PCA85232DA [NXP]

LCD driver for low multiplex rates; 低复用率的LCD驱动器
PCA85232DA
型号: PCA85232DA
厂家: NXP    NXP
描述:

LCD driver for low multiplex rates
低复用率的LCD驱动器

驱动器 CD
文件: 总54页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA85232  
LCD driver for low multiplex rates  
Rev. 1 — 8 December 2010  
Product data sheet  
1. General description  
The PCA85232 is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD)1 with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 160 segments. It can be  
easily cascaded for larger LCD applications. The PCA85232 is compatible with most  
microprocessors or microcontrollers and communicates via a two-line bidirectional  
I2C-bus. Communication overheads are minimized by a display RAM with  
auto-incremented addressing, by hardware subaddressing, and by display memory  
switching (static and duplex drive modes).  
AEC-Q100 compliant for automotive applications.  
2. Features and benefits  
„ Single-chip LCD controller and driver for up to 640 elements  
„ Selectable backplane drive configuration: static, 2, 3, or 4 backplane multiplexing  
„ 160 segment drives:  
‹ Up to eighty 7-segment numeric characters  
‹ Up to forty 14-segment alphanumeric characters  
‹ Any graphics of up to 640 elements  
„ May be cascaded for large LCD applications (up to 5120 elements possible)  
„ 160 × 4-bit RAM for display data storage  
„ Software programmable frame frequency in the range of 117 Hz to 176 Hz; factory  
calibrated  
„ Wide LCD supply range: from 1.8 V for low threshold LCDs and up to 8.0 V for  
guest-host LCDs and high threshold (automobile) twisted nematic LCDs  
„ Internal LCD bias generation with voltage-follower buffers  
„ Selectable display bias configuration: static, 12, or 13  
„ Wide power supply range: from 1.8 V to 5.5 V  
„ LCD and logic supplies may be separated  
„ Low power consumption, typical: IDD = 4 μA, IDD(LCD) = 65 μA  
„ 400 kHz I2C-bus interface  
„ Auto-incremental display data loading across device subaddress boundaries  
„ Versatile blinking modes  
„ Compatible with Chip-On-Glass (COG) technology  
„ No external components  
„ Two sets of backplane outputs for optimal COG configurations of the application  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 15.  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Delivery form  
Version  
PCA85232U/2DA/Q1 bare die  
4. Marking  
Table 2.  
197 bumps; 6.5 × 1.16 × 0.40 mm  
chips with bumps in tray PCA85232U  
Marking codes  
Type number  
PCA85232U/2DA/Q1  
Marking code  
PC85132/232-1  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
2 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
5. Block diagram  
BP0 BP1 BP2 BP3  
S0 to S159  
160  
V
LCD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
DISPLAY REGISTER  
LCD  
VOLTAGE  
SELECTOR  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
DISPLAY  
CONTROL  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY  
RAM  
PCA85232  
CLK  
BLINKER  
CLOCK SELECT  
TIMEBASE  
AND TIMING  
SYNC  
COMMAND  
DECODE  
DATA POINTER AND  
AUTO INCREMENT  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
OSC  
OSCILLATOR  
SCL  
SDA  
2
SUBADDRESS  
COUNTER  
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
T1 T2 T3  
A0 A1  
SA0  
SDAACK  
V
DD  
013aaa282  
Fig 1. Block diagram of PCA85232  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
3 of 54  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
6. Pinning information  
6.1 Pinning  
+y  
PCA85232  
+x  
0
0
013aaa283  
Viewed from active side. For mechanical details, see Figure 32.  
Fig 2. Pinning diagram of PCA85232  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
6.2 Pin description  
Table 3.  
Symbol  
SDAACK[1]  
SDA[1]  
SCL  
Pin description  
Pin  
Description  
1 to 3  
I2C-bus acknowledge output  
I2C-bus serial data input  
I2C-bus serial clock input  
4 to 6  
7 to 9  
CLK  
10  
clock input and output  
VDD  
11 to 13  
supply voltage  
SYNC  
OSC  
14  
cascade synchronization input and output  
selection of internal or external clock  
15  
T1, T2 and T3  
16, 17 and 18 to 20  
dedicated testing pins; to be tied to VSS in  
application mode  
A0 and A1  
SA0  
21, 22  
subaddress inputs  
23  
I2C-bus slave address input  
ground supply voltage  
LCD supply voltage  
[2]  
VSS  
24 to 26  
27 to 29  
30, 31  
VLCD  
BP2 and BP0  
S0 to S79  
LCD backplane outputs  
LCD segment outputs  
LCD backplane outputs  
LCD segment outputs  
LCD backplane outputs  
32 to 111  
112 to 115  
116 to 195  
196, 197  
BP0, BP2, BP1, and BP3  
S80 to S159  
BP3 and BP1  
[1] For most applications SDA and SDAACK are shorted together (see Section 12.2).  
[2] The substrate (rear side of the die) is connected to VSS and should be electrically isolated.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
5 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7. Functional description  
The PCA85232 is a versatile peripheral device designed to interface between any  
microprocessor or microcontroller to a wide variety of LCD segment or dot matrix displays  
(see Figure 3). It can directly drive any static or multiplexed LCD containing up to four  
backplanes and up to 160 segments.  
The display configurations possible with the PCA85232 depend on the required number of  
active backplane outputs. A selection of display configurations is given in Table 4.  
All of the display configurations given in Table 4 can be implemented in a typical system  
as shown in Figure 4.  
dot matrix  
7-segment with dot  
14-segment with dot and accent  
013aaa312  
Fig 3. Example of displays suitable for PCA85232  
Table 4.  
Selection of possible display configurations  
Number of  
Backplanes  
Icons  
Digits/Characters  
Dot matrix/  
Elements  
7-segment  
14-segment  
4
3
2
1
640  
480  
320  
160  
80  
60  
40  
20  
40  
30  
20  
10  
640 dots (4 × 160)  
480 dots (3 × 160)  
320 dots (2 × 160)  
160 dots (1 × 160)  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
6 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
V
DD  
t
r
SDAACK  
R ≤  
2C  
B
V
DD  
V
LCD  
160 segment drives  
4 backplanes  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
LCD PANEL  
PCA85232  
(up to 640  
elements)  
OSC  
CONTROLLER  
A0 A1 SA0 V  
SS  
013aaa284  
V
SS  
Fig 4. Typical system configuration  
The host microprocessor or microcontroller maintains the 2-line I2C-bus communication  
channel with the PCA85232.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (VDD, VSS, and VLCD) and the LCD panel selected for the application.  
7.1 Power-On Reset (POR)  
At power-on the PCA85232 resets to the following starting conditions:  
All backplane and segment outputs are set to VLCD  
The selected drive mode is 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared (set to logic 0)  
The display is disabled  
If internal oscillator is selected (pin OSC connected to VSS), then there is no clock  
signal on pin CLK  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow  
the reset action to complete.  
7.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of  
three impedances connected in series between VLCD and VSS. The center impedance is  
bypassed by switch if the 12 bias voltage level for the 1:2 multiplex drive mode  
configuration is selected.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
7 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
mode-set command from the command decoder. The biasing configurations that apply to  
the preferred modes of operation, together with the biasing characteristics as functions of  
V
LCD and the resulting discrimination ratios (D) are given in Table 5.  
Table 5.  
Biasing characteristics  
Number of:  
LCD drive  
mode  
LCD bias  
configuration  
Voff(RMS) Von(RMS)  
------------------------ ----------------------- D = ------------------------  
VLCD VLCD Voff(RMS)  
Von(RMS)  
Backplanes Levels  
static  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
1:2 multiplex  
1:2 multiplex  
1:3 multiplex  
1:4 multiplex  
2
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is VLCD > 3Vth.  
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:  
a2 + 2a + n  
n × (1 + a)2  
Von(RMS)  
=
-----------------------------  
(1)  
V
LCD  
where the values for n are  
n = 1 for static drive mode  
n = 2 for 1:2 multiplex drive mode  
n = 3 for 1:3 multiplex drive mode  
n = 4 for 1:4 multiplex drive mode  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:  
a2 2a + n  
n × (1 + a)2  
Voff(RMS)  
=
-----------------------------  
(2)  
(3)  
V
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 3:  
(a + 1)2 + (n 1)  
Von(RMS)  
D =  
=
-------------------------------------------  
----------------------  
(a 1)2 + (n 1)  
Voff(RMS)  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
8 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with  
12 bias is 3 = 1.732 and the discrimination for an LCD drive mode of 1:4 multiplex with  
21  
12 bias is ---------- = 1.528 .  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias): VLCD  
1:4 multiplex (12 bias): VLCD  
=
=
6 × Voff(RMS) = 2.449Voff(RMS)  
(4 × 3)  
---------------------  
= 2.309Voff(RMS)  
3
These compare with VLCD = 3Voff(RMS) when 13 bias is used.  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
7.3.1 Electro-optical performance  
Suitable values for Von(RMS) and Voff(RMS) are dependant on the LCD liquid used. The  
RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of  
the pixel.  
For any given liquid, there are two threshold values defined. One point is at 10 % relative  
transmission (at Vlow) and the other at 90% relative transmission (at Vhigh), see Figure 5.  
For a good contrast performance, the following rules should be followed:  
V
V
on(RMS) Vhigh  
off(RMS) Vlow  
(4)  
(5)  
V
on(RMS) and Voff(RMS) are properties of the display driver and are affected by the selection  
of a, n (see Equation 1 to Equation 3) and the VLCD voltage.  
Vlow and Vhigh are properties of the LCD liquid and can be provided by the module  
manufacturer.  
It is important to match the module properties to those of the driver in order to achieve  
optimum performance.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
9 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
100 %  
90 %  
10 %  
V
RMS  
[V]  
V
low  
V
high  
OFF  
SEGMENT  
GREY  
SEGMENT  
ON  
SEGMENT  
001aam358  
Fig 5. Electro-optical characteristic: relative transmission curve of the liquid  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
10 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 6.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
0 V  
state 1  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa207  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = V(Sn+1)(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 6. Static drive mode waveforms  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
11 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.4.2 1:2 multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCA85232 allows the use of 12 bias or 13 bias in this mode as shown in Figure 7 and  
Figure 8.  
T
fr  
V
LCD  
LCD segments  
V
V
/2  
/2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
V
LCD  
state 2  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/2  
LCD  
0 V  
V  
state 1  
/2  
LCD  
V  
LCD  
V
V
LCD  
/2  
LCD  
0 V  
state 2  
V  
/2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
013aaa208  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
.
.
Fig 7. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
12 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
Sn  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
LCD  
/3  
V
/3  
LCD  
0 V  
V  
state 1  
/3  
/3  
LCD  
2V  
LCD  
V  
LCD  
V
LCD  
2V  
LCD  
/3  
V
LCD  
/3  
0 V  
V  
state 2  
/3  
/3  
LCD  
2V  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa209  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 8. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
13 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.4.3 1:3 multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies as  
shown in Figure 9.  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
Sn  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+2  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
LCD  
/3  
V
LCD  
/3  
state 1  
0 V  
V  
/3  
/3  
LCD  
2V  
LCD  
V  
LCD  
V
LCD  
2V  
LCD  
/3  
V
LCD  
/3  
state 2  
0 V  
V  
/3  
/3  
LCD  
2V  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa210  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 9. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
14 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.4.4 1:4 multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies as  
shown in Figure 10.  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
/3  
LCD  
BP0  
BP1  
BP2  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
LCD  
/3  
V
/3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
LCD  
/3  
LCD  
V  
V
LCD  
2V  
LCD  
/3  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
LCD  
/3  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
013aaa211  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 10. Waveforms for the 1:4 multiplex drive mode with 13 bias  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
15 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.5 Oscillator  
The internal logic and the LCD drive signals of the PCA85232 are timed by a frequency  
fclk which either is derived from the built-in oscillator frequency fosc:  
fosc  
fclk  
=
(6)  
-------  
64  
or equals an external clock frequency fclk(ext)  
:
fclk = fclk(ext)  
(7)  
Remark: A clock signal must always be supplied to the device; removing the clock may  
freeze the LCD in a DC state, which is not suitable for the liquid crystal.  
7.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to VSS. In this case the output  
from pin CLK provides the clock signal for cascaded PCA85232 in the system. However,  
the clock signal is only available at pin CLK, if the display is enabled. The display is  
enabled using the display enable bit (see Table 10).  
The output clock frequency is like specified in Table 19 with parameter fclk.  
7.5.2 External clock  
Connecting pin OSC to VDD enables an external clock source. Pin CLK then becomes the  
external clock input.  
7.6 Timing and frame frequency  
The timing of the PCA85232 organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs.  
In cascaded applications, the synchronization signal (SYNC) maintains the correct timing  
relationship between the PCA85232 in the system.  
When the internal clock is used, the clock frequency can be programmed by software  
such that the frame frequency can be chosen in the range of 117 Hz to 176 Hz (see  
Table 16). The internal oscillator is calibrated within an accuracy of ±5.1 % (at  
V
DD = 5.0 V; Tamb = 30 °C).  
The timing also generates the LCD frame frequency derived from an integer division of fclk  
(see Table 16).  
7.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
16 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.8 Segment outputs  
The LCD drive section includes 160 segment outputs (S0 to S159) which must be  
connected directly to the LCD. The segment output signals are generated in accordance  
with the multiplexed backplane signals and with data resident in the display register.  
When less than 160 segment outputs are required the unused segment outputs must be  
left open-circuit.  
7.9 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated in accordance with the selected LCD drive mode.  
In the 1:4 multiplex drive mode BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left  
open-circuit.  
In 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and may also be paired to increase the drive capabilities.  
In static drive mode the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
The pins for the four backplanes BP0 to BP3 are available on both pin bars of the chip. In  
applications it is possible to use either the pins for the backplanes  
on the top pin bar  
on the bottom pin bar  
or both of them to increase the driving strength of the device.  
When using all backplanes available they may be connected to the respective sibling  
(BP0 on the top pin bar with BP0 on the bottom pin bar and so on).  
7.10 Display RAM  
The display RAM is a static 160 × 4 bit RAM which stores LCD data. There is a one-to-one  
correspondence between  
the bits in the RAM bitmap and the LCD elements  
the RAM columns and the segment outputs  
the RAM rows and the backplane outputs.  
A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element;  
similarly, a logic 0 indicates the off-state.  
The display RAM bit map, Figure 11, shows the rows 0 to 3 which correspond with the  
backplane outputs BP0 to BP3, and the columns 0 to 159 which correspond with the  
segment outputs S0 to S159. In multiplexed LCD applications the segment data of the  
first, second, third, and fourth row of the display RAM are time-multiplexed with BP0,  
BP1, BP2, and BP3 respectively.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
17 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
columns  
display RAM addresses/segment outputs (S)  
155 156 157 158 159  
0
1
2
3
4
rows  
0
1
2
3
display RAM rows/  
backplane outputs  
(BP)  
013aaa220  
The display RAM bitmap shows the direct relationship between the display RAM addresses and  
the segment outputs; and between the bits in a RAM word and the backplane outputs.  
Fig 11. Display RAM bitmap  
When display data is transmitted to the PCA85232 the received display bytes are stored  
in the display RAM in accordance with the selected LCD drive mode. The data is stored as  
it arrives and does not wait for the acknowledge cycle as with the commands. Depending  
on the current multiplex drive mode, data is stored singularly, in pairs, triples, or  
quadruples. To illustrate the filling order, an example of a 7-segment numeric display  
showing all drive modes is given in Figure 12; the RAM filling organization depicted  
applies equally to other LCD types.  
The following applies to Figure 12:  
In static drive mode the eight transmitted data bits are placed in row 0 as one byte.  
In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into  
row 0 and 1 as two successive 4-bit RAM words.  
In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as  
three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is  
not recommended to use this bit in a display because of the difficult addressing. This  
last bit may, if necessary, be controlled by an additional transfer to this address but  
care should be taken to avoid overwriting adjacent data because always full bytes are  
transmitted.  
In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples  
into row 0, 1, 2, and 3 as two successive 4-bit RAM words.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
18 of 54  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
columns  
display RAM address/segment outputs (s)  
byte1  
S
n+2  
S
n+3  
S
n+4  
S
n+5  
S
n+6  
a
b
BP0  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
S
f
n+1  
rows  
static  
display RAM  
rows/backplane  
outputs (BP)  
MSB  
LSB  
g
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
x
S
S
n
x
x
x
e
n+7  
c
b
a
f
g
e
d
DP  
c
x
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte1 byte2  
BP0  
a
S
S
n
1:2  
b
n
n + 1 n + 2 n + 3  
f
n+1  
rows  
MSB  
LSB  
DP  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
b
x
x
f
e
c
x
x
d
DP  
x
multiplex  
g
x
x
BP1  
a
b
f
g
e c d  
e
S
S
n+2  
c
d
DP  
x
n+3  
columns  
display RAM address/segment outputs (s)  
BP0  
BP1  
byte1  
byte2  
byte3  
S
S
n+1  
a
1:3  
b
n
n + 1 n + 2  
S
n
f
n+2  
rows  
MSB  
LSB  
e
display RAM  
rows/backplane  
outputs (BP)  
0
1
2
3
b
DP  
c
a
d
g
x
f
g
multiplex  
b
DP  
c
a
d
g
f
e
x
x
BP2  
e
c
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte2 byte3 byte4  
byte1  
byte5  
a
S
S
n
1:4  
b
BP2  
BP3  
n
n + 1  
BP0  
BP1  
f
rows  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
c
f
MSB  
LSB  
d
multiplex  
e
g
d
e
c
b
a
c
b
DP  
f
e
g
d
DP  
DP  
n+1  
001aaj646  
x = data bit unchanged  
Fig 12. Relationships between LCD layout, drive mode, display RAM filling order, and display data transmitted over the I2C-bus  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.11 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load-data-pointer command (see Table 8). Following this command, an  
arriving data byte is stored at the display RAM address indicated by the data pointer. The  
filling order is shown in Figure 12.  
After each byte is stored, the content of the data pointer is automatically incremented by a  
value dependent on the selected LCD drive mode:  
In static drive mode by eight  
In 1:2 multiplex drive mode by four  
In 1:3 multiplex drive mode by three  
In 1:4 multiplex drive mode by two  
If an I2C-bus data access is terminated early then the state of the data pointer is unknown.  
The data pointer should be re-written prior to further RAM accesses.  
7.12 Subaddress counter  
The storage of display data is conditioned by the content of the subaddress counter.  
Storage is allowed only when the content of the subaddress counter matches with the  
hardware subaddress applied to A0 and A1. The subaddress counter value is defined by  
the device-select command (see Table 13). If the content of the subaddress counter and  
the hardware subaddress do not match then data storage is inhibited but the data pointer  
is incremented as if data storage had taken place. The subaddress counter is also  
incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCA85232 occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character.  
The hardware subaddress must not be changed whilst the device is being accessed on  
the I2C-bus interface.  
7.13 Output bank selector  
The output bank selector (see Table 14) selects one of the four rows per display RAM  
address for transfer to the display register. The actual row selected depends on the  
particular LCD drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by  
the contents of row 1, row 2, and then row 3  
In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially  
In 1:2 multiplex mode, rows 0 and 1 are selected  
In static mode, row 0 is selected  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
20 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
The PCA85232 includes a RAM bank switching feature in the static and 1:2 multiplex  
drive modes. In the static drive mode, the bank-select command may request the contents  
of row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex  
mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives  
the provision for preparing display information in an alternative bank and to be able to  
switch to it once it is assembled.  
7.14 Input bank selector  
The input bank selector loads display data into the display RAM in accordance with the  
selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode  
or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command (see  
Table 14). The input bank selector functions independently to the output bank selector.  
7.15 Blinker  
The display blinking capabilities of the PCA85232 are very versatile. The whole display  
can blink at frequencies selected by the blink-select command (see Table 15). The blink  
frequencies are fractions of the clock frequency. The ratios between the clock and blink  
frequencies depend on the blink mode in which the device is operating (see Table 6).  
Table 6.  
Blink frequencies  
Assuming that fclk = 3.500 kHz.  
Blink mode  
Operating mode ratio  
Blink frequency  
blinking off  
off  
1
-
~4.56 Hz  
fclk  
--------  
768  
fblink  
fblink  
fblink  
=
2
3
~2.28 Hz  
~1.14 Hz  
fclk  
=
-----------  
1536  
fclk  
=
-----------  
3072  
An additional feature is for an arbitrary selection of LCD elements to blink. This applies to  
the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the blink frequency. This mode can  
also be specified by the blink-select command (see Table 15).  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD elements can blink selectively by changing the display RAM data at fixed time  
intervals.  
The entire display can blink at a frequency other than the nominal blinking frequency. This  
can be effectively performed by resetting and setting the display enable bit E at the  
required rate using the mode-set command (see Table 10).  
7.16 Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
21 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
By connecting pin SDAACK to pin SDA on the PCA85232, the SDA line becomes fully  
I2C-bus compatible. In COG applications where the track resistance from the SDAACK  
pin to the system SDA line can be significant, possibly a voltage divider is generated by  
the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. As a  
consequence it may be possible that the acknowledge generated by the PCA85232 can’t  
be interpreted as logic 0 by the master. In COG applications where the acknowledge cycle  
is required, it is therefore necessary to minimize the track resistance from the SDAACK  
pin to the system SDA line to guarantee a valid LOW level.  
By separating the acknowledge output from the serial data line (having the SDAACK open  
circuit) design efforts to generate a valid acknowledge level can be avoided. However, in  
that case the I2C-bus master has to be set up in such a way that it ignores the  
acknowledge cycle.2  
The following definition assumes SDA and SDAACK are connected and refers to the pair  
as SDA.  
7.16.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 13).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 13. Bit transfer  
7.16.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change  
of the data line, while the clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH change of the data line while the clock is HIGH is defined as the STOP  
condition (P). The START and STOP conditions are shown in Figure 14.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 14. Definition of START and STOP conditions  
2. For further information, please consider the NXP application note: Ref. 1 “AN10170”.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
22 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.16.2 System configuration  
A device generating a message is a transmitter; a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 15.  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 15. System configuration  
7.16.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is shown in Figure 16.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 16. Acknowledgement on the I2C-bus  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
23 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
7.16.4 I2C-bus controller  
The PCA85232 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCA85232 are  
the acknowledge signals from the selected devices. Device selection depends on the  
I2C-bus slave address, on the transferred command data, and on the hardware  
subaddress.  
In single device applications, the hardware subaddress inputs A0 and A1 are normally tied  
to VSS which defines the hardware subaddress 0. In multiple device applications  
A0 and A1 are tied to VSS or VDD in accordance with a binary coding scheme such that no  
two devices with a common I2C-bus slave address have the same hardware subaddress.  
7.16.5 Input filters  
To enhance noise immunity in electrical adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
7.16.6 I2C-bus protocol  
Two I2C-bus slave addresses (0111 000 and 0111 001) are reserved for the  
PCA85232.The entire I2C-bus slave address byte is shown in Table 7.  
Table 7.  
I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
0
1
1
1
0
0
SA0  
The PCA85232 is a write-only device and will not respond to a read access, therefore bit 0  
should always be logic 0. Bit 1 of the slave address byte, that a PCA85232 will respond to,  
is defined by the level tied to its SA0 input (VSS for logic 0 and VDD for logic 1).  
Having two reserved slave addresses allows the following on the same I2C-bus:  
Up to 8 PCA85232 on the same I2C-bus for very large LCD applications  
The use of two types of LCD multiplex on the same I2C-bus  
The I2C-bus protocol is shown in Figure 17. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of two possible PCA85232  
slave addresses available. All PCA85232 with the corresponding SA0 level acknowledge  
in parallel to the slave address, but all PCA85232 with the alternative SA0 level ignore the  
whole I2C-bus transfer.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
24 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
R/W = 0  
slave address  
control byte  
RAM/command byte  
S
A
0
M
S
B
L
S
B
C
O
R
S
S
0
1
1
1
0
0
0
A
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
A
0
S
0
1
1
1
0
0
0
A
0
1
1
0
RAM DATA  
COMMAND  
COMMAND  
RAM DATA  
A
A
A
A
A
A
P
A
A
A
b) transmit two command bytes  
S
S
0
1
1
1
0
0
A
0
0
A
0
0
0
1
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM date bytes  
S
S
0
1
1
1
0
0
A
0
0
A
1
0
RAM DATA  
A
P
mgl752  
Fig 17. I2C-bus protocol  
After acknowledgement, a control byte follows which defines if the next byte is RAM or  
command information. The control byte also defines if the next byte is a control byte or  
further RAM or command data.  
Table 8.  
Control byte description  
Bit  
Symbol Value  
Description  
7
CO  
continue bit  
0
last control byte  
control bytes continue  
register selection  
command register  
data register  
1
6
RS  
0
1
5 to 0  
-
not relevant  
MSB  
7
LSB  
6
5
4
3
2
1
0
CO RS  
not relevant  
mgl753  
Fig 18. Control byte format  
In this way it is possible to configure the device and then fill the display RAM with little  
overhead.  
The command bytes and control bytes are also acknowledged by all addressed  
PCA85232 connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter; see Section 7.11 and Section 7.12.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
25 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
The acknowledgement after each byte is made only by the (A0 and A1) addressed  
PCA85232. After the last (display) byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be asserted to RESTART an I2C-bus access.  
7.17 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. The  
commands available to the PCA85232 are defined in Table 9.  
Table 9.  
Definition of PCA85232 commands  
Operation code  
Command  
Reference  
Bit  
7
1
0
0
1
1
1
1
6
1
0
1
1
1
1
1
5
0
0
0
1
1
1
1
4
0
0
0
0
1
1
0
3
2
1
0
mode-set  
E
B
M[1:0]  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
load-data-pointer-MSB  
load-data-pointer-LSB  
device-select  
bank-select  
P[7:4]  
P[3:0]  
0
1
0
1
0
A[1:0]  
I
0
O
blink-select  
AB  
BF[1:0]  
frequency-prescaler  
F[2:0]  
Table 10. Mode-set command bit description  
Bit  
7 to 4  
3
Symbol  
Value  
Description  
-
1100  
fixed value  
E
display status  
0[1]  
1
disabled (blank)[2]  
enabled  
2
B
LCD bias configuration[3]  
13 bias  
12 bias  
0[1]  
1
1 to 0  
M[1:0]  
LCD drive mode selection  
static; BP0  
01  
10  
1:2 multiplex; BP0, BP1  
1:3 multiplex; BP0, BP1, BP2  
1:4 multiplex; BP0, BP1, BP2, BP3  
11  
00[1]  
[1] Power-on and reset value.  
[2] The possibility to disable the display allows implementation of blinking under external control; the enable bit  
determines also whether the internal clock signal is available at the CLK pin (see Section 7.5.1).  
[3] Not applicable for static drive mode.  
Table 11. Load-data-pointer-MSB command bit description  
Bit  
Symbol  
-
Value  
Description  
7 to 4  
3 to 0  
0000  
0000[1] to  
1001  
fixed value  
P[7:4]  
P7 to P4 defines the first 4 (most significant) bits of  
the data pointer that indicates one of the 160 display  
RAM addresses  
[1] Power-on and reset value.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
26 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 12. Load-data-pointer-LSB command bit description  
Bit  
Symbol  
-
Value  
Description  
7 to 4  
3 to 0  
0100  
0000[1] to  
1111  
fixed value  
P[3:0]  
P3 to P0 defines the last 4 (least significant) bits of the  
data pointer that indicates one of the 160 display RAM  
addresses  
[1] Power-on and reset value.  
Table 13. Device-select command bit description  
Bit  
Symbol  
-
Value  
Description  
7 to 2  
1 to 0  
111000  
00[1] to 11  
fixed value  
A[1:0]  
two bits of immediate data, bits A0 to A1, are  
transferred to the subaddress counter to define  
one of four hardware subaddresses (see Table 20)  
[1] Power-on and reset value.  
Table 14. Bank-select command bit description  
Bit  
Symbol Value  
Description  
Static  
1:2 multiplex[1]  
7 to 2  
1
-
I
111110  
fixed value  
input bank selection; storage of arriving display data  
0[2]  
1
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
O
output bank selection; retrieval of LCD display data  
0[2]  
1
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.  
[2] Power-on and reset value.  
Table 15. Blink-select command bit description  
Bit  
7 to 3  
2
Symbol Value  
Description  
-
11110  
fixed value  
AB  
blink mode selection  
0[1]  
1
normal blinking[2]  
alternate RAM bank blinking[3]  
1 to 0  
BF[1:0]  
blink frequency selection  
00[1]  
01  
off  
1
10  
2
11  
3
[1] Power-on and reset value.  
[2] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.  
[3] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
27 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 16. Frame-frequency prescaler  
Bit  
Symbol Value  
Description  
Nominal frame frequency[1] Equation  
7 to 4  
3 to 0  
-
11101  
000  
fixed value  
F[2:0]  
defines the division factor for the frame frequency (ffr)  
117 Hz  
126 Hz  
137 Hz  
146 Hz  
156 Hz  
167 Hz  
176 Hz  
146 Hz  
fclk  
----- -------  
64  
80 24  
ffr  
ffr  
ffr  
ffr  
ffr  
ffr  
ffr  
ffr  
=
=
=
=
=
=
=
=
×
001  
010  
011[2]  
100  
101  
110  
111  
fclk  
64  
----- -------  
×
74 24  
fclk  
64  
----- -------  
×
68 24  
fclk  
-------  
24  
fclk  
----- -------  
64  
60 24  
×
fclk  
64  
----- -------  
×
56 24  
fclk  
64  
----- -------  
×
53 24  
fclk  
-------  
24  
[1] Nominal frame frequency calculated for an internal operating frequency of 3.5 kHz.  
[2] Power-on and reset value.  
7.18 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCA85232 and co-ordinates their effects. The  
controller is also responsible for loading display data into the display RAM as required by  
the filling order.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
28 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
8. Internal circuitry  
V
V
DD  
LCD  
S0 to S159,  
BP0 to BP3  
V
V
V
SS  
SS  
DD  
SDAACK, SCL,  
SDA, T3, V  
LCD  
SYNC, T1,  
T2, A0, A1,  
OSC, CLK,  
SA0  
V
V
SS  
SS  
013aaa221  
Fig 19. Device protection diagram  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
29 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
9. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 17. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
0.5  
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
supply voltage  
supply current  
mA  
V
VLCD  
LCD supply voltage  
+9.0  
+50  
IDD(LCD) LCD supply current  
mA  
V
Vi  
input voltage  
on pins CLK, SYNC,  
SA0, OSC, SDA, SCL,  
A0, A1, T1, T2, and T3  
+6.5  
II  
input current  
10  
+10  
mA  
V
VO  
output voltage  
on pins S0 to S159 and 0.5  
+9.0  
BP0 to BP3  
on pins SDAACK,  
CLK, SYNC  
0.5  
+6.5  
V
IO  
output current  
10  
+10  
mA  
mA  
mW  
mW  
V
ISS  
ground supply current  
total power dissipation  
power dissipation per output  
50  
+50  
Ptot  
P/out  
VESD  
-
-
-
400  
100  
[2]  
electrostatic discharge  
voltage  
HBM  
MM  
±4500  
[3]  
[4]  
[5]  
-
±250  
200  
V
Ilu  
latch-up current  
-
mA  
°C  
°C  
Tstg  
Toper  
storage temperature  
operating temperature  
65  
40  
+150  
+95  
[1] Stresses above these values listed may cause permanent damage to the device.  
[2] Pass level; Human Body Model (HBM) according to Ref. 6 “JESD22-A114”.  
[3] Pass level; Machine Model (MM), according to Ref. 7 “JESD22-A115”.  
[4] Pass level; latch-up testing, according to Ref. 8 “JESD78” at maximum ambient temperature  
(Tamb(max) = 95 °C).  
[5] According to the NXP store and transport requirements (see Ref. 10 “NX3-00092”) the devices have to be  
stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products  
deviant conditions are described in that document.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
30 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
10. Static characteristics  
Table 18. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 1.8 V to 8.0 V; Tamb = 40 °C to +95 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VDD  
supply voltage  
1.8  
-
-
-
-
-
-
5.5  
8.0  
30  
80  
60  
80  
V
VLCD  
IDD  
LCD supply voltage  
supply current  
1.8  
V
[1][2][3]  
[1][3]  
fclk(ext) = 3.500 kHz  
-
-
-
-
μA  
μA  
μA  
μA  
with internal oscillator running  
fclk(ext) = 3.500 kHz  
[1][2][4]  
[1][4]  
IDD(LCD) LCD supply current  
with internal oscillator running  
Logic  
VI  
input voltage  
on pins SDA and SCL  
all other input pins  
0.5  
-
-
-
+5.5  
V
0.5  
VDD + 0.5 V  
VIH  
VIL  
VO  
HIGH-level input voltage on pins CLK, SYNC, OSC, A0, A1,  
SA0, SCL, and SDA  
0.7VDD  
-
V
LOW-level input voltage  
on pins CLK, SYNC, OSC, A0, A1,  
SA0, SCL, and SDA  
-
-
0.3VDD  
V
output voltage  
on pins CLK and SYNC  
on pin SDAACK  
0.5  
0.5  
0.8VDD  
VSS  
-
-
-
-
-
VDD + 0.5 V  
+5.5  
VDD  
0.2VDD  
-
V
VOH  
VOL  
IOH  
HIGH-level output voltage on pin SYNC, CLK  
V
LOW-level output voltage on pin SYNC, CLK, SDAACK  
V
HIGH-level output current output source current;  
VOH = 4.6 V; VDD = 5 V; on pin CLK  
1.5  
mA  
IOL  
LOW-level output current output sink current;  
on pins CLK and SYNC  
VOL = 0.4 V; VDD = 5 V  
on pin SDAACK  
1.5  
-
-
mA  
VDD 2 V; VOL = 0.2VDD  
3
-
-
mA  
mA  
mA  
V
2 V < VDD < 3 V; VOL = 0.4 V  
VDD 3 V; VOL = 0.4 V  
3
-
-
6
-
-
VPOR  
IL  
power-on reset voltage  
1.0  
1  
1.3  
-
1.6  
+1  
leakage current  
VI = VDD or VSS; on pin OSC,  
μA  
CLK, A0, A1, SA0, SDA, and SCL  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
31 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 18. Static characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 1.8 V to 8.0 V; Tamb = 40 °C to +95 °C; unless otherwise specified.  
Symbol Parameter  
LCD outputs  
Conditions  
Min  
Typ  
Max  
Unit  
[5][6]  
ΔVO  
output voltage variation  
output resistance  
on pins BP0 to BP3 and S0 to S159  
VLCD = 5 V  
30  
-
+30  
mV  
RO  
on pins BP0 to BP3  
on pins S0 to S159  
-
-
1.5  
2.0  
5
5
kΩ  
kΩ  
[1] LCD outputs are open-circuit; inputs at VSS or VDD; I2C-bus inactive; VLCD = 8.0 V, VDD = 5.0 V and RAM written with all logic 1.  
[2] External clock with 50 % duty factor.  
[3] For typical values, see Figure 20  
[4] For typical values, see Figure 21  
[5] Variation between any 2 backplanes on a given voltage level; static measured.  
[6] Variation between any 2 segments on a given voltage level; static measured.  
001aal525  
25  
I
DD  
(μA)  
20  
(1)  
15  
10  
5
(2)  
0
1
2
3
4
5
6
V
DD  
(V)  
(1) IDD internal is measured with the internal oscillator.  
(2) IDD external is measured with an external clock.  
Tamb = 30 °C; 1:4 multiplex; VLCD = 8 V; all RAM written with logic 1; no display connected.  
Fig 20. IDD with respect to VDD  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
32 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
001aal526  
70  
I
DD(LCD)  
(μA)  
50  
30  
10  
1
3
5
7
9
V
LCD  
(V)  
Tamb = 30 °C; 1:4 multiplex; all RAM written with logic 1; no display connected; fclk = 3.5 kHz.or  
clk(ext) = 3.500 kHz.  
f
Fig 21. IDD(LCD) with respect to VLCD  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
33 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
11. Dynamic characteristics  
Table 19. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 1.8 V to 8.0 V; Tamb = 40 °C to +95 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
[1][2][3]  
[4]  
fclk  
clock frequency  
on pin CLK;  
VDD = 5 V ± 0.5 V  
3050 3500 4052 Hz  
fclk(ext)  
tclk(H)  
tclk(L)  
Δffr  
external clock frequency  
HIGH-level clock time  
LOW-level clock time  
frame frequency variation  
700  
100  
100  
-
-
-
5000 Hz  
external clock source used  
external clock source used  
VDD = 5 V ± 0.5 V  
-
-
μs  
μs  
ffr = 146 Hz; Tamb = 30 °C  
ffr = 135 Hz; Tamb = 95 °C  
ffr = 157 Hz; Tamb = 40 °C  
5.1  
6.2  
7.8  
-
-
+5.1  
%
%
-
+6.9  
-
+7.6  
%
tPD(SYNC_N) SYNC propagation delay  
30  
-
-
-
-
ns  
μs  
μs  
tSYNC_NL  
SYNC LOW time  
100  
-
tPD(drv)  
driver propagation delay  
VLCD = 5 V  
10  
Timing characteristics: I2C-bus[5]  
fSCL  
tBUF  
SCL clock frequency  
-
-
-
400 kHz  
bus free time between a STOP and START  
condition  
1.3  
-
μs  
tHD;STA  
tSU;STA  
tVD;ACK  
tLOW  
tHIGH  
tf  
hold time (repeated) START condition  
set-up time for a repeated START condition  
data valid acknowledge time  
LOW period of the SCL clock  
HIGH period of the SCL clock  
fall time  
0.6  
0.6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
μs  
μs  
μs  
μs  
μs  
μs  
μs  
-
0.9  
-
1.3  
0.6  
-
-
of both SDA and SCL signals  
of both SDA and SCL signals  
0.3  
0.3  
tr  
rise time  
-
Cb  
capacitive load for each bus line  
data set-up time  
-
400 pF  
tSU;DAT  
tHD;DAT  
tSU;STO  
tSP  
200  
0
-
ns  
ns  
μs  
ns  
data hold time  
-
set-up time for STOP condition  
0.6  
-
-
pulse width of spikes that must be  
suppressed by the input filter  
50  
[1] Typical output duty factor: 50 % measured at the CLK output pin.  
[2] For the respective frame frequency ffr see Table 16.  
[3] For the characteristics of VDD at a fixed temperature or of the temperature at a fixed VDD, see Figure 22 and Figure 23.  
[4] For fCLK(ext) > 4 kHz it is recommended to use an external pull-up resistor between pin SYNC and pin VDD. The value of the resistor  
should be between 100 kΩ and 1 MΩ.  
[5] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
34 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
001aal527  
3540  
f
clk  
(Hz)  
3500  
3460  
3420  
3380  
3340  
1
2
3
4
5
6
V
DD  
(V)  
Tamb = 30 °C.  
Fig 22. Typical clock frequency (fclk) with respect to VDD  
001aal481  
170  
f
fr  
(Hz)  
7.6 %  
7.8 %  
160  
max  
typ  
150  
140  
130  
120  
5.1 %  
5.1 %  
6.9 %  
6.2 %  
min  
60  
40  
20  
0
20  
40  
60  
80  
Temperature (°C)  
100  
Condition: VDD = 5 V ± 0.5 V; frame frequency prescaler = 011; 146 Hz typical.  
The frame frequency (ffr) is calculated from the clock frequency (fclk) according to the equations  
described in Table 16.  
Fig 23. Frame frequency variation  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
35 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
1 / f  
CLK  
t
t
clk(L)  
clk(H)  
0.7 V  
0.3 V  
DD  
CLK  
DD  
0.7 V  
0.3 V  
DD  
SYNC  
DD  
t
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
BP0 to BP3,  
and S0 to S159  
(V  
DD  
= 5 V)  
0.5 V  
t
001aah848  
PD(drv)  
Fig 24. Driver timing waveforms  
t
t
t
SU;DAT  
f
r
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
cont.  
cont.  
t
t
HD;DAT  
VD;ACK  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
HD;STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD;ACK  
t
t
t
t
SU;STO  
SU;STA  
HD;STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
013aaa110  
Fig 25. I2C-bus timing waveforms when SDA and SDAACK are connected  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
36 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
12. Application information  
12.1 Pull-up resistor sizing on I2C-bus  
12.1.1 Max value of pull-up resistor  
The bus capacitance (Cb) is the total capacitance of wire, connections, and pins. This  
capacitance on pin SDA limits the maximum value of the pull-up resistor (RPU) due to the  
specified rise time.  
According to the I2C-bus specification the rise time (tr) is defined between the VDD related  
input threshold of VIL = 0.3VDD and VIH = 0.7VDD. The value for tr(max) is 300 ns.  
tr will be calculated with Equation 8:  
tr = t2 t1  
(8)  
whereas t1 and t2 are the time since the charging started. The values for t1 and t2 are  
derivatives of the functions V(t1) and V(t2):  
C
V(t1) = 0.3VDD = VDD(1 e-t1 R  
)
)
(9)  
PU  
b
C
V(t2) = 0.7VDD = VDD(1 e-t2 R  
(10)  
PU  
b
with the results of  
t1 = –RPUCb × ln(0.7)  
t2 = –RPUCb × ln(0.3)  
(11)  
(12)  
(13)  
tr = –RPUCb × ln(0.3) + RPUCb × ln(0.7)  
RPU(max) is a function of the rise time (tr) and the bus capacitance (Cb) and will be  
calculated with Equation 14:  
tr  
300 × 109  
0.8473Cb  
----------------------  
RPU(max)  
=
=
(14)  
-------------------------  
0.8473Cb  
12.1.2 Min value of pull-up resistor  
The supply voltage limits the minimum value of resistor RPU due to the specified minimum  
sink current (see value of IOL on pin SDAACK in Table 18). RPU(min) as a function of VDD is  
calculated with Equation 15:  
VDD VOL  
RPU(min)  
=
(15)  
--------------------------  
IOL  
The designer now has the minimum and maximum value of RPU. The values for RPU(max)  
and RPU(min) are shown in Figure 26 and Figure 27.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
37 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
001aak441  
6
R
PU(max)  
(kΩ)  
5
4
3
2
1
0
20  
60  
100  
140  
180  
220  
260  
300  
340  
380  
420  
460  
500  
(pF)  
C
b
Fig 26. Values for RPU(max)  
001aak440  
6
R
PU(min)  
(kΩ)  
5
4
3
2
1
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
6
(V)  
DD  
Fig 27. Values for RPU(min)  
12.2 SDA and SDAACK configuration  
The Serial DAta line (SDA) and the I2C-bus acknowledge line (SDAACK) are split. Both  
lines can be connected together to facilitate a single line SDA.  
SDA  
SDA  
SDAACK  
SDAACK  
two wire mode  
single wire mode  
013aaa111  
Fig 28. SDA, SDAACK configurations  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
38 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
12.3 Cascaded operation  
In large display configurations, up to 8 PCA85232 can be distinguished on the same  
I2C-bus by using the 2-bit hardware subaddress (A0 and A1) and the programmable  
I2C-bus slave address (SA0).  
Table 20. Addressing cascaded PCA85232  
Cluster  
Bit SA0  
Pin A1  
Pin A0  
Device  
1
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
When cascaded PCA85232 are synchronized, they can share the backplane signals from  
one of the devices in the cascade. Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one device need to be through-plated to  
the backplane electrodes of the display. The other PCA85232 of the cascade contribute  
additional segment outputs but their backplane outputs are left open-circuit (see  
Figure 29).  
For display sizes that are not multiple of 640 elements, a mixed cascaded system can be  
considered containing only devices like PCA85232 and PCA85133. Depending on the  
application, one must take care of the software commands compatibility and pin  
connection compatibility.  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCA85232. This synchronization is guaranteed after the Power-On Reset (POR). The  
only time that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by  
noise in adverse electrical environments, or by the definition of a multiplex mode when  
PCA85232 with different SA0 levels are cascaded). SYNC is organized as an input/output  
pin; the output selection being realized as an open-drain driver with an internal pull-up  
resistor. A PCA85232 asserts the SYNC line at the onset of its last active backplane signal  
and monitors the SYNC line at all other times. Should synchronization in the cascade be  
lost, it will be restored by the first PCA85232 to assert SYNC. The timing relationship  
between the backplane waveforms and the SYNC signal for the various drive modes of  
the PCA85232 are shown in Figure 31.  
When using an external clock signal with high frequencies (fclk(ext) > 4 kHz) it is  
recommended to have an external pull-up resistor between pin SYNC and pin VDD (see  
Table 19). This resistor should be present even when no cascading configuration is used!  
When using it in a cascaded configuration, care must be taken not to route the SYNC  
signal to close to noisy signals.  
The contact resistance between the SYNC pads of cascaded devices must be controlled.  
If the resistance is too high, the device will not be able to synchronize properly. This is  
particularly applicable to COG applications. Table 21 shows the limiting values for contact  
resistance.  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
39 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 21. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000 Ω  
2200 Ω  
1200 Ω  
3 to 5  
6 to 8  
In the cascaded applications, the OSC pin of the PCA85232 with subaddress 0 is  
connected to VSS so that this device uses its internal clock to generate a clock signal at  
the CLK pin. The other PCA85232 devices are having the OSC pin connected to VDD  
,
meaning that these devices are ready to receive external clock, the signal being provided  
by the device with subaddress 0.  
In the case that the master is providing the clock signal to the slave devices, care must be  
taken that the sending of display enable or disable will be received by both, the master  
and the slaves at the same time. When the display is disabled the output from pin CLK is  
disabled too. The disconnection of the clock may result in a DC component for the display.  
Alternatively, the schematic can be also constructed such that all the devices have OSC  
pin connected to VDD and thus an external CLK being provided for the system (all devices  
connected to the same external CLK).  
A configuration where SYNC is connected but all PCA85232 are using the internal clock  
(OSC pin tied to VSS) is not recommended and may lead to display artifacts!  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
40 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
V
V
LCD  
DD  
SDA  
SCL  
segment drivers  
PCA85232  
LCD PANEL  
SYNC  
CLK  
(2)  
OSC  
backplanes  
(open-circuit)  
A0  
V
A1  
SA0 V  
SS  
V
V
LCD  
DD  
t
r
R ≤  
V
2C  
DD  
LCD  
b
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
segment drivers  
backplanes  
PCA85232  
SYNC  
(1)  
CONTROLLER  
CLK  
OSC  
013aaa285  
A0  
A1  
SA0 V  
SS  
V
SS  
(1) Is master (OSC connected to VSS).  
(2) Is slave (OSC connected to VDD).  
Fig 29. Cascaded configuration with two PCA85232 using the internal clock of the master  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
41 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
V
V
LCD  
DD  
SDA  
SCL  
segment drives  
PCA85133  
LCD PANEL  
SYNC  
CLK  
(2)  
OSC  
backplanes  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
V
V
LCD  
DD  
t
r
R ≤  
V
V
LCD  
2C  
DD  
b
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
segment drives  
backplanes  
PCA85232  
SYNC  
(1)  
CONTROLLER  
CLK  
OSC  
013aaa286  
A0  
A1  
SA0 V  
SS  
V
SS  
(1) Is master (OSC connected to VSS).  
(2) Is slave (OSC connected to VDD).  
Fig 30. Cascaded configuration with one PCA85232 and one PCA85133 using the internal  
clock of the master  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
42 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
1
T
fr  
=
f
fr  
BP0  
SYNC  
(a) static drive mode  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode  
BP2  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode  
BP3  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode  
001aaj498  
Fig 31. Synchronization of the cascade for the various PCA85232 drive modes  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
43 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
13. Bare die outline  
Bare die; 197 bumps; 6.5 x 1.16 x 0.40 mm  
PCA85232U  
X
D
166  
61  
+y  
+x  
E
0
S1  
C1  
0
Marking code: PC85132/232-1  
167  
197 1  
60  
Y
A
b
A
2
e
e
1
A
1
L
detail Y  
detail X  
0
1
2 mm  
scale  
Dimensions  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
L
Unit  
max  
A
A
A
2
b
D
E
e
e
1
1
0.018  
mm nom 0.40 0.015 0.380 0.0338 6.5  
min 0.012  
1.16 0.054 0.2025 0.090  
Note  
1. Dimension not drawn to scale.  
pca85232_do  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
10-02-03  
PCA85232U  
Fig 32. Bare die outline of PCA85232  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
44 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 22. Bump locations  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 32.  
Symbol  
SDAACK  
SDAACK  
SDAACK  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
CLK  
VDD  
VDD  
VDD  
SYNC  
OSC  
T1  
Bump  
1
X (μm)  
1165.3  
1111.3  
1057.3  
854.8  
800.8  
746.8  
575.8  
521.8  
467.8  
316.2  
204.1  
150.1  
96.1  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
Symbol  
S68  
S69  
S70  
S71  
S72  
S73  
S74  
S75  
S76  
S77  
S78  
S79  
BP0  
BP2  
BP1  
BP3  
S80  
S81  
S82  
S83  
S84  
S85  
S86  
S87  
S88  
S89  
S90  
S91  
S92  
S93  
S94  
S95  
S96  
S97  
S98  
S99  
S100  
S101  
S102  
Bump  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
X (μm)  
750.2  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
2
696.2  
3
642.2  
4
588.2  
5
534.2  
6
480.2  
7
426.2  
8
372.2  
9
318.2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
264.2  
210.2  
156.2  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
86.8  
6.9  
32.8  
119.4  
21.2  
203.1  
75.2  
T2  
286.8  
190.7  
244.7  
298.7  
352.7  
406.7  
460.7  
514.7  
568.7  
622.7  
676.7  
730.7  
784.7  
838.7  
892.7  
946.7  
1000.7  
1054.7  
1108.7  
1224.2  
1278.2  
1332.2  
1386.2  
1440.2  
T3  
389.9  
T3  
443.9  
T3  
497.9  
A0  
640.5  
A1  
724.2  
SA0  
VSS  
807.9  
893.0  
VSS  
947.0  
VSS  
1001.0  
1107.2  
1161.2  
1215.2  
1303.4  
1357.4  
1411.4  
1465.4  
1519.4  
1573.4  
1627.4  
1681.4  
1735.4  
1789.4  
VLCD  
VLCD  
VLCD  
BP2  
BP0  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
45 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 22. Bump locations …continued  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 32.  
Symbol  
S8  
Bump  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
X (μm)  
1843.4  
1897.4  
1951.4  
2005.4  
2059.4  
2113.4  
2167.4  
2221.4  
2363.9  
2417.9  
2471.9  
2525.9  
2579.9  
2633.9  
2687.9  
2741.9  
2795.9  
2849.9  
2903.9  
2957.9  
3011.9  
3067.7  
3013.7  
2959.7  
2905.7  
2851.7  
2797.7  
2743.7  
2689.7  
2635.7  
2520.2  
2466.2  
2412.2  
2358.2  
2304.2  
2250.2  
2196.2  
2142.2  
2088.2  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
Symbol  
S103  
S104  
S105  
S106  
S107  
S108  
S109  
S110  
S111  
S112  
S113  
S114  
S115  
S116  
S117  
S118  
S119  
S120  
S121  
S122  
S123  
S124  
S125  
S126  
S127  
S128  
S129  
S130  
S131  
S132  
S133  
S134  
S135  
S136  
S137  
S138  
S139  
S140  
S141  
Bump  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
X (μm)  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
1494.2  
1548.2  
1602.2  
1656.2  
1710.2  
1764.2  
1818.2  
1872.2  
1926.2  
1980.2  
2034.2  
2088.2  
2142.2  
2284.7  
2338.7  
2392.7  
2446.7  
2500.7  
2554.7  
2608.7  
2662.7  
2716.7  
2770.7  
2824.7  
2878.7  
2932.7  
2986.7  
3040.7  
3025.2  
2971.2  
2917.2  
2863.2  
2809.2  
2755.2  
2701.2  
2647.2  
2593.2  
2539.2  
2485.2  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
46 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Table 22. Bump locations …continued  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 32.  
Symbol  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
Bump  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
X (μm)  
2034.2  
1891.7  
1837.7  
1783.7  
1729.7  
1675.7  
1621.7  
1567.7  
1513.7  
1459.7  
1405.7  
1351.7  
1297.7  
1243.7  
1189.7  
1135.7  
1081.7  
1027.7  
973.7  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
Symbol  
S142  
S143  
S144  
S145  
S146  
S147  
S148  
S149  
S150  
S151  
S152  
S153  
S154  
S155  
S156  
S157  
S158  
S159  
BP3  
Bump  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
X (μm)  
Y (μm)  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
481.5  
2431.2  
2377.2  
2234.7  
2180.7  
2126.7  
2072.7  
2018.7  
1964.7  
1910.7  
1856.7  
1802.7  
1748.7  
1694.7  
1640.7  
1586.7  
1532.7  
1478.7  
1424.7  
1370.7  
1316.7  
858.2  
BP1  
804.2  
The dummy pins are connected to the segments shown (see Table 23) but are not tested.  
Table 23. Dummy bumps  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 32.  
Symbol  
D1  
Connected to pin  
X (μm)  
3079.2  
3065.9  
3121.7  
3094.7  
Y (μm)  
481.5  
481.5  
481.5  
S131  
S28  
D2  
D3  
S29  
D4  
S130  
481.5  
The alignment marks are shown in Table 24.  
Table 24. Alignment marking  
All x/y coordinates represent the position of the REF point (see Figure 33) with respect to the center  
(x/y = 0) of the chip; see Figure 32.  
Symbol  
S1  
Size (μm)  
X (μm)  
Y (μm)  
47.25  
47.25  
121.5 × 121.5  
121.5 × 121.5  
2733.75  
2603.7  
C1  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
47 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
REF  
REF  
S1  
C1  
001aah849  
Fig 33. Alignment marks  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
48 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
14. Packing information  
Table 25. Tray dimensions (see Figure 34)  
Symbol  
Description  
Value  
A
B
C
D
E
F
x
pocket pitch in x direction  
pocket pitch in y direction  
pocket width in x direction  
pocket width in y direction  
tray width in x direction  
tray width in y direction  
8.8 mm  
3.6 mm  
6.65 mm  
1.31 mm  
50.8 mm  
50.8 mm  
number of pockets, x direction  
5
y
number of pockets, y direction 12  
A
C
D
B
F
y
E
x
001aah890  
Fig 34. Tray details  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
49 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
marking code  
001aaj643  
Fig 35. Tray alignment  
15. Abbreviations  
Table 26. Abbreviations  
Acronym  
AEC  
COG  
DC  
Description  
Automotive Electronics Council  
Chip-On-Glass  
Direct Current  
HBM  
I2C  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
ITO  
Indium Tin Oxide  
LCD  
LSB  
MM  
Liquid Crystal Display  
Least Significant Bit  
Machine Model  
MSB  
POR  
RC  
Most Significant Bit  
Power-On Reset  
Resistance and Capacitance  
Random Access Memory  
Root Mean Square  
Serial CLock line  
RAM  
RMS  
SCL  
SDA  
Serial DAta line  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
50 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
16. References  
[1] AN10170 Design guidelines for COG modules with NXP monochrome LCD  
drivers  
[2] AN10706 Handling bare die  
[3] AN10853 ESD and EMC sensitivity of IC  
[4] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[5] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[7] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model  
(MM)  
[8] JESD78 IC Latch-Up Test  
[9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[10] NX3-00092 NXP store and transport requirements  
[11] UM10204 I2C-bus specification and user manual  
17. Revision history  
Table 27. Revision history  
Document ID  
Release date  
20101208  
Data sheet status  
Change notice  
Supersedes  
PCA85232 v.1  
Product data sheet  
-
-
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
51 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
suitable for use in medical, military, aircraft, space or life support equipment,  
18.2 Definitions  
nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or  
severe property or environmental damage. NXP Semiconductors accepts no  
liability for inclusion and/or use of NXP Semiconductors products in such  
equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. The product is not designed, authorized or warranted to be  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
52 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
18.4 Trademarks  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCA85232  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 1 — 8 December 2010  
53 of 54  
PCA85232  
NXP Semiconductors  
LCD driver for low multiplex rates  
20. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
12.1  
Pull-up resistor sizing on I2C-bus. . . . . . . . . . 37  
Max value of pull-up resistor . . . . . . . . . . . . . 37  
Min value of pull-up resistor. . . . . . . . . . . . . . 37  
SDA and SDAACK configuration . . . . . . . . . . 38  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 39  
12.1.1  
12.1.2  
12.2  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12.3  
13  
14  
15  
16  
17  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 44  
Packing information . . . . . . . . . . . . . . . . . . . . 49  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 50  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 51  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7
7.1  
7.2  
7.3  
7.3.1  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . 7  
LCD bias generator . . . . . . . . . . . . . . . . . . . . . 7  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 8  
Electro-optical performance . . . . . . . . . . . . . . . 9  
LCD drive mode waveforms . . . . . . . . . . . . . . 11  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 11  
1:2 multiplex drive mode. . . . . . . . . . . . . . . . . 12  
1:3 multiplex drive mode. . . . . . . . . . . . . . . . . 14  
1:4 multiplex drive mode. . . . . . . . . . . . . . . . . 15  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Timing and frame frequency. . . . . . . . . . . . . . 16  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 16  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 17  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 17  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 20  
Output bank selector . . . . . . . . . . . . . . . . . . . 20  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 21  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Characteristics of the I2C-bus. . . . . . . . . . . . . 21  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
18  
Legal information . . . . . . . . . . . . . . . . . . . . . . 52  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 52  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information . . . . . . . . . . . . . . . . . . . . 53  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.16  
7.16.1  
7.16.1.1 START and STOP conditions . . . . . . . . . . . . . 22  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
7.16.6  
7.17  
System configuration . . . . . . . . . . . . . . . . . . . 23  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 23  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 24  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 24  
Command decoder. . . . . . . . . . . . . . . . . . . . . 26  
Display controller . . . . . . . . . . . . . . . . . . . . . . 28  
7.18  
8
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 29  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 30  
Static characteristics. . . . . . . . . . . . . . . . . . . . 31  
Dynamic characteristics . . . . . . . . . . . . . . . . . 34  
Application information. . . . . . . . . . . . . . . . . . 37  
9
10  
11  
12  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 8 December 2010  
Document identifier: PCA85232  

相关型号:

PCA85232U

LCD driver for low multiplex rates
NXP

PCA85232U/2DA/Q1,0

PCA85232 - LCD driver for low multiplex rates DIE 197-Pin
NXP

PCA85233

Automotive 80 × 4 LCD driver for low multiplex rates
NXP

PCA85233UG

LIQUID CRYSTAL DISPLAY DRIVER
NXP

PCA85233UG/2DA/Q1Z

PCA85233 - Automotive 80 x 4 LCD driver for low multiplex rates DIE 110-Pin
NXP

PCA8523Q1

LCD driver for low multiplex rates
NXP

PCA85262

Automotive 32 x 4 LCD driver for low multiplex rates
NXP

PCA85262ATT

LIQUID CRYSTAL DISPLAY DRIVER
NXP

PCA85262ATT/A

LIQUID CRYSTAL DISPLAY DRIVER
NXP

PCA85262ATT/AJ

PCA85262 - Automotive 32 x 4 LCD driver for low multiplex rates TSSOP 48-Pin
NXP

PCA85276

Automotive 40 x 4 LCD driver
NXP

PCA85276ATT

LIQUID CRYSTAL DISPLAY DRIVER
NXP