PCF2127AT/2 [NXP]

IC REAL TIME CLOCK, Timer or RTC;
PCF2127AT/2
型号: PCF2127AT/2
厂家: NXP    NXP
描述:

IC REAL TIME CLOCK, Timer or RTC

时钟 光电二极管 外围集成电路
文件: 总86页 (文件大小:1156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF2127AT  
Integrated RTC, TCXO and quartz crystal  
Rev. 6 — 11 July 2013  
Product data sheet  
1. General description  
The PCF2127AT1 is a CMOS2 Real Time Clock (RTC) and calendar with an integrated  
Temperature Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz  
crystal optimized for very high accuracy and very low power consumption. The  
PCF2127AT has 512 bytes of general purpose static RAM, a selectable I2C-bus or  
SPI-bus, a backup battery switch-over circuit, a programmable watchdog function, a  
timestamp function, and many other features.  
2. Features and benefits  
Temperature Compensated Crystal Oscillator (TCXO) with integrated capacitors  
Typical accuracy: 3 ppm from 15 C to +60 C  
Integration of a 32.768 kHz quartz crystal and oscillator in the same package  
Provides year, month, day, weekday, hours, minutes, seconds, and leap year  
correction  
512 bytes of general purpose static RAM  
Timestamp function  
with interrupt capability  
detection of two different events on one multilevel input pin (for example, for tamper  
detection)  
Two line bidirectional 400 kHz Fast-mode I2C-bus interface (IOL = 3 mA at pin  
SDA/CE)  
3 line SPI-bus with separate data input and output (maximum speed 6.5 Mbit/s)  
Battery backup input pin and switch-over circuitry  
Battery backed output voltage  
Battery low detection function  
Extra power fail detection function with input and output pins  
Power-On Reset Override (PORO)  
Oscillator stop detection function  
Interrupt output and system reset pin (open-drain)  
Programmable 1 second or 1 minute interrupt  
Programmable countdown timer with interrupt capability  
Programmable watchdog timer with interrupt and reset capability  
Programmable alarm function with interrupt capability  
Programmable square wave open-drain output pin  
1. As well as the PCF2129.  
2. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 20.  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Clock operating voltage: 1.2 V to 4.2 V  
Low supply current: typical 0.65 A at VDD = 3.0 V and Tamb = 25 C  
3. Applications  
Electronic metering for electricity, water, and gas  
Precision timekeeping  
Access to accurate time of the day  
GPS equipment to reduce time to first fix  
Applications that require an accurate process timing  
Products with long automated unattended operation time  
4. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
PCF2127AT  
SO20  
plastic small outline package; 20 leads; body width 7.5 mm SOT163-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Product type number  
IC  
Sales item (12NC)  
Delivery form  
revision  
PCF2127AT/1[1]  
1
935290953512  
935290953518  
935299867518  
tube, dry pack  
tape and reel, 13 inch, dry pack  
tape and reel, 13 inch, dry pack  
PCF2127AT/2  
2
[1] Not to be used for new designs. Replacement part is PCF2127AT/2.  
5. Marking  
Table 3.  
Marking codes  
Product type number  
PCF2127AT/1  
Marking code  
PCF2127AT  
PCF2127AT  
PCF2127AT/2  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
2 of 86  
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
6. Block diagram  
INT  
TCXO  
TEMP  
OSCI  
Control_1  
Control_2  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
DIVIDER  
AND  
TIMER  
32.768 kHz  
OSCO  
Control_3  
CLKOUT  
BBS  
Seconds  
Minutes  
internal  
power  
supply  
Hours  
1 Hz  
V
DD  
Days  
BATTERY BACK UP  
SWITCH-OVER  
CIRCUITRY  
V
BAT  
Weekdays  
LOGIC  
CONTROL  
V
SS  
Months  
Years  
OSCILLATOR  
MONITOR  
RESET  
Second_alarm  
Minute_alarm  
Hour_alarm  
Day_alarm  
RST  
SPI-BUS  
INTERFACE  
ADDRESS  
REGISTER  
Weekday_alarm  
CLKOUT_ctl  
Watchdg_tim_ctl  
Watchdg_tim_val  
Timestp_ctl  
Sec_timestp  
Min_timestp  
Hour_timestp  
Day_timestp  
Mon_timestp  
Year_timestp  
Aging_offset  
RAM_addr_MSB  
RAM_addr_LSB  
RAM_wrt_cmd  
RAM_rd_cmd  
SDA/CE  
SDO  
SERIAL BUS  
INTERFACE  
SELECTOR  
SDI  
SCL  
IFS  
PCF2127AT  
2
I C-BUS  
INTERFACE  
R
PU  
TS  
SCL  
SDO  
512 BYTES  
STATIC RAM  
SDI  
SDA/CE  
TEMPERATURE  
SENSOR  
PFI  
TEMP  
1.25 V  
(internal)  
PFO  
TEST  
001aaj675  
Fig 1. Block diagram of PCF2127AT  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
3 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
7. Pinning information  
7.1 Pinning  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SCL  
SDI  
V
V
DD  
BAT  
3
SDO  
BBS  
INT  
4
SDA/CE  
IFS  
5
RST  
PFI  
PCF2127AT  
6
TS  
7
CLKOUT  
PFO  
TEST  
n.c.  
8
V
SS  
9
n.c.  
n.c.  
10  
n.c.  
001aaj676  
Top view. For mechanical details, see Figure 53.  
Fig 2. Pin configuration for SO20 (PCF2127AT)  
7.2 Pin description  
Table 4.  
Pin description of SO20 (PCF2127AT)  
Symbol  
SCL  
Pin  
1
Description  
combined serial clock input for both I2C-bus and SPI-bus  
SDI  
2
serial data input for SPI-bus;  
connect to pin VSS if I2C-bus is selected  
serial data output for SPI-bus, push-pull  
combined serial data input and output for the I2C-bus and chip  
enable input (active LOW) for the SPI-bus  
SDO  
3
4
SDA/CE  
IFS  
5
interface selector input  
connect to pin VSS to select the SPI-bus  
connect to pin BBS to select the I2C-bus  
timestamp input (active LOW) with 200 kinternal pull-up resistor  
TS  
6
(RPU  
)
CLKOUT  
VSS  
7
clock output (open-drain)  
8
ground supply voltage  
n.c.  
9 to 12  
13  
14  
15  
16  
17  
not connected; do not connect; do not use as feed through  
do not connect; do not use as feed through  
power fail output (open-drain; active LOW)  
power fail input  
TEST  
PFO  
PFI  
RST  
INT  
reset output (open-drain; active LOW)  
interrupt output (open-drain; active LOW)  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
4 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 4.  
Pin description of SO20 (PCF2127AT) …continued  
Symbol  
BBS  
Pin  
18  
Description  
output voltage (battery backed)  
battery supply voltage (backup)  
connect to VSS if battery switch over is not used  
supply voltage  
VBAT  
19  
VDD  
20  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
5 of 86  
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8. Functional description  
The PCF2127AT is a Real Time Clock (RTC) and calendar with an on-chip Temperature  
Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz crystal integrated  
into the same package (see Section 8.3.2).  
Address and data are transferred by a selectable 400 kHz Fast-mode I2C-bus or a 3 line  
SPI-bus with separate data input and output (see Section 9). The maximum speed of the  
SPI-bus is 6.5 Mbit/s.  
The PCF2127AT has a backup battery input pin and backup battery switch-over circuit  
which monitors the main power supply. The backup battery switch-over circuit  
automatically switches to the backup battery when a power failure condition is detected  
(see Section 8.6.1). Accurate timekeeping is maintained even when the main power  
supply is interrupted.  
A battery low detection circuit monitors the status of the battery (see Section 8.6.3). When  
the battery voltage drops below a certain threshold value, a flag is set to indicate that the  
battery must be replaced soon. This ensures the integrity of the data during periods of  
battery backup.  
8.1 Register overview  
The PCF2127AT contains an auto-incrementing address register: the built-in address  
register will increment automatically after each read or write of a data byte up to the  
register 1Bh. After register 1Bh, the auto-incrementing will wrap around to address 00h  
(see Figure 3).  
address register  
00h  
01h  
02h  
03h  
...  
auto-increment  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
wrap around  
not reachable by auto-inc. - needs to be addressed directly  
not reachable by auto-inc. - needs to be addressed directly  
001aaj307  
Fig 3. Handling address registers  
The first three registers (memory address 00h, 01h, and 02h) are used as control  
registers (see Section 8.2).  
The registers at addresses 03h through to 09h are used as counters for the clock  
function (seconds up to years). The date is automatically adjusted for months with  
fewer than 31 days, including corrections for leap years. The clock can operate in  
12-hour mode with an AM/PM indication or in 24-hour mode (see Section 8.9).  
The registers at addresses 0Ah through 0Eh define the alarm function. It can be  
selected that an interrupt is generated when an alarm event occurs (see  
Section 8.10).  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
6 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
The register at address 0Fh defines the temperature measurement period and the  
clock out mode. The temperature measurement can be selected from every 4 minutes  
(default) down to every 30 seconds (see Table 10). CLKOUT frequencies of  
32.768 kHz (default) down to 1 Hz for use as system clock, microcontroller clock, and  
so on, can be chosen (see Table 11).  
The registers at addresses 10h and 11h are used for the watchdog and countdown  
timer functions. The watchdog timer has four selectable source clocks allowing for  
timer periods from less than 1 ms to greater than 4 hours (see Table 37). Either the  
watchdog timer or the countdown timer can be enabled (see Section 8.11). For the  
watchdog timer, it is possible to select whether an interrupt or a pulse on the reset pin  
will be generated when the watchdog times out. For the countdown timer, it is only  
possible that an interrupt will be generated at the end of the countdown.  
The registers at addresses 12h to 18h are used for the timestamp function. When the  
trigger event happens, the actual time is saved in the timestamp registers (see  
Section 8.12).  
The register at address 19h is used for the correction of the crystal aging effect (see  
Section 8.4.1).  
The registers at addresses 1Ah and 1Bh define the RAM address. The register at  
address 1Ch (RAM_wrt_cmd) is the RAM write command; the register at 1Dh  
(RAM_rd_cmd) is the RAM read command. Data is transferred to or from the RAM by  
the serial interface (see Section 8.5).  
The registers Seconds, Minutes, Hours, Days, Months, and Years are all coded in  
Binary Coded Decimal (BCD) format to simplify application use. Other registers are  
either bit-wise or standard binary.  
When one of the RTC registers is written or read, the content of all counters is temporarily  
frozen. This prevents a faulty writing or reading of the clock and calendar during a carry  
condition (see Section 8.9.8).  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
7 of 86  
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 5.  
Register overview  
Bit positions labeled as - are not implemented and will return a 0 when read. Bit T must always be written with logic 0. Bits  
labeled as X are undefined at power-on and unchanged by subsequent resets.  
Address Register name  
Bit  
7
Reset value  
6
5
4
3
2
1
0
Control registers  
00h  
Control_1  
EXT_  
TEST  
T
STOP  
TSF1  
POR_  
OVRD  
12_24  
MI  
SI  
0000 0000  
01h  
02h  
Control_2  
Control_3  
MSF  
WDTF TSF2  
AF  
CDTF  
BF  
TSIE  
BLF  
AIE  
BIE  
CDTIE 0000 0000  
PWRMNG[2:0]  
BTSE  
BLIE  
0000 0000  
Time and date registers  
03h  
04h  
05h  
Seconds  
Minutes  
Hours  
OSF  
-
SECONDS (0 to 59)  
MINUTES (0 to 59)  
1XXX XXXX  
- XXX XXXX  
- - XX XXXX  
- - XX XXXX  
- - XX XXXX  
- - - - - XXX  
- - - X XXXX  
XXXX XXXX  
-
-
AMPM HOURS (1 to 12) in 12 h mode  
HOURS (0 to 23) in 24 h mode  
DAYS (1 to 31)  
06h  
07h  
08h  
09h  
Days  
-
-
-
-
-
-
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
0Ah  
0Bh  
0Ch  
Second_alarm  
AE_S  
AE_M  
AE_H  
SECOND_ALARM (0 to 59)  
MINUTE_ALARM (0 to 59)  
1XXX XXXX  
1XXX XXXX  
1 - XX XXXX  
1 - XX XXXX  
1 - XX XXXX  
Minute_alarm  
Hour_alarm  
-
-
-
-
AMPM HOUR_ALARM (1 to 12) in 12 h mode  
HOUR_ALARM (0 to 23) in 24 h mode  
DAY_ALARM (1 to 31)  
0Dh  
0Eh  
Day_alarm  
AE_D  
Weekday_alarm AE_W  
-
-
-
-
-
-
-
WEEKDAY_ALARM (0 to 6) 1 - - - - XXX  
CLKOUT control register  
0Fh CLKOUT_ctl  
Watchdog registers  
TCR[1:0]  
-
COF[2:0]  
-
00 - - - 000  
10h  
11h  
Watchdg_tim_ctl WD_CD[1:0]  
TI_TP  
TF[1:0]  
000 - - - 11  
Watchdg_tim_val WATCHDG_TIM_VAL[7:0]  
XXXX XXXX  
Timestamp registers  
12h  
13h  
14h  
15h  
Timestp_ctl  
Sec_timestp  
Min_timestp  
Hour_timestp  
TSM  
TSOFF  
-
1_O_16_TIMESTP[4:0]  
00 - X XXXX  
- XXX XXXX  
- XXX XXXX  
- - XX XXXX  
- - XX XXXX  
- - XX XXXX  
- - - X XXXX  
XXXX XXXX  
-
-
-
SECOND_TIMESTP (0 to 59)  
MINUTE_TIMESTP (0 to 59)  
-
AMPM HOUR_TIMESTP (1 to 12) in 12 h mode  
HOUR_TIMESTP (0 to 23) in 24 h mode  
DAY_TIMESTP (1 to 31)  
16h  
17h  
18h  
Day_timestp  
Mon_timestp  
Year_timestp  
-
-
-
-
-
MONTH_TIMESTP (1 to 12)  
YEAR_TIMESTP (0 to 99)  
Aging offset register  
19h  
Aging_offset  
-
-
-
-
AO[3:0]  
- - - - 1000  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
8 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 5.  
Register overview …continued  
Bit positions labeled as - are not implemented and will return a 0 when read. Bit T must always be written with logic 0. Bits  
labeled as X are undefined at power-on and unchanged by subsequent resets.  
Address Register name  
Bit  
7
Reset value  
6
5
4
3
2
1
0
RAM registers  
1Ah  
1Bh  
1Ch  
1Dh  
RAM_addr_MSB  
-
-
-
-
-
-
-
RA8  
- - - - - - - 0  
0000 0000  
XXXX XXXX  
XXXX XXXX  
RAM_addr_LSB RA[7:0]  
RAM_wrt_cmd  
RAM_rd_cmd  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
9 of 86  
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.2 Control registers  
The first 3 registers of the PCF2127AT, with the addresses 00h, 01h, and 02h, are used  
as control registers.  
8.2.1 Register Control_1  
Table 6.  
Bit  
Control_1 - control and status register 1 (address 00h) bit description  
Symbol  
Value  
Description  
Reference  
[1]  
7
EXT_TEST  
0
1
0
0
1
normal mode  
Section 8.14  
external clock test mode  
unused  
[2]  
[1]  
6
5
T
-
STOP  
RTC source clock runs  
RTC clock is stopped;  
Section 8.15  
RTC divider chain flip-flops are  
asynchronously set logic 0;  
CLKOUT at 32.768 kHz, 16.384 kHz, or  
8.192 kHz is still available  
[1]  
[1]  
4
3
TSF1  
0
1
no timestamp interrupt generated  
Section 8.12.1  
Section 8.8.2  
flag set when TS input is driven to an  
intermediate level between power supply  
and ground;  
flag must be cleared to clear interrupt  
POR_OVRD  
0
1
Power-On Reset Override (PORO) facility  
disabled;  
set logic 0 for normal operation  
Power-On Reset Override (PORO)  
sequence reception enabled  
[1]  
[1]  
[1]  
2
1
0
12_24  
MI  
0
1
0
1
0
1
24 hour mode selected  
12 hour mode selected  
minute interrupt disabled  
minute interrupt enabled  
second interrupt disabled  
second interrupt enabled  
Table 23  
Section 8.13  
SI  
[1] Default value.  
[2] When writing to the register this bit always has to be set logic 0.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
10 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.2.2 Register Control_2  
Table 7.  
Control_2 - control and status register 2 (address 01h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
[1]  
7
MSF  
0
1
no minute or second interrupt generated  
Section 8.13  
flag set when minute or second interrupt  
generated;  
flag must be cleared to clear interrupt  
[1]  
6
WDTF  
0
1
no watchdog timer interrupt or reset  
generated  
Section 8.13.4  
flag set when watchdog timer interrupt or  
reset generated;  
flag cannot be cleared by command  
(read-only)  
[1]  
[1]  
[1]  
5
4
3
TSF2  
AF  
0
1
no timestamp interrupt generated  
flag set when TS input is driven to ground;  
flag must be cleared to clear interrupt  
no alarm interrupt generated  
Section 8.12.1  
Section 8.10.6  
Section 8.11.4  
0
1
flag set when alarm triggered;  
flag must be cleared to clear interrupt  
no countdown timer interrupt generated  
CDTF  
0
1
flag set when countdown timer interrupt  
generated;  
flag must be cleared to clear interrupt  
[1]  
[1]  
[1]  
2
1
0
TSIE  
AIE  
0
1
0
1
0
no interrupt generated from timestamp flag Section 8.13.6  
interrupt generated when timestamp flag set  
no interrupt generated from the alarm flag  
interrupt generated when alarm flag set  
Section 8.13.5  
CDTIE  
no interrupt generated from countdown timer Section 8.13.2  
flag  
1
interrupt generated when countdown timer  
flag set  
[1] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
11 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.2.3 Register Control_3  
Table 8.  
Bit  
Control_3 - control and status register 3 (address 02h) bit description  
Symbol  
Value  
Description  
Reference  
[1]  
7 to 5 PWRMNG[2:0]  
control of the battery switch-over, battery low Section 8.6  
detection, and extra power fail detection  
functions  
[2]  
4
BTSE  
0
1
no timestamp when battery switch-over  
occurs  
Section 8.12.4  
time-stamped when battery switch-over  
occurs  
[2]  
[2]  
3
2
BF  
0
1
no battery switch-over interrupt generated  
flag set when battery switch-over occurs;  
flag must be cleared to clear interrupt  
battery status ok;  
Section 8.6.1  
Section 8.6.3  
BLF  
0
1
0
no battery low interrupt generated  
battery status low;  
flag cannot be cleared by command  
[2]  
[2]  
1
0
BIE  
no interrupt generated from the battery flag Section 8.13.7  
(BF)  
1
0
interrupt generated when BF is set  
BLIE  
no interrupt generated from battery low flag Section 8.13.8  
(BLF)  
1
interrupt generated when BLF is set  
[1] Values see Table 18.  
[2] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
12 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.3 Register CLKOUT_ctl  
Table 9.  
CLKOUT_ctl - CLKOUT control register (address 0Fh) bit description  
Symbol Value Description  
see Table 10 temperature measurement period  
unused  
see Table 11 CLKOUT frequency selection  
Bit  
7 to 6 TCR[1:0]  
5 to 3 -  
-
2 to 0 COF[2:0]  
8.3.1 Temperature compensated crystal oscillator  
The frequency of tuning fork quartz crystal oscillators is temperature-dependent. In the  
PCF2127AT, the frequency deviation caused by temperature variation is corrected by  
adjusting the load capacitance of the crystal oscillator.  
The load capacitance is changed by switching between two load capacitance values using  
a modulation signal with a programmable duty cycle. In order to compensate the spread of  
the quartz parameters every chip is factory calibrated.  
The frequency accuracy can be evaluated by measuring the frequency of the square  
wave signal available at the output pin CLKOUT. However, the selection of  
fCLKOUT = 32.768 kHz (default value) leads to inaccurate measurements. Accurate  
frequency measurement occurs when fCLKOUT = 16.384 kHz or lower is selected (see  
Table 11).  
8.3.1.1 Temperature measurement  
The PCF2127AT has a temperature sensor circuit used to perform the temperature  
compensation of the frequency. The temperature is measured immediately after power-on  
and then periodically with a period set by the temperature conversion rate TCR[1:0] in the  
register CLKOUT_ctl.  
Table 10. Temperature measurement period  
TCR[1:0]  
Temperature measurement period  
[1]  
00  
01  
10  
11  
4 min  
2 min  
1 min  
30 seconds  
[1] Default value.  
8.3.2 Clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
COF[2:0] control bits in register CLKOUT_ctl. Frequencies of 32.768 kHz (default) down  
to 1 Hz can be generated for use as system clock, microcontroller clock, charge pump  
input, or for calibrating the oscillator.  
CLKOUT is an open-drain output and enabled at power-on. When disabled, the output is  
high-impedance.  
The duty cycle of the selected clock is not controlled, however, due to the nature of the  
clock generation all but the 32.768 kHz frequencies will be 50 : 50.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
13 of 86  
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 11. CLKOUT frequency selection  
COF[2:0]  
CLKOUT frequency (Hz)  
Typical duty cycle[1]  
000[2][3]  
32768  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
001  
16384  
010  
8192  
011  
4096  
100  
2048  
101  
1024  
110  
1
111  
CLKOUT = high-Z  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] Default value.  
[3] The specified accuracy of the RTC can be only achieved with CLKOUT frequencies not equal to  
32.768 kHz or if CLKOUT is disabled.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
14 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.4 Register Aging_offset  
Table 12. Aging_offset - crystal aging offset register (address 19h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 4 -  
-
unused  
3 to 0 AO[3:0]  
see Table 13 aging offset value  
8.4.1 Crystal aging correction  
The PCF2127AT has an offset register Aging_offset to correct the crystal aging effects3.  
The accuracy of the frequency of a quartz crystal depends on its aging. The aging offset  
adds an adjustment, positive or negative, in the temperature compensation circuit which  
allows correcting the aging effect.  
At 25 C, the aging offset bits allow a frequency correction of typically 1 ppm per AO[3:0]  
value, from 7 ppm to +8 ppm.  
Table 13. Frequency correction at 25C, typical  
AO[3:0]  
ppm  
Decimal  
Binary  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
1
2
3
4
5
6
7
[1]  
8
9
1  
2  
3  
4  
5  
6  
7  
10  
11  
12  
13  
14  
15  
[1] Default value.  
3. For further information, refer to the application note Ref. 3 “AN10857”.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
15 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.5 General purpose 512 bytes static RAM  
The PCF2127AT contains a general purpose 512 bytes static RAM. This integrated SRAM  
is battery backed and can therefore be used to store data which is essential for the  
application to survive a power outage.  
9 bits, RA[8:0], define the RAM address pointer in registers RAM_addr_MSB and  
RAM_addr_LSB. The register address pointer increments after each read or write  
automatically up to 1Bh and then wraps around to address 00h (see Figure 3 on page 6).  
Data is transferred to or from the RAM by the interface. To write to the RAM, the register  
RAM_wrt_cmd, to read from the RAM the register RAM_rd_cmd must be addressed  
explicitly.  
8.5.1 Register RAM_addr_MSB  
Table 14. RAM_addr_MSB - RAM address MSB register (address 1Ah) bit description  
Bit  
7 to 1  
0
Symbol  
Description  
-
unused  
RAM address, MSB (9th bit)  
RA8  
8.5.2 Register RAM_addr_LSB  
Table 15. RAM_addr_LSB - RAM address LSB register (address 1Bh) bit description  
Bit  
Symbol  
Description  
7 to 0  
RA[7:0]  
RAM address, LSB (1st to 8th bit)  
8.5.3 Register RAM_wrt_cmd  
Table 16. RAM_wrt_cmd - RAM write command register (address 1Ch) bit description  
Bit  
Symbol  
Description  
7 to 0  
-
data to be written into RAM  
8.5.4 Register RAM_rd_cmd  
Table 17. RAM_rd_cmd - RAM read command register (address 1Dh) bit description  
Bit  
Symbol  
Description  
7 to 0  
-
data to be read from RAM  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
16 of 86  
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.5.5 Operation examples  
8.5.5.1 Writing to the RAM  
1. Set RAM address:  
Select register RAM_addr_MSB (send address 1Ah).  
Set value for bit RA8 (data byte of register 1Ah).  
Note: register address will be incremented automatically to 1Bh.  
Set value for array RA[7:0] (data byte of register 1Bh).  
2. Send RAM write command:  
Select register RAM_wrt_cmd (send address 1Ch).  
3. Write data into the RAM:  
Write n data byte into RAM.  
For details, see Figure 44 on page 62.  
8.5.5.2 Reading from the RAM  
1. Set RAM address:  
Select register RAM_addr_MSB (send address 1Ah).  
Set value for bit RA8 (data byte of register 1Ah).  
Note: register address will be incremented automatically to 1Bh.  
Set value for array RA[7:0] (data byte of register 1Bh).  
2. Send RAM read command:  
Select register RAM_rd_cmd (send address 1Dh).  
3. Read from the RAM:  
Read n data byte from the RAM.  
For details, see Figure 45 on page 63.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
17 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.6 Power management functions  
The PCF2127AT has two power supply pins and one power output pin:  
VDD - the main power supply input pin  
VBAT - the battery backup input pin  
BBS - battery backed output voltage pin (equal to the internal power supply)  
The PCF2127AT has three power management functions implemented:  
Battery switch-over function  
Battery low detection function  
Extra power fail detection function  
The power management functions are controlled by the control bits PWRMNG[2:0] in  
register Control_3:  
Table 18. Power management control bit description  
PWRMNG[2:0]  
Function  
[1]  
000  
battery switch-over function is enabled in standard mode;  
battery low detection function is enabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled;  
001  
010  
011  
100  
101  
110  
111  
extra power fail detection function is enabled  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled;  
extra power fail detection function is disabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is enabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled;  
extra power fail detection function is enabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled;  
extra power fail detection function is disabled  
battery switch-over function is disabled - only one power supply (VDD);  
battery low detection function is disabled;  
[2]  
[2]  
extra power fail detection function is enabled  
battery switch-over function is disabled - only one power supply (VDD);  
battery low detection function is disabled;  
extra power fail detection function is disabled  
[1] Default value.  
[2] When the battery switch-over function is disabled, the PCF2127AT works only with the power supply VDD  
;
VBAT must be put to ground and the battery low detection function is disabled.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
18 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.6.1 Battery switch-over function  
The PCF2127AT has a backup battery switch-over circuit which monitors the main power  
supply VDD. When a power failure condition is detected, it automatically switches to the  
backup battery.  
One of two operation modes can be selected:  
Standard mode: the power failure condition happens when:  
VDD < VBAT AND VDD < Vth(sw)bat  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. The battery  
switch-over in standard mode works only for VDD > 2.5 V.  
Direct switching mode: the power failure condition happens when VDD < VBAT  
.
Direct switching from VDD to VBAT without requiring VDD to drop below Vth(sw)bat  
When a power failure condition occurs and the power supply switches to the battery, the  
following sequence occurs:  
1. The battery switch flag BF (register Control_3) is set logic 1.  
2. An interrupt is generated if the control bit BIE (register Control_3) is enabled  
(see Section 8.13.7).  
3. If the control bit BTSE (register Control_3) is logic 1, the timestamp registers store the  
time and date when the battery switch occurred (see Section 8.12.4).  
4. The battery switch flag BF is cleared by command; it must be cleared to clear the  
interrupt.  
The interface is disabled in battery backup operation:  
Interface inputs are not recognized, preventing extraneous data being written to the  
device  
Interface outputs are high-impedance  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
19 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.6.1.1 Standard mode  
If VDD > VBAT OR VDD > Vth(sw)bat, the internal power supply is VDD  
.
If VDD < VBAT AND VDD < Vth(sw)bat, the internal power supply is VBAT  
.
backup battery operation  
V
DD  
V
V
BBS  
BBS  
V
BAT  
internal power supply (= V  
)
BBS  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
BF  
INT  
cleared via interface  
001aaj311  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. In standard mode, the  
battery switch-over works only for VDD > 2.5 V.  
VDD may be lower than VBAT (for example VDD = 3 V, VBAT = 4.1 V).  
Fig 4. Battery switch-over behavior in standard mode with bit BIE set logic 1 (enabled)  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
20 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.6.1.2 Direct switching mode  
If VDD > VBAT, the internal power supply is VDD  
.
.
If VDD < VBAT, the internal power supply is VBAT  
The direct switching mode is useful in systems where VDD is higher than VBAT at all times.  
This mode is not recommended if the VDD and VBAT values are similar (for example,  
VDD = 3.3 V, VBAT 3.0 V). In direct switching mode, the power consumption is reduced  
compared to the standard mode because the monitoring of VDD and Vth(sw)bat is not  
performed.  
backup battery operation  
V
DD  
V
V
BBS  
BBS  
V
BAT  
internal power supply (= V  
)
BBS  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
BF  
INT  
cleared via interface  
001aaj312  
Fig 5. Battery switch-over behavior in direct switching mode with bit BIE set logic 1  
(enabled)  
8.6.1.3 Battery switch-over disabled: only one power supply (VDD  
)
When the battery switch-over function is disabled:  
The power supply is applied on the VDD pin  
The VBAT pin must be connected to ground  
The internal power supply, available at the output pin BBS, is equal to VDD  
The battery flag (BF) is always logic 0  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
21 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.6.1.4 Battery switch-over architecture  
The architecture of the battery switch-over circuit is shown in Figure 6.  
comparators  
logic  
switches  
V
DD(int)  
V
CC  
V
DD  
V
V
th(sw)bat  
V
V
DD  
DD(int)  
V
LOGIC  
BBS  
V
CC  
(internal  
power supply)  
th(sw)bat  
V
BAT  
V
BAT  
001aag061  
V
DD(int)  
Fig 6. Battery switch-over circuit, simplified block diagram  
The internal power supply (available on pin BBS) is equal to VDD or VBAT. It has to be  
assured that there are decoupling capacitors on the pins VDD, VBAT, and BBS.  
8.6.2 Battery backup supply  
The VBBS voltage on the output pin BBS is equal to the internal power supply, depending  
on the selected battery switch-over function mode:  
Table 19. Output pin BBS  
Battery switch-over function mode  
Conditions  
VBBS equals  
VDD  
standard  
VDD > VBAT OR VDD > Vth(sw)bat  
VDD < VBAT AND VDD < Vth(sw)bat  
VDD > VBAT  
VBAT  
direct switching  
disabled  
VDD  
VDD < VBAT  
VBAT  
only VDD available,  
VDD  
VBAT must be put to ground  
The output pin BBS can be used as a supply for external devices with battery backup  
needs, such as SRAM (see Ref. 3 “AN10857”). For this case, Figure 7 shows the typical  
driving capability when VBBS is driven from VDD  
.
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
22 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
001aaj327  
0
V
V  
DD  
BBS  
(mV)  
200  
V
= 4.2 V  
DD  
400  
600  
800  
V
= 3 V  
= 2 V  
DD  
V
DD  
0
2
4
6
8
I
(mA)  
BBS  
Fig 7. Typical driving capability of VBBS: (VBBS VDD) with respect to the output load  
current IBBS  
8.6.3 Battery low detection function  
The PCF2127AT has a battery low detection circuit which monitors the status of the  
battery VBAT  
.
When VBAT drops below the threshold value Vth(bat)low (typically 2.5 V), the BLF flag  
(register Control_3) is set to indicate that the battery is low and that it must be replaced.  
Monitoring of the battery voltage also occurs during battery operation.  
An unreliable battery cannot prevent that the supply voltage drops below Vlow (typical  
1.2 V) and with that the data integrity gets lost.  
When VBAT drops below the threshold value Vth(bat)low, the following sequence occurs (see  
Figure 8):  
1. The battery low flag BLF is set logic 1.  
2. An interrupt is generated if the control bit BLIE (register Control_3) is enabled  
(see Section 8.13.8).  
3. The flag BLF remains logic 1 until the battery is replaced. BLF cannot be cleared by  
command. It is cleared automatically by the battery low detection circuit when the  
battery is replaced.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
23 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
V
= V  
BBS  
DD  
internal power supply (= V  
)
BBS  
V
BAT  
V
th(bat)low  
(= 2.5 V)  
V
BAT  
BLF  
INT  
001aaj322  
Fig 8. Battery low detection behavior with bit BLIE set logic 1 (enabled)  
8.6.4 Extra power fail detection function  
The PCF2127AT has an extra power fail detection circuit which compares the voltage at  
the power fail input pin PFI to an internal reference voltage equal to 1.25 V.  
If VPFI < 1.25 V, the power fail output PFO is driven LOW. PFO is an open-drain, active  
LOW output which requires an external pull-up resistor in any application.  
The extra power fail detection function is typically used as a low voltage detection for the  
main power supply VDD (see Figure 9).  
V
DD  
R1  
R
PU  
PCF2127AT  
1.25 V  
(internal)  
15 PFI  
14  
PFO  
R2  
V
SS  
001aaj678  
Fig 9. Typical application of the extra power fail detection function  
Usually R1 and R2 should be chosen such that the voltage at pin PFI  
is higher than 1.25 V at start-up  
falls below 1.25 V when VDD falls below a desired threshold voltage, Vth(uvp), defined  
by Equation 1:  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
24 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
R1  
-----  
R2  
Vthuvp  
=
+ 1 1.25V  
(1)  
Vth(uvp) value is usually set to a value that there are several milliseconds before VDD falls  
below the minimum operating voltage of the system, in order to allow the microcontroller  
to perform early backup operations.  
If the extra power fail detection function is not used, pin PFI must be connected to VSS and  
pin PFO must be left open circuit.  
8.6.4.1 Extra power fail detection when the battery switch over function is enabled  
When the power switches to the backup battery supply VBAT, the power fail  
comparator is switched off and the power fail output at pin PFO goes (or remains)  
LOW  
When the power switches back to the main VDD, the pin PFO is not driven LOW  
anymore and is pulled HIGH through the external pull-up resistance for a certain time  
(trec = 15.63 ms to 31.25 ms) and then the power fail comparator is enabled again  
For illustration, see Figure 10 and Figure 11.  
V
DD  
V
th(uvp)  
V
BAT  
internal power supply (= V  
)
BBS  
V
V
BBS  
BBS  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
comparator  
enabled  
comparator  
disabled  
comparator  
enabled  
PF0  
t
= [15.63 : 31.25] ms  
rec  
001aaj319  
Fig 10. PFO signal behavior when battery switch-over is enabled in standard mode and  
Vth(uvp) > (VBAT, Vth(sw)bat  
)
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
25 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
V
DD  
V
V
BBS  
BBS  
internal power supply (= V  
)
BBS  
V
BAT  
V
th(uvp)  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
comparator  
enabled  
comparator  
disabled  
comparator  
enabled  
PF0  
t
rec  
001aaj320  
Fig 11. PFO signal behavior when battery switch-over is enabled in direct switching  
mode and Vth(uvp) < VBAT  
8.6.4.2 Extra power fail detection when the battery switch-over function is disabled  
If the battery switch-over function is disabled and the power fail comparator is enabled,  
the power fail output at pin PFO depends only on the result of the comparison between  
V
PFI and 1.25 V:  
If VPFI > 1.25 V, PFO = HIGH (through the external pull-up resistor)  
If VPFI < 1.25 V, PFO = LOW  
V
DD  
V
th(uvp)  
V
th(sw)bat  
(= 2.5 V)  
comparator always enabled  
PF0  
001aaj321  
Fig 12. PFO signal behavior when battery switch-over is disabled  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
26 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.7 Oscillator stop detection function  
The PCF2127AT has an on-chip oscillator detection circuit which monitors the status of  
the oscillation: whenever the oscillation stops, a reset occurs and the oscillator stop flag  
OSF (in register Seconds) is set logic 1.  
Power-on:  
a. The oscillator is not running, the chip is in reset (pin RST is LOW and flag OSF is  
logic 1).  
b. When the oscillator starts running and is stable after power-on, the chip exits from  
reset (pin RST is HIGH).  
c. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
Power supply failure:  
a. When the power supply of the chip (VBBS, see Section 8.6.2) drops below a certain  
value (Vlow), typically 1.2 V, the oscillator stops running and a reset occurs.  
b. When the power supply returns to normal operation, the oscillator starts running  
again, the chip exits from reset.  
c. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
V
DD  
V
DD  
V
BBS  
V
BAT  
V
V
BBS  
BBS  
V
V
th(sw)bat  
(= 2.5 V)  
battery discharge  
internal power supply  
BBS  
V
low  
(= 1.2 V)  
V
BAT  
V
SS  
V
SS  
(1)  
(2)  
OSF  
001aaj409  
(1) Theoretical state of the signals since there is no power.  
(2) The oscillator stop flag (OSF), set logic 1, indicates that the oscillation has stopped and a reset has  
occurred since the flag was last cleared (OSF set logic 0). In this case, the integrity of the clock  
information is not guaranteed. The OSF flag is cleared by command.  
Fig 13. Power failure event due to battery discharge: reset occurs  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
27 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.8 Reset function  
The PCF2127AT has a Power-On Reset (POR) and a Power-On Reset Override (PORO)  
function implemented.  
8.8.1 Power-On Reset (POR)  
The POR is active whenever the oscillator is stopped. The oscillator is also considered to  
be stopped during the time between power-on and stable crystal resonance (see  
Figure 14). This time may be in the range of 200 ms to 2 s depending on temperature and  
supply voltage. Whenever an internal reset occurs, the oscillator stop flag is set (OSF set  
logic 1).  
chip in reset  
chip not in reset  
V
DD  
oscillation  
RST  
t
013aaa243  
Fig 14. Dependency between POR and oscillator  
After POR, the following mode is entered:  
32.768 kHz CLKOUT active  
Power-On Reset Override (PORO) available to be set  
24 hour mode is selected  
Battery switch-over is enabled  
Battery low detection is enabled  
Extra power fail detection is enabled  
The register values after power-on are shown in Table 5.  
8.8.2 Power-On Reset Override (PORO)  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a mechanism has been built in to  
disable the POR and therefore speed up the on-board test of the device.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
28 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
osc stopped  
OSCILLATOR  
0 = stopped, 1 = running  
reset  
SCL  
RESET  
OVERRIDE  
0 = override inactive  
1 = override active  
SDA/CE  
CLEAR  
0 = clear override mode  
1 = override possible  
POR_OVRD  
001aaj324  
Fig 15. Power-On Reset (POR) system  
The setting of the PORO mode requires that POR_OVRD in register Control_1 is set  
logic 1 and that the signals at the interface pins SDA/CE and SCL are toggled as  
illustrated in Figure 16. All timings shown are required minimum.  
power up  
8 ms  
minimum 500 ns  
minimum 2000 ns  
SDA/CE  
SCL  
reset override  
001aaj326  
Fig 16. Power-On Reset Override (PORO) sequence, valid for both I2C-bus and SPI-bus  
Once the override mode is entered, the device is immediately released from the reset  
state and the set-up operation can commence.  
The PORO mode is cleared by writing logic 0 to POR_OVRD. POR_OVRD must be  
logic 1 before a re-entry into the override mode is possible. Setting POR_OVRD logic 0  
during normal operation has no effect except to prevent accidental entry into the PORO  
mode.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
29 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.9 Time and date function  
Most of these registers are coded in the Binary Coded Decimal (BCD) format.  
8.9.1 Register Seconds  
Table 20. Seconds - seconds and clock integrity register (address 03h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
OSF  
0
1[1]  
-
-
clock integrity is guaranteed  
clock integrity is not guaranteed:  
oscillator has stopped and chip reset  
has occurred since flag was last cleared  
6 to 4 SECONDS  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual seconds coded in BCD format  
unit place  
[1] Start-up value.  
Table 21. Seconds coded in BCD format  
Seconds value in Upper-digit (ten’s place)  
decimal  
Digit (unit place)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
8.9.2 Register Minutes  
Table 22. Minutes - minutes register (address 04h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7
-
6 to 4 MINUTES  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual minutes coded in BCD format  
unit place  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
30 of 86  
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.9.3 Register Hours  
Table 23. Hours - hours register (address 05h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7 to 6 -  
-
-
unused  
12 hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOURS  
0 to 1  
0 to 9  
ten’s place actual hours coded in BCD format when in  
12 hour mode  
3 to 0  
unit place  
24 hour mode[1]  
5 to 4 HOURS  
3 to 0  
0 to 2  
0 to 9  
ten’s place actual hours coded in BCD format when in  
24 hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
8.9.4 Register Days  
Table 24. Days - days register (address 06h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
unused  
7 to 6 -  
-
5 to 4 DAYS[1]  
0 to 3  
0 to 9  
ten’s place actual day coded in BCD format  
unit place  
3 to 0  
[1] If the year counter contains a value which is exactly divisible by 4, including the year 00, the RTC  
compensates for leap years by adding a 29th day to February.  
8.9.5 Register Weekdays  
Table 25. Weekdays - weekdays register (address 07h) bit description  
Bit  
Symbol  
Value  
-
Description  
7 to 3 -  
unused  
2 to 0 WEEKDAYS  
0 to 6  
actual weekday value, see Table 26  
Although the association of the weekdays counter to the actual weekday is arbitrary, the  
PCF2127AT will assume that Sunday is 000 and Monday is 001 for the purposes of  
determining the increment for calendar weeks.  
Table 26. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be reassigned by the user.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
31 of 86  
 
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.9.6 Register Months  
Table 27. Months - months register (address 08h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
unused  
7 to 5 -  
-
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD format, see  
Table 28  
3 to 0  
unit place  
Table 28. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
0
Bit 0  
1
January  
February  
March  
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
April  
0
0
0
0
May  
0
0
0
1
June  
0
0
1
0
July  
0
0
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
1
0
8.9.7 Register Years  
Table 29. Years - years register (address 09h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4 YEARS  
3 to 0  
ten’s place actual year coded in BCD format  
unit place  
8.9.8 Setting and reading the time  
Figure 17 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
During read/write operations, the time counting circuits (memory locations 03h through  
09h) are blocked.  
This prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
32 of 86  
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
1 Hz tick  
SECONDS  
MINUTES  
HOURS  
DAYS  
12_24 hour mode  
LEAP YEAR  
CALCULATION  
WEEKDAY  
MONTHS  
YEARS  
001aaf901  
Fig 17. Data flow of the time function  
After this read/write access is completed, the time circuit is released again. Any pending  
request to increment the time counters that occurred during the read/write access is  
serviced. A maximum of 1 request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 18).  
t < 1 s  
SLAVE ADDRESS  
DATA  
DATA  
STOP  
START  
013aaa215  
Fig 18. Access time for read/write operations  
As a consequence of this method, it is very important to make a read or write access in  
one go, that is, setting or reading seconds through to years should be made in one single  
access. Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time may increment between the two  
accesses. A similar problem exists when reading. A roll-over may occur between reads  
thus giving the minutes from one moment and the hours from the next. Therefore it is  
advised to read all time and date registers in one access.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
33 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.10 Alarm function  
When one or more of the alarm bit fields are loaded with a valid second, minute, hour, day,  
or weekday and its corresponding alarm enable bit (AE_x) is logic 0, then that information  
is compared with the actual second, minute, hour, day, and weekday (see Figure 19).  
example  
check now signal  
AE_S  
AE_S = 1  
SECOND ALARM  
=
1
0
SECOND TIME  
AE_M  
AE_H  
AE_D  
AE_W  
MINUTE ALARM  
MINUTE TIME  
=
=
=
=
HOUR ALARM  
HOUR TIME  
(1)  
set alarm flag AF  
DAY ALARM  
DAY TIME  
WEEKDAY ALARM  
WEEKDAY TIME  
013aaa236  
(1) Only when all enabled alarm settings are matching.  
Fig 19. Alarm function block diagram  
The generation of interrupts from the alarm function is described in Section 8.13.5.  
8.10.1 Register Second_alarm  
Table 30. Second_alarm - second alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_S  
0
1[1]  
-
-
second alarm is enabled  
second alarm is disabled  
6 to 4 SECOND_ALARM  
3 to 0  
0 to 5  
0 to 9  
ten’s place second alarm information coded in BCD  
format  
unit place  
[1] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
34 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.10.2 Register Minute_alarm  
Table 31. Minute_alarm - minute alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_M  
0
1[1]  
-
-
minute alarm is enabled  
minute alarm is disabled  
6 to 4 MINUTE_ALARM  
3 to 0  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in BCD  
format  
unit place  
[1] Default value.  
8.10.3 Register Hour_alarm  
Table 32. Hour_alarm - hour alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1[1]  
-
-
-
hour alarm is enabled  
hour alarm is disabled  
unused  
6
-
-
12 hour mode[2]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_ALARM  
0 to 1  
0 to 9  
ten’s place hour alarm information coded in BCD  
format when in 12 hour mode  
3 to 0  
unit place  
24 hour mode[2]  
5 to 4 HOUR_ALARM  
3 to 0  
0 to 2  
0 to 9  
ten’s place hour alarm information coded in BCD  
format when in 24 hour mode  
unit place  
[1] Default value.  
[2] Hour mode is set by the bit 12_24 in register Control_1.  
8.10.4 Register Day_alarm  
Table 33. Day_alarm - day alarm register (address 0Dh) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_D  
0
1[1]  
-
-
-
day alarm is enabled  
day alarm is disabled  
unused  
6
-
-
5 to 4 DAY_ALARM  
3 to 0  
0 to 3  
0 to 9  
ten’s place day alarm information coded in BCD  
format  
unit place  
[1] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
35 of 86  
 
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.10.5 Register Weekday_alarm  
Table 34. Weekday_alarm - weekday alarm register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
weekday alarm is enabled  
weekday alarm is disabled  
unused  
1[1]  
-
6 to 3 -  
2 to 0 WEEKDAY_ALARM  
0 to 6  
weekday alarm information  
[1] Default value.  
8.10.6 Alarm flag  
When all enabled comparisons first match, the alarm flag AF (register Control_2) is set.  
AF will remain set until cleared by command. Once AF has been cleared, it will only be set  
again when the time increments to match the alarm condition once more. For clearing the  
flags, see Section 8.11.6  
Alarm registers which have their alarm enable bit AE_x at logic 1 are ignored.  
minutes counter  
minute alarm  
AF  
44  
45  
45  
46  
INT when AIE = 1  
001aaf903  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 20. Alarm flag timing diagram  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
36 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.11 Timer functions  
The PCF2127AT has two different timer functions, a watchdog timer and a countdown  
timer. The timers can be selected by using the control bits WD_CD[1:0] in the register  
Watchdg_tim_ctl.  
The watchdog timer has four selectable source clocks. It can, for example, be used to  
detect a microcontroller with interrupt and reset capability which is out of control (see  
Section 8.11.3)  
The countdown timer has four selectable source clocks allowing for countdown  
periods from less than 1 ms to more than 4 hours (see Section 8.11.4)  
To control the timer functions and timer output, the registers Control_2, Watchdg_tim_ctl,  
and Watchdg_tim_val are used.  
8.11.1 Register Watchdg_tim_ctl  
Table 35. Watchdg_tim_ctl - watchdog timer control register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 6 WD_CD[1:0]  
00[1]  
watchdog timer disabled;  
countdown timer disabled  
01  
watchdog timer disabled;  
countdown timer enabled  
if CDTIE is set logic 1, the interrupt pin INT is  
activated when the countdown timed out  
10  
11  
watchdog timer enabled;  
the interrupt pin INT is activated when timed out;  
countdown timer not available  
watchdog timer enabled;  
the reset pin RST is activated when timed out;  
countdown timer not available  
5
TI_TP  
0[1]  
1
the interrupt pin INT is configured to generate a  
permanent active signal when MSF and/or CDTF is set  
the interrupt pin INT is configured to generate a pulsed  
signal when MSF flag and/or CDTF flag is set (see  
Figure 25)  
4 to 2 -  
-
unused  
1 to 0 TF[1:0]  
timer source clock for watchdog and countdown timer  
00  
4.096 kHz  
64 Hz  
01  
10  
1 Hz  
1
11[1]  
60 Hz  
[1] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
37 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.11.2 Register Watchdg_tim_val  
Table 36. Watchdg_tim_val - watchdog timer value register (address 11h) bit description  
Bit Symbol Value Description  
7 to 0 WATCHDG_TIM_VAL[7:0] 00 to FF timer period in seconds:  
n
--------------------------------------------------------------  
CountdownPeriod =  
SourceClockFrequency  
where n is the timer value  
Table 37. Programmable watchdog or countdown timer  
TF[1:0] Timer source  
clock frequency  
Units Minimum timer  
Units Maximum timer  
period (n = 255)  
Units  
period (n = 1)  
00  
01  
10  
11  
4.096  
64  
kHz  
Hz  
244  
15.625  
1
s  
ms  
s
62.256  
3.984  
255  
ms  
s
1
Hz  
s
1
Hz  
60  
s
15300  
s
60  
8.11.3 Watchdog timer function  
The watchdog timer function is enabled or disabled by the WD_CD[1:0] bits of the register  
Watchdg_tim_ctl (see Table 35).  
The two bits TF[1:0] in register Watchdg_tim_ctl determine one of the four source clock  
frequencies for the watchdog timer: 4.096 kHz, 64 Hz, 1 Hz, or 160 Hz (see Table 37).  
When the watchdog timer function is enabled, the 8-bit timer in register Watchdg_tim_val  
determines the watchdog timer period (see Table 36).  
The watchdog timer counts down from the software programmed 8-bit binary value n in  
register Watchdg_tim_val. When the counter reaches 1, the watchdog timer flag WDTF  
(register Control_2) is set logic 1.  
If WDTF is logic 1 and:  
if WD_CD[1:0] = 10 an interrupt will be generated  
if WD_CD[1:0] = 11 a reset will be generated  
The counter does not automatically reload.  
When WD_CD[1:0] = 10 or WD_CD[1:0] = 11 and the microcontroller unit (MCU) loads a  
watchdog timer value n:  
the flag WDTF is reset  
INT or RST is cleared  
the watchdog timer starts again  
Loading the counter with 0 will:  
reset the flag WDTF  
clear INT or RST  
stop the watchdog timer  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
38 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Remark: WDTF is read only and cannot be cleared by command. WDTF can be cleared  
by:  
loading a value in register Watchdg_tim_val  
reading of the register Control_2  
Writing a logic 0 or logic 1 to WDTF has no effect.  
MCU  
watchdog  
timer value  
n = 1  
n
WDTF  
INT  
001aag062  
Counter reached 1, WDTF is set logic 1, and an interrupt is generated.  
Fig 21. WD_CD[1:0] = 10: watchdog activates an interrupt when timed out  
When the watchdog timer counter reaches 1, the watchdog timer flag WDTF is set  
logic 1  
When a minute or second interrupt occurs, the minute/second flag MSF is set logic 1  
(see Section 8.13.1)  
MCU  
watchdog  
timer value  
n = 1  
n
WDTF  
RST  
001aag063  
t
w(rst)  
Counter reached 1, WDTF is set logic 1, reset pulse on the RST pin is generated for a time equal  
to tw(rst)  
.
Fig 22. WD_CD[1:0] = 11: watchdog activates a reset pulse when timed out  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
39 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 38. Specification of tw(rst)  
WD_CD[1:0]  
11  
TF[1:0]  
00  
tw(rst)  
244 s  
01  
15.625 ms  
15.625 ms  
15.625 ms  
10  
11  
8.11.4 Countdown timer function  
The countdown timer function is controlled by the WD_CD[1:0] bits in register  
Watchdg_tim_ctl (see Table 35).  
The timer counts down from the software programmed 8 bit binary value n in register  
Watchdg_tim_val. When the counter reaches 1  
the countdown timer flag CDTF is set  
the counter automatically reloads  
and the next time period starts  
Loading the counter with 0 effectively stops the timer.  
Reading the timer returns the actual value of the countdown counter.  
countdown value, n  
timer source clock  
countdown counter  
WD/CD [1:0]  
CDTF  
XX  
03  
03  
XX  
00  
02  
01  
03  
02  
01  
03  
02  
01  
03  
01  
INT  
n
n
duration of first timer period after  
enable may range from n1 to n+1  
001aag071  
In this example, it is assumed that the countdown timer flag (CDTF) is cleared before the next  
countdown period expires and that INT is set to pulsed mode.  
Fig 23. General countdown timer behavior  
If a new value of n is written before the end of the actual timer period, this value takes  
immediate effect. It is not recommended to change n without first disabling the counter by  
setting WD_CD[1:0] = 00. The update of n is asynchronous to the timer clock. Therefore  
changing it on the fly could result in a corrupted value loaded into the countdown counter.  
This can result in an undetermined countdown period for the first period. The countdown  
value n will, however, be correctly stored and correctly loaded on subsequent timer  
periods.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
40 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
If this mode is enabled and the countdown timer flag CDTF is set, an interrupt signal on  
INT will be generated. See Section 8.13.2 for details on how the interrupt can be  
controlled.  
When starting the countdown timer for the first time, only the first period will not have a  
fixed duration. The amount of inaccuracy for the first timer period will depend on the  
chosen source clock, see Table 39.  
Table 39. First period delay for timer counter  
Timer source clock  
4.096 kHz  
Minimum timer period  
Maximum timer period  
n + 1  
n
64 Hz  
n
n + 1  
1 Hz  
(n 1) + 164 Hz  
(n 1) + 164 Hz  
n + 164 Hz  
n + 164 Hz  
1
60 Hz  
At the end of every countdown, the timer sets the countdown timer flag (CDTF). CDTF  
may only be cleared by command. The asserted CDTF can be used to generate an  
interrupt (INT). The interrupt may be generated as a pulsed signal every countdown  
period or as a permanently active signal which follows the condition of CDTF. TI_TP is  
used to control this mode selection. The interrupt output may be disabled with the CDTIE  
bit, see Table 7.  
When reading the timer, the actual countdown value is returned and not the initial value n.  
Since it is not possible to freeze the countdown timer counter during read back, it is  
recommended to read the register twice and check for consistent results.  
8.11.5 Pre-defined timers: second and minute interrupt  
PCF2127AT has two pre-defined timers which are used to generate an interrupt either  
once per second or once per minute. The pulse generator for the minute or second  
interrupt operates from an internal 64 Hz clock. It is independent of the watchdog or  
countdown timers. Each of these timers can be enabled by the bits SI (second interrupt)  
and MI (minute interrupt) in register Control_1.  
8.11.6 Clearing flags  
The flags MSF, CDTF, AF and TSFx can be cleared by command. To prevent one flag  
being overwritten while clearing another, a logic AND is performed during the write  
access. A flag is cleared by writing logic 0 while a flag is not cleared by writing logic1.  
Writing logic1 will result in the flag value remaining unchanged.  
Four examples are given for clearing the flags. Clearing the flags is made by a write  
command:  
Bits labeled with - must be written with their previous values  
WDTF is read only and has to be written with logic 0  
Repeatedly rewriting these bits has no influence on the functional behavior.  
Table 40. Flag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
MSF  
WDTF  
TSF2  
AF  
CDTF  
-
-
-
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
41 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 41. Example values in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
1
1
0
0
0
The following tables show what instruction must be sent to clear the appropriate flag.  
Table 42. Example to clear only CDTF (bit 3)  
Register  
Bit  
7
6
5
4
3
2
1
0
[1]  
[1]  
[1]  
Control_2  
1
0
1
1
0
-
-
-
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 43. Example to clear only AF (bit 4)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
0
1
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 44. Example to clear only MSF (bit 7)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
0
0
1
1
1
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 45. Example to clear both CDTF and MSF  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
0
0
1
1
0
0[1]  
0[1]  
0[1]  
[1] The bits labeled as - have to be rewritten with the previous values.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
42 of 86  
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.12 Timestamp function  
The PCF2127AT has an active LOW timestamp input pin TS, internally pulled with an  
on-chip pull-up resistor to the internal power supply of the device. It also has a timestamp  
detection circuit which can detect two different events:  
1. Input on pin TS is driven to an intermediate level between power supply and ground.  
2. Input on pin TS is driven to ground.  
ꢁꢂ  
ꢀꢃ  
ꢀꢅ  
ꢀꢇ  
ꢀꢉ  
ꢀꢈ  
ꢀꢆ  
ꢀꢄ  
ꢀꢁ  
ꢀꢀ  
9
''ꢊLQWꢋ  
5ꢀꢌ  
“ꢌꢁꢂꢌꢍ  
76  
5ꢁꢌ  
3&)ꢀꢁꢀꢂ$7  
“ꢌꢈꢌꢍ  
SXVKꢎEXWWRQꢌꢁ  
FRQQHFWHGꢌWR  
FRYHUꢌꢁ  
SXVKꢎEXWWRQꢌꢀ  
FRQQHFWHGꢌWR  
FRYHUꢌꢀ  
ꢀꢂ  
ꢀꢁꢂDDDꢃꢄꢅ  
9
66  
Fig 24. Timestamp detection with two push-buttons on the TS pin (for example, for  
tamper detection)  
The timestamp function is enabled by default after power-on and it can be switched off by  
setting the control bit TSOFF (register Timestp_ctl).  
A most common application of the timestamp function is described in Ref. 3 “AN10857”.  
See Section 8.13.6 for a description of interrupt generation from the timestamp function.  
8.12.1 Timestamp flag  
1. When the TS input pin is driven to an intermediate level between the power supply  
and ground, then the following sequence occurs:  
a. The actual date and time are stored in the timestamp registers.  
b. The timestamp flag TSF1 (register Control_1) is set.  
c. If the TSIE bit (register Control_2) is active, an interrupt on the INT pin is  
generated.  
The TSF1 flag can be cleared by command. Clearing the flag will clear the interrupt.  
Once TSF1 is cleared, it will only be set again when a new negative edge on pin TS is  
detected.  
2. When the TS input pin is driven to ground, the following sequence occurs:  
a. The actual date and time are stored in the timestamp registers.  
b. In addition to the TSF1 flag, the TSF2 flag (register Control_2) is set.  
c. If the TSIE bit is active, an interrupt on the INT pin is generated.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
43 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
The TSF1 and TSF2 flags can be cleared by command; clearing both flags will clear  
the interrupt. Once TSF2 is cleared, it will only be set again when TS pin is driven to  
ground once again.  
8.12.2 Timestamp mode  
The timestamp function has two different modes selected by the control bit TSM  
(timestamp mode) in register Timestp_ctl:  
If TSM is logic 0 (default): in subsequent trigger events without clearing the timestamp  
flags, the last timestamp event is stored  
If TSM is logic 1: in subsequent trigger events without clearing the timestamp flags,  
the first timestamp event is stored  
The timestamp function also depends on the control bit BTSE in register Control_3, see  
Section 8.12.4.  
8.12.3 Timestamp registers  
8.12.3.1 Register Timestp_ctl  
Table 46. Timestp_ctl - timestamp control register (address 12h) bit description  
Bit  
Symbol  
Value Description  
7
TSM  
0[1]  
in subsequent events without clearing the timestamp  
flags, the last event is stored  
1
in subsequent events without clearing the timestamp  
flags, the first event is stored  
6
5
TSOFF  
-
0[1]  
1
timestamp function active  
timestamp function disabled  
-
unused  
1
4 to 0 1_O_16_TIMESTP[4:0]  
[1] Default value.  
16 second timestamp information coded in BCD format  
8.12.3.2 Register Sec_timestp  
Table 47. Sec_timestp - second timestamp register (address 13h) bit description  
Bit  
Symbol  
Value  
Place value Description  
- unused  
7
-
-
6 to 4 SECOND_TIMESTP 0 to 5  
ten’s place second timestamp information coded in  
BCD format  
3 to 0  
0 to 9  
unit place  
8.12.3.3 Register Min_timestp  
Table 48. Min_timestp - minute timestamp register (address 14h) bit description  
Bit  
Symbol  
Value  
Place value Description  
- unused  
7
-
-
6 to 4 MINUTE_TIMESTP 0 to 5  
3 to 0 0 to 9  
ten’s place minute timestamp information coded in  
BCD format  
unit place  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
44 of 86  
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.12.3.4 Register Hour_timestp  
Table 49. Hour_timestp - hour timestamp register (address 15h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7 to 6 -  
-
-
unused  
12 hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_TIMESTP  
0 to 1  
0 to 9  
ten’s place hour timestamp information coded in BCD  
format when in 12 hour mode  
3 to 0  
unit place  
24 hour mode[1]  
5 to 4 HOUR_TIMESTP  
3 to 0  
0 to 2  
0 to 9  
ten’s place hour timestamp information coded in BCD  
format when in 24 hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
8.12.3.5 Register Day_timestp  
Table 50. Day_timestp - day timestamp register (address 16h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
unused  
7 to 6 -  
-
5 to 4 DAY_TIMESTP  
3 to 0  
0 to 3  
0 to 9  
ten’s place day timestamp information coded in BCD  
format  
unit place  
8.12.3.6 Register Mon_timestp  
Table 51. Mon_timestp - month timestamp register (address 17h) bit description  
Bit  
Symbol  
Value  
Place value Description  
unused  
7 to 5 -  
-
-
4
MONTH_TIMESTP 0 to 1  
0 to 9  
ten’s place month timestamp information coded in  
BCD format  
3 to 0  
unit place  
8.12.3.7 Register Year_timestp  
Table 52. Year_timestp - year timestamp register (address 18h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4 YEAR_TIMESTP  
3 to 0  
ten’s place year timestamp information coded in BCD  
format  
unit place  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
45 of 86  
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.12.4 Dependency between Battery switch-over and timestamp  
The timestamp function depends on the control bit BTSE in register Control_3:  
Table 53. Battery switch-over and timestamp  
BTSE BF  
Description  
[1]  
[1]  
0
1
-
the battery switch-over does not affect the timestamp registers  
If a battery switch-over event occurs:  
0
1
the timestamp registers store the time and date when the switch-over occurs;  
after this event occurred BF is set logic 1  
the timestamp registers are not modified;  
in this condition subsequent battery switch-over events or falling edges on pin  
TS are not registered  
[1] Default value.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
46 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.13 Interrupt output, INT  
SI  
MSF:  
MINUTE  
SECOND FLAG  
to interface:  
read MSF  
SECONDS COUNTER  
MINUTES COUNTER  
SI/MI  
0
MI  
SET  
CLEAR  
1
PULSE  
GENERATOR 1  
TRIGGER  
CLEAR  
from interface:  
clear MSF  
TI_TP  
INT pin  
CDTF:  
COUNTDOWN  
TIMER FLAG  
to interface:  
read CDTF  
WD_CD[1:0] = 01  
CDTIE  
0
1
COUNTDOWN  
COUNTER  
SET  
CLEAR  
PULSE  
GENERATOR 2  
TRIGGER  
CLEAR  
from interface:  
clear CDTF  
WDTF:  
WATCHDOG  
TIMER FLAG  
to interface:  
read WDTF  
WD_CD[1:0] = 00  
WD_CD[1:0] = 01  
WATCHDOG  
COUNTER  
SET  
CLEAR  
MCU loading  
watchdog counter  
to interface:  
read AF  
AIE  
TSIE  
AF: ALARM  
FLAG  
set alarm  
flag, AF  
SET  
CLEAR  
from interface:  
clear AF  
to interface:  
read TSFx  
TSFx: TIMESTAMP  
FLAG  
set timestamp  
flag, TSFx  
SET  
CLEAR  
from interface:  
clear TSFx  
to interface:  
read BF  
BIE  
BF: BATTERY  
FLAG  
set battery  
flag, BF  
SET  
CLEAR  
from interface:  
clear BF  
to interface:  
read BLF  
BLIE  
BLF: BATTERY  
LOW FLAG  
set battery  
low flag, BLF  
SET  
CLEAR  
from battery  
low detection  
001aag070  
circuit: clear BF  
When SI, MI, CDTIE, WD_CD, AIE, TSIE, BIE, BLIE are all disabled, INT will remain high-impedance.  
Fig 25. Interrupt block diagram  
PCF2127AT has an interrupt output pin INT which is open-drain, active LOW. Interrupts  
may be sourced from different places:  
second or minute timer  
countdown timer  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
47 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
watchdog timer  
alarm  
timestamp  
battery switch-over  
battery low detection  
The control bit TI_TP (register Watchdg_tim_ctl) is used to configure whether the  
interrupts generated from the second/minute timer (flag MSF in register Control_2) and  
the countdown timer (flag CDTF in register Control_2) are pulsed signals or a  
permanently active signal. All the other interrupt sources generate a permanently active  
interrupt signal which follows the status of the corresponding flags. When the interrupt  
sources are all disabled, INT remains high-impedance.  
The flags MSF, CDTF, AF, TSFx, and BF can be cleared by command.  
The flag WDTF is read only. How it can be cleared is explained in Section 8.11.6.  
The flag BLF is read only. It is cleared automatically from the battery low detection  
circuit when the battery is replaced.  
8.13.1 Minute and second interrupts  
Minute and second interrupts are generated by predefined timers. The timers can be  
enabled independently from one another by the bits MI and SI in register Control_1.  
However, a minute interrupt enabled on top of a second interrupt will not be  
distinguishable since it will occur at the same time.  
The minute/second flag MSF (register Control_2) is set logic 1 when either the seconds or  
the minutes counter increments according to the enabled interrupt (see Table 54). The  
MSF flag can be read and cleared by command.  
Table 54. Effect of bits MI and SI on pin INT and bit MSF  
MI SI Result on INT  
Result on MSF  
0
1
0
1
0
0
1
1
no interrupt generated  
MSF never set  
an interrupt once per minute  
an interrupt once per second  
an interrupt once per second  
MSF set when minutes counter increments  
MSF set when seconds counter increments  
MSF set when seconds counter increments  
When MSF is set logic 1:  
If TI_TP is logic 1, the interrupt is generated as a pulsed signal.  
If TI_TP is logic 0, the interrupt is permanently active signal that remains until MSF is  
cleared.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
48 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
seconds counter  
minutes counter  
58  
59  
59  
11  
00  
12  
00  
01  
INT when SI enabled  
MSF when SI enabled  
INT when only MI enabled  
MSF when only MI enabled  
001aaf905  
In this example, bit TI_TP is logic 1 and the MSF flag is not cleared after an interrupt.  
Fig 26. INT example for SI and MI when TI_TP is logic 1  
seconds counter  
minutes counter  
58 59  
59 00  
11 12  
00 01  
INT when SI enable  
MSF when SI enable  
INT when only MI enabled  
MSF when only MI enabled  
001aag072  
In this example, bit TI_TP is logic 0 and the MSF flag is cleared after an interrupt.  
Fig 27. INT example for SI and MI when TI_TP is logic 0  
The pulse generator for the minute/second interrupt operates from an internal 64 Hz clock  
and generates a pulse of 164 seconds in duration.  
8.13.2 Countdown timer interrupts  
The generation of interrupts from the countdown timer is controlled by the CDTIE bit  
(register Control_2).  
The interrupt may be generated as a pulsed signal at every countdown period or as a  
permanently active signal which follows the status of the countdown timer flag CDTF. Bit  
TI_TP is used to control this bit.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
49 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.13.3 INT pulse shortening  
The pulse generator for the countdown timer interrupt also uses an internal clock, but this  
time it is dependent on the selected source clock for the countdown timer and on the  
countdown value n. As a consequence, the width of the interrupt pulse varies (see  
Table 55).  
Table 55. INT operation (bit TI_TP = 1)  
Source clock (Hz)  
INT period (s)  
n = 1 [1]  
n > 1  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
60  
64  
64  
[1] n = loaded countdown value. Timer stopped when n = 0.  
If the MSF or CDTF flag (register Control_2) is cleared before the end of the INT pulse,  
then the INT pulse is shortened. This allows the source of a system interrupt to be cleared  
immediately when it is serviced, that is, the system does not have to wait for the  
completion of the pulse before continuing, see Figure 28 and Figure 29. Instructions for  
clearing bit MSF and bit CDTF can be found in Section 8.11.6.  
seconds counter  
MSF  
58  
59  
INT  
(1)  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf908  
(1) Indicates normal duration of INT pulse.  
The timing shown for clearing bit MSF is also valid for the non-pulsed interrupt mode, that is,  
when TI_TP is logic 0, where the INT pulse may be shortened by setting both bits MI and SI  
logic 0.  
Fig 28. Example of shortening the INT pulse by clearing the MSF flag  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
50 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
countdown counter  
01  
n
CDTF  
INT  
(1)  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf909  
(1) Indicates normal duration of INT pulse.  
The timing shown for clearing CDTF is also valid for the non-pulsed interrupt mode, that is, when  
TI_TP is logic 0, where the INT pulse may be shortened by setting CDTIE logic 0.  
Fig 29. Example of shortening the INT pulse by clearing the CDTF flag  
8.13.4 Watchdog timer interrupts  
The generation of interrupts from the watchdog timer is controlled using the WD_CD[1:0]  
bits (register Watchdg_tim_ctl). The interrupt is generated as an active signal which  
follows the status of the watchdog timer flag WDTF (register Control_2). No pulse  
generation is possible for watchdog timer interrupts.  
The interrupt is cleared when the flag WDTF is reset. WDTF is a read only bit and cannot  
be cleared by command. Instructions for clearing it can be found in Section 8.11.6.  
8.13.5 Alarm interrupts  
Generation of interrupts from the alarm function is controlled by the bit AIE (register  
Control_2). If AIE is enabled, the INT pin will follow the status of bit AF (register  
Control_2). Clearing AF will immediately clear INT. No pulse generation is possible for  
alarm interrupts.  
minute counter  
minute alarm  
AF  
44  
45  
45  
INT  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf910  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 30. AF timing diagram  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
51 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.13.6 Timestamp interrupts  
Interrupt generation from the timestamp function is controlled using the TSIE bit (register  
Control_2). If TSIE is enabled, the INT pin follows the status of the flags TSFx. Clearing  
the flags TSFx immediately clears INT. No pulse generation is possible for timestamp  
interrupts.  
8.13.7 Battery switch-over interrupts  
Generation of interrupts from the battery switch-over is controlled by the BIE bit (register  
Control_3). If BIE is enabled, the INT pin follows the status of bit BF in register Control_3  
(see Table 53). Clearing BF immediately clears INT. No pulse generation is possible for  
battery switch-over interrupts.  
8.13.8 Battery low detection interrupts  
Generation of interrupts from the battery low detection is controlled by the BLIE bit  
(register Control_3). If BLIE is enabled, the INT pin will follow the status of bit BLF  
(register Control_3). The interrupt is cleared when the battery is replaced (BLF is logic 0)  
or when bit BLIE is disabled (BLIE is logic 0). BLF is read only and therefore cannot be  
cleared by command.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
52 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.14 External clock test mode  
A test mode is available which allows on-board testing. In this mode, it is possible to set  
up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit EXT_TEST logic 1 (register Control_1). Then  
pin CLKOUT becomes an input. The test mode replaces the internal clock signal (64 Hz)  
with the signal applied to pin CLKOUT. Every 64 positive edges applied to pin CLKOUT  
generate an increment of one second.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided  
down by a 26 divider chain called prescaler (see Table 56). The prescaler can be set into a  
known state by using bit STOP. When bit STOP is logic 1, the prescaler is reset to 0.  
STOP must be cleared before the prescaler can operate again.  
From a stop condition, the first 1 second increment will take place after 32 positive edges  
on pin CLKOUT. Thereafter, every 64 positive edges will cause a 1 second increment.  
Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When  
entering the test mode, no assumption as to the state of the prescaler can be made.  
Operating example:  
1. Set EXT_TEST test mode (register Control_1, EXT_TEST is logic 1).  
2. Set bit STOP (register Control_1, STOP is logic 1).  
3. Set time registers to desired value.  
4. Clear STOP (register Control_1, STOP is logic 0).  
5. Apply 32 clock pulses to CLKOUT.  
6. Read time registers to see the first change.  
7. Apply 64 clock pulses to CLKOUT.  
8. Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
53 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.15 STOP bit function  
The function of the STOP bit is to allow for accurate starting of the time circuits. STOP will  
cause the upper part of the prescaler (F9 to F14) to be held in reset and thus no 1 Hz ticks  
are generated. The time circuits can then be set and will not increment until the STOP bit  
is released. STOP will not affect the CLKOUT signal but the output of the prescaler in the  
range of 32 Hz to 1 Hz (see Figure 31).  
The lower stages of the prescaler, F0 to F8, are not reset and because the I2C-bus and the  
SPI-bus are asynchronous to the crystal oscillator, the accuracy of restarting the time  
circuits is between 0 and one 64 Hz cycle (0.484375 s and 0.500000 s), see Table 56 and  
Figure 32.  
Table 56. First increment of time circuits after stop release  
Bit  
Prescaler bits[1]  
1 Hz tick  
Time  
Comment  
STOP  
F0 to F8 - F9 to F14  
hh:mm:ss  
Clock is running normally  
0
010000111-010100  
12:45:12  
prescaler counting normally  
STOP bit is activated by user. F0 to F8 are not reset and values cannot be predicted externally  
1
xxxxxxxxx-000000  
12:45:12  
prescaler is reset; time circuits are frozen  
prescaler is reset; time circuits are frozen  
prescaler is now running  
New time is set by user  
1
xxxxxxxxx-000000  
08:00:00  
STOP bit is released by user  
0
0
0
0
:
xxxxxxxxx-000000  
xxxxxxxxx-100000  
xxxxxxxxx-100000  
xxxxxxxxx-110000  
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
0
0
0
:
111111111-111110  
000000000-000001  
100000000-000001  
:
08:00:00  
08:00:01  
08:00:01  
:
0 to 1 transition of F14 increments the time circuits  
0
0
0
:
111111111-111111  
000000000-000000  
100000000-000000  
:
08:00:01  
08:00:01  
:
0
0
111111111-111110  
000000000-000001  
08:00:01  
08:00:02  
0 to 1 transition of F14 increments the time circuits  
001aaj479  
[1] F0 is clocked at 32.768 kHz.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
54 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
LOWER PRESCALER  
UPPER PRESCALER  
128 Hz  
32768 Hz  
16384 Hz  
8192 Hz  
4096 Hz  
64 Hz  
F
0
F
F
F
F
F
F
F
14  
1
2
8
9
10  
13  
1 Hz tick  
OSC  
RES  
RES  
RES  
RES  
stop  
001aaj342  
Fig 31. STOP bit functional diagram  
64 Hz  
stop released  
0 ms - 15.625 ms  
001aaj343  
Fig 32. STOP bit release timing  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
55 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
9. Interfaces  
The PCF2127AT has an I2C-bus or SPI-bus interface using the same pins. The selection  
is done by using the interface selection pin IFS (see Table 57).  
Table 57. Interface selection input pin IFS  
Pin  
Connection  
VSS  
Bus interface  
Reference  
Section 9.1  
Section 9.2  
IFS  
SPI-bus  
I2C-bus  
BBS  
V
V
DD  
DD  
SCL  
SDI  
R
PU  
R
PU  
SCL  
SDA  
SDO  
CE  
V
SCL  
DD  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
SCL  
SDI  
DD  
1
2
3
4
5
6
7
8
9
20  
SDI  
2
3
4
5
6
7
8
9
19  
SDO  
BBS  
SDO  
BBS  
18  
17  
16  
15  
14  
13  
12  
11  
SDA/CE  
IFS  
SDA/CE  
IFS  
PCF2127AT  
PCF2127AT  
V
SS  
V
SS  
10  
10  
V
SS  
V
SS  
001aaj679  
001aaj680  
To select the SPI-bus interface, pin IFS has to be  
connected to pin VSS  
To select the I2C-bus interface, pin IFS has to be  
connected to pin BBS.  
.
a. SPI-bus interface selection  
b. I2C-bus interface selection  
Fig 33. Interface selection  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
56 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
9.1 SPI-bus interface  
Data transfer to and from the device is made by a 3 line SPI-bus (see Table 58). The data  
lines for input and output are split. The data input and output line can be connected  
together to facilitate a bidirectional data bus (see Figure 34). The SPI-bus is initialized  
whenever the chip enable line pin SDA/CE is inactive.  
SDI  
SDI  
SDO  
SDO  
two wire mode  
single wire mode  
001aai560  
Fig 34. SDI, SDO configurations  
Table 58. Serial interface  
Symbol  
Function  
Description  
[1]  
SDA/CE  
chip enable input;  
active LOW  
when HIGH, the interface is reset;  
input may be higher than VDD  
SCL  
SDI  
serial clock input  
when SDA/CE is HIGH, input may float;  
input may be higher than VDD  
serial data input  
when SDA/CE is HIGH, input may float;  
input may be higher than VDD  
;
input data is sampled on the rising edge of SCL  
push-pull output;  
SDO  
serial data output  
drives from VSS to VBBS  
;
output data is changed on the falling edge of SCL  
[1] The chip enable must not be wired permanently LOW.  
9.1.1 Data transmission  
The chip enable signal is used to identify the transmitted data. Each data transfer is a  
whole byte, with the Most Significant Bit (MSB) sent first.  
The transmission is controlled by the active LOW chip enable signal SDA/CE. The first  
byte transmitted is the command byte. Subsequent bytes will be either data to be written  
or data to be read (see Figure 35).  
data bus  
SDA/CE  
COMMAND  
DATA  
DATA  
DATA  
013aaa311  
Fig 35. Data transfer overview  
The command byte defines the address of the first register to be accessed and the  
read/write mode. The address counter will auto increment after every access and will  
reset to zero after the last valid register is accessed. The R/W bit defines if the following  
bytes will be read or write information.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
57 of 86  
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 59. Command byte definition  
Bit  
Symbol  
Value  
Description  
7
R/W  
data read or write selection  
write data  
0
1
read data  
6 to 5  
4 to 0  
SA  
01  
subaddress;  
other codes will cause the device to ignore data  
transfer  
RA  
00h to 1Dh register address  
R/W  
SA  
addr 03h  
seconds data 45  
minutes data 10  
BCD  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
SCL  
SDI  
SDA/CE  
address  
counter  
xx  
03  
04  
05  
001aaj348  
In this example, the Seconds register is set to 45 seconds and the Minutes register to 10 minutes.  
Fig 36. SPI-bus write example  
R/W  
SA  
addr 08h  
months data 11  
years data 06  
BCD  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
1
0
1
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
0
SCL  
SDI  
SDO  
SDA/CE  
address  
counter  
xx  
08  
09  
0A  
001aaj349  
In this example, the registers Months and Years are read. The pins SDI and SDO are not connected together. For this  
configuration, it is important that pin SDI is never left floating. It must always be driven either HIGH or LOW. If pin SDI is left  
open, high IDD currents may result.  
Fig 37. SPI-bus read example  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
58 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
9.2 I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines are  
connected to a positive supply by a pull-up resistor. Data transfer is initiated only when the  
bus is not busy.  
9.2.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line remains  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
are interpreted as control signals (see Figure 38).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 38. Bit transfer  
9.2.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH, is defined as the START condition S. A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition P (see Figure 39).  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 39. Definition of START and STOP conditions  
Remark: For the PCF2127AT, a repeated START is not allowed. Therefore a STOP has  
to be released before the next START.  
9.2.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves.  
The PCF2127AT can act as a slave transmitter and a slave receiver.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
59 of 86  
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
SDA  
SCL  
MASTER  
TRANSMITTER  
RECEIVER  
SLAVE  
TRANSMITTER  
RECEIVER  
MASTER  
MASTER  
SLAVE  
RECEIVER  
TRANSMITTER  
TRANSMITTER  
RECEIVER  
mba605  
Fig 40. System configuration  
9.2.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 41.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 41. Acknowledgement on the I2C-bus  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
60 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
9.2.5 I2C-bus protocol  
After a start condition, a valid hardware address has to be sent to a PCF2127AT device.  
The appropriate I2C-bus slave address is 1010001. The entire I2C-bus slave address byte  
is shown in Table 60.  
Table 60. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
0
1
0
0
0
1
The R/W bit defines the direction of the following single or multiple byte data transfer (read  
is logic 1, write is logic 0).  
For the format and the timing of the START condition (S), the STOP condition (P), and the  
acknowledge bit (A) refer to the I2C-bus specification Ref. 11 “UM10204” and the  
characteristics table (Table 65). In the write mode, a data transfer is terminated by sending  
either a STOP condition or the START condition of the next data transfer.  
acknowledge  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
from PCF2127AT  
S
1
0
1
0
0
0
1
0
A
A
A
P/S  
slave address  
register address  
00h to 1Dh  
0 to n  
data bytes  
write bit  
START/  
STOP  
001aaj719  
Fig 42. Bus protocol, writing to registers  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
set register  
address  
S
1
0
1
0
0
0
1
0
A
A
P
slave address  
register address  
00h to 1Dh  
write bit  
STOP  
acknowledge  
from PCF2127AT  
acknowledge  
from master  
no acknowledge  
LAST DATA BYTE  
read register  
data  
S
1
0
1
0
0
0
1
1
A
DATA BYTE  
A
A
P
slave address  
0 to n data bytes  
read bit  
001aaj721  
Fig 43. Bus protocol, reading from registers  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
61 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
S
1
0
1
0
0
0
1
0
A
register address 1Ah  
A
slave address  
write bit  
set RAM  
address  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
data byte 1Ah  
A
data byte 1Bh  
A
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
RAM write  
command  
P/S  
1
0
1
0
0
0
1
0
A
register address 1Ch  
A
slave address  
write bit  
acknowledge  
from PCF2127AT  
write data  
to RAM  
data byte (RAM address)  
A
P
0 to n  
data bytes  
001aaj720  
Fig 44. Bus protocol, writing to RAM  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
62 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
S
1
0
1
0
0
0
1
0
A
register address 1Ah  
A
slave address  
write bit  
set RAM  
address  
acknowledge  
acknowledge  
from PCF2127AT  
from PCF2127AT  
data byte 1Ah  
A
data byte 1Bh  
A
acknowledge  
from PCF2127AT  
acknowledge  
from PCF2127AT  
RAM  
read command  
P/S  
1
0
1
0
0
0
1
0
A
register address 1Dh  
A
slave address  
write bit  
acknowledge  
from PCF2127AT  
acknowledge  
from master  
P/S  
1
0
1
0
0
0
1
1
A
data byte  
A
read data  
from RAM  
slave address  
0 to n  
data bytes  
read bit  
no acknowledge  
last data byte  
A
P
001aaj722  
Fig 45. Bus protocol, reading from RAM  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
63 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
10. Internal circuitry  
V
V
DD  
SCL  
SDI  
BAT  
BBS  
SDO  
INT  
RST  
PFI  
SDA/CE  
IFS  
TS  
CLKOUT  
PFO  
V
SS  
TEST  
PCF2127AT  
001aaj677  
Fig 46. Device diode protection diagram of PCF2127AT  
11. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
64 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
12. Limiting values  
Table 61. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
10  
0.5  
10  
10  
0.5  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
Vi  
supply voltage  
supply current  
input voltage  
input current  
output voltage  
output current  
mA  
V
+6.5  
+10  
II  
mA  
V
VO  
IO  
+6.5  
+10  
mA  
mA  
V
at pin SDA/CE  
+20  
VBAT  
Ptot  
battery supply voltage  
total power dissipation  
+6.5  
300  
mW  
V
[1]  
[2]  
[3]  
[4]  
VESD  
electrostatic discharge  
voltage  
HBM  
CDM  
-
3500  
1250  
200  
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
55  
40  
+85  
operating device  
+85  
[1] Pass level; Human Body Model (HBM) according to Ref. 7 “JESD22-A114”.  
[2] Pass level; Charged-Device Model (CDM), according to Ref. 8 “JESD22-C101”.  
[3] Pass level; latch-up testing according to Ref. 9 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see Ref. 12 “UM10569”) the devices have to be stored  
at a temperature of +8 C to +45 C and a humidity of 25 % to 75 %.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
65 of 86  
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
13. Static characteristics  
Table 62. Static characteristics  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VDD  
[1]  
supply voltage  
1.8  
1.8  
-
-
4.2  
4.2  
-
V
V
V
V
VBAT  
battery supply voltage  
calibration supply voltage  
low voltage  
-
VDD(cal)  
Vlow  
3.3  
1.2  
-
-
IDD  
supply current  
interface active;  
supplied by VDD  
SPI-bus (fSCL = 6.5 MHz)  
I2C-bus (fSCL = 400 kHz)  
-
-
-
-
800  
200  
A  
A  
interface inactive (fSCL = 0 Hz)[2];  
TCR[1:0] = 00 (see Table 9 on page 13)  
PWRMNG[2:0] = 111 (see Table 18 on page 18);  
TSOFF = 1 (see Table 46 on page 44);  
COF[2:0] = 111 (see Table 11 on page 14)  
VDD = 2.0 V  
VDD = 3.3 V  
VDD = 4.2 V  
-
-
-
500  
700  
800  
-
nA  
nA  
nA  
1500  
-
PWRMNG[2:0] = 111 (see Table 18 on page 18);  
TSOFF = 1 (see Table 46 on page 44);  
COF[2:0] = 000 (see Table 11 on page 14)  
VDD = 2.0 V  
VDD = 3.3 V  
VDD = 4.2 V  
-
-
-
600  
-
-
-
nA  
nA  
nA  
850  
1050  
PWRMNG[2:0] = 000 (see Table 18 on page 18);  
TSOFF = 0 (see Table 46 on page 44);  
COF[2:0] = 111 (see Table 11 on page 14)  
[3]  
VDD or VBAT = 2.0 V  
VDD or VBAT = 3.3 V  
VDD or VBAT = 4.2 V  
-
-
-
1800  
2150  
2350  
-
nA  
nA  
nA  
[3]  
[3]  
-
3500  
PWRMNG[2:0] = 000 (see Table 18 on page 18);  
TSOFF = 0 (see Table 46 on page 44);  
COF[2:0] = 000 (see Table 11 on page 14)  
[3]  
VDD or VBAT = 2.0 V  
VDD or VBAT = 3.3 V  
VDD or VBAT = 4.2 V  
-
-
-
-
1900  
2300  
2600  
50  
-
nA  
nA  
nA  
nA  
[3]  
[3]  
-
-
IL(bat)  
battery leakage current  
VDD is active supply;  
VBAT = 3.0 V  
100  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
66 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Table 62. Static characteristics …continued  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power management  
Vth(sw)bat  
battery switch threshold  
-
2.5  
-
V
voltage  
Vth(bat)low  
Vth(PFI)  
Inputs[4]  
VI  
low battery threshold voltage  
threshold voltage on pin PFI  
-
-
2.5  
-
-
V
V
1.25  
input voltage  
0.5  
-
-
-
VDD + 0.5  
0.25VDD  
0.3VDD  
V
V
V
VIL  
LOW-level input voltage  
-
-
Tamb = 20 C to +85 C;  
VDD > 2.0 V  
VIH  
ILI  
HIGH-level input voltage  
input leakage current  
0.7VDD  
-
-
V
VI = VDD or VSS  
post ESD event  
-
0
-
-
A  
A  
pF  
1  
-
+1  
7
[5]  
Ci  
input capacitance  
output voltage  
-
Outputs  
VO  
on pins CLKOUT, INT, RST,  
PFO, referring to external pull-up  
0.5  
0.5  
-
-
5.5  
V
on pin SDO  
V
BBS + 0.5 V  
IOL  
LOW-level output current  
output sink current;  
VOL = 0.4 V  
[6]  
on pin SDA/CE  
3
17  
-
-
-
-
mA  
mA  
mA  
on all other outputs  
1.0  
1.0  
IOH  
HIGH-level output current  
output leakage current  
output source current;  
on pin SDO; VOH = 3.8 V;  
VDD = 4.2 V  
-
ILO  
VO = VDD or VSS  
post ESD event  
-
0
-
-
A  
A  
1  
+1  
[1] For reliable oscillator start-up at power-on: VDD(po)min = VDD(min) + 0.3 V.  
[2] Timer source clock = 1  
60 Hz, level of pins SDA/CE, SDI, and SCL is VDD or VSS  
.
[3] When the device is supplied by the VBAT pin instead of the VDD pin, the current values for IBAT will be as specified for IDD under the same  
conditions.  
[4] The I2C-bus and the SPI-bus interface of PCF2127AT are 5 V tolerant.  
[5] Tested on sample basis.  
[6] For further information, see Figure 47.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
67 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
13.1 Current consumption characteristics, typical  
001aal763  
22  
I
OL  
(mA)  
18  
14  
10  
6
1.5  
2.5  
3.5  
4.5  
V
(V)  
DD  
Typical value; VOL = 0.4 V.  
Fig 47. IOL on pin SDA/CE  
001aaj432  
2.0  
I
DD  
(μA)  
1.6  
1.2  
0.8  
0.4  
0
V
V
= 3 V  
= 2 V  
DD  
DD  
40  
20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
CLKOUT disabled; PWRMNG[2:0] = 111; TSOFF = 1; TS input floating.  
Fig 48. IDD as a function of temperature  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
68 of 86  
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
001aaj433  
2.0  
I
DD  
(μA)  
1.6  
1.2  
0.8  
0.4  
0
CLKOUT enabled at  
32 kHz  
CLKOUT OFF  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
4.2  
V
(V)  
DD  
a. PWRMNG[2:0] = 111; TSOFF = 1; Tamb = 25 C; TS input floating  
001aaj434  
4.0  
I
DD  
(μA)  
3.2  
CLKOUT enabled at  
32 kHz  
2.4  
1.6  
0.8  
0
CLKOUT OFF  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
4.2  
V
(V)  
DD  
b. PWRMNG[2:0] = 000; TSOFF = 0; Tamb = 25 C; TS input floating  
Fig 49. IDD as a function of VDD  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
69 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
13.2 Frequency characteristics  
Table 63. Frequency characteristics  
VDD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = +25 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fo  
output frequency  
on pin CLKOUT;  
-
32.768  
-
kHz  
VDD or VBAT = 3.3 V;  
COF[2:0] = 000;  
AO[3:0] = 1000  
f/f  
frequency stability  
V
DD or VBAT = 3.3 V  
[1][2]  
[1][2]  
Tamb = 15 C to +60 C  
-
-
3  
5  
5  
ppm  
ppm  
Tamb = 25 C to 15 C  
and  
10  
Tamb = +60 C to +65 C  
[3]  
fxtal/fxtal relative crystal frequency variation crystal aging, first year;  
-
-
-
3  
ppm  
VDD or VBAT = 3.3 V  
f/V  
frequency variation with voltage  
on pin CLKOUT  
1  
-
ppm/V  
[1] 1 ppm corresponds to a time deviation of 0.0864 seconds per day.  
[2] Only valid if CLKOUT frequencies are not equal to 32.768 kHz or if CLKOUT is disabled.  
[3] Not production tested. Effects of reflow soldering are not included (see Ref. 3 “AN10857”).  
013aaa593  
40  
Frequency  
stability  
(ppm)  
± 5 ppm  
± 5 ppm  
± 3 ppm  
0
-40  
-80  
(1)  
(2)  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
(1) Typical temperature compensated frequency response.  
(2) Uncompensated typical tuning-fork crystal frequency.  
Fig 50. Typical characteristic of frequency with respect to temperature  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
70 of 86  
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
14. Dynamic characteristics  
14.1 SPI-bus timing characteristics  
Table 64. SPI-bus characteristics  
DD = 1.8 V to 4.2 V; VSS = 0 V; Tamb = 40 C to +85 C, unless otherwise specified. All timing values are valid within the  
operating supply voltage at ambient temperature and referenced to VIL and VIH with an input voltage swing of VSS to VDD  
V
.
Symbol  
Parameter  
Conditions  
VDD = 1.8 V  
VDD = 4.2 V  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
fclk(SCL)  
SCL clock frequency  
SCL time  
register read/write access  
RAM write access  
RAM read access  
-
2.0  
-
6.5  
MHz  
MHz  
MHz  
ns  
-
2.0  
-
6.5  
-
1.11  
-
6.25  
tSCL  
register read/write access  
RAM write access  
RAM read access  
800  
800  
900  
100  
100  
450  
400  
400  
450  
-
-
140  
140  
160  
70  
70  
80  
70  
70  
80  
-
-
-
-
ns  
-
-
ns  
tclk(H)  
clock HIGH time  
clock LOW time  
register read/write access  
RAM write access  
RAM read access  
-
-
ns  
-
-
ns  
-
-
ns  
tclk(L)  
register read/write access  
RAM write access  
RAM read access  
-
-
ns  
-
-
ns  
-
-
ns  
tr  
rise time  
fall time  
for SCL signal  
100  
100  
100  
100  
ns  
tf  
for SCL signal  
-
-
ns  
Pin SDA/CE  
tsu(CE_N)  
th(CE_N)  
trec(CE_N)  
tw(CE_N)  
Pin SDI  
tsu  
CE_N set-up time  
CE_N hold time  
60  
40  
100  
-
-
30  
25  
30  
-
-
ns  
ns  
ns  
s
-
-
CE_N recovery time  
CE_N pulse width  
-
-
0.99  
0.99  
set-up time  
hold time  
set-up time for SDI data  
hold time for SDI data  
70  
70  
-
-
20  
20  
-
-
ns  
ns  
th  
Pin SDO  
td(R)SDO  
SDO read delay time  
CL = 50 pF  
register read access  
-
225  
410  
90  
-
-
55  
55  
25  
-
ns  
ns  
ns  
ns  
RAM read access  
-
-
[1]  
tdis(SDO)  
SDO disable time  
-
-
tt(SDI-SDO) transition time from SDI to  
SDO  
to avoid bus conflict  
0
0
[1] No load value; bus will be held up by bus capacitance; use RC time constant with application values.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
71 of 86  
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
t
w(CE_N)  
CE  
t
rec(CE_N)  
t
t
r
su(CE_N)  
t
t
t
h(CE_N)  
f
clk(SCL)  
80%  
SCL  
20%  
t
clk(L)  
t
clk(H)  
WRITE  
t
su  
t
h
SDI  
R/W  
SA2  
RA0  
b7  
b6  
b0  
high-Z  
SDO  
READ  
SDI  
b7  
b6  
b0  
t
t(SDI-SDO)  
t
d(R)SDO  
t
dis(SDO)  
high-Z  
SDO  
b7  
b6  
b0  
013aaa152  
Fig 51. SPI-bus timing  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
72 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
14.2 I2C interface timing characteristics  
Table 65. I2C-bus characteristics  
All timing characteristics are valid within the operating supply voltage and ambient temperature  
range and reference to 30 % and 70 % with an input voltage swing of VSS to VDD (see Figure 52).  
Symbol Parameter  
Standard mode  
Fast-mode (Fm)  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
[1]  
fSCL  
SCL clock frequency  
0
100  
-
0
400  
-
kHz  
tLOW  
LOW period of the SCL  
clock  
4.7  
1.3  
s  
tHIGH  
HIGH period of the SCL  
clock  
4.0  
-
0.6  
-
s  
Pin SDA/CE  
tSU;DAT data set-up time  
tHD;DAT data hold time  
Pins SCL and SDA/CE  
250  
0
-
-
100  
0
-
-
ns  
ns  
tBUF  
bus free time between a  
4.7  
-
1.3  
-
s  
STOP and START  
condition  
tSU;STO set-up time for STOP  
condition  
4.0  
4.0  
4.7  
-
-
-
0.6  
0.6  
0.6  
-
-
-
s  
s  
s  
tHD;STA hold time (repeated)  
START condition  
tSU;STA set-up time for a  
repeated START  
condition  
[2][3][4]  
[2][3][4]  
[5]  
tr  
rise time of both SDA  
and SCL signals  
-
1000  
300  
20 + 0.1Cb 300  
20 + 0.1Cb 300  
ns  
ns  
s  
tf  
fall time of both SDA and  
SCL signals  
-
tVD;ACK data valid acknowledge  
time  
0.1  
3.45  
0.1  
0.9  
[6]  
[7]  
tVD;DAT data valid time  
300  
-
-
75  
-
-
ns  
ns  
tSP  
pulse width of spikes  
that must be suppressed  
by the input filter  
50  
50  
[1] The minimum SCL clock frequency is limited by the bus time-out feature which resets the serial bus  
interface if either the SDA or SCL is held LOW for a minimum of 25 ms. The bus time-out feature must be  
disabled for DC operation.  
[2] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of  
the SCL signal) in order to bridge the undefined region of the falling edge of SCL.  
[3] Cb is the total capacitance of one bus line in pF.  
[4] The maximum tf for the SDA and SCL bus lines is 300 ns. The maximum fall time for the SDA output stage,  
tf is 250 ns. This allows series protection resistors to be connected between the SDA/CE pin, the SCL pin,  
and the SDA/SCL bus lines without exceeding the maximum tf.  
[5] tVD;ACK is the time of the acknowledgement signal from SCL LOW to SDA (out) LOW.  
[6]  
tVD;DAT is the minimum time for valid SDA (out) data following SCL LOW.  
[7] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
73 of 86  
 
 
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 6  
(A6)  
BIT 0  
LSB  
(R/W)  
ACKNOWLEDGE  
(A)  
STOP  
CONDITION  
(P)  
PROTOCOL  
t
t
t
SU;STA  
LOW  
HIGH  
1 / f  
SCL  
SCL  
SDA  
t
t
t
BUF  
r
f
t
t
t
t
t
HD;STA  
SU;DAT  
HD;DAT  
VD;DAT  
SU;STO  
mbd820  
Fig 52. I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
15. Application information  
For information about application configuration, see Ref. 3 “AN10857”.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
74 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
16. Package outline  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25 0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01 0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT163-1  
075E04  
MS-013  
Fig 53. Package outline SOT163-1 (SO20)  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
75 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
17. Packing information  
17.1 Carrier tape information  
TOP VIEW  
P0  
Ø D0  
W
B0  
A0  
K0  
P1  
direction of feed  
Ø D1  
Original dimensions are in mm.  
Figure not drawn to scale.  
013aaa699  
Fig 54. Tape and reel details for PCF2127AT  
Table 66. Carrier tape dimensions of PCF2127AT  
Symbol  
Description  
Value  
Unit  
Compartments  
A0  
B0  
K0  
P1  
D1  
pocket width in x direction  
pocket width in y direction  
pocket depth  
10.8 to 10.9  
13.3 to 13.4  
2.70 to 2.85  
12.0  
mm  
mm  
mm  
mm  
mm  
pocket hole pitch  
pocket hole diameter  
1.5 to 2.05  
Overall dimensions  
W
tape width  
24.0  
mm  
mm  
mm  
D0  
P0  
sprocket hole diameter  
sprocket hole pitch  
1.5 to 1.55  
4.0  
18. Soldering  
For information about soldering, see Ref. 3 “AN10857”.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
76 of 86  
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
19. Footprint information  
13.40  
0.60 (20×)  
1.50  
8.00 11.00 11.40  
1.27 (18×)  
solder lands  
sot163-1_fr  
occupied area  
placement accuracy 0.25  
Dimensions in mm  
Fig 55. Footprint information for reflow soldering of SO20 package  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
77 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
20. Abbreviations  
Table 67. Abbreviations  
Acronym  
AM  
Description  
Ante Meridiem  
BCD  
CDM  
CMOS  
DC  
Binary Coded Decimal  
Charged Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
GPS  
HBM  
I2C  
Global Positioning System  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
Least Significant Bit  
MCU  
MSB  
PM  
Microcontroller Unit  
Most Significant Bit  
Post Meridiem  
POR  
PORO  
PPM  
RAM  
RC  
Power-On Reset  
Power-On Reset Override  
Parts Per Million  
Random Access Memory  
Resistance-Capacitance  
Real Time Clock  
RTC  
SCL  
SDA  
SPI  
Serial CLock line  
Serial DAta line  
Serial Peripheral Interface  
Static Random Access Memory  
Temperature Compensated Xtal Oscillator  
crystal  
SRAM  
TCXO  
Xtal  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
78 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
21. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10853 Handling precautions of ESD sensitive devices  
[3] AN10857 Application and soldering information for PCF2127A and PCF2129A  
TCXO RTC  
[4] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[5] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[6] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[7] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[8] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[9] JESD78 IC Latch-Up Test  
[10] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[11] UM10204 I2C-bus specification and user manual  
[12] UM10569 Store and transport requirements  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
79 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
22. Revision history  
Table 68. Revision history  
Document ID  
PCF2127AT v.6  
Modifications:  
PCF2127AT v.5  
PCF2127AT v.4  
PCF2127AT v.3  
PCF2127A v.2  
PCF2127A v.1  
Release date  
20130711  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF2127AT v.5  
Adjusted rise and fall time values of the SPI-bus in Table 64  
20130128  
20121207  
20121004  
20100507  
20100121  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
PCF2127AT v.4  
PCF2127AT v.3  
PCF2127A v.2  
PCF2127A v.1  
-
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
80 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
23. Legal information  
23.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
23.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
23.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
81 of 86  
 
 
 
 
 
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
23.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
24. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
82 of 86  
 
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
25. Tables  
Table 1. Ordering information. . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description of SO20 (PCF2127AT) . . . . . . .4  
Table 5. Register overview . . . . . . . . . . . . . . . . . . . . . . .8  
Table 6. Control_1 - control and status register 1  
(address 00h) bit description . . . . . . . . . . . . . .10  
Table 7. Control_2 - control and status register 2  
(address 01h) bit description . . . . . . . . . . . . . .11  
Table 8. Control_3 - control and status register 3  
(address 02h) bit description . . . . . . . . . . . . . .12  
Table 9. CLKOUT_ctl - CLKOUT control register  
(address 0Fh) bit description . . . . . . . . . . . . . .13  
Table 10. Temperature measurement period . . . . . . . . . .13  
Table 11. CLKOUT frequency selection. . . . . . . . . . . . . .14  
Table 12. Aging_offset - crystal aging offset register  
(address 19h) bit description . . . . . . . . . . . . . .15  
Table 13. Frequency correction at 25 °C, typical . . . . . . .15  
Table 14. RAM_addr_MSB - RAM address MSB register  
(address 1Ah) bit description . . . . . . . . . . . . . .16  
Table 15. RAM_addr_LSB - RAM address LSB register  
(address 1Bh) bit description . . . . . . . . . . . . . .16  
Table 16. RAM_wrt_cmd - RAM write command register  
(address 1Ch) bit description . . . . . . . . . . . . . .16  
Table 17. RAM_rd_cmd - RAM read command register  
(address 1Dh) bit description . . . . . . . . . . . . . .16  
Table 18. Power management control bit description . . .18  
Table 19. Output pin BBS. . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 20. Seconds - seconds and clock integrity  
register (address 03h) bit description . . . . . . . .30  
Table 21. Seconds coded in BCD format . . . . . . . . . . . .30  
Table 22. Minutes - minutes register (address 04h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Table 23. Hours - hours register (address 05h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 24. Days - days register (address 06h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 25. Weekdays - weekdays register (address 07h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 26. Weekday assignments . . . . . . . . . . . . . . . . . . .31  
Table 27. Months - months register (address 08h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 28. Month assignments in BCD format. . . . . . . . . .32  
Table 29. Years - years register (address 09h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 30. Second_alarm - second alarm register  
(address 0Ah) bit description . . . . . . . . . . . . . .34  
Table 31. Minute_alarm - minute alarm register  
register (address 10h) bit description . . . . . . . 37  
Table 36. Watchdg_tim_val - watchdog timer value  
register (address 11h) bit description. . . . . . . . 38  
Table 37. Programmable watchdog or countdown timer . 38  
Table 38. Specification of tw(rst) . . . . . . . . . . . . . . . . . . . . 40  
Table 39. First period delay for timer counter . . . . . . . . . 41  
Table 40. Flag location in register Control_2 . . . . . . . . . . 41  
Table 41. Example values in register Control_2 . . . . . . . 42  
Table 42. Example to clear only CDTF (bit 3) . . . . . . . . . 42  
Table 43. Example to clear only AF (bit 4). . . . . . . . . . . . 42  
Table 44. Example to clear only MSF (bit 7) . . . . . . . . . . 42  
Table 45. Example to clear both CDTF and MSF . . . . . . 42  
Table 46. Timestp_ctl - timestamp control register  
(address 12h) bit description . . . . . . . . . . . . . . 44  
Table 47. Sec_timestp - second timestamp register  
(address 13h) bit description . . . . . . . . . . . . . . 44  
Table 48. Min_timestp - minute timestamp register  
(address 14h) bit description . . . . . . . . . . . . . . 44  
Table 49. Hour_timestp - hour timestamp register  
(address 15h) bit description . . . . . . . . . . . . . . 45  
Table 50. Day_timestp - day timestamp register  
(address 16h) bit description . . . . . . . . . . . . . . 45  
Table 51. Mon_timestp - month timestamp register  
(address 17h) bit description . . . . . . . . . . . . . . 45  
Table 52. Year_timestp - year timestamp register  
(address 18h) bit description . . . . . . . . . . . . . . 45  
Table 53. Battery switch-over and timestamp . . . . . . . . . 46  
Table 54. Effect of bits MI and SI on pin INT and bit  
MSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 55. INT operation (bit TI_TP = 1) . . . . . . . . . . . . . . 50  
Table 56. First increment of time circuits after stop  
release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 57. Interface selection input pin IFS. . . . . . . . . . . . 56  
Table 58. Serial interface. . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 59. Command byte definition . . . . . . . . . . . . . . . . . 58  
Table 60. I2C slave address byte. . . . . . . . . . . . . . . . . . . 61  
Table 61. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 62. Static characteristics . . . . . . . . . . . . . . . . . . . . 66  
Table 63. Frequency characteristics . . . . . . . . . . . . . . . . 70  
Table 64. SPI-bus characteristics . . . . . . . . . . . . . . . . . . 71  
Table 65. I2C-bus characteristics. . . . . . . . . . . . . . . . . . . 73  
Table 66. Carrier tape dimensions of PCF2127AT . . . . . 76  
Table 67. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 68. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 80  
(address 0Bh) bit description . . . . . . . . . . . . . .35  
Table 32. Hour_alarm - hour alarm register  
(address 0Ch) bit description . . . . . . . . . . . . . .35  
Table 33. Day_alarm - day alarm register  
(address 0Dh) bit description . . . . . . . . . . . . . .35  
Table 34. Weekday_alarm - weekday alarm register  
(address 0Eh) bit description . . . . . . . . . . . . . .36  
Table 35. Watchdg_tim_ctl - watchdog timer control  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
83 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
26. Figures  
Fig 1. Block diagram of PCF2127AT . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration for SO20 (PCF2127AT) . . . . . . .4  
Fig 3. Handling address registers . . . . . . . . . . . . . . . . . .6  
Fig 4. Battery switch-over behavior in standard mode  
with bit BIE set logic 1 (enabled) . . . . . . . . . . . . .20  
Fig 5. Battery switch-over behavior in direct switching  
mode with bit BIE set logic 1 (enabled) . . . . . . . .21  
Fig 6. Battery switch-over circuit, simplified block  
diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Fig 37. SPI-bus read example. . . . . . . . . . . . . . . . . . . . . 58  
Fig 38. Bit transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Fig 39. Definition of START and STOP conditions . . . . . 59  
Fig 40. System configuration. . . . . . . . . . . . . . . . . . . . . . 60  
Fig 41. Acknowledgement on the I2C-bus. . . . . . . . . . . . 60  
Fig 42. Bus protocol, writing to registers. . . . . . . . . . . . . 61  
Fig 43. Bus protocol, reading from registers . . . . . . . . . . 61  
Fig 44. Bus protocol, writing to RAM. . . . . . . . . . . . . . . . 62  
Fig 45. Bus protocol, reading from RAM. . . . . . . . . . . . . 63  
Fig 46. Device diode protection diagram of PCF2127AT 64  
Fig 47. IOL on pin SDA/CE . . . . . . . . . . . . . . . . . . . . . . . 68  
Fig 48. IDD as a function of temperature . . . . . . . . . . . . . 68  
Fig 49. IDD as a function of VDD. . . . . . . . . . . . . . . . . . . . 69  
Fig 50. Typical characteristic of frequency with respect  
to temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Fig 7. Typical driving capability of VBBS: (VBBS - VDD  
)
with respect to the output load current IBBS . . . . .23  
Fig 8. Battery low detection behavior with bit BLIE set  
logic 1 (enabled) . . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 9. Typical application of the extra power fail  
detection function. . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 10. PFO signal behavior when battery switch-over  
is enabled in standard mode and  
Vth(uvp) > (VBAT, Vth(sw)bat). . . . . . . . . . . . . . . . . . .25  
Fig 11. PFO signal behavior when battery switch-over is  
enabled in direct switching mode and  
Fig 51. SPI-bus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Fig 52. I2C-bus timing diagram; rise and fall times refer  
to 30 % and 70 % . . . . . . . . . . . . . . . . . . . . . . . . 74  
Fig 53. Package outline SOT163-1 (SO20) . . . . . . . . . . 75  
Fig 54. Tape and reel details for PCF2127AT . . . . . . . . . 76  
Fig 55. Footprint information for reflow soldering of  
Vth(uvp) < VBAT. . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 12. PFO signal behavior when battery switch-over is  
disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 13. Power failure event due to battery discharge:  
reset occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Fig 14. Dependency between POR and oscillator . . . . . .28  
Fig 15. Power-On Reset (POR) system. . . . . . . . . . . . . .29  
Fig 16. Power-On Reset Override (PORO) sequence,  
valid for both I2C-bus and SPI-bus . . . . . . . . . . .29  
Fig 17. Data flow of the time function. . . . . . . . . . . . . . . .33  
Fig 18. Access time for read/write operations . . . . . . . . .33  
Fig 19. Alarm function block diagram. . . . . . . . . . . . . . . .34  
Fig 20. Alarm flag timing diagram . . . . . . . . . . . . . . . . . .36  
Fig 21. WD_CD[1:0] = 10: watchdog activates an  
interrupt when timed out . . . . . . . . . . . . . . . . . . .39  
Fig 22. WD_CD[1:0] = 11: watchdog activates a reset  
pulse when timed out. . . . . . . . . . . . . . . . . . . . . .39  
Fig 23. General countdown timer behavior . . . . . . . . . . .40  
Fig 24. Timestamp detection with two push-buttons  
on the TS pin (for example, for tamper detection)43  
Fig 25. Interrupt block diagram . . . . . . . . . . . . . . . . . . . .47  
Fig 26. INT example for SI and MI when TI_TP is  
logic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Fig 27. INT example for SI and MI when TI_TP is  
logic 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Fig 28. Example of shortening the INT pulse by  
SO20 package . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
clearing the MSF flag. . . . . . . . . . . . . . . . . . . . . .50  
Fig 29. Example of shortening the INT pulse by  
clearing the CDTF flag. . . . . . . . . . . . . . . . . . . . .51  
Fig 30. AF timing diagram . . . . . . . . . . . . . . . . . . . . . . . .51  
Fig 31. STOP bit functional diagram . . . . . . . . . . . . . . . .55  
Fig 32. STOP bit release timing. . . . . . . . . . . . . . . . . . . .55  
Fig 33. Interface selection . . . . . . . . . . . . . . . . . . . . . . . .56  
Fig 34. SDI, SDO configurations . . . . . . . . . . . . . . . . . . .57  
Fig 35. Data transfer overview. . . . . . . . . . . . . . . . . . . . .57  
Fig 36. SPI-bus write example. . . . . . . . . . . . . . . . . . . . .58  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
84 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
27. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.8.1  
8.8.2  
8.9  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 28  
Power-On Reset Override (PORO) . . . . . . . . 28  
Time and date function. . . . . . . . . . . . . . . . . . 30  
Register Seconds. . . . . . . . . . . . . . . . . . . . . . 30  
Register Minutes . . . . . . . . . . . . . . . . . . . . . . 30  
Register Hours. . . . . . . . . . . . . . . . . . . . . . . . 31  
Register Days . . . . . . . . . . . . . . . . . . . . . . . . 31  
Register Weekdays . . . . . . . . . . . . . . . . . . . . 31  
Register Months. . . . . . . . . . . . . . . . . . . . . . . 32  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 32  
Setting and reading the time . . . . . . . . . . . . . 32  
Alarm function . . . . . . . . . . . . . . . . . . . . . . . . 34  
Register Second_alarm . . . . . . . . . . . . . . . . . 34  
Register Minute_alarm. . . . . . . . . . . . . . . . . . 35  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 35  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 35  
Register Weekday_alarm. . . . . . . . . . . . . . . . 36  
Alarm flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Timer functions. . . . . . . . . . . . . . . . . . . . . . . . 37  
Register Watchdg_tim_ctl . . . . . . . . . . . . . . . 37  
Register Watchdg_tim_val . . . . . . . . . . . . . . . 38  
Watchdog timer function . . . . . . . . . . . . . . . . 38  
Countdown timer function . . . . . . . . . . . . . . . 40  
Pre-defined timers: second and minute  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
8.10  
8.10.1  
8.10.2  
8.10.3  
8.10.4  
8.10.5  
8.10.6  
8.11  
4
4.1  
5
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Register overview. . . . . . . . . . . . . . . . . . . . . . . 6  
Control registers . . . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . 11  
Register Control_3 . . . . . . . . . . . . . . . . . . . . . 12  
Register CLKOUT_ctl. . . . . . . . . . . . . . . . . . . 13  
Temperature compensated crystal oscillator . 13  
Temperature measurement . . . . . . . . . . . . . . 13  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Aging_offset . . . . . . . . . . . . . . . . . . . 15  
Crystal aging correction . . . . . . . . . . . . . . . . . 15  
General purpose 512 bytes static RAM . . . . . 16  
Register RAM_addr_MSB . . . . . . . . . . . . . . . 16  
Register RAM_addr_LSB . . . . . . . . . . . . . . . . 16  
Register RAM_wrt_cmd . . . . . . . . . . . . . . . . . 16  
Register RAM_rd_cmd . . . . . . . . . . . . . . . . . . 16  
Operation examples . . . . . . . . . . . . . . . . . . . . 17  
Writing to the RAM . . . . . . . . . . . . . . . . . . . . . 17  
Reading from the RAM. . . . . . . . . . . . . . . . . . 17  
Power management functions . . . . . . . . . . . . 18  
Battery switch-over function . . . . . . . . . . . . . . 19  
Standard mode . . . . . . . . . . . . . . . . . . . . . . . . 20  
Direct switching mode . . . . . . . . . . . . . . . . . . 21  
Battery switch-over disabled: only one power  
supply (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Battery switch-over architecture . . . . . . . . . . . 22  
Battery backup supply . . . . . . . . . . . . . . . . . . 22  
Battery low detection function. . . . . . . . . . . . . 23  
Extra power fail detection function . . . . . . . . . 24  
Extra power fail detection when the battery  
8.2.1  
8.2.2  
8.2.3  
8.3  
8.3.1  
8.3.1.1  
8.3.2  
8.4  
8.11.1  
8.11.2  
8.11.3  
8.11.4  
8.11.5  
8.4.1  
8.5  
interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Clearing flags. . . . . . . . . . . . . . . . . . . . . . . . . 41  
Timestamp function . . . . . . . . . . . . . . . . . . . . 43  
Timestamp flag. . . . . . . . . . . . . . . . . . . . . . . . 43  
Timestamp mode . . . . . . . . . . . . . . . . . . . . . . 44  
Timestamp registers. . . . . . . . . . . . . . . . . . . . 44  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.5.1  
8.5.5.2  
8.6  
8.6.1  
8.6.1.1  
8.6.1.2  
8.6.1.3  
8.11.6  
8.12  
8.12.1  
8.12.2  
8.12.3  
8.12.3.1 Register Timestp_ctl . . . . . . . . . . . . . . . . . . . 44  
8.12.3.2 Register Sec_timestp. . . . . . . . . . . . . . . . . . . 44  
8.12.3.3 Register Min_timestp . . . . . . . . . . . . . . . . . . . 44  
8.12.3.4 Register Hour_timestp . . . . . . . . . . . . . . . . . . 45  
8.12.3.5 Register Day_timestp. . . . . . . . . . . . . . . . . . . 45  
8.12.3.6 Register Mon_timestp . . . . . . . . . . . . . . . . . . 45  
8.12.3.7 Register Year_timestp . . . . . . . . . . . . . . . . . . 45  
8.12.4  
Dependency between Battery switch-over  
8.6.1.4  
8.6.2  
8.6.3  
8.6.4  
8.6.4.1  
and timestamp . . . . . . . . . . . . . . . . . . . . . . . . 46  
Interrupt output, INT. . . . . . . . . . . . . . . . . . . . 47  
Minute and second interrupts. . . . . . . . . . . . . 48  
Countdown timer interrupts . . . . . . . . . . . . . . 49  
INT pulse shortening . . . . . . . . . . . . . . . . . . . 49  
Watchdog timer interrupts . . . . . . . . . . . . . . . 51  
Alarm interrupts . . . . . . . . . . . . . . . . . . . . . . . 51  
Timestamp interrupts . . . . . . . . . . . . . . . . . . . 52  
Battery switch-over interrupts . . . . . . . . . . . . 52  
Battery low detection interrupts . . . . . . . . . . . 52  
8.13  
8.13.1  
8.13.2  
8.13.3  
8.13.4  
8.13.5  
8.13.6  
8.13.7  
8.13.8  
switch over function is enabled. . . . . . . . . . . . 25  
Extra power fail detection when the battery  
switch-over function is disabled . . . . . . . . . . . 26  
Oscillator stop detection function . . . . . . . . . . 27  
Reset function . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6.4.2  
8.7  
8.8  
continued >>  
PCF2127AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 6 — 11 July 2013  
85 of 86  
 
PCF2127AT  
NXP Semiconductors  
Integrated RTC, TCXO and quartz crystal  
8.14  
8.15  
External clock test mode . . . . . . . . . . . . . . . . 53  
STOP bit function . . . . . . . . . . . . . . . . . . . . . . 54  
9
9.1  
9.1.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SPI-bus interface . . . . . . . . . . . . . . . . . . . . . . 57  
Data transmission. . . . . . . . . . . . . . . . . . . . . . 57  
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . . 59  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
START and STOP conditions . . . . . . . . . . . . . 59  
System configuration . . . . . . . . . . . . . . . . . . . 59  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 60  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 61  
10  
11  
12  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 64  
Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 65  
13  
13.1  
13.2  
Static characteristics. . . . . . . . . . . . . . . . . . . . 66  
Current consumption characteristics, typical . 68  
Frequency characteristics. . . . . . . . . . . . . . . . 70  
14  
14.1  
14.2  
Dynamic characteristics . . . . . . . . . . . . . . . . . 71  
SPI-bus timing characteristics . . . . . . . . . . . . 71  
I2C interface timing characteristics . . . . . . . . . 73  
15  
16  
17  
17.1  
18  
19  
20  
21  
22  
Application information. . . . . . . . . . . . . . . . . . 74  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 75  
Packing information . . . . . . . . . . . . . . . . . . . . 76  
Carrier tape information . . . . . . . . . . . . . . . . . 76  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Footprint information . . . . . . . . . . . . . . . . . . . 77  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 78  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 80  
23  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 81  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 81  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
23.1  
23.2  
23.3  
23.4  
24  
25  
26  
27  
Contact information. . . . . . . . . . . . . . . . . . . . . 82  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 11 July 2013  
Document identifier: PCF2127AT  

相关型号:

PCF2127AT/2Y

PCF2127 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP

PCF2127T

Accurate RTC with integrated quartz crystal for industrial applications
NXP

PCF2128

Integrated RTC / TCXO / Crystal
NXP

PCF2128T

Integrated RTC / TCXO / Crystal
NXP

PCF2128T1

Integrated RTC / TCXO / Crystal
NXP

PCF2129(A)

Smart, simple solutions for the 12 most common design concerns
NXP

PCF2129A

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT-1

Integrated RTC, TCXO and quartz crystal
NXP

PCF2129AT/1

IC REAL TIME CLOCK, PDSO20, 7.50 MM WIDTH, PLASTIC, SOT163-1, MO-013, DSO-20, Timer or RTC
NXP

PCF2129AT/1,512

PCF2129 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP

PCF2129AT/1,518

PCF2129 - Accurate RTC with integrated quartz crystal for industrial applications SOP 20-Pin
NXP