VPRE<VPRE_UV  
- RSTb is asserted low  
Vpre ON  
detection  
VPRE>VPRE_UV  
1ms elapsed &  
VCORE > VCORE_UV &  
VCCA > VCCA_UV &  
VAUX > VAUX_UV  
VPRE<VPRE_UV  
SELECT pin  
config.  
detection  
- RSTb is asserted low  
ABIST  
Wait  
Deep Fail  
Safe  
1ms elapsed  
RST delay=8s or  
RST error counter = 6  
ABIST Pass  
Vcore/Vaux/  
Vcca ON  
No IO_0  
No activate RST &  
RST delay expired  
- RSTb delay running  
- RSTb is asserted low  
RST Delay  
External  
RST  
Activate RST  
- Unlock SPI init registers  
- SPI config  
Release  
RSTb  
- RSTb is released  
VPRE_UV_L4P3  
INIT MAIN  
No external RST &  
No activate RST  
External  
RST  
INIT done  
(init int reg. writing)  
- Unlock SPI init registers  
- Start 256ms open window  
- RSTb is released  
- SPI init registers locked  
INIT FS  
Activate RST or  
WD Not OK  
NORMAL  
VPRE_UV_L4P3  
MODE  
WD OK  
SPI command  
External  
RST  
NORMAL  
WD is  
- Start WD close/open window  
RUNNING  
Activate  
RST  
LPOFF -  
VPRE_UV  
LPOFF -  
SLEEP  
- VCAN/VCORE/VAUX/VCCA OFF  
- Fail Safe OFF  
LPOFF -  
DEEP FS  
1ms  
CAN/IOs event  
Rise IO_0  
Activate RST : any UV, any OV, WD,  
IO_23 error, deep fail safe, reset by spi,  
IO_1 FB_core delta, FS0b short to VDD,  
SPI DED  
Wake up  
- VCAN/VCORE OFF  
- VAUX/VCCA OFF  
- OSC Main ON  
- FailSafe ON  
POR Fail Safe &  
Fail Safe Reg. ON  
FAIL SAFE STATE MACHINE  
MAIN STATE MACHINE  
Figure 13. Simplified state diagram  
33907/33908  
NXP Semiconductors  
37  
6.5  
Fail-safe machine  
To fulfill safety critical applications, the 33907/33908 integrates a dedicated fail-safe machine (FSM). The FSM is composed of three main  
sub-blocks: the Voltage Supervisor (VS), the Fail-safe state machine (FSSM), and the Fail-safe output driver (FSO).The FSM is electrically  
independent from the rest of the circuitry, to avoid common cause failure.  
For this reason, the FSM has its own voltage regulators (analog and digital), dedicated bandgap, and its own oscillator. Three power  
supply pins (VSUP 1, 2, & 3) are used to overtake a pin lift issue. The internal voltage regulators are directly connected on VSUP (one  
bonding wire per pin is used). Additionally, the ground connection is redundant as well to avoid any loss of ground.  
All the voltages generated in the device are monitored by the voltage supervisor (under & overvoltage) owing to a dedicated internal  
voltage reference (different from the one used for the voltage regulators). The result is reported to the MCU through the SPI and delivered  
to the Fail-safe state machine (FSSM) for action, in case of a fault. All the safety relevant signals feed the FSSM, which handles the error  
handling and controls the fail-safe outputs.  
There are two fail-safe outputs: RSTB (asserted low to reset the MCU), and FS0B (asserted low to control any fail-safe circuitry). The Fail-  
safe machine is in charge of bringing and maintaining the application in a Fail-safe state. Four sub Fail-safe states are implemented to  
handle the different kinds of failures, and to give a chance for the system to come back to a normal state.  
6.5.1 Fail-safe machine state diagram  
No POR Fail-safe  
From  
PowerDown  
Anywhere  
POR Fail-safe  
- RSTb is asserted low  
LBIST  
LBIST Done &  
VPRE>VPRE_UV  
SELECT pin  
config.  
VPRE<VPRE_UV  
- RSTb is asserted low  
detection  
1ms elapsed &  
VCORE > VCORE_UV &  
VCCA > VCCA_UV &  
VAUX > VAUX_UV  
- RSTb is asserted low  
ABIST  
RSTb delay = 8s  
IO_0  
ABIST Pass  
No activate RST &  
RST delay expired  
- RSTb delay running  
- RSTb is asserted low  
RST delay=8s OR  
Rst_error_count=6  
Assert RSTb  
External  
RST  
Activate RST  
Release  
RSTb  
- RSTb is released  
- VCAN/VCORE OFF  
- VAUX/VCCA OFF  
- Fail Safe OFF  
- FS0b = Low  
Deep Fail  
Safe  
No external RST &  
No activate RST  
External RSTb =  
- RSTb = Low  
8s  
External  
RST  
- Unlock SPI init registers  
- Start 256ms open window  
- RSTb is released  
Activate  
RST  
INIT FS  
2 > RST_error_count < 6  
Activate RST or  
WD Not OK  
FS0b low & No  
activate RST &  
RST delay expired  
WD OK  
RST_err_count = 0  
& FS_OUT ok  
External  
RST  
RST delay=8s  
- FS0b is asserted low  
FS0B Low  
Ext. IC error (IO0:1  
and/or IO4:5)  
NORMAL  
WD is  
RUNNING  
Release  
FSOb  
-FS0b is  
released  
- Start WD close/open window  
No FS0b  
Ext. IC error (IO0:1  
and/or IO4:5)  
Figure 14. Detailed fail-safe state diagram  
33907/33908  
38  
NXP Semiconductors  
6.5.2 Watchdog operation  
A windowed watchdog is implemented in the 33907/33908 and is based on “question/answer” principle (Challenger). The watchdog must  
be continuously triggered by the MCU in the open watchdog window, otherwise an error is generated. The error handling and watchdog  
operations are managed by the Fail-safe state machine. For debugging purpose, this functionality can be inhibited by setting the right  
voltage on the DEBUG pin at start-up.  
The watchdog window duration is selectable through the SPI during the INIT FS phase or in Normal mode. The following values are  
available: 1.0 ms, 2.0 ms, 3.0 ms, 4.0 ms, 6.0 ms, 8.0 ms, 12 ms, 16.0 ms, 24 ms, 32 ms, 64 ms, 128 ms, 256 ms, 512 ms, and 1024 ms.  
The watchdog can also be inhibited through the SPI register to allow “reprogramming” (ie.at vehicle level through CAN).  
An 8-bit pseudo-random word is generated, due to a Linear Feedback Shift Register implemented in the 33907/33908. The MCU can send  
the seed of the LFSR or use the LFSR generated by the 33907/33908 during the INIT phase and performs a pre-defined calculation. The  
result is sent through the SPI during the “open” watchdog window and verified by the 33907/33908. When the result is right, a new LFSR  
is generated and the watchdog window is restarted. When the result is wrong, the WD error counter is incremented, the watchdog window  
is restarted, an INTB is generated, and the LFSR value is not changed. Any access to the WD register during the “closed” watchdog  
window is considered a wrong WD refresh.  
6.5.2.1  
Normal operation (first watchdog refresh)  
At power up, when the RSTB is released as high (after around 16 ms), the INIT phase starts for a maximum duration of 256 ms and this  
is considered as a fully open watchdog window. During this initialization phase the MCU sends the seed for the LFSR, or uses the default  
LFSR value generated by the 33907/33908 (0xB2), available in the WD_LFSR register (Table 75). Using this LFSR, the MCU performs  
a simple calculation based on this formula. As an example, the result of this calculation based on LFSR default value (0xB2) is 0x4D.  
NOT  
LFSR_OUT[7:0]  
x
4
+
-
/
WD_answer[7:0]  
6
4
4
Figure 15. Watchdog answer calculation  
The MCU sends the results in the WD answer register (Table 77). When the watchdog is properly refreshed during the open window, the  
256 ms open window is stopped and the initialization phase is finished. A new LFSR is generated and available in the WD LFSR register,  
Table 74. If the watchdog refresh is wrong or if the watchdog is not refreshed during this 256 ms open window (INIT FS phase), the device  
asserts the reset low and the RSTB error counter is incremented by “1”.  
After a good watchdog refresh, the device enters the Normal WD refresh mode, where open and closed windows are defined either by  
the configuration made during initialization phase in the watchdog window register (Table 73), or by the default value already present in  
this register (3.0 ms).  
6.5.2.2  
Normal watchdog refresh  
The watchdog must be refreshed during every open window of the window period configured in the register Table 73. Any WD refresh  
restarts the window. This ensures the synchronization between MCU and 33907/33908.  
The duration of the “window” is selectable through the SPI with no access restriction, means the window duration can be changed in the  
INIT phase or Normal mode. Doing the change in normal operation allow the system integrator to configure the watchdog window duration  
on the fly:  
• The new WD window duration (except after disable) will be taken into account when a write in the WD_answer register occurs (good  
or bad WD answer) or when the previous WD window is finished without any writing (WD timeout)  
• The new WD window duration after disable will be taken into account when SPI command is validated  
The duty cycle of the window is set to 50% and is not modifiable.  
Window Period  
CLOSED  
OPEN  
CLOSED  
OPEN  
Refresh  
Slot  
Refresh  
Slot  
Figure 16. Windowed watchdog  
33907/33908  
NXP Semiconductors  
39  
6.5.2.3  
Watchdog in debug mode  
When the device is in debug mode (entered via the DEBUG pin), the watchdog continues to operate, but does not affect the device  
operation by asserting a reset or fail-safe pins. For the user, operation appears without the watchdog. If needed and to debug the  
watchdog itself, the user can operate as in Normal mode and check LFSR values, the watchdog refresh counter, the watchdog error  
counter, and reset counter. This allows the user to debug their software and ensure a good watchdog strategy in the application.  
6.5.2.4  
Wrong watchdog refresh handling  
Error counters and strategy are implemented in the device to manage wrong watchdog refreshes from the MCU. According to consecutive  
numbers of wrong watchdog refreshes, the device can decide to assert the RSTB only, or to go in deep Fail-safe mode where only a Power  
On Reset or a transition on IO_O helps the system to recover.  
6.5.2.5  
Watchdog error counter  
The watchdog error counter is implemented in the device to filter the incorrect watchdog refresh. Each time a watchdog failure occurs, the  
device increments this counter by 2. The WD error counter is decremented by 1 each time the watchdog is properly refreshed. This  
principle ensures that a cyclic “OK/NOK” behavior converges to a failure detection. To allow flexibility in the application, the maximum  
value of this counter is configurable in the INIT_WD register, but only when device is in INIT FS mode.  
Watchdog Error Counter  
WD_CNT_error = 6  
Watchdog Error Counter  
WD_CNT_error = 2  
Watchdog Error Counter  
WD_CNT_error = 4  
WD refresh NOK  
WD refresh NOK  
WD refresh NOK  
0
0
0
WD refresh OK  
WD refresh OK  
WD refresh NOK  
WD refresh NOK  
1
1
2
1
WD refresh OK  
WD refresh OK  
2
3
4
5
6
WD refresh NOK  
WD refresh NOK  
2
WD refresh NOK  
WD refresh OK  
WD refresh OK  
WD refresh OK  
WD refresh OK  
3
WD refresh NOK  
4
WD refresh NOK  
WD refresh NOK  
Figure 17. Watchdog error counter configuration (INIT_WD register, Bits WD_CNT_error_1:0)  
33907/33908  
40  
NXP Semiconductors  
6.5.2.6  
Watchdog refresh counter  
The watchdog refresh counter is used to decrement the RST error counter. Each time the watchdog is properly refreshed, the watchdog  
refresh counter is incremented by “1”. Each time the watchdog refresh counter reaches “6” and if next WD refresh is also good, the RST  
error counter is decremented by “1” (case with WD_CNT_refresh_1:0 configured at 6).  
Whatever the position is in the watchdog refresh counter, each time there is a wrong refresh watchdog, the watchdog refresh counter is  
reset to “0”. To allow flexibility in the application, the maximum value of this watchdog refresh counter is configurable in the INIT_WD  
register, but only when device is in INIT FS mode.  
Watchdog Refresh Counter  
WD_CNT_refresh = 2  
Watchdog Refresh Counter  
WD_CNT_refresh = 1  
Watchdog Refresh Counter  
WD_CNT_refresh = 6  
Watchdog Refresh Counter  
WD_CNT_refresh = 4  
WD Refresh NOK  
WD Refresh NOK  
WD Refresh NOK  
WD Refresh NOK  
0
0
0
0
WD Refresh OK  
WD Refresh OK  
WD Refresh OK  
WD Refresh OK  
1
1
1
1
WD Refresh NOK /  
WD_OFF  
WD Refresh NOK /  
WD_OFF  
WD Refresh NOK /  
WD_OFF  
WD Refresh OK /  
WD Refresh NOK /  
WD_OFF  
WD Refresh OK  
WD Refresh OK  
WD Refresh OK  
2
2
2
WD Refresh NOK /  
WD Refresh NOK /  
WD Refresh OK /  
WD_OFF  
WD_OFF  
WD Refresh NOK /  
WD_OFF  
WD Refresh OK  
WD Refresh OK  
3
3
WD Refresh NOK /  
WD Refresh NOK /  
WD_OFF  
WD_OFF  
WD Refresh OK  
WD Refresh OK  
4
4
WD Refresh NOK /  
WD_OFF  
WD Refresh OK /  
WD Refresh NOK /  
WD_OFF  
WD Refresh OK  
5
WD Refresh NOK /  
WD_OFF  
WD Refresh OK  
6
WD Refresh OK /  
WD Refresh NOK /  
WD_OFF  
Figure 18. Watchdog refresh counter configuration (INIT_WD register, WD_CNT_refresh_1:0)  
Table 10. Watchdog error table  
Window  
CLOSED  
WD_NOK  
WD_NOK  
No_issue  
OPEN  
BAD Key  
WD_NOK  
WD_OK  
WD_NOK  
SPI  
GOOD Key  
None (time out)  
Any access to the watchdog register during the “closed” watchdog window is considered as a wrong watchdog refresh. Watchdog timeout,  
meaning no WD refresh during closed or open windows, is considered as a wrong WD refresh.  
33907/33908  
NXP Semiconductors  
41  
6.5.3 Reset error counter  
The reset error counter manages the reset events and counts the number of resets occurring in the application. This counter is  
incremented not only for the reset linked to consecutive wrong refresh watchdogs, but also for other sources of reset (undervoltage,  
overvoltage, external reset). The RST error counter is incremented by 1, each time a reset is generated.  
The reset error counter has two output values (intermediate and final). The intermediate output value is used to handle the transition from  
reset (RSTB is asserted low) to reset and fail where RSTB and FS0B are activated. The final value is used to handle the transition from  
reset and fail to deep reset and fail (Deep Fail-safe mode), where regulators are off, RSTB and FS0B are activated, and a power on reset  
or a transition on IO_0 is needed to recover. The intermediate value of the reset error counter is configurable to “1” or “3” using the  
RSTB_err_FS bit in the INIT FSSM2 register (Table 71).  
If RSTB_err_FS is set to “0”, it means the device activates FS0B when the reset error counter reaches level “3”.  
If RSTB_err_FS is set to “1”, it means the device activates FS0B when the reset error counter reaches level “1”.  
This configuration must be done during INIT FS phase.  
The final value of the reset error counter is based on the intermediate configuration.  
• RSTB_err_FS = 0 / Intermediate = 3; Final = 6 (Figure 19). When reset error counter reaches 6, the device goes into deep reset and  
fails.  
• RSTB_err_FS = 1 / Intermediate = 1; Final = 2 (Figure 20). When reset error counter reaches 2, the device goes into deep reset and  
fails.  
In any condition, if the RSTB is asserted LOW for a duration longer than eight seconds, the device goes into deep reset and fails.  
Conditions that leads to an increment of the RSTB error counter, and according to the product configuration are:  
• Watchdog error counter = 6  
• Watchdog refresh NOK during INIT phase or Watchdog timeout  
• IO_23 error detection (FCCU)  
• Undervoltage  
• Overvoltage  
• IO_1 FB_Core Delta  
• FS0B shorted to VDD  
• SPI DED  
• Reset request by the SPI  
• External reset  
Conditions leading to a transition go to FS, according to the product configuration are:  
• IO_01/IO_23/IO_45 error detection  
• Undervoltage  
• Overvoltage  
• IO_1 FB_Core Delta  
• Analog BIST fail  
• SPI DED  
• RSTB shorted to high  
33907/33908  
42  
NXP Semiconductors  
Reset Error Counter  
(Cfg SPI RSTb_err_FS=0; WD_CNT_refresh=6)  
7 consecutive WD Refresh OK  
(7 = WD_CNT_refresh + 1)  
gotoFS  
POR or from  
LPOFF mode  
0
INCR  
7 consecutive WD Refresh OK  
1
2
3
4
5
6
INCR = WD error counter = WD_CNT_error[1:0] |  
WD refresh NOK during INIT |  
IO23_ERR |UV/OV |  
IO_1 FB_Core delta |  
FS0b_shorttovdd |  
INCR  
INCR  
gotoFS  
7 consecutive WD Refresh OK  
7 consecutive WD Refresh OK  
SPI DED |  
Reset by SPI |  
External reset  
Active FS0  
gotoFS = IO01/23/45_ERR |  
UV/OV|  
INCR  
INCR  
7 consecutive WD Refresh OK  
7 consecutive WD Refresh OK  
IO_1 FB_Core delta |  
ABIST_fail |  
Active FS0  
Active FS0  
SPI DED |  
RSTb_short2hi  
INCR  
Active FS0  
Turn OFF regulators  
RSTb asserted for 8  
seconds  
Figure 19. RSTB error counter (RSTB_err_FS = 0)  
Reset Error Counter  
(Cfg SPI RSTb_err_FS=1; WD_CNT_refresh=6)  
INCR = WD error counter = WD_CNT_error[1:0] |  
7 consecutive WD Refresh OK  
(7 = WD_CNT_refresh + 1)  
WD refresh NOK during INIT |  
IO23_ERR |UV/OV |  
IO_1 FB_Core delta |  
FS0b_shorttovdd |  
SPI DED |  
0
1
2
POR or from  
LPOFF mode  
INCR/gotoFS  
7 consecutive WD Refresh OK  
Reset by SPI |  
External reset  
Active FS0  
INCR  
gotoFS = IO01/23/45_ERR |  
UV/OV |  
Active FS0  
Turn OFF regulators  
IO_1 FB_Core delta |  
ABIST_fail |  
RSTb asserted for 8  
seconds  
SPI DED |  
RSTb_short2hi  
Figure 20. RSTB error counter(RSTb_err_FS = 1)  
33907/33908  
NXP Semiconductors  
43  
6.5.3.1  
RST error counter at start-up or resuming from LPOFF mode  
At start-up or when resuming from LPOFF mode the reset error counter starts at level 1 and FS0B is asserted low. To remove activation  
of FS0B, the RST error counter must go back to value “0” (seven consecutive good watchdog refresh decreases the reset error counter  
down to 0) and a right command is sent to FS_OUT register (Figure 23).  
1st WD refresh OK after  
INIT phase. Start of the  
WD window  
New fully OPEN window of  
256 ms  
WD window  
OK  
NOK  
NOK  
NOK  
OK  
OK  
NOK  
WD error  
counter  
6
4
4
3
0
2
5
Reset error  
counter  
1
RSTb  
RSTB  
delay time  
WD Refresh  
counter  
0
1
0
0
0
1
1
0
Figure 21. Example of WD operation generating a reset (WD_error_cnt = 6)  
New fully OPEN window of  
256 ms  
WD window  
OK  
OK  
OK  
NOK  
4
OK  
OK  
OK  
OK  
OK  
WD error  
counter  
0
6
Reset error  
counter  
1
2
1
RSTb  
RSTb  
delay time  
1
3
2
5
6
0
1
WD Refresh  
counter  
0
4
Figure 22. Example of WD operation leading a decrement of the reset error counter (WD_resfresh_cnt = 6)  
33907/33908  
44  
NXP Semiconductors  
# WD refresh counter max value +1  
consecutive WD answers OK  
# WD refresh counter max value +1  
consecutive WD answers OK  
WD error counter  
= 6  
WD error counter  
= 6  
FS_OUT  
write OK  
WD error counter  
= 6  
FS_OUT  
write OK  
Reset error counter  
RST_ERR_CNT  
1
0
1
2
3
2
1
0
Reset delay  
RSTb  
FS0b  
Output stage ON  
OFF  
ON  
OFF  
Figure 23. Reset error counter and FS0B deactivation sequence (RSTB_err_FS = 0 & WD_CNT_error1:0 = 6)  
6.5.4 Fail-safe output (FS0B) deactivation  
When the fail-safe output FS0B is asserted low by the device due to a fault, some conditions must be validated before allowing the FS0B  
pin to be deactivated by the device. These conditions are:  
• Fault is removed  
• Reset error counter must be at “0”  
• FS_OUT register must be filled with the right value.  
6.5.4.1  
Faults triggering FS0B activation  
The activation of the FS0B is clearly dependent on the product configuration, but the following items can be settled:  
• IO_01/IO_23/IO_45 error detection  
• Undervoltage  
• Overvoltage  
• IO_1 FB_Core Delta  
• Analog BIST fail (not configurable)  
• SPI DED (not configurable)  
• RSTB shorted to high (not configurable)  
• RSTB error counter level  
6.5.5 SPI DED  
Some SPI registers affect some safety critical aspects of the fail-safe functions, and thus are required to be protected against SEU (Single  
Event Upset). Only fail-safe registers are concerned. During INIT FS mode, access to fail-safe registers for product configuration is open.  
Then once the INIT FS phase is over, the Hamming circuitry is activated to protect registers content.  
At this stage, if there is 1 single bit flip, the detection is made due to hamming code, and the error is corrected automatically (fully  
transparent for the user), and a flag is sent. If there are two errors (DED - Dual Error Detection), the detection is made due to hamming  
code but detected errors cannot be corrected. Flag is sent, RSTB and FS0B are activated.  
6.5.6 FS_OUT register  
When fault is removed and reset error counter changes back to level “0”, a right word must be filled in the FS_OUT register. The value is  
dependant on the current WD_LFSR. LSB and MSB must be swapped and negative operation per bit must be applied.  
WD_LFSR_7:0=  
FS_OUT_7:0 =  
b7  
b0  
b6  
b1  
b5  
b2  
b4  
b3  
b3  
b4  
b2  
b5  
b1  
b6  
b0  
b7  
Figure 24. FS_OUT register based on LFSR value  
33907/33908  
NXP Semiconductors  
45  
6.6  
Input voltage range  
Due to the flexibility of the pre-regulator, the device can cover a wide battery input voltage range. However, a more standard voltage range  
can still be covered using only the Buck configuration.  
VSUP  
Buck only  
Buck-Boost  
No operation  
No operation  
Risk of damage  
Risk of damage  
40 V  
Extended voltage range  
Extended voltage range  
Potential Vpre thermal limitation  
Potential Vpre thermal limitation  
28 V  
19 V  
Extended voltage range  
Amux limitation  
Extended voltage range  
Amux limitation  
Normal voltage range  
Normal voltage range  
VSUP_UV_7  
Extended voltage range  
Vpre output current limitation  
6.0 V  
2.7 V  
Extended voltage range  
VPRE output current limitation  
4.6 V  
No operation  
No operation  
Figure 25. Input voltage range  
> 28 V: Potential VPRE thermal limitation  
• V  
SUP  
R
, Current limitation and Overcurrent detection are specified for V  
< 28 V.  
SUP  
DS(on)  
• V  
< 19 V: Mux_out limitation  
SUP  
IO_0 and IO_1 maximum analog input voltage range is 19 V. Internal 2.5 V reference voltage accuracy degraded.  
• Buck only, V < V  
:
SUP_UV_7  
SUP  
CAN communication is guaranteed for V  
> 6.0 V. LIN communication according to SAEJ2602-2 specification is stopped  
SUP  
(V  
< 7.0 V). For V  
and V  
5.0 V configuration, undervoltage triggers at low V  
(refer to V  
and V  
).  
SUP  
CCA  
AUX  
SUP  
CCA_UV_5  
AUX_UV_5  
6.7  
Power management operation  
A thermal sensor is implemented as close as possible to the pass transistor of each regulator (VPRE, VCORE, VCCA, VCAN) and an  
associated individual Thermal Shutdown (TSD) protect these regulators independently. When the TSD threshold of a specific regulator is  
reached, this regulator only is switched OFF and the information is reported in the main state machine. The regulator restarts automatically  
when the junction temperature of the pass transistor decrease below the TSD threshold.  
33907/33908  
46  
NXP Semiconductors  
6.7.1 VPRE voltage pre-regulator  
A highly flexible SMPS pre-regulator is implemented in the 33907/33908. Depending on the input voltage requirement, the device can be  
configured as “non-inverting buck-boost converter” (Figure 27) or “standard buck converter” (Figure 26). An external logic level MOSFET  
(N-type) is required to operate in “non-inverting buck-boost converter”. The connection of the external MOSFET is detected automatically  
during the start-up phase.  
The converter operates in Current Control mode in any configuration. The high-side switching MOSFET is integrated to make the current  
control easier. The PWM frequency is fixed at 440 kHz typical. The compensation network is fully integrated. VPRE output voltage is  
regulated between 6.0 V and 7.0 V.  
If the full current capability is not used for VCORE, VCCA, VAUX and CAN_5V, additional external LDO can be connected to VPRE to  
fulfill application needs while the current load remains below the maximum current capability in all conditions.  
L_VPRE  
ESR cap.  
ESR cap.  
<100 mΩ  
<10 mΩ  
PGND PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
Figure 26. Pre-regulator: buck configuration  
L_Vpre  
ESR cap.  
<100 mΩ  
ESR cap.  
<10 mΩ  
D_BB  
PGND PGND  
PGND  
PGND  
PGND  
PGND  
Optional  
PGND  
Figure 27. Pre-regulator: buck boost configuration  
When the converter is set up to work in boost mode at low V  
, the transition between buck and boost mode is automatically handled  
SUP  
by the device at V  
threshold. Transition between buck mode and boost mode is based on hysteresis (Figure 28).  
SUP_UV_7  
• When VSUP > V  
• When VSUP < V  
, the converter works in buck mode and VPRE output is regulated at 6.5 V typic.  
, the converter works in boost mode and VPRE output is regulated at 6.3 V typic.  
SUP_UV_7  
SUP_UV_7  
33907/33908  
NXP Semiconductors  
47  
 
 
D (%)  
100  
D buck  
D boost  
VPRE (V)  
6.5  
66  
50  
33  
25  
0
7.5  
12  
18  
24  
VIN (V)  
Figure 28. Transition between buck and boost  
6.7.1.1  
Power up and power down sequence  
VSNS_UV  
VSUP_UV_5  
VSUP_UV_L_B  
Vbattery  
0V  
Vsup  
Boost  
Buck_Boost Mask  
Boost  
Buck  
Buck  
Vpre_EN  
Vpre  
Vcore  
VCORE_FB_UV * ((R3+R4)/R4)  
INTB  
(Vddio=Vcore)  
RSTB  
RST delay time  
Figure 29. Buck configuration power-up and power-down  
33907/33908  
48  
NXP Semiconductors  
VSUP_UV_7  
VSUP_UV_5  
VSUP_UV_L  
Vbattery  
Vsup  
0V  
Buck_Boost Mask  
Boost  
Boost  
Buck  
Buck  
Vpre_EN  
Vpre  
Vcore  
INTB  
VCORE_FB_UV * ((R3+R4)/R4)  
(Vddio=Vcore)  
RSTB  
RST delay time  
Figure 30. Buck boost configuration power-up and power-down  
33907/33908  
NXP Semiconductors  
49  
6.7.1.2  
Cranking management  
When VPRE is set up to work in buck only mode, the application can work down to VSUP = V  
= 4.6V with a minimum of 500 mA  
SUP_UV_L_B  
current guaranteed on VPRE.  
.
VSENSE  
VSUP  
VSNS_UV  
VSUP_UV_L_B  
Buck_Boost  
Mask  
Buck  
VPRE_EN  
VPRE  
VCORE  
INTB  
VCORE_FB_UV * ((R3+R4)/R4)  
RSTB  
Figure 31. Behavior during cranking (buck configuration)  
When VPRE is set up to work in boost mode, the application can work down to VSUP = V  
= 2.7V with a minimum of 300 mA  
SUP_UV_L  
current guaranteed on VPRE. The boost mode configuration help to pass LV124 specification requiring a minimum of 3.2 V on V  
during cold cranking conditions.  
supply  
BAT  
33907/33908  
50  
NXP Semiconductors  
VSUP  
VSUP_UV_7  
VSUP_UV_L  
Buck_Boost  
Mask  
Buck  
Buck  
Boost  
Boost  
VPRE_EN  
VPRE  
VCORE  
INTB  
VCORE_FB_UV * ((R3+R4)/R4)  
RSTB  
Figure 32. Behavior during cranking (buck boost configuration)  
6.7.1.3  
Light load condition  
In order to improve the converter efficiency and avoid any unwanted output voltage increase, VPRE voltage regulator operates in Pulse  
Skipping mode during light load condition.  
The transition between Normal mode and Pulse Skipping mode is based on the comparison between the error amplifier output (EA_out)  
and pre-defined thresholds V  
and V  
. When the Error Amplifier output reaches V  
, VPRE high-side transistor is  
PRE_LL_H  
PRE_LL_L  
PRE_LL_L  
switched OFF. When the Error Amplifier output reaches V  
period (Figure 33).  
, VPRE high-side transistor is switched ON again for the next switching  
PRE_LL_H  
VPR E  
VSUP1/2  
EA_out  
Vpre_LL_H  
Vpre_LL_L  
EA_ out  
Error Amplifier  
Li gh t L oa d  
VPRE HS  
Driver  
Comparat or  
(H y st 2 0m V )  
Light Load  
flag  
HS Gate  
drive  
Ref  
Vp re_L L_L  
GND  
SW_PRE  
Figure 33. Description of light load condition  
33907/33908  
NXP Semiconductors  
51  
 
 
6.7.1.4  
Input power feed forward condition  
In order to improve the converter efficiency during high input power condition, VPRE switching frequency is reduced from 440 kHz to  
220 kHz when VSUP > V and I > I to decrease the switching losses. The transition between the two frequencies  
SUP_IPFF  
PRE  
PRE_IPFF_PK  
is transparent for the application.  
VSUP_IPFF  
VSUP  
Ipk envelop  
IPFF  
VPRE_FSW  
440 kHz  
Figure 34. Input power feed forward principle  
440 kHz  
220 KHz  
6.7.1.5  
Overcurrent detection and current limitation  
Overcurrent protection:  
6.7.1.5.1  
In order to ensure the integrity of the high-side MOSFET, an overcurrent detection is implemented. The regulator is switched OFF by the  
Main State machine when the over-current detection threshold I is reached three consecutive times. The overcurrent detection is  
PRE_OC  
blanked when the pass transistor is switched ON during T  
to avoid parasitic switch OFF of the high-side gate driver.  
PRE_OC  
The VPRE output voltage decrease causes an undervoltage condition on one of the cascaded regulators (VCORE, VCCA, VAUX) and  
bring the device in Fail-safe state. The overcurrent protects the regulator in case of SW_PRE pin shorted to GND. The overcurrent works  
in Buck mode only.  
6.7.1.5.2  
Current limitation:  
A current limitation is also implemented to avoid uncontrolled power dissipation inside the device (duty cycle control) and limits the current  
below I . The current limitation is blanked when the pass transistor is switched ON during T to allow short-circuit  
PRE_LIM  
PRE_BLK_LIM  
detection on SW_PRE pin.  
When I threshold is reached during Buck mode, the high-side integrated MOSFET is switched OFF. When I  
threshold is  
PRE_LIM  
PRE_LIM  
reached during Boost mode, the external low-side MOSFET is switched OFF. In both cases, the MOSFET is not switched ON again before  
the next rising edge of the switching clock.  
The current limitation will induce a duty cycle reduction and will lead to VPRE output voltage to fall down gradually and may cause an  
undervoltage condition on one of the cascaded regulators (VCORE, VCCA, VAUX) and bring the device in Fail-safe state. The current  
limitation does not switch OFF the regulator. The current limitation protects the regulator when VPRE pin is shorted to GND.  
33907/33908  
52  
NXP Semiconductors  
IPRE_OC  
IPRE_LIM  
IPRE_SW  
SW_PRE  
VPRE  
TPRE_OC  
TPRE_BLK_ILIM  
Figure 35. Overcurrent and current limitation scheme  
6.7.1.6  
VPRE voltage monitoring  
The overvoltage detection switches OFF the regulator. The undervoltage detector is disabled when the regulator is switched OFF  
reporting an undervoltage. Diagnostic is reported in the dedicated register and generate an Interrupt.  
The undervoltage detection does not switches OFF the regulator. However, V  
decrease may induce an undervoltage on a regulator  
PRE  
attached to V  
(VCORE, VCCA, VAUX, or CAN_5V), and bring the application in Fail-safe state depending on the supervisor  
PRE  
configuration (registers INIT SUPERVISOR 1,2,3).  
6.7.1.7  
VPRE efficiency  
VPRE efficiency versus current load is given for information based on typical external component criteria described in the table close to  
the graph and at three different V voltages (8.0 V, 14 V, and 18 V) covering typical automotive operating range. The efficiency is valid  
SUP  
in buck mode only and above 200 mA load on VPRE in order to be in continuous mode in the 22 µH inductor. The efficiency is calculated  
and has to be verified by measurement at application level.  
33907/33908  
NXP Semiconductors  
53  
Figure 36. V  
efficiency  
PRE  
6.7.2 VCORE voltage regulator  
This voltage regulator is a step-down DC-DC converter operating in Voltage Control mode. The high side switching MOSFET is integrated  
in the device and the PWM frequency is fixed at 2.4 MHz typical. The output voltage is configurable from 1.2 V to 3.3 V range and  
adjustable around these voltages with an external resistor divider (R3/R4) connected between V  
(Figure 37).  
and the feedback pin (FB_CORE)  
CORE  
VCORE = V  
x ((R3 + R4) / R4)  
CORE_FB  
The voltage accuracy is 2.0% (without the external resistor bridge R3/R4 accuracy) and the max output current is 1.5 A. The stability of  
the overall converter is done by an external compensation network (R1/C1/R2/C2) connected to the pin COMP_CORE. It is recommended  
to use 1% accuracy resistors and set R4 = 8.06 kΩ and adjust R3 to obtain the final VCORE voltage needed for the MCU core supply.  
L_Vcore  
ESR cap.  
<100mΩ  
C1  
PGND  
R3  
GND  
PGND  
PGND  
PGND  
R1  
PGND  
VCORE_SNS  
FB_CORE  
R4  
GND  
GND  
COMP_CORE  
Figure 37. VCORE buck regulator  
33907/33908  
54  
NXP Semiconductors  
 
6.7.2.1  
Light load condition  
In order to improve the converter efficiency and avoid any unwanted output voltage increase, VCORE voltage regulator operates in Pulse  
Skipping mode during light load condition. The principle is the same as the VPRE implementation described in details in Light load  
condition.  
6.7.2.2  
Current limitation  
A current limitation is implemented to avoid uncontrolled power dissipation inside the device (duty cycle control) and limits the current  
below I . The current limitation is banked when the pass transistor is switched ON during T to avoid parasite  
CORE_LIM  
CORE_BLK_LIM  
detection. When I  
threshold is reached, the high-side integrated MOSFET is switched OFF. The MOSFET is not switched ON  
CORE_LIM  
again before the next rising edge of the switching clock.  
The current limitation will induce a duty cycle reduction and will lead to VCORE output voltage to fall down gradually and may cause an  
undervoltage condition and bring the device in Fail-safe state. The current limitation does not switch OFF the regulator.  
6.7.2.3  
Voltage monitoring  
The overvoltage detection switches OFF the regulator. The regulator remains ON in case of undervoltage detection. Diagnostic is reported  
in the dedicated register, generate an Interrupt and may bring the application in Fail-safe state depending on the supervisor configuration  
(registers INIT SUPERVISOR 1,2, 3).  
6.7.2.4  
VCORE efficiency  
Vcore efficiency versus current load is given for information based on typical external component criteria described in the table close to  
the graph and at two different VCORE voltages (3.3 V, and 1.2 V) covering most of the 32-bit MCU supply range. The efficiency is valid  
above 200 mA load on V  
in order to be in continuous mode in the 2.2 µH inductor. The efficiency is calculated and has to be verified  
CORE  
by measurement at application level. One of the major contributor degrading the efficiency at V  
= 1.2 V is the external diode during  
CORE  
the recirculation phase. Lower the diode Forward Voltage (V ) is, the better the efficiency.  
F
Figure 38. V  
efficiency  
CORE  
33907/33908  
NXP Semiconductors  
55  
6.7.3 Charge pump and bootstrap  
Both switching MOSFETs of VPRE and VCORE SMPS are driven by external bootstrap capacitors. Additionally, a charge pump is  
implemented to ensure 100% duty cycle for both converters. Each converter uses a 100 nF external capacitor minimum to operate  
properly.  
6.7.4 VCCA voltage regulator  
VCCA is a linear voltage regulator mainly dedicated to supply the MCU I/Os, especially the ADC. The output voltage is selectable at 5.0 V  
or 3.3 V. Since this output voltage can be used to supply MCU I/Os, the output voltage selection is done using an external resistor  
connected to the SELECT pin and ground if VAUX is used. When VAUX is not used, the resistor is connected between the SELECT pin  
and VPRE.  
When VCCA is used with the internal MOS transistor, VCCA_E pin must be connected to VPRE. The voltage accuracy is 1.0% for 5.0 V  
configuration and 1.5% for 3.3 V configuration with an output current capability at 100 mA.  
When VCCA is used with an external PNP transistor to boost the current capability up to 300 mA, the connection is detected automatically  
during the start-up sequence of the 33907/33908. In such condition, the internal pass transistor is switched OFF and all the current is  
driven through the external PNP to reduce the internal power dissipation. The output voltage accuracy with an external PNP is reduced  
to 3.0% at 300 mA current load. The VCCA output voltage is used as a reference for the Auxiliary voltage supply (VAUX) when VAUX  
is configured as a tracking regulator.  
6.7.4.1  
Current limitation  
A current limitation is implemented to avoid uncontrolled power dissipation of the internal MOSFET or external PNP transistor. By default,  
the current limitation threshold is selected based on the auto detection of the external PNP during start up phase.  
• When the internal MOSFET transistor is used, the current is limited to I  
and the regulator is kept ON  
CCA_LIM_INT  
• When the external PNP transistor is used, the current is limited to I  
and the regulator is switch OFF after a dedicated  
CCA_LIM_OUT  
duration T  
under current limitation. A SPI command is needed to restart the regulator.  
CCA_LIM_OFF  
In case of external PNP configuration only, the lowest current limitation threshold can be selected by SPI in the register INIT VREG 2  
instead of the highest one. In order to limit the power dissipation in the external PNP transistor in case of short circuit to GND of VCCA  
pin, a current limitation foldback scheme is implemented to reduce the current limitation to I  
when V  
is below V  
.
CCA_LIM_FB  
CCA  
CCA_LIM_FB  
6.7.4.2  
Voltage monitoring  
The overvoltage detection switches OFF the regulator. The regulator remains ON in case of undervoltage detection. Diagnostic is reported  
in the dedicated register, generate an Interrupt and may bring the application in Fail-safe state depending on the supervisor configuration  
(registers INIT SUPERVISOR 1, 2, 3).  
6.7.5 VAUX voltage regulator  
VAUX is a highly flexible linear voltage regulator that can be used either as an auxiliary supply dedicated to additional device in the ECU  
or as a sensor supply (i.e. outside the ECU). An external PNP transistor must be used (no internal current capability). If VAUX is not used  
in the application, VAUX_E and SELECT pins must be connected to VPRE in order to not populate the external PNP as described in  
Figure 60.  
If VAUX is used as an auxiliary supply, the output voltage is selectable between 5.0 V, 3.3 V. Since this voltage rail can be used to supply  
MCU IOs, the selection is done with an external resistor connected between the SELECT pin and ground. In such case, the voltage  
accuracy is 3.0% with a maximum output current capability at 300 mA. If VAUX is used as a sensor supply rail, the output voltage is  
selectable between 5.0 V and 3.3 V. VCCA can be used as reference for the sensor supply used as tracker. The selection is done during  
the INIT phase and secured (bit V  
in the register INIT VREG2). The tracking accuracy is 15 mV.  
AUX_TRK_EN  
33907/33908  
56  
NXP Semiconductors  
L3 - 2.2 µH  
Vcore  
VDD_LV_1.2V  
C7  
40µF  
D4  
C10  
R1  
C6  
100nF  
R3  
PGND  
PGND  
Boot_core  
Vcore_sns  
SW2  
FB1  
MCU  
R4  
Vcore  
Buck – 1.5A  
GND  
Comp1  
R2  
C11  
Vcca_E  
Vcca_B  
V_Peripherals & I/O  
VCCA - LDO1  
100/300mA  
Vcca 5V  
V_ADC_5V  
ADC_IN  
C8  
4.7 µF  
Int 3.3/  
5V ref  
GND  
Input ref  
Vaux_E  
Vaux_B  
PNP2  
VAUX - LDO2  
Vaux 5V  
300mA  
C9  
4.7 µF  
Ext  
Sensor  
GND  
GND  
33907/33908  
ECU  
limit  
Figure 39. Example of V  
used in tracker mode  
AUX  
6.7.5.1  
Current limitation  
A current limitation is implemented to avoid uncontrolled power dissipation of the external PNP transistor. The current is limited to I  
AUX_LIM  
and the regulator is switch OFF after a dedicated duration T  
under current limitation. A SPI command is needed to restart the  
AUX_LIM_OFF  
regulator. In order to limit the power dissipation in the external PNP transistor in case of short-circuit to GND of VAUX pin, a current  
limitation foldback scheme is implemented to reduce the current limitation to I  
when V  
is below V  
.
AUX_LIM_FB  
AUX  
AUX_LIM_FB  
VAUX  
Vaux  
(3.3Vor  
5V)  
Vaux_LIM_FB  
IAUX  
Iaux_LIM_FB  
Iaux_LIM  
Figure 40. V  
current limitation scheme with foldback mechanism  
AUX  
33907/33908  
NXP Semiconductors  
57  
6.7.5.2  
Voltage monitoring  
The overvoltage detection switches OFF the regulator. The regulator remains ON in case of undervoltage detection. Diagnostic is reported  
in the dedicated register, generate an Interrupt and may bring the application in Fail-safe state depending on the supervisor configuration  
(registers INIT SUPERVISOR 1, 2, 3).  
6.7.6 CAN_5V voltage regulator  
The CAN_5V voltage regulator is a linear regulator fully dedicated to the internal HSCAN interface. By default, the CAN_5V regulator and  
the undervoltage detector are enabled, the overvoltage detector is disabled. The overvoltage detector can be enabled by SPI during  
INIT_MAIN sate.  
If the overvoltage detector is enabled, the CAN_5V regulator switches OFF when an overvoltage is detected. The undervoltage detector  
is disabled when the regulator is switched OFF reporting an undervoltage. Diagnostic is reported in the dedicated register and generate  
an Interrupt. The CAN_5V regulator is not safety regulator. Consequently, the CAN_5V voltage monitoring (overvoltage, undervoltage)  
will never assert RSTB or FS0B Fail-safe pins.  
If the 33907/33908 internal CAN transceiver is not used in the application, the CAN_5V regulator can be used to supply an external  
standalone CAN or FLEX-RAY transceiver, providing that the current load remains below the maximum current capability in all conditions.  
In that case, the internal CAN transceiver must be put in Sleep mode without wake-up capability.  
6.7.7 Power dissipation  
The 33907/33908 provides high performance SMPS and Linear regulators to supply high end MCU in automotive applications. Each  
regulator can deliver:  
• V  
• V  
• V  
• V  
• V  
(6. 5V) up to 2.0 A  
PRE  
(from 1.2 V to 3.3 V range) up to 0.8 A (33907) or up to 1.5 A (33908)  
CORE  
(3.3 V or 5.0 V) up to 100 mA (with internal MOS) or up to 300 mA (with external PNP)  
(3.3 V or 5.0 V) up to 300 mA (with external PNP)  
(5.0 V) up to 100 mA  
CCA  
AUX  
CAN  
A thermal dissipation analysis has to be performed based on application use case to ensure the maximum silicon junction temperature  
does not exceed 150 °C.  
Two use cases covering the two main V  
voltage configurations are provided in Figure 41.  
CORE  
• use case 1: V  
• use case 2: V  
= 3.3 V, I  
= 1.2 V, I  
= 0.7 A, V  
= 1.4 A, V  
with int. MOS  
with ext. PNP  
CORE  
CORE  
CORE  
CORE  
CCA  
CCA  
Both use cases have a total internal power dissipation below 0.9 W. A junction to ambient thermal resistivity of 30 °C/W allows the  
application to work up to 125 °C ambient temperature. A good soldering of the package expose pad is highly recommended to achieve  
such thermal performance.  
33907/33908  
58  
NXP Semiconductors  
Vsup = 14V and 25% of CAN traffic  
0.765 W  
0.829 W  
TOTAL PDIS  
use case 1: Vcore=3.3V, Icore=0.7A, Vcca with int. MOS  
1) CAN transceiver dissipation includes CAN_5V regulator dissipation.  
=
TOTAL PDIS  
=
use case 2: Vcore=1.2V, Icore=1.4A, Vcca with ext. PNP  
2) 25% CAN traffic means the CAN bus is dominant for 25% of time and recessive for the remaining 75%.  
Figure 41. Power dissipation use case  
The main contributors to the device power dissipation are VPRE, VCORE, and VCCA (when used with internal PMOS) regulators. In  
comparison, the power dissipation from the Internal IC, VAUX and CAN transceiver are negligible. VPRE power dissipation is mainly  
induced by the loading of the regulators it is supplying, mainly VCORE, VCCA and VAUX which are application dependant. The total  
device power dissipation, depending on the variation of these three regulators, is detailed in Figure 42 with the environmental conditions  
in the associated table.  
33907/33908  
NXP Semiconductors  
59  
Pdis VS Icore  
Pdis VS Icca  
Pdis VS Ipre  
6.5V  
6.5V  
6.5V  
Vpre  
Ipre  
Icore + Icca  
+ Iaux + Ican  
3.3V and 1.2V  
Icore + Icca  
+ Iaux + Ican  
3.3V  
From 0.5 to 2A  
3.3V  
0.3A  
Vcore  
Icore  
Vcca  
from 0.25 to 1.5A  
3.3V  
0.7A  
3.3V and 5V  
20 to 100mA  
3.3V  
3.3V  
50mA  
50mA  
3.3V  
Icca  
3.3V  
Vaux  
Iaux  
200mA  
5V  
200mA  
5V  
200mA  
5V  
CAN_5V  
Ican  
33mA  
33mA  
33mA  
Figure 42. Power dissipation versus I  
, I  
, or I  
CORE CCA PRE  
33907/33908  
60  
NXP Semiconductors  
6.7.8 Start-up sequence  
In order to provide a safe and well known start-up sequence, the 33907/33908 includes an undervoltage lock-out. This undervoltage lock-  
out is only applicable when the device is under a Power-On-Reset condition, which means the initial condition is VSUP < V  
(i.e.  
SUP_UV_L  
below 2.7 V max). In all the other conditions (i.e. LPOFF), the device is able to operate (and therefore to restart) down to V  
other different voltage rails automatically start, as described in Figure 43.  
. The  
SUP_UV_L  
Vsup_uv_5  
Vsup  
Vint_2.5  
LBIST  
120us  
Vpre_EN  
Vpre_uv  
Vpre  
Vcca/Vaux  
Vcore  
INTB  
(Vddio=Vcore)  
1ms  
1ms  
Select pin  
RSTB  
UV Lock-out  
~16ms  
Figure 43. Start-up scheme  
The final value of VAUX and VCCA depends on the hardware configuration (resistor values on the SELECT pin). The typical start up  
sequence takes around 16 ms to release RSTB. RSTB can be pulled low after those 16 ms by the MCU, if it is not ready to run after power  
up.  
If an internal or external fault happen during this start up phase (ABIST fault due to regulator shorted for example), the 8.0 s timer  
monitoring the RSTB pin low, will finally send the device in Deep Fail-safe mode after 8.0 s.  
33907/33908  
NXP Semiconductors  
61  
 
6.8  
CAN transceiver  
The high speed CAN (Controller Area Network) transceiver provides the physical interface between the CAN protocol controller of an MCU  
and the physical dual wires CAN bus. It offers excellent EMC and ESD performance and meets the ISO 11898-2 and ISO11898-5  
standards.  
CAN_5V  
VDDIO  
Bus Biasing  
2.5V  
CAN_5V Monitor  
Pre  
Driver  
Dominant  
time out  
Input  
TXD  
RXD  
CAN H  
CAN L  
Rin  
Rin  
VDDIO  
CAN_5V  
Mode  
Pre  
Driver  
Buffer  
and  
Control  
VDDIO  
Main  
Logic  
Over  
Temperature  
Differential  
Receiver  
VSUP3  
Wake-up  
Receiver  
WU report  
to main loic  
Figure 44. CAN simplified block diagram  
6.8.1 Operating modes  
6.8.1.1  
Normal mode  
When CAN mode bits configuration is “11” (CAN in normal operation), the device is able to transmit information from TXD to the bus and  
report the bus level to the RXD pin. When TXD is high, CANH and CANL drivers are off and the bus is in the recessive state (unless it is  
in an application where another device drives the bus to the dominant state). When TXD is low, CANH and CANL drivers are ON and the  
bus is in the dominant state. When CAN mode bits configuration is “01” (CAN in listen only), the device is only able to report the bus level  
to the RXD pin. TXD driver is OFF and the device is NOT able to transmit information from TXD to the bus. TXD is maintained high by  
internal pull up resistor TXD  
connected to VDDIO.  
PULL-UP  
33907/33908  
62  
NXP Semiconductors  
high  
TXD  
low  
CANH  
CANL  
dominant  
0.9V  
Vdiff  
(CANH - CANL)  
0.5V  
recessive  
high  
0.7VDDIO  
RXD  
0.3VDDIO  
low  
Tloop (R-D)  
Tloop (D-R)  
Figure 45. CAN timing diagram  
6.8.1.2  
Sleep mode  
When the device is in LPOFF mode, the CAN transceiver is automatically set in Sleep mode with or without wake-up capability depending  
on CAN mode bits configuration. In that case, the CANH and CANL pins are pulled down to GND via the internal RIN resistor, the TXD  
and RXD pins are pulled down to GND, both driver and receiver are OFF.  
The CAN mode is automatically changed to Sleep with wake-up capability if not configured to Sleep without wake-up capability when the  
device enters is LPOFF. After LPOFF, the initial CAN mode prior to enter LPOFF is restored (Figure 46).  
CAN state before entering LPOFF  
CAN state in LPOFF  
CAN state  
CAN state after LPOFF  
CAN_mode  
CAN_mode  
CAN_mode  
CAN state  
CAN state  
[1:0]  
0
[1:0]  
[1:0]  
0
Sleep, no wake-up capability  
Listen Only  
0
Sleep, no wake-up capability  
Sleep, no wake-up capability  
Listen Only  
1
1
10  
11  
Sleep, wake-up capability  
Normal  
10  
Sleep, wake-up capability  
10  
11  
Sleep, wake-up capability  
Normal  
Figure 46. CAN transition when device goes to LPOFF  
6.8.2 Fault detection  
6.8.2.1  
TXD permanent dominant (timeout)  
If TXD is set low for a time longer than T  
parameter, the CAN drivers are disabled, and the CAN bus will return to recessive state.  
DOUT  
The CAN receiver continues to operate. This prevent the bus to be set in dominant state permanently in case a failure set the TXD input  
to low level permanently.  
The CAN_mode MSB bit is set to 0 and the flag TXD_dominant is reported in the Diag CAN1 register. The device recovers from this error  
detection after setting the CAN_mode to Normal Operation and when a high level is detected on TXD. The TXD failure detection is  
operating when the CAN transceiver is in Normal mode and Listen only mode.  
33907/33908  
NXP Semiconductors  
63  
 
recovery condition: TXD high  
high  
TXD  
BUS  
low  
recessive  
dominant  
dominant  
dominant  
TDOUT  
TDOUT  
TDOUT  
TXD dom time out expired  
high  
RXD  
low  
Figure 47. TXD Dominant Timeout Detection  
6.8.2.2  
RXD permanent recessive  
If RXD is detected high for seven consecutive receive/dominant cycles, the CAN drivers and receiver are disabled, and the CAN bus will  
return to recessive state. This prevent a CAN protocol controller to start CAN message on TXD pin, while RXD is shorted to a recessive  
level, and seen from a CAN controller as a bus idle state.  
The CAN_mode MSB bit is set to 0 and the flag RXD_recessive is reported in the Diag CAN1 register. The device recovers from this error  
detection after setting the CAN_mode to Normal Operation. The RXD failure detection is operating when the CAN transceiver is in Normal  
mode and Listen only mode.  
6.8.2.3  
CAN bus short-circuits  
CANL short to GND and CANL short to Battery are detected and reported to the device main logic. The CAN driver and receiver are not  
be disabled. CANH short to GND and CANH short to Battery are detected and reported to the device main logic. The CAN driver and  
receiver are not be disabled. The CANH and CANL failure detection is operating when the CAN transceiver is in Normal mode.  
If the CAN bus is dominant for a time longer than T  
, due for instance to an external short-circuit from another CAN node, the flag  
DOM  
CAN_dominant is reported in the Diag CAN1 register. This failure does not disable the bus driver. The CAN bus dominant failure detection  
is operating when the CAN transceiver is in Normal mode and Listen Only mode.  
6.8.2.4  
CAN current limitation  
The current flowing in and out of the CANH and CANL driver is limited to 100 mA, in case of short-circuit (parameters I  
and  
CANL-SK  
I
).  
CANH-SC  
6.8.2.5  
CAN overtemperature  
If the driver temperature exceeds the TSD (T ), the CAN drivers are disabled, and the CAN bus will return to recessive state. The CAN  
OT  
receiver continues to operate. The CAN_mode MSB bit is set to 0 and the flag CAN_OT is reported in the Diag CAN_LIN register.  
An hysteresis is implemented in this protection feature. The device overtemperature and recovery conditions are shown in Figure 48. The  
CAN drivers remain disabled until the temperature has fallen below the OT threshold minus hysteresis. The device will recover from this  
error detection after setting the CAN_mode to Normal Operation and when a high level is detected on TXD.  
33907/33908  
64  
NXP Semiconductors  
Overtemperature Threshold  
Hysteresis  
Event 3  
Hysteresis  
Temperature  
Event 1  
Event 1  
Event 2  
Event 2  
Event 4  
Event 3  
low  
high  
TXD  
recessive  
dominant  
dominant  
dominant  
BUS  
Event 1: over temperature detection. CAN driver disable.  
Event 2: temperature falls below “overtemp. threshold minus hysteresis” => CAN driver remains disable.  
Event 3: temperature below “overtemp. threshold minus hysteresis” and TxD high to low transition => CAN driver enable.  
Event 4: temperature above “overtemp. threshold minus hysteresis” and TxD high to low transition => CAN driver remains disable.  
Figure 48. Overtemperature behavior  
6.8.2.6  
Distinguish CAN diagnostics and CAN errors  
The CAN errors can generate an interruption while the CAN diagnostics are reported in the digital for information only. The interruption  
generated by the CAN errors can be inhibited setting INT_inh_CAN bit at “1” in the “INIT INT” register.  
The list of CAN Diagnostic and CAN Error bits is provided in Table 11.  
Table 11. CAN diagnostic and CAN error bits  
Register  
Bit  
Flag type  
Effect  
CANH_batt  
CANH_gnd  
CANL_batt  
Diagnostic  
Diagnostic  
Diagnostic  
Diagnostic  
Error  
No impact on CAN transceiver  
No impact on CAN transceiver  
No impact on CAN transceiver  
No impact on CAN transceiver  
Turn OFF CAN transceiver  
Turn OFF CAN transceiver  
Turn OFF CAN transceiver  
Turn OFF CAN transceiver  
No impact on CAN transceiver  
DIAG CAN1  
CANL_gnd  
CAN_dominant  
RXD_recessive  
TXD_dominant  
CAN_OT  
Error  
Error  
Error  
DIAG CAN_LIN  
CAN_OC  
Diagnostic  
6.8.3 Wake-up mechanism  
The device include bus monitoring circuitry to detect and report bus wake-ups when the device is in LPOFF and CAN mode configuration  
is different than Sleep/NO wake-up capability. Two wake-up detection are implemented: single dominant pulse and multiple dominants  
pulses. The wake-up mechanism is selected by SPI in the main logic and wake-up events are reported. The event must occur within the  
T3PTOX timeout. T  
= T  
or T  
depending on the SPI selection.  
3PTOX  
3PTO1  
3PTO2  
33907/33908  
NXP Semiconductors  
65  
 
6.8.3.1  
Single pulse detection  
In order to activate wake-up report, 1 event must occur on the CAN bus:  
- event 1: a dominant level for a time longer that T1PWU  
Figure 49. Single pulse wake-up pattern illustration  
6.8.3.2  
Multiple pulse detection  
In order to activate wake-up report, three events must occur on the CAN bus:  
- event 1: a dominant level for a time longer that t1PWU followed by  
- event 2: a recessive level (event 2) longer than t3PWU followed by  
- event 3: a dominant level (event 3) longer than t3PWU  
.
The three events and the timeout function avoid that a permanent dominant state on the bus generates permanent wake-up situation  
which would prevent system to enter in low-power mode.  
Figure 50. Multiple pulse wake-up pattern illustration  
33907/33908  
66  
NXP Semiconductors  
6.9  
LIN transceiver  
This chapter applies to 33907L and 33908L versions.  
The Local Interconnect Network (LIN) is a serial communication protocol, designed to support automotive networks in conjunction with a  
Controller Area Network (CAN). The LIN transceiver is operational from a VSUP of 7.0 V to 18 V DC and compatible with LIN Protocol  
Specification 1.3, 2.0, 2.1, 2.2 and SAEJ2602-2.  
6.9.1 Simplified block diagram  
LIN Wake up  
LIN overtemperature  
LIN transmitter  
LIN transmitter  
and receiver Enabled  
in Recessive State  
VSUP3  
Normal Baud Rate (20kbps)  
Slow Baud Rate (10kbps)  
Fast Baud Rate (100kbps)  
SR_control  
VSUP Undervoltage  
TXD Dominant  
Sleep_mode  
LIN transmitter in  
Recessive State  
LIN Interface  
LIN transmitter in  
Recessive State  
30 k  
725 k  
Ω
Ω
LIN  
LIN Driver  
X 1  
35µA  
TXD  
GND  
RXD  
Receiver  
Figure 51. LIN simplified block diagram  
6.9.2 Operating modes  
6.9.2.1  
Normal mode  
When LIN mode bits configuration is “11” (LIN in normal operation), the device is able to transmit information from TXDL to the bus and  
report the bus level to the RXDL pin. When TXDL is high, LIN driver is OFF and the bus is in the recessive state (unless it is in an  
application where another device drives the bus to the dominant state). When TXDL is low, LIN driver is ON and the bus is in the dominant  
state.  
When LIN mode bits configuration is “01” (LIN in listen only), the device is only able to report the bus level to the RXDL pin. TXDL driver  
is OFF and the device is NOT able to transmit information from TXDL to the bus. TXDL is maintained high by internal pull-up resistor  
TXDL  
connected to VDDIO.  
PULL-UP  
6.9.2.2  
Sleep mode  
When the device is in LPOFF mode, the LIN transceiver is automatically set in Sleep mode with or without wake-up capability depending  
on LIN mode bits configuration. In that case, the LIN pin is pulled up to V  
RXDL pins are pulled down to GND.  
via the internal resistor and diode structure, the TXDL and  
SUP  
33907/33908  
NXP Semiconductors  
67  
6.9.3 Baud rate selection  
The device has two selectable baud rates: 20 kB/s for Normal Baud rate and 10 kB/s for slow baud rate. An additional fast baud rate  
(100 kB/s) can be used to flash the MCU or in the garage for diagnostic. The LIN Consortium specification does not specified electrical  
parameters for this baud rate. The communication only is guaranteed. The baud rate selection is done by SPI setting during the INIT phase  
of the main logic. Depending of the baud rate setting, the corresponding LIN slope control is automatically selected.  
Figure 52. LIN timings for normal baud rate (20 kB/s)  
Figure 53. LIN timings for slow baud rate (10 kB/s)  
33907/33908  
68  
NXP Semiconductors  
Figure 54. LIN receiver timings  
6.9.4 Fault detection  
6.9.4.1  
VSUP undervoltage  
A V  
undervoltage (V  
) detection is implemented to be compliant with SAEJ2602-2 standard. At low V  
voltage  
SUP  
LIN_UV  
SUP  
(VSUP<V  
), the LIN bus goes in recessive state to avoid wrong communication.  
LIN_UV  
6.9.4.2  
TXDL permanent dominant (timeout)  
If TXDL is set low for a time longer than t  
parameter, the LIN driver is disabled and the LIN bus will return to recessive state. This  
XD_DOM  
prevents the bus to be set in dominant state permanently, in case a failure sets the TXDL input permanently to a low level.  
The LIN receiver continues to operate. The LIN_mode MSB bit is set to 0 and the flag TXDL_dominant is reported in the Diag CAN_LIN  
register. The device recovers from this error detection after setting the LIN_mode to normal operation and when a high level is detected  
on TXDL. The TXDL failure detection is operating when the LIN transceiver is in Normal mode and Listen Only mode.  
6.9.4.3  
RXDL permanent recessive  
If RXDL is detected high for seven consecutive receive/dominant cycles, the LIN driver and receiver are disabled and the LIN bus returns  
to recessive state. The LIN_mode MSB bit is set to 0 and the flag RXDL_recessive is reported in the Diag CAN_LIN register. The device  
recovers from this error detection after setting the LIN_mode to normal operation, and when a high level is detected on TXDL. The RXDL  
failure detection is operating when the LIN transceiver is in Normal mode and Listen Only mode.  
6.9.4.4  
LIN bus short-circuit  
If the LIN bus is dominant for a time longer than t  
, due for instance to an external short-circuit to GND, the detection is  
LIN_SHORT_GND  
reported to the device main logic. The BUS bus failure detection is operating when the LIN transceiver is in Normal mode and Listen Only  
mode.  
6.9.4.5  
LIN current limitation  
In case of LIN short-circuit to Battery, the current flowing out of the LIN driver is limited to 200 mA (parameter I  
), and the LIN driver  
BUS_LIM  
is not shut down. The LIN bus goes in recessive state when the current limitation occurs and returns in the same functional mode as before  
failure when the current falls below the current limitation value.  
6.9.4.6  
LIN overtemperature  
If the driver temperature exceeds the TSD (t  
), the LIN driver is disabled and the LIN bus will return to recessive state. The LIN  
LIN_SD  
receiver continues to operate. The LIN_mode MSB bit is set to 0 and the flag LIN_OT is reported in the Diag CAN_LIN register.  
33907/33908  
NXP Semiconductors  
69  
A hysteresis is implemented in this protection feature. The LIN driver remain disabled until the temperature has fallen below the OT  
threshold minus hysteresis. The device recovers from this error detection after setting the LIN_mode to normal operation, and when a  
high level is detected on TXDL.  
6.9.4.7  
LIN errors  
The interruption generated by the LIN errors can be inhibited setting INT_inh_LIN bit at “1” in the “INIT INT” register. The list of LIN error  
bits is provided in Table 12.  
Table 12. LIN error bits  
Register  
Bit  
Flag type  
Effect  
LIN_dominant  
RXDL_recessive  
TXDL_dominant  
LIN_OT  
Error  
Error  
Error  
Error  
Turn OFF LIN transceiver  
Turn OFF LIN transceiver  
Turn OFF LIN transceiver  
Turn OFF LIN transceiver  
DIAG CAN_LIN  
6.9.5 Wake-up mechanism  
The device can wake-up by a LIN dominant pulse longer than t  
. Dominant pulse means: a recessive to dominant transition, wait  
BUS_WU  
for t > t  
, then a dominant to recessive transition.  
BUS_WU  
VLIN_REC  
VLIN_REC  
VBUS_WU  
VLIN_DOM  
LIN Wake up  
validation  
TBUS_WU  
Figure 55. LIN wake-up pattern illustration  
33907/33908  
70  
NXP Semiconductors  
 
7
Serial peripheral interface  
7.1  
High level overview  
7.1.1 SPI  
The device is using a 16 bits SPI, with the following arrangement:  
MOSI, Master Out Slave In bits:  
• Bit 15 read/write  
• Bit 14 Main or fail-safe register target  
• bit 13 to 9 (A4 to A0) to select the register address. Bit 8 is a parity bit in write mode, Next bit (=0) in read mode.  
• bit7 to 0 (D7 to D0): control bits  
MISO, Master IN Slave Out bits:  
• bits 15 to 8 (S15 to S8) are device status bits  
• bits 7 to 0(Do7 to Do0) are either extended device status bits, device internal control register content or device flags.  
Figure 56 is an overview of the SPI implementation.  
7.1.2 Parity bit 8 calculation  
The parity is used for write to register command (bit 15,14 = 01). It is calculated based on the number of logic ones contained in bits  
15-9, 7-0 sequence (this is the whole 16-bits of the write command except bit 8).  
Bit 8 must be set to 0 if the number of 1 is odd.  
Bit 8 must be set to 1 if the number of 1 is even.  
7.1.3 Device status on MISO  
When a write operation is performed to store data or control bit into the device, MISO pin reports a 16-bit fixed device status composed  
of two bytes: Device Fixed Status (bits 15 to 8) + extended Device Status (bits 7 to 0). In a read operation, MISO reports the fixed device  
status (bits 15 to 8), and the next eight bits are content of the selected register. A standard serial peripheral interface (SPI) is integrated  
to allow bi-directional communication between the 33907/33908 and the MCU. The SPI is used for configuration and diagnostic purposes.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
D7 D6 D5 D4 D3 D2 D1 D0  
MOSI R/W M/FS A4  
A2  
A3  
A1  
A0  
S9  
P
register address  
Parity  
S8  
data  
Do7 Do6 Do5 Do4 Do3 Do2 Do1 Do0  
MISO S15 S14  
S13  
S11  
S12  
S10  
Extended Device Status, Register Control bits or Device Flags  
Device Status  
CSb active low. Must be raised at end of 16 clocks,  
for write commands, MOSI bits [15] = [1].  
CSb  
SCLK  
SCLK signal is low outside of CSB active  
MOSI and MISO data changed at SCLK rising edge  
and sampled at falling edge. Msb first.  
MOSI Don’t care  
Don’t care  
Tri state  
C1  
C0  
D0  
Do0  
MISO tri state outside of CSB active  
MISO  
Tri state  
S15  
S14  
SPI wave form, and signals polarity  
Figure 56. SPI overview  
33907/33908  
NXP Semiconductors  
71  
 
The device contains several registers. Their address is coded on 7 bits (bits 15 to 9). Each register controls or reports part of the device  
function. Data can be written to the register, to control the device operation or set default value or behavior. Every register can also be  
read back in order to ensure that its content (default setting or value previously written) is correct.  
7.1.4 Register description  
Although the minimum time between two NCS low sequences is defined by tONNCS (Figure 57), two consecutive accesses to the fail-safe  
registers must be done with a 3.5 µs minimum NCS high time in between. Although the minimum time between two fail-safe registers  
accesses is 3.5 µs, some SPI accesses to the main registers can be done in between (Figure 57).  
7.2  
Detail operation  
Figure 57. MOSI / MISO SPI command organization  
Table 13. MOSI bits description  
Description  
Set if it is a READ or WRITE Command  
R / W  
M / FS  
A4:0  
P
0
READ  
1
WRITE  
Description  
Split the addresses between Fail-safe State machine and main Logic  
0
Main  
1
Fail-safe  
Description  
Set the address to Read or Write  
0
See Register Mapping  
1
Description  
Parity bit (only use in Write mode). Set to 0 in Read mode  
Number of “1” (bit15:9 and bit 7:0) is odd  
0
1
Number of “1” (bit15:9) and bit 7:0) is even  
Description  
Data in Write mode. Shall be set to 00h in Read mode  
D7:0  
0
1
See Register Details  
33907/33908  
72  
NXP Semiconductors  
 
Table 14. MISO bits description  
Description  
Report an error in the SPI communication  
0
No Failure  
SPI_G  
1
Failure  
Reset Condition  
Description  
Power On Reset / When initial event cleared on read  
Report a wake-up event. Logical OR of all wake-up sources  
0
No WU event  
WU  
1
WU event  
Reset Condition  
Description  
Power On Reset / When initial event cleared on read  
Report a CAN event (Diagnostic)  
0
No event  
CAN_G  
1
CAN event  
Reset Condition  
Description  
Power On Reset / When initial event cleared on read  
Report a LIN event (diagnostic)  
0
No event  
LIN_G  
1
LIN event  
Reset Condition  
Description  
Power On Reset / When initial event cleared on read  
Report a change in IOs state  
0
No IO transition  
IO_G  
1
IO transition  
Reset Condition  
Description  
Power On Reset / when initial event cleared on read  
Report an event from VPRE-REGULATOR and battery monitoring (status change or failure)  
0
No event  
VPRE_G  
1
Event occurred  
Reset Condition  
Description  
Power On Reset / when initial event cleared on read  
Report an event from VCORE regulator (status change or failure)  
No event  
0
VCORE_G  
1
Event occurred  
Reset Condition  
Description  
Power On Reset / when initial event cleared on read  
Report an event from VCCA, VAUX, or VCAN regulators (status change or failure)  
No event  
0
VOTHERS_G  
1
Event occurred  
Reset Condition  
Power On Reset / when initial event cleared on read  
SPI_G = SPI_err or SPI_clk or SPI_Req or SPI_Parity or SPI_FS_err or SPI_FS_clk or SPI_FS_Req or SPI_FS_Parity  
WU_G = IO_5_WU or IO_4_WU or IO_3_WU or IO_2_WU or IO_1_WU or IO_0_WU or PHY_WU  
CAN_G = CANH_BATT or CANH_GND or CANL_BATT or CANL_GND or CAN_dominant or RXD_recessive or TXD_dominant or  
CAN_OT or CAN_OC  
LIN_G = LIN_OT or RXDL_recessive or TXDL_dominant or LIN_dominant  
IO_G = IO_5 or IO_4 or IO_3 or IO_2 or IO_1 or IO_0  
Vpre_G = VSNS_UV or VSUP_UV_7 or IPFF or ILIM_PRE or TWARN_PRE or BOB or VPRE_STATE_flag or VPRE_OV or VPRE_UV  
Vcore_G = ILIM_CORE or TWARN_CORE or VCORE_STATE_flag or VCORE_OV or VCORE_UV  
Vothers_G = ILIM_CCA or TWARN_CCA or TSD_CCA or ILIM_CCA_OFF or VCCA_UV or VCCA_OV or ILIM_AUX or VAUX_TSD or  
ILIM_AUX_OFF or VAUX_OV or VAUX_UV or ILIM_CAN or VCAN_UV or VCAN_OV or TSD_CAN  
33907/33908  
NXP Semiconductors  
73  
7.2.1 Register address table  
Table 15 is a list of device registers and addresses coded in bits 13 to 9 in MOSI for main logic.  
Table 15. Register mapping of main logic  
Address  
Register  
Write description  
Table ref  
FS/M  
A4  
A3  
A2  
A1  
A0  
Hex  
NOT USED  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
#0(00h)  
#1(01h)  
N/A  
Write during INIT phase then read only  
Write during INIT phase then read only  
Write during INIT phase then read only  
Write during INIT phase then read only  
Write during INIT phase then read only  
Write during INIT phase then read only  
N/A  
N/A  
INIT Vreg 1  
INIT Vreg2  
Table 18  
Table 20  
Table 22  
Table 24  
Table 26  
Table 28  
N/A  
#2(02h)  
INIT CAN_LIN  
INIT IO_WU1  
INIT IO_WU2  
INIT INT  
#3(03h)  
#4(04h)  
#5(05h)  
#6(06h)  
NOT USED  
HW Config  
#7(07h)  
#8(08h)  
Read only  
Table 30  
Table 32  
N/A  
WU Source  
NOT USED  
IO_input  
#9(09h)  
Read only  
#10(0Ah)  
#11(0Bh)  
#12(0Ch)  
#13(0Dh)  
#14(0Eh)  
#15(0Fh)  
#16(10h)  
#17(11h)  
#18(12h)  
#19(13h)  
#20(14h)  
#21(15h)  
#22(16h)  
#23(17h)  
#24(18h)  
#25(19h)  
N/A  
Read only  
Table 34  
Table 36  
Table 38  
Table 40  
Table 42  
Table 44  
Table 46  
Table 48  
Table 50  
N/A  
Status Vreg#1  
Status Vreg#2  
Diag Vreg#1  
Diag Vreg#2  
Diag Vreg#3  
Diag CAN1  
Diag CAN_LIN  
Diag SPI  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
NOT USED  
MODE  
N/A  
Write during Normal and Read  
Write during Normal and Read  
Write during Normal and Read  
Write during Normal and Read  
Write during Normal and Read  
Table 52  
Table 54  
Table 56  
Table 58  
Table 60  
Vreg Mode  
IO_OUT/AMUX  
CAN_LIN Mode  
CAN Mode 2  
Table 16 is a list of device registers and addresses coded in bits 13 to 9 in MOSI for fail-safe logic  
Table 16. Register mapping of fail-safe logic  
Address  
Register  
Write description  
Table ref  
FS/M  
A4  
A3  
A2  
A1  
A0  
Hex  
INIT Supervisor#1  
INIT Supervisor#2  
INIT Supervisor#3  
INIT FSSM#1  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
#33(21h)  
#34(22h)  
#35(23h)  
#36(24h)  
#37(25h)  
#38(26h)  
Write during INIT phase then Read only  
Write during INIT phase then Read only  
Write during INIT phase then Read only  
Write during INIT phase then Read only  
Write during INIT phase then Read only  
Write (No restriction) and Read  
Table 62  
Table 64  
Table 66  
Table 68  
Table 70  
Table 72  
INIT FSSM#2  
WD_Window  
33907/33908  
74  
NXP Semiconductors  
 
 
Table 16. Register mapping of fail-safe logic (continued)  
Address  
Register  
Write description  
Table ref  
FS/M  
A4  
A3  
A2  
A1  
A0  
Hex  
WD_LFSR  
WD_answer  
FS_OUT  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
#39(27h)  
#40(28h)  
#41(29h)  
#42(2Ah)  
#43(2Bh)  
#44(2Ch)  
#45(2Dh)  
#46(2Eh)  
Write (No restriction) and Read  
Write (No restriction) and Read  
Write (No restriction)  
Write (No restriction)  
Write during INIT phase then Read only  
Read only  
Table 74  
Table 76  
Table 78  
Table 80  
Table 82  
Table 84  
Table 86  
Table 88  
RSTb request  
INIT WD  
Diag FS1  
WD_Counter  
Diag_FS2  
Read only  
Read only  
7.2.2 Secured SPI command  
Some SPI commands must be secured to avoid unwanted change of the critical bits. In the fail-safe machine and in the main state  
machine, the secured bits are calculated from the data bits sent as follows:  
Table 17. Secured SPI  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Data 3  
Data 2  
Data 1  
Data 0  
Secure 3  
Secure2  
Secure 1 Secure 0  
• Secure 3 = NOT(Bit5)  
• Secure 2 = NOT(Bit4)  
• Secure 1 = Bit7  
• Secure 0 = Bit6  
33907/33908  
NXP Semiconductors  
75  
7.3  
Detail of register mapping  
7.3.1 Init VREG 1  
Table 18. INIT VREG1 register configuration  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Vcore_  
FB  
MOSI  
MISO  
1
0
0
0
0
0
1
P
0
0
Ipff_DIS  
0
0
0
0
Vcore_ Vothers  
G
Reserve  
d
Reserve  
d
Reserve Vcore_F  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G  
0
Ipff_DIS  
0
0
_G  
d
B
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
Vcore_ Vothers  
_G  
Reserve  
d
Reserve  
d
Reserve Vcore_F  
MISO  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G  
0
Ipff_DIS  
0
0
G
d
B
Table 19. Description and configuration of the bits (Default value in bold)  
Description  
DISABLE the input Power Feed Forward (IPFF) function of VPRE  
0
ENABLED  
IPFF_DIS  
Vcore_FB  
1
DISABLED  
Reset condition Power On Reset  
Description  
Configure the monitoring of the second VCORE resistor string  
No Monitoring (IO_1 is used as analog & digital input)  
Monitoring enabled (IO_1 can NOT be used for analog/digital input neither for WU from LPOFF)  
0
1
Reset condition Power On Reset  
7.3.2 Init Vreg 2  
Table 20. INIT VREG2 register configuration  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Tcca_li  
m_off  
Taux_li Vaux_tr  
m_off k_EN  
MOSI  
MISO  
1
0
0
0
0
1
0
P
0
Icca_lim  
0
0
0
Vcore_ Vothers  
_G  
Tcca_li  
m_off  
Taux_li Vaux_tr  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
0
Icca_lim  
0
0
reserved  
G
m_off  
k_EN  
33907/33908  
76  
NXP Semiconductors  
 
Table 20. INIT VREG2 register configuration (continued)  
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
MISO  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Vcore_ Vothers  
_G  
Tcca_li  
m_off  
Taux_li Vaux_tr  
m_off  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
0
Icca_lim  
0
0
reserved  
G
k_EN  
Table 21. INIT VREG2. description and configuration of the bits (default value in bold)  
Description  
Configure the current limitation duration before regulator is switched off. Only used for external PNP  
0
10 ms  
TCCA_LIM_OFF  
1
50 ms  
Reset condition Power On Reset  
Description  
Configure the current limitation threshold. Only available for external PNP  
0
ICCA_LIM_OUT  
ICCA_LIM  
1
ICCA_LIM_INT  
Reset condition Power On Reset  
Description  
Configure the current limitation duration before regulator is switched off. Only used for external PNP  
0
10 ms  
TAUX_LIM_OFF  
1
50 ms  
Reset condition Power On Reset  
Description  
Configure VAUX regulator as a tracker  
0
No tracking. HW configuration is used  
VAUX_TRK_EN  
1
Tracking enabled  
Reset condition Power On Reset  
7.3.3 Init CAN_LIN  
Table 22. INIT CAN_LIN register description  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
LIN_SR LIN_SR  
_1 _0  
CAN_w  
u_conf  
CAN_w  
u_TO  
MOSI  
MISO  
1
0
0
0
0
1
1
P
0
0
0
0
LIN_SR LIN_SR  
Vcore_ Vothers  
_G  
CAN_w Reserve Reserve CAN_w Reserve  
u_conf u_TO  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G  
0
G
d
d
d
_1  
_0  
33907/33908  
NXP Semiconductors  
77  
Table 22. INIT CAN_LIN register description (continued)  
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
MISO  
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
LIN_SR LIN_SR  
_1  
Vcore_ Vothers  
_G  
CAN_w Reserve Reserve CAN_w Reserve  
u_conf  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G  
0
G
d
d
u_TO  
d
_0  
Table 23. INIT CAN_LIN. description and configuration of the bits (default value in bold)  
Description  
Define the CAN wake-up mechanism  
3 dominant pulses  
0
CAN_wu_conf  
CAN_wu_to  
1
Single dominant pulse  
Reset condition Power On Reset  
Description  
Define the CAN wake-up timeout (in case of CAN_wu_conf = 0)  
0
120 µs  
1
360 µs  
Reset condition Power On Reset  
Description  
Configure the LIN slew rate  
00  
01  
1X  
20 kbits/s  
LIN_SR_1:0  
10 kbits/s  
Fast baud rate (Max: 100 kbits/s)  
Reset condition Power On Reset  
7.3.4 INIT IO_WU1  
Table 24. INIT IO_WU1 register description  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
INT_inh INT_inh  
MOSI  
MISO  
1
0
0
0
1
0
0
P
WU_0_1 WU_0_0 WU_1_1 WU_1_0 WU_2_1 WU_2_0  
_IO_1  
_IO_0  
Vothers  
_G  
INT_inh INT_inh  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G Vcore_G  
WU_0_1 WU_0_0 WU_1_1 WU_1_0 WU-2-1 WU_2_0  
_IO_1  
_IO_0  
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Vothers  
_G  
INT_inh INT_inh  
MISO  
SPI_G  
WU  
CAN_G LIN_G  
IO_G  
Vpre_G Vcore_G  
WU_0_1 WU_0_0 WU_1_1 WU_1_0 WU-2-1 WU_2_0  
_IO_1  
_IO_0  
33907/33908  
78  
NXP Semiconductors  
Table 25. INIT IO_WU1. description and configuration of the bits (default value in bold)  
Description  
Wake-up configuration for IO_0  
NO wake-up capability  
00  
01  
10  
11  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
WU_0_1:0  
Reset condition Power On Reset  
Description  
Wake-up configuration for IO_1  
00  
01  
10  
11  
NO wake-up capability  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
WU_1_1:0  
Reset condition Power On Reset  
Description  
Wake-up configuration for IO_2  
00  
01  
10  
11  
NO wake-up capability  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
WU_2_1:0  
Reset condition Power On Reset  
Description  
Inhibit the INT pulse for IO_1. IO_1 masked in IO_G. Avoid INT when used in FS  
0
INT NOT masked  
INT_inh_IO_1  
INT_inh_IO_0  
1
INT masked  
Reset condition Power On Reset  
Description  
Inhibit the INT pulse for IO_0. IO_0 masked in IO_G. Avoid INT when used in FS  
0
INT NOT masked  
1
INT masked  
Reset condition Power On Reset  
7.3.5 INIT IO_WU2  
Table 26. INIT IO_WU2 register description  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
INT_inh INT_inh  
_IO_23 _IO_45  
MOSI  
MISO  
1
0
0
0
1
0
1
P
WU_3_1 WU_3_0 WU_4_1 WU_4_0 WU_5_1 WU_5_0  
Vcore_ Vothers  
_G  
INT_inh INT_inh  
_IO_23 _IO_45  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
WU_3_1 WU_3_0 WU_4_1 WU_4_0 WU_5_1 WU_5_0  
G
33907/33908  
NXP Semiconductors  
79  
Table 26. INIT IO_WU2 register description (continued)  
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
MISO  
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
Vcore_ Vothers  
G
INT_inh INT_inh  
_IO_23 _IO_45  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
WU_3_1 WU_3_0 WU_4_1 WU_4_0 WU_5_1 WU_5_0  
_G  
Table 27. INIT IO_WU2. description and configuration of the bits (default value in bold)  
Description  
Wake-up configuration for IO_3  
NO wake-up capability  
00  
01  
10  
11  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
WU_3_1:0  
WU_4_1:0  
WU_5_1:0  
Reset condition Power On Reset  
Description  
Wake-up configuration for IO_4  
00  
01  
10  
11  
NO wake-up capability  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
Reset condition Power On Reset  
Description  
Wake-up configuration for IO_5  
00  
01  
10  
11  
NO wake-up capability  
Wake-up on rising edge only  
Wake-up on falling edge only  
Wake-up on any edge  
Reset condition Power On Reset  
Description  
Inhibit the INT pulse for IO_4 & IO_5. IO_4 & IO_5 masked in IO_G. Avoid INT when used in FS  
0
INT NOT masked  
INT_inh_IO_45  
INT_inh_IO_23  
1
INT masked  
Reset condition Power On Reset  
Description  
Inhibit the INT pulse for IO_2 & IO_3. IO_2 & IO_3 masked in IO_G. Avoid INT when used in FS  
0
INT NOT masked  
1
INT masked  
Reset condition Power On Reset  
33907/33908  
80  
NXP Semiconductors  
7.3.6 INIT INT  
Table 28. INIT INT register description  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
INT_inh  
_Vother  
s
INT_dur INT_inh INT_inh INT_inh INT_inh INT_inh  
ation _LIN _all _Vsns _Vpre _Vcore  
INT_inh  
_CAN  
MOSI  
MISO  
1
0
0
0
1
1
0
P
INT_inh  
_Vother  
s
Vcore_ Vothers INT_dur INT_inh INT_inh INT_inh INT_inh INT_inh  
INT_inh  
_CAN  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
G
_G  
ation  
_LIN  
_all  
_Vsns  
_Vpre  
_Vcore  
Read  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
MOSI  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
INT_inh  
_Vother  
s
Vcore_ Vothers INT_dur INT_inh INT_inh INT_inh INT_inh INT_inh  
_G ation _LIN _all _Vsns _Vpre _Vcore  
INT_inh  
_CAN  
MISO  
SPI_G  
WU  
CAN_G  
LIN_G  
IO_G  
Vpre_G  
G
Table 29. INIT INT. description and configuration of the bits (default value in bold)  
Description  
Define the duration of the INTerrupt pulse  
0
100 µs  
INT_duration  
INT_inh_LIN  
INT_inh_all  
1
25 µs  
Reset condition Power On Reset  
Description  
Inhibit the INT for LIN error bits  
0
All INT sources  
1
LIN error bits changed INHIBITED  
Reset condition Power On Reset  
Description  
Inhibit ALL the INT  
All INT sources  
All INT INHIBITED  
0
1
Reset condition Power On Reset  
Description  
Inhibit the INT for VSNS_UV  
0
All INT sources  
INT_inh_Vsns  
INT_inh_Vpre  
1
VSNS_UV INT INHIBITED  
Reset condition Power On Reset  
Description  
Inhibit the INT for VPRE status event (cf. register status Vreg1)  
All INT sources  
0
1
VPRE status changed INHIBITED  
Reset condition Power On Reset  
33907/33908  
NXP Semiconductors  
81  
Table 29. INIT INT. description and configuration of the bits (default value in bold) (continued)  
Description  
Inhibit the INT for VCORE status event (cf. register status Vreg2)  
All INT sources  
0
INT_inh_Vcore  
INT_inh_Vothers  
INT_inh_CAN  
1
VCORE status changed INHIBITED  
Reset condition Power On Reset  
Description  
Inhibit the INT for VCCA / VAUX and VCAN status event (cf. register status Vreg2)  
0
All INT sources  
1
VCCA / VAUX / VCAN status changed INHIBITED  
Reset condition Power On Reset  
Description  
Inhibit the INT for CAN error bits  
0
All INT sources  
1
CAN error bits changed INHIBITED  
Reset condition Power On Reset  
7.3.7 HW config  
Table 30. HW config register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
0
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
Vaux Vcca_  
CAN_  
G
Vpre_ Vcore_ Vother LS_det  
s_G ect  
Vcca_ Vaux_  
MISO SPI_G  
WU  
LIN_G  
IO_G  
not  
PNP_d  
etect  
1
0
DBG  
G
G
HW  
HW  
used  
Table 31. HW config. description and configuration of the bits (default value in bold)  
Description  
Report the hardware configuration of VPRE (Buck only or Buck-Boost)  
0
Buck-Boost  
LS_detect  
1
Buck only  
Reset condition Power On Reset / Refresh after LPOFF  
Description  
Report if VAUX is used  
0
1
V
V
AUX is used (external PNP is assumed to be connected, VAUX can be switched OFF/ON through SPI)  
AUX is not used  
V
AUX not used  
Reset condition Power On Reset / Refresh after LPOFF  
Description  
Report the connection of an external PNP on VCCA  
External PNP connected  
0
1
VCCA_PNP_DETECT  
Internal MOSFET  
Reset condition Power On Reset / Refresh after LPOFF  
Description  
Report the hardware configuration for VCCA  
0
3.3 V  
VCCA_HW  
1
5.0 V  
Reset condition Power On Reset / Refresh after LPOFF  
33907/33908  
82  
NXP Semiconductors  
Table 31. HW config. description and configuration of the bits (default value in bold) (continued)  
Description  
Report the hardware configuration for VAUX  
0
5.0 V  
VAUX_HW  
1
3.3 V  
Reset condition Power On Reset / Refresh after LPOFF  
Description  
Report the configuration of the DEBUG mode  
Normal operation  
0
1
DBG  
DEBUG mode selected  
Reset condition Power On Reset / Refresh after LPOFF  
7.3.8 WU source  
Table 32. WU source register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
0
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
CAN_  
G
Vpre_ Vcore_ Vother IO_5_ IO_4_ IO_3_ IO_2_ IO_1_ IO_0_  
s_G WU WU WU WU WU WU  
Phy_W  
U
SPI_G  
WU  
LIN_G  
IO_G  
0
G
G
Table 33. WU source. description and configuration of the bits (default value in bold)  
Description  
Report a wake-up event from IO_5  
No Wake-up  
0
IO_5_WU  
IO_4_WU  
IO_3_WU  
IO_2_WU  
IO_1_WU  
1
WU event detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from IO_4  
0
No Wake-up  
1
WU event detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from IO_3  
0
No Wake-up  
1
WU event detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from IO_2  
0
No Wake-up  
1
WU event detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from IO_1  
0
No Wake-up  
1
WU event detected  
Reset condition Power On Reset / Read  
33907/33908  
NXP Semiconductors  
83  
Table 33. WU source. description and configuration of the bits (default value in bold)(continued)  
Description  
Report a wake-up event from IO_0  
No Wake-up  
0
IO_0_WU  
Phy_WU  
1
WU event detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from CAN or LIN  
0
No Wake-up  
1
WU event detected  
Reset condition Power On Reset / Read CAN_wu or/and LIN_wu  
7.3.9 IO input  
Table 34. IO input register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
0
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
CAN_  
G
Vpre_ Vcore_ Vother  
s_G  
SPI_G  
WU  
LIN_G  
IO_G  
IO_5  
IO_4  
0
IO_3  
IO_2  
0
IO_1  
IO_0  
G
G
Table 35. IO input. description and configuration of the bits  
Description  
Report IO_5 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
IO_5  
IO_4  
IO_3  
IO_2  
IO_1  
High  
Reset condition Power On Reset  
Description  
Report IO_4 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
High  
Reset condition Power On Reset  
Description  
Report IO_3 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
High  
Reset condition Power On Reset  
Description  
Report IO_2 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
High  
Reset condition Power On Reset  
Description  
Report IO_1 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
High  
Reset condition Power On Reset  
33907/33908  
84  
NXP Semiconductors  
Table 35. IO input. description and configuration of the bits(continued)  
Description  
Report IO_0 digital state in Normal mode. No update in LPOFF mode since wake-up features available  
0
1
Low  
IO_0  
High  
Reset condition Power On Reset  
7.3.10 Status Vreg1  
Table 36. STATUS VREG1 register description  
Read  
bit15 bit14 bit13 bit12 bit11 bit10  
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
0
0
0
1
1
0
SPI_  
G
CAN_ LIN_  
Vpre_ Vcore_ Vothers_  
Twarn_pr  
e
Vpre_stat  
e
WU  
IO_G  
IpFF  
Ilim_pre  
BoB  
0
0
0
G
G
G
G
G
Table 37. Status Vreg1. description and configuration of the bits (default value in bold)  
Description  
Input Power Feed Forward  
Normal Operation  
0
IPFF  
1
Ipff mode activated  
Reset condition Power On Reset / Read  
Description  
Report a current limitation condition on VPRE  
0
No current limitation (IPRE_PK < IPRE_LIM  
)
ILIM_PRE  
TWARN_PRE  
BoB  
1
Current limitation (IPRE_PK > IPRE_LIM  
)
Reset condition Power On Reset / Read  
Description  
Report a thermal warning from VPRE  
0
No thermal warning (TJ < TWARN_PRE)  
1
Thermal warning (TJ > TWARN_PRE)  
Reset condition Power On Reset / Read  
Description  
Report a running mode of VPRE  
0
Buck  
1
Boost  
Reset condition Power On Reset  
Description  
Report the activation state of VPRE SMPS  
0
SMPS OFF  
VPRE_STATE  
1
SMPS ON  
Reset condition Power On Reset  
7.3.11 Status VREG2  
Table 38. STATUS VREG2 register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
1
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
bit4  
0
bit3  
bit2  
0
bit1  
bit0  
MOSI  
0
0
0
0
33907/33908  
NXP Semiconductors  
85  
Table 38. STATUS VREG2 register description  
CAN_  
G
Vpre_ Vcore_ Vother Ilim_co Twarn_ Vcore_ Twarn_ Ilim_cc Ilim_au Ilim_ca  
MISO  
SPI_G  
WU  
LIN_G  
IO_G  
0
G
G
s_G  
re  
core  
state  
cca  
a
x
n
Table 39. Status Vreg2. description and configuration of the bits (default value in bold)  
Description  
Report a current limitation condition on VCORE  
No current limitation (ICORE_PK < ICORE_LIM  
Current limitation (ICORE_PK > ICORE_LIM  
0
)
ILIM_CORE  
TWARN_CORE  
VCORE_STATE  
TWARN_CCA  
ILIM_CCA  
1
)
Reset condition Power On Reset / Read  
Description  
Report a thermal warning from VCORE  
No thermal warning (TJ < TWARN_CORE  
Thermal warning (TJ > TWARN_CORE  
0
)
1
)
Reset condition Power On Reset / Read  
Description  
Report the activation state of VCORE SMPS  
0
SMPS OFF  
1
SMPS ON  
Reset condition Power On Reset  
Description  
Report a thermal warning from VCCA. Available only for internal pass MOSFET  
No thermal warning (TJ < TWARN_CCA  
Thermal warning (TJ > TWARN_CCA  
0
)
1
)
Reset condition Power On Reset  
Description  
Report a current limitation condition on VCCA  
No current limitation (ICCA < ICCA_LIM  
Current limitation (ICCA > ICCA_LIM  
0
)
1
)
Reset condition Power On Reset / Read  
Description  
Report a current limitation condition on VAUX  
No current limitation (IAUX < IAUX_LIM  
Current limitation (IAUX > IAUX_LIM  
0
)
ILIM_AUX  
1
)
Reset condition Power On Reset / Read  
Description  
Report a current limitation condition on VCAN  
No current limitation (ICAN < ICAN_LIM  
Current limitation (ICAN > ICAN _LIM  
0
)
ILIM_CAN  
1
)
Reset condition Power On Reset / Read  
7.3.12 Diag Vreg1  
Table 40. DIAG VREG1 register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
1
bit10  
1
bit9  
0
bit8  
bit7  
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
0
0
CAN_  
G
Vpre_ Vcore_ Vother Vsns_u Vsup_u Tsd_pr Vpre_ Vpre_u Tsd_co Vcore_ Vcore_  
s_G v_7 OV re FB_OV FB_uv  
SPI_G  
WU  
LIN_G  
IO_G  
G
G
v
e
v
33907/33908  
86  
NXP Semiconductors  
Table 41. Diag Vreg1. description and configuration of the bits (default value in bold)  
Description  
Detection of VBATTERY below VSNS_UV  
VBAT > VSNS_UV  
0
VSNS_UV  
VSUP_UV_7  
TSD_PRE  
1
VBAT < VSNS_UV  
Reset condition Power On Reset / Read  
Description  
Detection of VSUP below VSUP_UV_7  
0
VSUP > VSUP_UV_7  
1
VSUP < VSUP_UV_7  
Reset condition Power On Reset / Read  
Description  
Thermal shutdown of VPRE  
No TSD (TJ < TSD_PRE  
TSD occurred (TJ > TSD_PRE  
0
)
1
)
Reset condition Power On Reset / Read  
Description  
VPRE overvoltage detection  
No overvoltage (VPRE < VPRE_OV  
Overvoltage detected (VPRE > VPRE_OV  
0
)
VPRE_OV  
1
)
Reset condition Power On Reset  
Description  
VPRE undervoltage detection  
No undervoltage (VPRE > VPRE_UV)  
Undervoltage detected (VPRE < VPRE_UV  
0
VPRE_UV  
1
)
Reset condition Power On Reset / Read  
Description  
Thermal shutdown of VCORE  
No TSD (TJ < TSD_CORE  
TSD occurred (TJ > TSD_CORE  
0
)
TSD_CORE  
VCORE_FB_OV  
VCORE_FB_UV  
1
)
Reset condition Power On Reset / Read  
Description  
VCORE overvoltage detection  
No overvoltage (VCORE_FB < VCORE_FB_OV  
Overvoltage detected (VCORE_FB > VCORE_FB_OV  
0
)
1
)
Reset condition Power On Reset / Read  
Description  
VCORE undervoltage detection  
0
No undervoltage (VCORE_FB > VCORE_FB_UV)  
1
Undervoltage (VCORE_FB < VCORE_FB_UV  
)
Reset condition Power On Reset / Read  
7.3.13 Diag Vreg2  
Table 42. DIAG VREG2 register description  
Read  
bit15  
0
bit14  
0
bit13  
0
bit12  
1
bit11  
1
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
CAN_  
G
Vpre_ Vcore_ Vother Tsd_C Vcan_ Vcan_u  
s_G an OV  
Tsd_au Ilim_au Vaux_ Vaux_u  
x_off OV  
MISO SPI_G  
WU  
LIN_G  
IO_G  
0
G
G
v
x
v
33907/33908  
NXP Semiconductors  
87  
Table 43. Diag Vreg2. description and configuration of the bits (default value in bold)  
Description  
Thermal shutdown of VCAN  
NO TSD (TJ < TSD_CAN  
TSD occurred (TJ > TSD_CAN  
0
)
TSD_CAN  
VCAN_OV  
VCAN_UV  
TSD_AUX  
1
)
Reset condition Power On Reset / Read  
Description  
VCAN Overvoltage detection  
No Overvoltage (VCAN < VCAN_OV  
Overvoltage detected (VCAN > VCAN_OV  
0
)
1
)
Reset condition Power On Reset / Read  
Description  
VCAN undervoltage detection  
0
No undervoltage (VCAN > VCAN_UV)  
1
Undervoltage detected (VCAN < VCAN_UV)  
Reset condition Power On Reset / Read  
Description  
Thermal shutdown of VAUX  
No TSD (TJ < TSD_AUX  
TSD occurred (TJ > TSD_AUX  
0
)
1
)
Reset condition Power On Reset  
Description  
Maximum current limitation duration  
T_LIMITATION < TAUX_LIM_OFF  
T_LIMITATION >TAUX_LIM_OFF  
0
ILIM_AUX_OFF  
VAUX_OV  
VAUX_UV  
1
Reset condition Power On Reset / Read  
Description  
VAUX overvoltage detection  
0
No overvoltage (VAUX < VAUX_OV)  
1
Overvoltage detected (VAUX > VAUX_OV)  
Reset condition Power On Reset / Read  
Description  
VAUX undervoltage detection  
0
No undervoltage (VAUX > VAUX_UV)  
1
Undervoltage detected (VAUX < VAUX_UV)  
Reset condition Power On Reset / Read  
7.3.14 Diag Vreg3  
Table 44. DIAG VREG3 register description  
Read  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
0
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
CAN_  
G
Vpre_ Vcore_ Vother Tsd_cc  
s_G  
Ilim-  
cca_off  
Vcca_  
OV  
Vcca_  
UV  
MISO SPI_G  
WU  
LIN_G  
IO_G  
0
0
0
0
G
G
a
33907/33908  
88  
NXP Semiconductors  
Table 45. Diag Vreg3. description and configuration of the bits (default value in bold)  
Description  
Thermal shutdown of VCCA  
NO TSD (TJ < TSD_CCA  
TSD occurred (TJ > TSD_CCA  
0
)
TSD_CCA  
ILIM_CCA_OFF  
VCCA_OV  
1
)
Reset condition Power On Reset / Read  
Description  
Maximum current limitation duration. Available only when an external PNP is connected  
T_LIMITATION < TCCA_LIM_OFF  
0
1
T_LIMITATION >TCCA_LIM_OFF  
Reset condition Power On Reset / Read  
Description  
VCCA overvoltage detection  
0
No overvoltage (VCCA < VCCA_OV)  
1
Overvoltage detected (VCCA > VCCA_OV)  
Reset condition Power On Reset / Read  
Description  
VCCA undervoltage detection  
0
No undervoltage (VCCA > VCCA_UV)  
VCCA_UV  
1
Undervoltage detected (VCCA < VCCA_UV)  
Reset condition Power On Reset  
33907/33908  
NXP Semiconductors  
89  
7.3.15 Diag CAN1  
Table 46. DIAG CAN1 register description  
Read  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
0
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
CAN_d  
ominan  
t
RXD_r TXD_d  
ecessiv ominan  
CAN_  
G
Vpre_ Vcore_ Vother CANH_ CANH_ CANL_ CANL_  
s_G batt gnd batt gnd  
SPI_G  
WU  
LIN_G  
IO_G  
0
G
G
e
t
Table 47. Diag CAN1. description and configuration of the bits (default value in bold)  
Description  
CANH short-circuit to battery detection  
No failure  
0
CANH_batt  
CANH_gnd  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CANH short-circuit to GND detection  
0
No failure  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CANL short-circuit to battery detection  
0
No failure  
CANL_batt  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CANL short-circuit to GND detection  
0
No failure  
CANL_gnd  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CAN Bus dominant clamping detection  
0
No failure  
CAN_dominant  
RXD_recessive  
TXD_dominant  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
RXD recessive clamping detection (short-circuit to 5.0 V)  
0
No failure  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
TXD dominant clamping detection (short-circuit to GND)  
0
No failure  
1
Failure detected  
Reset condition Power On Reset / Read  
33907/33908  
90  
NXP Semiconductors  
7.3.16 Diag CAN_LIN  
Table 48. DIAG CAN_LIN register description  
Read  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
0
bit10  
1
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
TXDL_  
domina  
nt  
RXDL_  
recessi  
ve  
Vcore_ Vothers LIN_do  
G
LIN_O  
T
CAN_O CAN_O  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
0
_G  
minant  
T
C
Table 49. Diag CAN_LIN. description and configuration of the bits (default value in bold)  
Description  
LIN bus dominant clamping detection  
No failure  
0
LIN_dominant  
TXDL_dominant  
RXDL_recessive  
LIN_OT  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
LIN TXD dominant clamping detection (short-circuit to GND)  
0
No failure  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
LIN RXD recessive clamping detection (short-circuit to 5.0 V)  
0
No failure  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
LIN overtemperature detection  
No failure  
0
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CAN overtemperature detection  
No failure  
0
CAN_OT  
1
Failure detected  
Reset condition Power On Reset / Read  
Description  
CAN overcurrent detection  
No failure  
0
CAN_OC  
1
Failure detected  
Reset condition Power On Reset / Read  
33907/33908  
NXP Semiconductors  
91  
7.3.17 Diag SPI  
Table 50. DIAG SPI register description  
Read  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
0
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
Vcore_ Vothers  
G
SPI_re  
q
SPI_pa  
rity  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
SPI_err  
0
SPI_clk  
0
0
0
_G  
Table 51. Diag SPI. description and configuration of the bits (default value in bold)  
Description  
Secured SPI communication check  
No error  
0
SPI_err  
SPI_CLK  
SPI_req  
1
Error detected in the secured bits  
Reset condition Power On Reset / Read  
Description  
SCLK error detection  
0
16 clock cycles during NCS low  
Wrong number of clock cycles (<16 or > 16)  
1
Reset condition Power On Reset / Read  
Description  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address)  
0
No error  
1
SPI violation  
Reset condition Power On Reset / Read  
Description  
SPI parity bit error detection  
Parity bit OK  
0
SPI_parity  
1
Parity bit error  
Reset condition Power On Reset / Read  
33907/33908  
92  
NXP Semiconductors  
7.3.18 Mode  
Table 52. Mode register description  
Write  
bit15  
1
bit14  
0
bit13  
1
bit12  
0
bit11  
1
bit10  
0
bit9  
1
bit8  
P
bit7  
0
bit6  
0
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Goto_L INT_re Secure Secure Secure Secure  
POFF quest _3 _2 _1 _0  
MOSI  
MISO  
Vcore_ Vothers Reserv Reserv Reserv Reserv  
G
Reserv Reserv  
ed  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
INIT Normal  
_G  
ed  
ed  
ed  
ed  
ed  
Read  
MOSI  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
1
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
INIT  
Vcore_ Vothers Reserv Reserv Reserv Reserv  
Reserv Reserv  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
Normal  
G
_G  
ed  
ed  
ed  
ed  
ed  
ed  
Table 53. Mode. description and configuration of the bits (default value in bold)  
Description  
Configure the device in Low Power mode VREG OFF (LPOFF)  
0
No action  
Goto_LPOFF  
1
LPOFF mode  
Reset condition Power On Reset  
Description  
Report if INIT mode of the main logic state machine is entered  
0
Not in INIT mode  
INIT  
1
INIT MODE  
Reset condition Power On Reset  
Description  
Report if Normal mode of the main logic state machine is entered  
0
Not in Normal mode  
Normal  
1
Normal mode  
Reset condition Power On Reset  
Description  
Request for an INT pulse  
0
1
No Request  
INT_request  
Secure 3:0  
Request for an INT pulse  
Reset condition Power On Reset  
Description Secured bits based on write bits  
secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secured_0 = bit6  
7.3.19 Vreg mode  
Table 54. VREG mode register description  
Write  
bit15  
bit14  
bit13  
bit12  
bit11  
bit10  
bit9  
bit8  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
33907/33908  
NXP Semiconductors  
93  
Table 54. VREG mode register description  
Vcore_ Vcca_ Vaux_ Vcan_ Secure Secure Secure Secure  
EN EN EN EN _3 _2 _1 _0  
MOSI  
1
0
1
0
1
1
0
P
CAN_  
G
Vpre_ Vcore_ Vother Reserv Reserv Reserv Reserv Vcore_ Vcca_ Vaux_ Vcan_  
MISO  
SPI_G  
WU  
LIN_G  
IO_G  
G
G
s_G  
ed  
ed  
ed  
ed  
EN  
EN  
EN  
EN  
Read  
MOSI  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
1
bit10  
1
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
CAN_  
G
Vpre_ Vcore_ Vother Reserv Reserv Reserv Reserv Vcore_ Vcca_ Vaux_ Vcan_  
MISO  
SPI_G  
WU  
LIN_G  
IO_G  
G
G
s_G  
ed  
ed  
ed  
ed  
EN  
EN  
EN  
EN  
Table 55. VREG mode. description and configuration of the bits (default value in bold)  
Description  
VCORE control (Switch OFF NOT recommended if VCORE is SAFETY critical)  
0
DISABLED  
VCORE_EN  
VCCA_EN  
VAUX_EN  
VCAN_EN  
Secure 3:0  
1
ENABLED  
Reset condition Power On Reset  
Description  
VCCA control (Switch OFF NOT recommended if VCCA is SAFETY critical)  
0
DISABLED  
1
ENABLED  
Reset condition Power On Reset  
Description  
VAUX control (Switch OFF NOT recommended if VAUX is SAFETY critical)  
0
DISABLED  
1
ENABLED  
Reset condition Power On Reset  
Description  
VCAN control  
DISABLED  
ENABLED  
0
1
Reset condition Power On Reset  
Description Secured bits based on write bits  
secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secured_0 = bit6  
7.3.20 IO_OUT-AMUX  
Table 56. IO_OUT-AMUX register description  
Write  
bit15  
1
bit14  
0
bit13  
1
bit12  
0
bit11  
1
bit10  
1
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
0
bit2  
bit1  
bit0  
IO_out IO_out IO_out IO_out  
_4_EN _4 _5_EN _5  
Amux_ Amux_ Amux_  
MOSI  
MISO  
2
1
0
Vcore_ Vothers IO_out IO_oou IO_out IO_out Reserv Amux_ Amux_ Amux_  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
_4_EN  
t_4  
_5_EN  
_5  
ed  
2
1
0
33907/33908  
94  
NXP Semiconductors  
Table 56. IO_OUT-AMUX register description  
Read  
bit15  
0
bit14  
0
bit13  
1
bit12  
0
bit11  
1
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
Vcore_ Vothers IO_out IO_out IO_out IO_out Reserv Amux_ Amux_ Amux_  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
_4_EN  
_4  
_5_EN  
_5  
ed  
2
1
0
Table 57. IO_OUT-AMUX. description and configuration of the bits (default value in bold)  
Description  
Enable the output gate driver capability for IO_4  
High-impedance (IO_4 configured as input)  
ENABLED (IO_4 configured as output gate driver)  
0
IO_out_4_EN  
IO_out_4  
1
Reset condition Power On Reset  
Description  
Configure IO_4 output gate driver state  
0
LOW  
1
HIGH  
Reset condition Power On Reset  
Description  
Enable the output gate driver capability for IO_5  
0
High-impedance (IO_5 configured as input)  
IO_out_5_EN  
IO_out_5  
1
ENABLED (IO_5 configured as output gate driver)  
Reset condition Power On Reset  
Description  
Configure IO_5 output gate driver state  
0
LOW  
1
HIGH  
Reset condition Power On Reset  
Description  
000  
Select AMUX output  
Vref  
001  
Vsns wide range  
IO_0 wide range  
IO_1 wide range  
Vsns tight range  
IO_0 tight range  
IO_1 tight range  
Die Temperature Sensor  
010  
011  
AMUX_2:0  
100  
101  
110  
111  
Reset condition Power On Reset  
7.3.21 CAN_LIN mode  
Table 58. CAN_LIN mode register description  
Write  
bit15  
1
bit14  
0
bit13  
1
bit12  
1
bit11  
0
bit10  
0
bit9  
0
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
0
bit0  
0
CAN_ CAN_  
mode_ mode_  
CAN_a LIN_m LIN_m LIN_au  
uto_dis ode_1 ode_0 to_dis  
MOSI  
1
0
33907/33908  
NXP Semiconductors  
95  
Table 58. CAN_LIN mode register description  
CAN_ CAN_  
mode_ mode_  
LIN_wu  
CAN_a LIN_m LIN_m LIN_au CAN_w  
CAN_  
G
Vpre_ Vcore_ Vother  
MISO SPI_G  
WU  
LIN_G  
IO_G  
G
G
s_G  
uto_dis ode_1 ode_0 to_dis  
u
1
0
Read  
bit15  
bit14  
0
bit13  
1
bit12  
1
bit11  
0
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
0
CAN_ CAN_  
mode_ mode_  
LIN_wu  
CAN_  
G
Vpre_ Vcore_ Vother  
s_G  
CAN_a LIN_m LIN_m LIN_au CAN_w  
uto_dis ode_1 ode_0 to_dis  
MISO SPI_G  
WU  
LIN_G  
IO_G  
G
G
u
1
0
Table 59. CAN_LIN mode. description and configuration of the bits (default value in bold)  
Description  
Configure the CAN mode  
Sleep / NO wake-up capability  
LISTEN ONLY  
00  
01  
10  
11  
CAN_mode_1:0  
CAN_auto_dis  
LIN_mode_1:0  
Sleep / Wake-up capability  
Normal operation mode  
Reset condition Power On Reset  
Description  
Automatic CAN Tx disable  
NO auto disable  
Reset CAN_mode from “11” to “01” on CAN over temp or TXD dominant or RXD recessive event  
0
1
Reset condition Power On Reset  
Description  
Configure the LIN mode  
00  
01  
10  
11  
Sleep / NO wake-up capability  
LISTEN ONLY  
Sleep / Wake-up capability  
Normal operation mode  
Reset condition Power On Reset  
Description  
Automatic LIN Tx Disable  
0
No Auto disable  
LIN_auto_dis  
CAN_wu  
1
Reset LIN_mode from “11” to “01” on LIN over temp or TXDL dominant or RXDL recessive event  
Reset condition  
Description  
Report a wake-up event from the CAN  
No wake-up  
0
1
Wake-up detected  
Reset condition Power On Reset / Read  
Description  
Report a wake-up event from the LIN  
0
No wake-up  
LIN_WU  
1
Wake-up detected  
Reset condition Power On Reset / Read  
Notes  
33. CAN mode is automatically configured to “sleep + wake-up capability[10]” if CAN mode was different than “sleep + no wake-up capability [00]”  
before the device enters in LPOFF. After LPOFF, the initial CAN mode prior to enter LPOFF is restored.  
33907/33908  
96  
NXP Semiconductors  
7.3.22 Can_Mode_2  
Table 60. CAN_MODE_2 register description  
Write  
bit15  
1
bit14  
0
bit13  
1
bit12  
1
bit11  
0
bit10  
0
bit9  
1
bit8  
P
bit7  
0
bit6  
0
bit5  
0
bit4  
bit3  
bit2  
bit1  
bit0  
Vcan_  
OV_Mo  
n
secure secure secure secure  
_3  
MOSI  
MISO  
_2  
_1  
_0  
Vcan_  
OV_Mo  
n
Vcore_ Vothers  
G
Reserv Reserv Reserv  
ed  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
0
0
0
_G  
ed  
ed  
Read  
MOSI  
bit15  
0
bit14  
0
bit13  
1
bit12  
1
bit11  
0
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
Vcan_  
OV_Mo  
n
Vcore_ Vothers  
Reserv Reserv Reserv  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
0
0
0
G
_G  
ed  
ed  
ed  
Table 61. CAN_MODE_2. description and configuration of the bits (default value in bold)  
Description  
VCAN OV Monitoring  
0
OFF. VCAN OV is not monitored. Flag is ignored  
Vcan_OV_Mon  
Secure 3:0  
1
ON. VCAN OV flag is under monitoring. In case of OV the VCAN regulator is switched OFF.  
Reset condition Power On Reset  
Description Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secured_0 = bit6  
7.3.23 INIT SUPERVISOR1  
Table 62. INIT SUPERVISOR1 register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
0
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Vcore_ Vcore_ Vcca_F Vcca_F secure Secure Secure Secure  
FS1 FS_0 S_1 S_0 _3 _2 _1 _0  
MOSI  
MISO  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS Vcore_ Vcore_ Vcca_F Vcca_F  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
_err  
_CLK  
_Req _Parity FS1  
FS_0  
S_1  
S_0  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
33907/33908  
NXP Semiconductors  
97  
Table 62. INIT SUPERVISOR1 register description  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS Vcore_ Vcore_ Vcca_F Vcca_F  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
G
_G  
_err  
_CLK  
_Req _Parity FS1  
FS_0  
S_1  
S_0  
Table 63. INIT SUPERVISOR1. description and configuration of the bits (default value in bold)  
Description  
00  
V
CORE safety input.  
No effect of VCORE_FB_OV and VCORE_FB_UV on RSTb and FSxx  
CORE_FB_OV DOES HAVE an impact on RSTb and FSxx. VCORE_FB_UV DOES HAVE an impact on RSTb  
V
only  
01  
Vcore_FS1:0  
10  
V
CORE_FB_OV DOES HAVE an impact on RSTb and FSxx. No effect of VCORE_FB_UV on RSTb and FSxx  
11  
Both VCORE_FB_OV and VCORE_FB_UV DO HAVE an impact on RSTb and FSxx  
Reset condition Power On Reset  
Description  
VCCA safety input.  
00  
01  
10  
11  
No effect of VCCA_OV and VCCA_UV on RSTb and FSxx  
V
V
CCA_OV DOES HAVE an impact on RSTb and FSxx. VCCA_UV DOES HAVE an impact on RSTb only  
CCA_OV DOES HAVE an impact on RSTb and FSxx. No effect of VCCA_UV on RSTb and FSxx  
Vcca_FS1:0  
Both VCCA_OV and VCCA_UV DO HAVE an impact on RSTb and FSxx  
Reset condition Power On Reset  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
Secured_0 = bit6  
Description  
Secured SPI communication check, concerns Fail-safe logic only  
No error  
0
SPI_FS_err  
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by the SPI_CLK_ bit  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in Normal mode, wrong address), concerns  
fail-safe logic only.  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
33907/33908  
98  
NXP Semiconductors  
7.3.24 INIT SUPERVISOR2  
Table 64. INIT SUPERVISOR2 register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
1
bit9  
0
bit8  
P
bit7  
bit6  
bit5  
0
bit4  
bit3  
bit2  
bit1  
bit0  
Vaux_F Vaux_F  
S1 S_0  
Secure Secure Secure Secure  
MOSI  
MISO  
DIS_8s  
_3  
0
_2  
_1  
_0  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS  
G
Vaux_F Vaux_F  
S1  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
DIS_8s  
_G  
_err  
_CLK  
_req _Parity  
S_0  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
1
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS  
Vaux_F Vaux_F  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
DIS_8s  
G
_G  
_err  
_CLK  
_req _Parity  
S1  
S_0  
Table 65. INIT SUPERVISOR2. description and configuration of the bits (default value in bold)  
Description  
VAUX safety input.  
00  
01  
10  
11  
No effect of VAUX_OV and VAUX_UV on RSTb and FSxx  
V
V
AUX_OV DOES HAVE an impact on RSTb and FSxx. VAUX_UV DOES HAVE an impact on RSTb only  
AUX_OV DOES HAVE an impact on RSTb and FSxx. No effect of VAUX_UV on RSTb and FSxx  
Vaux_FS1:0  
Both VAUX_OV and VAUX_UV DO HAVE an impact on RSTb and FSxx  
Reset condition Power On Reset  
Description  
Disable the 8.0 s timer used to enter Deep Fail-safe mode  
0
ENABLED  
DIS_8s  
1
DISABLED  
Reset condition Power On Reset  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
SPI_FS_err  
Secured_0 = bit6  
Description  
Secured SPI communication check, concerns fail-safe logic only.  
No error  
0
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by SPI_CLK_ bit  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
33907/33908  
NXP Semiconductors  
99  
Table 65. INIT SUPERVISOR2. description and configuration of the bits (default value in bold) (continued)  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe Logic only  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
33907/33908  
100  
NXP Semiconductors  
7.3.25 INIT SUPERVISOR3  
Table 66. INIT SUPERVISOR3 register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
1
bit9  
1
bit8  
P
bit7  
0
bit6  
bit5  
bit4  
0
bit3  
bit2  
bit1  
bit0  
Vcca_5 Vaux_5  
Secure Secure Secure Secure  
MOSI  
MISO  
D
D
_3  
0
_2  
_1  
_0  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS  
G
Reserv Vcca_5 Vaux_5  
ed  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
_err  
_CLK  
_req _Parity  
D
D
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
0
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS  
Reserv Vcca_5 Vaux_5  
ed  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
G
_G  
_err  
_CLK  
_req _Parity  
D
D
Table 67. INIT SUPERVISOR3. description and configuration of the bits (default value in bold)  
Description  
Configure the VCCA undervoltage in degraded mode. Only valid for 5.0 V  
Normal 5.0 V undervoltage detection threshold (VCCA_UV_5  
Degraded mode, i.e lower undervoltage detection threshold applied (VCCA_UV_D  
0
)
VCCA_5D  
1
)
Reset condition Power On Reset  
Description  
Configure the VAUX undervoltage in degraded mode. Only valid for 5.0 V  
Normal 5.0 V undervoltage detection threshold (VAUX_UV_5  
Degraded mode, i.e lower undervoltage detection threshold applied (VAUX_UV_5D  
0
)
VAUX_5D  
1
)
Reset condition Power On Reset  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2= NOT(bit4)  
Secured_1=bit7  
Secure3:0  
SPI_FS_err  
Secured_0=bit6  
Description  
Secured SPI communication check, concerns fail-safe logic only  
No error  
0
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by the SPI_CLK_ bit  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
SPI_FS_Req  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe logic only  
Description  
0
No error  
1
SPI violation  
Reset condition Power On Reset  
33907/33908  
NXP Semiconductors  
101  
Table 67. INIT SUPERVISOR3. description and configuration of the bits (default value in bold) (continued)  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
7.3.26 Init FSSM1  
Table 68. INIT FSSM1 register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
0
bit9  
0
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
IO_01_ IO_1_F IO_45_ RSTb_l Secure Secure Secure Secure  
FS  
MOSI  
S
FS  
ow  
_3  
_2  
_1  
_0  
SPI_F  
S_Parit  
y
CAN_  
G
Vpre_ Vcore_ Vother SPI_F SPI_F SPI_F  
IO_01_ IO_1_F IO_45_ RSTb_l  
MISO SPI_G  
WU  
LIN_G  
IO_G  
G
G
s_G  
S_err S_CLK S_req  
FS  
S
FS  
ow  
Read  
bit15  
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
0
SPI_F  
S_Parit  
y
CAN_  
G
Vpre_ Vcore_ Vother SPI_F SPI_F SPI_F  
s_G S_err S_CLK S_req  
IO_01_ IO_1_F IO_45_ RSTb_l  
FS FS ow  
MISO SPI_G  
WU  
LIN_G  
IO_G  
G
G
S
Table 69. INIT FSSM1. description and configuration of the bits (default value in bold)  
Description  
Configure the couple of IO_1:0 as safety inputs  
NOT SAFETY  
0
IO_01_FS  
IO_1_FS  
1
SAFETY CRITICAL  
Reset condition Power On Reset  
Description  
Configure IO_1 as safety inputs  
0
NOT SAFETY  
1
SAFETY CRITICAL (External resistor bridge monitoring active)  
Reset condition Power On Reset  
Description  
Configure the couple of IO_5:4 as safety inputs  
0
NOT SAFETY  
IO_45_FS  
RSTb_low  
1
SAFETY CRITICAL  
Reset condition Power On Reset  
Description  
Configure the Rstb LOW duration time  
0
10 ms  
1
1.0 ms  
Reset condition Power On Reset  
33907/33908  
102  
NXP Semiconductors  
Table 69. INIT FSSM1. description and configuration of the bits (default value in bold) (continued)  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
Secured_0 = bit6  
Description  
Secured SPI communication check, concerns fail-safe logic only  
No error  
0
SPI_FS_err  
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by the SPI_CLK_ bit  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe logic only  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
7.3.27 Init FSSM2  
Table 70. INIT FSSM2 register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
0
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
PS  
bit4  
0
bit3  
bit2  
bit1  
bit0  
RSTb_ IO_23_  
err_FS FS  
Secure Secure Secure Secure  
_3  
MOSI  
MISO  
_2  
_1  
_0  
0
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS RSTb_ IO_23_  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
PS  
_G  
_err  
_CLK  
_req _Parity err_FS  
FS  
33907/33908  
NXP Semiconductors  
103  
Table 70. INIT FSSM2 register description (continued)  
Read  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
0
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS RSTb_ IO_23_  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
PS  
0
_G  
_err  
_CLK  
_req _Parity err_FS  
FS  
Table 71. INIT FSSM2. description and configuration of the bits (default value in bold)  
Description  
Configure the couple of IO_3:2 as safety inputs for FCCU monitoring  
0
NOT SAFETY  
IO_23_FS  
RSTb_err_FS  
PS  
1
SAFETY CRITICAL  
Reset condition Power On Reset  
Description  
Configure the values of the RSTb error counter  
0
intermediate = 3; final = 6  
1
intermediate = 1; final = 2  
Reset condition Power On Reset  
Description  
Configure the FCCU polarity  
0
Fccu_eaout_1:0 active HIGH  
1
Fccu_eaout_1:0 active LOW  
Reset condition Power On Reset  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
SPI_FS_err  
Secured_0 = bit6  
Description  
Secured SPI communication check, concerns fail-safe logic only  
No error  
0
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by SPI_CLK_ bit  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe Logic only  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
33907/33908  
104  
NXP Semiconductors  
7.3.28 WD window  
Table 72. WD window register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
1
bit9  
0
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
WD_wi WD_wi WD_wi WD_wi Secure Secure Secure Secure  
ndow3 ndow2 ndow1 ndow0 _3 _2 _1 _0  
MOSI  
MISO  
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS WD_wi WD_wi WD_wi WD_wi  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
_err  
_CLK  
_req _Parity ndow3 ndow2 ndow1 ndow0  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
1
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS WD_wi WD_wi WD_wi WD_wi  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
G
_G  
_err  
_CLK  
_req _Parity ndow3 ndow2 ndow1 ndow0  
Any WRITE command to the WD_window in the Normal mode must be followed by a READ command to verify the correct change of the WD window  
duration  
Table 73. WD window. description and configuration of the bits (default value in bold)  
Description  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Configure the watchdog window duration. Duty cycle if set to 50%  
DISABLE  
1.0 ms  
2.0 ms  
3.0 ms  
4.0 ms  
6.0 ms  
8.0 ms  
12 ms  
WD_Window_3:0  
16 ms  
24 ms  
32 ms  
64 ms  
128 ms  
256 ms  
512 ms  
1024 ms  
Reset condition Power On Reset  
Description Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
Secured_0 = bit6  
33907/33908  
NXP Semiconductors  
105  
Table 73. WD window. description and configuration of the bits (default value in bold) (continued)  
Description  
Secured SPI communication check, concerns fail-safe logic only  
No error  
0
SPI_FS_err  
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by the SPI_CLK bit.  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe logic only  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
7.3.29 WD_LFSR  
Table 74. WD LFSR register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
1
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF  
SR_7 SR_6 SR_5 SR_4 SR_3 SR_2 SR_1 SR_0  
MOSI  
MISO  
CAN_  
G
Vpre_ Vcore_ Vother WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF  
G
SPI_G  
WU  
LIN_G  
IO_G  
G
s_G  
SR_7 SR_6 SR_5 SR_4 SR_3 SR_2 SR_1 SR_0  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
0
bit11  
1
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
CAN_  
G
Vpre_ Vcore_ Vother WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF  
s_G SR_7 SR_6 SR_5 SR_4 SR_3 SR_2 SR_1 SR_0  
MISO  
SPI_G  
WU  
LIN_G  
IO_G  
G
G
Table 75. WD LFSR. description and configuration of the bits  
Description  
WD 8 bits LFSR value. Used to write the seed at any time  
0...  
1...  
WD_LFSR_7:0  
bit7:bit0: 10110010 default value at start-up or after a Power on reset: 0xB2 (34), (35)  
Reset condition Power On Reset  
Notes  
34. Value Bit7:Bit0: 1111 1111 is prohibited.  
35. During a write command, MISO reports the previous register content.  
33907/33908  
106  
NXP Semiconductors  
 
 
7.3.30 WD answer  
Table 76. WD answer register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
0
bit9  
0
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
WD_an WD_an WD_an WD_an WD_an WD_an WD_an WD_an  
swer_7 swer_6 swer_5 swer_4 swer_3 swer_2 swer_1 swer_0  
MOSI  
MISO  
Vcore_ Vothers  
G
IO_FS_  
G
FS_EC FS_reg  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
RSTb  
FS0  
WD  
FS0_G  
0
_G  
C
_Ecc  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
Vcore_ Vothers  
IO_FS_  
G
FS_EC FS_reg  
MISO  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
RSTb  
FS0  
WD  
FS0_G  
0
G
_G  
C
_Ecc  
Table 77. WD answer. description and configuration of the bits (default value in bold)  
Description  
WD answer from the MCU  
0...  
1...  
WD_answer_7:0  
Answer = (NOT(((LFSR x 4)+6)-4))/4  
Reset condition Power On Reset / RSTb LOW  
Description  
Report a reset event  
No Reset  
0
RSTb  
1
Reset occurred  
Reset condition Power On Reset / Read  
Description  
Report a fail-safe event  
No fail-safe  
0
FS0b  
1
Fail safe event occurred / Also default state at power-up after LPOFF as FS0b is asserted low  
Reset condition Power On Reset / Read  
Description  
Report a watchdog refresh ERROR  
0
WD refresh OK  
WD  
1
WRONG WD refresh  
Reset condition Power On Reset / Read  
Description  
Report a fail-safe output failure  
0
No failure  
FS0_G  
1
Failure  
Reset condition Power On Reset / Read  
Description  
Report an IO monitoring error  
No error  
0
IO_FS_G  
1
Error detected  
Reset condition Power On Reset  
33907/33908  
NXP Semiconductors  
107  
 
Table 77. WD answer. description and configuration of the bits (default value in bold) (continued)  
Description  
Report an error code correction on fail-safe state machine  
0
No ECC  
FS_ECC  
1
ECC done  
Reset condition Power On Reset / Read  
Description  
Report an error code correction on fail-safe registers  
0
No ECC  
FS_req_ECC  
1
ECC done  
Reset condition Power On Reset / Read  
FS0_G = RSTB_short_high or FS0B_short_high or FS0B_short_low  
IO_FS_G = IO_01_fail or IO_1_fail or IO_23_fail or IO_45_fail  
Values of the three registers WD_answer, WD_counter, and DIAG_FS2 are updated at the end of any SPI access to one of these  
registers. To always get up to date values, it is recommended to make two consecutive SPI accesses to these registers. Example: read  
WD_answer, read again WD_answer, read WD_counter, read DIAG_FS2. The first read updates the three registers and the second read  
report the latest information.  
7.3.31 Fail-safe out (FS_out)  
Table 78. Fail-safe out register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
0
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
FS_out FS_out FS_out FS_out FS_out FS_out FS_out FS_out  
MOSI  
MISO  
_7  
0
_6  
0
_5  
0
_4  
0
_3  
0
_2  
0
_1  
0
_0  
0
Vcore_ Vothers  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
_G  
Table 79. Fail-safe out. description and configuration of the bits  
Description  
Secured 8 bits word to release the FS0b  
0...  
FS_out_7:0  
1...  
Depend on LFSR_out value and calculation  
Power On Reset -> Default = 00h  
Reset condition  
33907/33908  
108  
NXP Semiconductors  
7.3.32 RSTB request  
Table 80. RSTB request register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
1
bit9  
0
bit8  
P
bit7  
0
bit6  
0
bit5  
bit4  
0
bit3  
bit2  
bit1  
bit0  
RSTb_r  
equest  
Secure Secure Secure Secure  
MOSI  
MISO  
_3  
0
_2  
0
_1  
0
_0  
0
Vcore_ Vothers  
G
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
0
0
0
_G  
Table 81. RSTB request. description and configuration of the bits (default value in bold)  
Description  
Request a RSTb low pulse  
No request  
0
RSTb_request  
Secure3:0  
1
Request a RSTb low pulse  
Reset condition Power On Reset / When RSTb done  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secured_0 = bit6  
7.3.33 INIT_WD  
Table 82. INIT WD register description  
Write  
bit15  
1
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
1
bit9  
1
bit8  
P
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
WD_C WD_C WD_C WD_C  
NT_err NT_err NT_refr NT_refr  
or_1  
secure secure secure secure  
3
MOSI  
MISO  
2
1
0
or_0  
esh_1 esh_0  
SPI_F WD_C WD_C WD_C WD_C  
S_Parit NT_err NT_err NT_refr NT_refr  
CAN_  
G
Vpre_ Vcore_ Vother SPI_F SPI_F SPI_F  
G
SPI_G  
WU  
LIN_G IO_G  
G
s_G  
S_err S_CLK S_Req  
y
or_1  
or_0  
esh_1 esh_0  
Read  
MOSI  
bit15  
0
bit14  
1
bit13  
0
bit12  
1
bit11  
0
bit10  
1
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
SPI_F WD_C WD_C WD_C WD_C  
S_Parit NT_err NT_err NT_refr NT_refr  
CAN_  
G
Vpre_ Vcore_ Vother SPI_F SPI_F SPI_F  
s_G S_err S_CLK S_Req  
MISO  
SPI_G  
WU  
LIN_G IO_G  
G
G
y
or_1  
or_0  
esh_1 esh_0  
33907/33908  
NXP Semiconductors  
109  
Table 83. INIT WD. description and configuration of the bits (default value in bold)  
Description  
Configure the maximum value of the WD error counter  
00  
01  
10  
11  
6
6
4
2
WD_CNT_error_1:0  
Reset Condition Power On Reset  
Description  
Configure the maximum value of the WD refresh counter  
00  
01  
10  
11  
6
4
2
1
WD_CNT_refresh_  
1:0  
Reset Condition Power On Reset  
Description  
Secured bits based on write bits  
Secured_3 = NOT(bit5)  
Secured_2 = NOT(bit4)  
Secured_1 = bit7  
Secure3:0  
Secured_0 = bit6  
Description  
Secured SPI communication check, concerns fail-safe logic only  
No error  
0
SPI_FS_err  
1
Error detected in the secured bits  
Reset condition Power On Reset  
SCLK error detection, concerns internal error in fail-safe logic only and external errors (at pin level) for both  
main and fail-safe logics. Other errors flagged by the SPI_CLK bit.  
Description  
0
16 clock cycles during NCS low  
SPI_FS_CLK  
1
Wrong number of clock cycles (<16 or >16)  
Reset condition Power On Reset  
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address), concerns  
fail-safe logic only  
Description  
0
No error  
SPI_FS_Req  
1
SPI violation  
Reset condition Power On Reset  
Description  
SPI parity bit error detection, concerns fail-safe logic only  
0
Parity bit OK  
SPI_FS_Parity  
1
Parity bit ERROR  
Reset condition Power On Reset  
33907/33908  
110  
NXP Semiconductors  
7.3.34 Diag FS1  
Table 84. DIAG FS1 register description  
Read  
bit15  
0
bit14  
1
bit13  
0
bit12  
1
bit11  
1
bit10  
0
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
Vcore_ Vothers RSTb_ RSTb_  
G
FS0b_ FS0b_  
diag_1 diag_0  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
0
0
0
_G  
ext  
diag  
Table 85. Diag FS1. description and configuration of the bits (default value in bold)  
Description  
Report a RSTb short-circuit to HIGH  
No Failure  
0
RSTb_diag  
RSTb_ext  
1
Short-circuit HIGH  
Reset condition Power On Reset / Read  
Description  
Report an external RSTb  
No external RSTb  
External RSTb  
0
1
Reset condition Power On Reset / Read  
Description  
Report a failure on FS0b  
No Failure  
00  
01  
1X  
FS0b_diag_1:0  
Short-circuit LOW / open load  
Short-circuit HIGH  
Reset condition Power On Reset / Read  
7.3.35 WD counter  
Table 86. WD counter register description  
Read  
bit15 bit14 bit13 bit12 bit11 bit10  
bit9  
1
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
bit3  
0
bit2  
bit1  
bit0  
0
MOSI  
MISO  
0
1
0
1
1
0
0
0
0
SPI_  
G
CAN_ LIN_  
Vpre_ Vcore_ Vothers_ WD_err WD_err WD_err  
WD_ref WD_refr WD_refr  
resh_2 esh_1 esh_0  
WU  
IO_G  
0
0
G
G
G
G
G
_2  
_1  
_0  
33907/33908  
NXP Semiconductors  
111  
Table 87. WD counter. description and configuration of the bits (default value in bold)  
Description  
000  
Report the value of the watchdog error counter  
WD_err_2:0  
From 0 to 5 (6 generates a Reset and this counter is reset to 0)  
to 110  
Reset condition  
Description  
000  
Power On Reset  
Report the value of the watchdog refresh counter  
WD_refresh_2:0  
From 0 to 6 (7 generate a decrease of the RST_err_cnt and this counter is reset to 0)  
Power On Reset  
to 111  
Reset condition  
7.3.36 Diag FS2  
Table 88. DIAG FS2 register description  
Read  
bit15  
0
bit14  
1
bit13  
0
bit12  
1
bit11  
1
bit10  
1
bit9  
0
bit8  
0
bit7  
0
bit6  
0
bit5  
0
bit4  
0
bit3  
0
bit2  
0
bit1  
0
bit0  
0
MOSI  
MISO  
Vcore_ Vothers RSTb_ RSTb_ RSTb_  
G
IO_45_ IO_23_ IO_1_F IO_01_  
fail fail ail fail  
SPI_G  
WU CAN_G LIN_G IO_G Vpre_G  
0
_G  
err_2  
err_1  
err_0  
Table 89. Diag FS2. description and configuration of the bits (default value in bold)  
Description  
Report the value of the RSTb error counter  
000  
001  
RSTb_err_2:0  
Error counter is set to 1 by default  
110  
Reset condition Power On Reset  
Description  
Report an error in the IO_45 protocol  
0
No error  
IO_45_fail  
IO_23_fail  
IO_1_fail  
1
Error detected  
Reset condition Power On Reset / Read  
Description  
Report an error in the FCCU protocol  
0
No error  
1
Error detected  
Reset condition Power On Reset / Read  
Description  
Report an error in the IO_1 monitoring (external resistor string monitoring)  
0
No error  
1
Error detected  
Reset condition Power On Reset  
Description  
Report an error in the IO_01 protocol  
0
No error  
IO_01_fail  
1
Error detected  
Reset condition Power On Reset / Read  
33907/33908  
112  
NXP Semiconductors  
8
List of interruptions and description  
The INTB output pin generates a low pulse when an Interrupt condition occurs. The INTB behavior as well as the pulse duration are set  
through the SPI during INIT phase. It is possible to mask some Interruption source (see Detail of register mapping).  
Table 90. Interruptions list  
Event  
Description  
VSNS_UV  
VSUP_UV_7  
IPFF  
Detection of VBATTERY below 8.5 V  
Detection of VSUP below 7.0 V (after reverse current protection diode)  
Input power feed forward. Based on VSUP and IPRE_PEAK  
Pre-regulator Current Limitation  
ILIM_PRE  
TWARN_PRE  
BoB  
Temperature warning on the pass transistor  
Return the running state of VPRE converter (Buck or Boost mode)  
Return the activation state of VPRE DC/DC converter  
Report a VPRE overvoltage detection  
V
V
V
PRE_STATE (VPRE_SMPS_EN)  
PRE OV  
PRE UV  
Report a VPRE undervoltage detection  
ILIM_CORE  
VCORE Current limitation  
TWARN_CORE  
Temperature warning on the pass transistor  
Return the activation state of VCORE DC/DC converter  
Report a VCORE overvoltage detection  
V
V
V
CORE_STATE (VCORE_SMPS_EN  
CORE OV  
)
CORE UV  
Report a VCORE undervoltage detection  
VCCA Current limitation  
ILIM_CCA  
TWARN_CCA  
TSDVCCA  
Temperature warning on the pass transistor (Internal Pass transistor only)  
Temperature shutdown of the VCCA  
ILIM_CCA_OFF  
Current limitation maximum duration expiration. Only used when external PNP connected.  
Report a VCCA overvoltage detection  
V
V
CCA OV  
CCA UV  
Report a VCCA undervoltage detection  
ILIM_AUX  
VAUX Current limitation  
ILIM_AUX_OFF  
Current limitation maximum duration expiration. Only used when external PNP connected.  
Report a VAUX overvoltage detection  
V
V
AUX OV  
AUX UV  
Report a VAUX undervoltage detection  
TSDVAUX  
ILIM_CAN  
Temperature shutdown of the VAUX  
VCAN Current limitation  
V
V
CAN OV  
CAN UV  
Report a VCAN overvoltage detection  
Report a VCAN undervoltage detection  
TSDCAN  
IO_0  
Temperature shutdown on the pass transistor. Auto restart when TJ < (TSDCAN - TSDCAN_HYST).  
Report IO_0 digital state change  
IO_1  
Report IO_1 digital state change  
IO_2  
Report IO_2 digital state change  
IO_3  
Report IO_3 digital state change  
IO_4  
Report IO_4 digital state change  
IO_5  
Report IO_5 digital state change  
IO_0_WU  
IO_1_WU  
IO_2_WU  
Report IO_0 WU event  
Report IO_1 WU event  
Report IO_2 WU event  
33907/33908  
NXP Semiconductors  
113  
Table 90. Interruptions list (continued)  
IO_3_WU  
Report IO_3 WU event  
IO_4_WU  
Report IO_4 WU event  
IO_5_WU  
Report IO_5 WU event  
CAN_WU  
Report a CAN wake-up event  
CAN_OT  
CAN overtemperature detection  
RXD_recessive  
TXD_dominant  
CAN_dominant  
LIN_WU  
CAN RXD recessive clamping detection (short-circuit to 5.0 V)  
CAN TXD dominant clamping detection (short circuit to GND)  
CAN bus dominant clamping detection  
Report a LIN wake-up event  
LIN_OT  
LN over-temperature detection  
RXDL_recessive  
TXDL dominant  
LIN dominant  
INT_Request  
SPI_err  
LIN RXDL recessive clamping detection (short to high)  
LIN TXDL dominant clamping detection (short to GND)  
LIN bus dominant clamping detection  
MCU request for an Interrupt pulse  
Secured SPI communication check  
SPI_CLK  
Report a wrong number of CLK pulse different than 16 during the NCS low pulse in Main state machine  
Invalid SPI access (Wrong write or read, write to INIT registers in normal mode, wrong address)  
Report a Parity error in Main state machine  
SPI_Req  
SPI_Parity  
33907/33908  
114  
NXP Semiconductors  
9
Typical applications  
Snubber values must be fine tuned as  
linked also to board layout performance  
Snubber values must be fine tuned as  
linked also to board layout performance  
2.2 µH  
22 µH  
ESR cap.  
<10mΩ  
Vcore Voltage  
ESR cap.  
<100mΩ  
ESR cap.  
<10mΩ  
C1  
R1  
PGND  
R3  
R3  
R4  
330pF  
PGND  
PGND  
1 µH  
PGND  
PGND PGND PGND PGND  
Vbat  
PGND  
Capacitors must be close to Vpre pin  
PGND  
Optional  
GND  
PGND  
PGND  
To IO_1  
GND  
VCORE_SNS  
FB_CORE  
1KΩ  
GND  
PGND  
R4  
GND  
GND  
GND  
Optional  
VSUP3  
COMP_CORE  
5.1 kΩ  
C2  
R2  
VSENSE  
Optional  
VCCA_E  
VCCA_B  
VCCA  
1µF  
Vcca_PNP  
SELECT pin Configuration for VCCA & VAUX  
(R select connected to GND)  
ESR cap.  
<100mΩ  
EMI sup. Capacitor must be connected  
closed to load (220nF) and connected to  
GND  
GND  
Vcca Vaux Rselect (KΩ)  
Recommended Value  
Capacitor closed to  
Vcca pin  
VAUX_E  
VAUX_B  
3.3V  
5V  
3.3V  
5V  
3.3V  
< 7  
5.1KΩ +/-5%  
12KΩ +/-5%  
24KΩ +/-5%  
51KΩ +/-5%  
Vaux_PNP  
GND  
5V 10.8 <<13.2  
5V 21.6 <<26.4  
3.3V 45.9 <<56.1  
Connected to Vcca or Vcore  
(If connected to Vcore, must be  
connected closed to coutx 10µF  
ESR cap.  
<100mΩ  
EMI sup. Capacitor must be connected  
closed to load (100nF 100pF) and  
connected to GND  
VDDIO  
+
x 2)  
VAUX  
Capacitor must be  
close to Vaux pin  
MOSI  
MISO  
SCLK  
NCS  
GND  
4
Components selection for Vcore voltage (current range 10mA -> 800mA, DI/DT = 2A/µs)  
MCU SPI  
GND  
1µF  
Vcore voltage R3(+/-1%)  
R4(+/-1%)  
8.06KΩ  
8.06KΩ  
R1(+/-5%)  
200Ω  
510Ω  
C1  
220pF  
680pF  
R2(+/-5%)  
39KΩ  
18KΩ  
C2  
1nF  
150pF  
Cout  
CAN-5V  
SELECT  
1.23V  
3.3V  
4.32KΩ  
24.9KΩ  
2*10µF  
2*10µF  
0R  
Optional  
GND  
MUX_OUT  
INTB  
MCU inputs  
MCU Int.  
Vbat  
RSelect  
Resistor must be  
close to Select pin  
Key on  
GND  
GND  
Vcca (5V or 3.3V), available configurations  
5.1 kΩ  
Whithout Ext. PNP : 100mA capability +/-1% accuracy for 5V  
configuration, +/-1.5% accuracy for 3.3V configuration,  
With Ext. PNP : < 200mA +/-2% accuracy  
IO_0  
IO_1  
IO_2  
VDDIO  
Optional  
From 2nd Vcore  
resistor bridge  
5.1KΩ  
GND  
With Ext. PNP : 300mA capability +/-3% accuracy  
MCU RESET  
Optional  
RSTB  
FCCU monitoring  
from Freescale  
MCU  
VDDIO  
or VSUP3  
Example of IO  
connection and usage  
Vaux (5V or 3.3V)  
300mA capability +/-3% accuracy  
IO_3  
IO_4  
IO_5  
GND  
5.1KΩ if connected to VDDIO  
>10KΩ if connected to Vsup3  
Recommended  
connection for IOs not  
used in the application  
To Fail Safe  
circuitry  
FS0B  
5.1 kΩ  
5.1KΩ  
Vpre  
10KΩ  
MUX_OUT (output selected by SPI)  
5.1 kΩ  
GND  
Vsense or  
GND  
GND  
VIO_0 or  
VIO_1 or  
DEBUG  
mode  
CANH  
DEBUG  
Internal 2.5V reference voltage (2.5V +/-1%)  
11KΩ  
120Ω  
GND  
GND  
RXD  
TXD  
Ground Connections  
PGND ground plane connected to DGND pin  
GND ground plane connected to AGND and GND_COM pins  
MCU CAN  
CANL  
LIN  
VSUP3  
PGND (DGND) and GND (AGND & GND_COM) connected together far from  
PGND ground plane.  
TXDL  
RXDL  
MCU LIN  
LIN BUS  
GNDA  
GND  
GND_COM  
GND  
DGND  
PGND  
Figure 58. 33907/33908 simplified application schematic with non-inverting buck-boost configuration  
33907/33908  
Optional  
VAUX_E  
VAUX_B  
VCCA_E  
VCCA_B  
VCCA  
Vcca_PNP  
Vaux_PNP  
ESR cap.  
<100 mΩ  
ESR cap.  
<100 mΩ  
VAUX  
GND  
RSelect  
SELECT  
GND  
GND  
Figure 59. V  
/V  
connection  
AUX CCA  
33907/33908  
NXP Semiconductors  
115  
VPRE  
33907/33908  
Optional  
VAUX_E  
VAUX_B  
VCCA_E  
VCCA_B  
VCCA  
Vcca_PNP  
NC  
ESR cap.  
<100 mΩ  
NC  
VAUX  
GND  
RSelect  
SELECT  
Figure 60. VCCA connection, V  
not used  
AUX  
VPRE  
33907/33908  
VAUX_E  
VAUX_B  
VCCA_E  
NC  
NC  
VCCA_B  
VCCA  
NC  
ESR cap.  
<100 mΩ  
VAUX  
GND  
RSelect  
SELECT  
Figure 61. V  
not used, V  
configuration up to 100 mA  
AUX  
CCA  
33907/33908  
116  
NXP Semiconductors  
10  
Packaging  
10.1  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 91. Package mechanical dimensions  
Package  
Suffix  
Package outline drawing number  
7.0 x 7.0, 48-Pin LQFP Exposed Pad, with 0.5 mm  
pitch, and a 4.5 x 4.5 exposed pad  
AE  
98ASA00173D  
33907/33908  
NXP Semiconductors  
117  
33907/33908  
118  
NXP Semiconductors  
33907/33908  
NXP Semiconductors  
119  
33907/33908  
120  
NXP Semiconductors  
11  
References  
The following are URLs where you can obtain information on related NXP products and application solutions  
NXP.com support  
Description  
URL  
pages  
MC33907_08 System Basis Chip:  
AN4766  
AN4661  
Recommendations for PCB layout and external https://www.nxp.com/webapp/Download?colCode=AN4766  
components  
Designing the VCORE Compensation Network  
http://www.nxp.com/files/analog/doc/app_note/AN4661.pdf  
For The MC33907/MC33908 System Basis Chips  
Integrating the MPC5643L and MC33907/08 for  
http://www.nxp.com/files/analog/doc/app_note/AN4442.pdf  
Safety Applications  
AN4442  
AN4388  
Quad Flat Package (QFP)  
http://www.nxp.com/files/analog/doc/app_note/AN4388.pdf  
http://www.nxp.com/webapp/sps/site/  
prod_summary.jsp?code=MC33908&fpsp=1&tab=Design_Tools_Tab  
Power Dissipation Tool (Excel file)  
MC33907_8SMUG  
FMEDA  
MC33907_8 Safety Manual - User Guide  
https://www.nxp.com/webapp/Download?colCode=MC33907_8SMUG  
Upon demand  
MC33907_8 FMEDA  
Evaluation Board  
http://www.nxp.com/webapp/sps/site/  
prod_summary.jsp?code=KIT33907LAEEVB  
KIT33907LAEEVB  
KIT33908LAEEVB  
http://www.nxp.com/webapp/sps/site/  
prod_summary.jsp?code=KIT33908LAEEVB  
Evaluation Board  
http://www.nxp.com/webapp/sps/site/  
prod_summary.jsp?code=KITMPC5643DBEVM  
KITMPC5643DBEVM Evaluation Daughter Board (Qorivva MPC5643L)  
MC33907 Product Summary Page  
MC33908 Product Summary Page  
Analog Home Page  
http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=MC33907  
http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=MC33908  
http://www.nxp.com/analog  
33907/33908  
NXP Semiconductors  
121  
12  
Revision history  
Revision  
Date  
Description of changes  
11/2014  
12/2014  
Product Preview release  
1.0  
Initial release. No change to content.  
Corrected WD_LFSR register access in read mode  
Added  
Added clarifications after Table 77  
Correct minor typographic errors  
Changed document status to Advance Information  
Changed the document order number to MC33907-MC33908D2  
(35)  
2.0  
3.0  
1/2015  
1/2015  
2/2015  
Corrected Revision History  
Corrected typo for ICORE_LIM  
Updated V  
max. value from 8.2 to 8.0 V in Table 4  
SUP_UV_7  
Updated Thermal Resistance values in Table 3  
Changed Thermal Resistance Junction to Case Top value from 14.4 to 24.2 in Table 3 on page 10  
Corrected a typo on page 46 (changed “For V  
and V  
5.0 V” to “For V  
and V  
5.0 V”)  
SUP  
AUX  
CCA  
AUX  
4.0  
5.0  
Corrected typo for V  
in Table 4 on page 20  
BUS_CNT  
Corrected typo for D2 and D3 in Table 5 on page 25  
8/2016  
Updated to NXP document form and style  
10/2016  
Corrected format (default values in bold) of the default SPI register values to match Data sheet Rev. 4.0, 2/2015  
33907/33908  
122  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, SafeAssure, the SafeAssure logo, the Energy Efficient logo, and  
SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. All rights reserved.  
© 2016 NXP B.V.  
Document Number: MC33907-MC33908D2  
Rev. 5.0  
10/2016  

相关型号:

MC33909Q3AD

POWER SUPPLY MANAGEMENT CKT
NXP

MC33909Q5AD

System Basis Chip, 1 CAN, 4 LIN, 6 MSDI, 2A DC/DC, LV124, 5V/500mA LDO, LQFP-EP 48, Tray
NXP

MC33910

LIN System Basis Chip with High Side Drivers
FREESCALE

MC33910BAC

LIN System Basis Chip with 2x60mA High Side Drivers
FREESCALE

MC33910BACR2

LIN System Basis Chip with 2x60mA High Side Drivers
FREESCALE

MC33910G5AC

LIN System Basis Chip with High
FREESCALE

MC33910G5AC

0.11A BUF OR INV BASED PRPHL DRVR, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MS-026BBA, LQFP-32
ROCHESTER

MC33910G5AC/R2

LIN System Basis Chip with High Side Drivers
FREESCALE

MC33911

LIN System Basis Chip with DC Motor Pre-driver
FREESCALE

MC33911BAC

LIN System Basis Chip with DC Motor Pre-driver
FREESCALE

MC33911BAC/R2

BUF OR INV BASED PRPHL DRVR
NXP

MC33911BACR2

LIN System Basis Chip with DC Motor Pre-driver
FREESCALE