PCF50732H [NXP]

Baseband and audio interface for GSM; 基带和GSM音频接口
PCF50732H
型号: PCF50732H
厂家: NXP    NXP
描述:

Baseband and audio interface for GSM
基带和GSM音频接口

电信集成电路 电信电路 GSM
文件: 总64页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF50732  
Baseband and audio interface for  
GSM  
1999 May 03  
Objective specification  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
CONTENTS  
14  
15  
16  
17  
18  
LIMITING VALUES  
THERMAL CHARACTERISTICS  
DC CHARACTERISTICS  
1
2
3
4
5
6
7
8
FEATURES  
APPLICATIONS  
AC CHARACTERISTICS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
FUNCTIONAL CHARACTERISTICS  
18.1  
18.2  
18.3  
18.4  
18.5  
18.6  
Baseband transmit (BSI to TXI/Q)  
Baseband receive (RXI/Q to BSI)  
Voice band transmit (microphone to ASI)  
Voice band receive (ASI to earphone)  
Auxiliary digital-to-analog converters  
Auxiliary analog-to-digital converters:  
AUXADC1, AUXADC2, AUXADC3 and  
AUXADC4  
PINNING  
FUNCTIONAL DESCRIPTION  
8.1  
8.2  
General  
Baseband and voice band reference voltages  
9
BASEBAND CODEC  
18.7  
18.8  
Typical total current consumption  
Typical output loads  
9.1  
9.2  
9.3  
Baseband transmit path  
Baseband receive path  
Baseband Serial Interface (BSI)  
19  
APPLICATION INFORMATION  
19.1  
19.2  
Wake-up procedure from Sleep mode  
Microphone input connection and test set-up  
10  
VOICE BAND CODEC  
10.1  
10.2  
10.3  
Voice band receive path  
Voice band transmit path  
Voice band digital circuitry  
20  
PACKAGE OUTLINES  
SOLDERING  
21  
21.1  
Introduction to soldering surface mount  
packages  
11  
AUXILIARY FUNCTIONS  
11.1  
11.2  
Automatic Gain Control (AGC): AUXDAC1  
Automatic Frequency Control (AFC):  
AUXDAC2  
Power ramping: AUXDAC3  
Auxiliary analog-to-digital converter (AUXADC)  
21.2  
21.3  
21.4  
21.5  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
11.3  
11.4  
12  
CONTROL SERIAL INTERFACE (CSI)  
22  
23  
DEFINITIONS  
12.1  
12.2  
The serial interface  
Control Serial Interface (CSI) timing  
characteristics  
LIFE SUPPORT APPLICATIONS  
12.3  
13  
Control register block  
VOICE BAND SIGNAL PROCESSOR (VSP)  
13.1  
13.2  
13.3  
13.4  
Hardware description  
VSP assembler language  
Descriptions of the VSP instruction set  
The assembler/emulator  
1999 May 03  
2
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
The digital Baseband Serial Interface (BSI), which  
exchanges baseband data between the PCF50732 and  
the digital signal processor. The interface also includes  
signals to power-up and power-down the baseband  
transmit (TX) and receive (RX) paths.  
1
FEATURES  
Low power and low voltage device in 0.25 micron  
CMOS technology; supply voltage: analog 2.7 V  
(typical) and digital 1.5 V (typical)  
Compatible with GSM phase 2 and DCS1800  
The voice band CODEC is a complete analog front-end  
circuit. It consists of four parts:  
recommendations  
Complete in-phase and quadrature component interface  
paths between the Digital Signal Processor (DSP) and  
RF circuitry  
The receive path, which converts a digital signal to an  
analog signal for an earpiece, an external loudspeaker  
or a buzzer  
Complete linear PCM CODEC for audio signal  
The transmit path, which receives the analog external  
signal from a microphone and converts it into a digital  
signal  
conversion between earphone/microphone and DSP  
Four auxiliary analog inputs for measurement purposes  
(e.g. battery monitoring)  
The Voice band Signal Processor (VSP), which filters  
the voice band data  
Three auxiliary analog outputs for control purposes  
(i.e. AFC, AGC and power ramping control)  
The digital Audio Serial Interface (ASI), which  
connects the digital linear PCM signals of the receive  
and transmit paths to an external DSP. The voice band  
data is coded in 16-bit linear PCM twos complement  
words.  
Separate baseband, audio and control serial interfaces  
Voice band Signal Processor (VSP) for flexible audio  
data processing.  
2
APPLICATIONS  
The auxiliary Analog-to-Digital Converter (ADC)  
section consists of four input channels specified for battery  
management applications.  
The CMOS integrated circuit PCF50732, Baseband and  
audio interface for GSM, is dedicated to wireless  
telephone handsets conforming to the GSM  
recommendations phases 1 and 2, DCS1800 and  
PCS1900.  
The auxiliary Digital-to-Analog Converter (DAC)  
section consists of three DACs for Automatic Gain Control  
(AGC), for Automatic Frequency Control (AFC) and for  
power ramping.  
The Control Serial Interface (CSI) is used to program a  
set of control registers, to store the power amplifier  
ramping characteristics into the dedicated RAM and to  
transmit auxiliary ADC values to the DSP. It also controls  
switches, modes and power status of the different parts of  
the IC.  
3
GENERAL DESCRIPTION  
The baseband CODEC is a complete interface circuit  
between the RF part in a mobile communication handset  
and the Digital Signal Processor (DSP). It consists of three  
parts:  
The receive path, which transforms the quadrature  
signals from the RF (I/Q) to digital signals  
The transmit path, which transforms a bitstream to  
analog quadrature signals for the RF devices  
4
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF50732H  
LQFP48  
plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm  
SOT313-2  
1999 May 03  
3
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
5
QUICK REFERENCE DATA  
SYMBOL  
VDDD  
VDDA  
IDDA  
PARAMETER  
CONDITIONS  
MIN.  
1.0  
TYP. MAX. UNIT  
digital supply voltage  
analog supply voltage  
analog supply current  
1.5  
2.7  
3.5  
2.75  
2.75  
V
V
DDA VDDD  
2.5  
V
VDDD = 1.5 V; VDDA = 2.7 V;  
RXON active  
mA  
Pav  
average power consumption  
total standby current  
VDDD = 1.5 V; VDDA = 2.7 V; note 1  
15  
mW  
µA  
Istb(tot)  
fclk  
10  
master clock frequency  
13.0  
+27  
MHz  
°C  
Tamb  
operating ambient temperature  
40  
+85  
Note  
1. Without load on audio outputs EARP, EARN, AUXSP and BUZ.  
1999 May 03  
4
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
6
BLOCK DIAGRAM  
V
V
V
V
V
DDD  
7
DDA(bb)  
25  
DDA(vb)  
37  
DDA(vbo)  
47  
DDA(ref)  
34  
REFERENCE  
VOLTAGES AND  
CURRENTS  
36  
V
PCF50732  
ref  
10  
10-BIT  
DAC  
LP  
LP  
19  
16  
TXON  
BIEN  
GMSK  
MODULATOR  
10  
10-BIT  
DAC  
15  
17  
BIOCLK  
BDIO  
BSI  
23  
24  
QP  
QN  
ADC  
ADC  
DIGITAL  
FILTER  
20  
18  
21  
22  
27  
28  
29  
30  
RXON  
BOEN  
IP  
2
IN  
M
U
X
AUXADC1  
AUXADC2  
AUXADC3  
AUXADC4  
13  
9
AUXST  
CCLK  
10  
33  
32  
31  
DAC3  
CTL  
64 × 10-BIT  
SRAM  
AUXDAC3  
10-BIT  
AUXDAC3  
10  
11  
12  
14  
CEN  
CSI  
CDI  
12  
8
AUXDAC2  
12-BIT  
AUXDAC2  
AUXDAC1  
CDO  
AMPCTRL  
AUXDAC1  
8-BIT  
40  
41  
38  
39  
MICP  
M
2
VOICE BAND  
SIGNAL  
PROCESSOR  
MICN  
DECIMATION  
4
3
2
1
MICADC  
U
X
ACLK  
AFS  
ADI  
FILTER  
AUXMICP  
AUXMICN  
ASI  
46  
45  
EARP  
EARN  
OUTPUT  
AMPLIFIER  
NOISE  
SHAPER  
EARDAC  
1 MHz  
ADO  
IRAM  
44  
43  
OUTPUT  
AMPLIFIER  
AUXSP  
BUZ  
6
5
CLOCK  
GENERATOR  
MCLK  
OUTPUT  
AMPLIFIER  
RESET  
8
26  
42  
35  
SSA(ref)  
48  
V
SSA(vbo)  
MGR988  
V
V
V V  
SSA(vb)  
SSD  
SSA(bb)  
Fig.1 Block diagram.  
5
1999 May 03  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
7
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
ACTIVE ACTIVE  
NR. TYPE(1)  
IDD  
LEVEL  
EDGE  
ADO  
ADI  
1
2
3
O/TS  
1.5 mA audio digital interface PCM data output to DSP  
I
I
audio digital interface PCM data input from DSP  
AFS  
rising  
audio digital interface PCM frame synchronization signal  
from DSP  
ACLK  
4
5
6
I
I
I
LOW  
rising  
audio digital interface PCM clock signal from DSP  
asynchronous reset input  
RESET  
MCLK  
rising  
low-swing master clock input; fclk = 13 MHz; integrated  
capacitive coupling  
VDDD  
VSSD  
CCLK  
CEN  
7
8
P
digital power supply  
G
digital ground  
9
I
falling  
control bus clock input from DSP  
control bus data enable from DSP  
control bus data input from DSP  
10  
11  
12  
13  
I
LOW  
CDI  
I
O/TS  
I
CDO  
AUXST  
1.5 mA control bus data output to DSP  
HIGH  
status control signal for activation of AUXDAC1,  
AUXDAC2 and MCLK input  
AMPCTRL 14  
O
O/TS  
O
1.5 mA general purpose output pin  
BIOCLK  
BIEN  
BDIO  
BOEN  
TXON  
RXON  
IP  
15  
16  
17  
18  
19  
20  
21  
22  
3 mA baseband interface data clock  
LOW  
1.5 mA baseband transmit interface data enable signal  
1.5 mA baseband interface data I/O from/to DSP  
1.5 mA baseband receive interface data enable signal  
I/O  
O
LOW  
HIGH  
HIGH  
I
baseband transmit path activation signal  
I
baseband receive path activation signal  
I/O  
I/O  
(I) baseband differential positive input/output to IF circuit  
IN  
(I) baseband differential negative input/output to  
IF circuit  
QP  
QN  
23  
24  
I/O  
I/O  
(Q) baseband differential positive input/output to  
IF circuit  
(Q) baseband differential negative input/output to  
IF circuit  
VDDA(bb)  
VSSA(bb)  
25  
26  
P
G
I
baseband power supply (analog)  
baseband ground (analog)  
AUXADC1 27  
AUXADC2 28  
AUXADC3 29  
AUXADC4 30  
AUXDAC1 31  
AUXDAC2 32  
auxiliary ADC input 1 for battery voltage measurement  
auxiliary ADC input 2  
I
I
auxiliary ADC input 3  
I
auxiliary ADC input 4  
O
O
auxiliary DAC output for AGC; max. load 50 pF // 2 kΩ  
auxiliary DAC output for AFC; max. load 50 pF // 10 kΩ  
1999 May 03  
6
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
PIN  
SYMBOL  
DESCRIPTION  
ACTIVE ACTIVE  
NR. TYPE(1)  
IDD  
LEVEL  
EDGE  
AUXDAC3 33  
O
auxiliary DAC output for power ramping; maximum load  
50 pF, ±600 µA  
VDDA(ref)  
VSSA(ref)  
Vref  
34  
35  
36  
37  
P
G
I/O  
P
I
reference voltage power supply (analog)  
reference voltage ground (analog)  
band gap reference voltage noise decoupling  
voice band voltage power supply  
VDDA(vb)  
AUXMICP 38  
AUXMICN 39  
auxiliary microphone differential positive input  
auxiliary microphone differential negative input  
microphone differential positive input  
microphone differential negative input  
voice band ground  
I
MICP  
40  
41  
42  
43  
44  
45  
46  
47  
48  
I
MICN  
I
VSSA(vb)  
BUZ  
G
O
O
O
O
P
G
buzzer output  
AUXSP  
EARN  
EARP  
auxiliary speaker output  
earphone differential negative output  
earphone differential positive output  
voice band output buffer voltage power supply (analog)  
voice band output buffer ground (analog)  
VDDA(vbo)  
VSSA(vbo)  
Note  
1. O/TS = 3-state output.  
1999 May 03  
7
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
V
V
V
1
2
36  
35  
34  
33  
ADO  
ADI  
ref  
SSA(ref)  
DDA(ref)  
AFS  
3
4
ACLK  
AUXDAC3  
5
32 AUXDAC2  
31 AUXDAC1  
RESET  
MCLK  
6
PCF50732  
V
7
AUXADC4  
30  
29 AUXADC3  
AUXADC2  
DDD  
V
8
SSD  
CCLK  
CEN  
CDI  
9
28  
27 AUXADC1  
10  
11  
12  
V
V
26  
25  
SSA(bb)  
DDA(bb)  
CDO  
MGR989  
Fig.2 Pin configuration.  
8
1999 May 03  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
8
FUNCTIONAL DESCRIPTION  
8.2  
Baseband and voice band reference voltages  
This chapter gives a brief overview of the device.  
The detailed functional description can be found in the  
following chapters:  
The reference voltage Vref is generated on-chip by a band  
gap voltage reference circuit and is available at pin Vref.  
As Vref is used as reference for most of the internal analog  
circuitry, noise must be kept as low as possible by  
connecting an external decoupling capacitor at this pin.  
Chapter 9 “Baseband CODEC”  
Chapter 10 “Voice band CODEC”  
Chapter 11 “Auxiliary functions”  
The voltage at Vref is buffered to generate the baseband  
and voice band reference voltage Vref as well as internal  
references for the different functions, such as the auxiliary  
and the transmit DACs.  
Chapter 12 “Control Serial Interface (CSI)”  
Chapter 13 “Voice band Signal Processor (VSP)”.  
8.1  
General  
9
BASEBAND CODEC  
As low power consumption in mobile telephones is a very  
important issue, all the circuit parts in the PCF50732 can  
be powered-on/off either by means of the external signals  
AUXST, TXON or RXON, or by programming the  
respective register bits in the Control Serial Interface  
(CSI).  
The baseband CODEC is a complete interface circuit  
between the RF part in a mobile communication handset  
and the digital signal processor. It consists of three parts:  
The transmit path, which converts a bitstream to  
analog quadrature signals for the RF devices  
The most important signal for the digital and analog circuit  
functions in the PCF50732 is the DAC enable signal  
AUXST, which allows to activate AUXDAC1 (AGC) and  
AUXDAC2 (AFC), as well as the low-swing master clock  
input MCLK. AUXST must be active (HIGH) and VDDA  
must be stable (see also Section 18.1) to allow the  
master clock to access different circuit parts after a reset  
(RESET active). AUXDAC1 and AUXDAC2 are only  
activated if their related power-on bit is set. AUXDAC1 is  
default off, AUXDAC2 is default on.  
The receive path, which transforms the quadrature  
signals of the IF chip (I/Q) to digital signals  
The digital baseband serial interface, which  
exchanges baseband data between the PCF50732 and  
the DSP. The interface also includes signals to  
power-up and power-down the baseband transmit  
(TX) and receive (RX) paths.  
9.1  
Baseband transmit path  
The baseband transmit path consists of three parts:  
RESET must be active during at least 3 MCLK cycles, with  
AUXST active, to ensure a correct initialisation of all the  
digital circuitry of the PCF50732. Since RESET is  
asynchronous even small spikes of a few nanoseconds  
can cause partial resets.  
GMSK modulator: generation of a Gaussian Minimum  
Shift Keying (GMSK) signal  
10-bit DACs: digital-to-analog converters for the  
I and Q components of the GMSK signal  
Low-pass filters: analog reconstruction low-pass filters  
for the output of the DACs.  
For power supply noise interference reduction, a pair of  
power supply and ground pins are provided for the:  
Baseband analog: VDDA(bb)/VSSA(bb)  
The requirements of the transmit path of a GSM terminal  
are given by “GSM recommendation 05.05”:  
Voice band analog: VDDA(vb)/VSSA(vb)  
Phase RMS error <5°  
Phase peak error <20°  
Amplitude error < ±1 dB.  
Voice band output drivers: VDDA(vbo)/VSSA(vbo)  
DC reference voltages and currents: VDDA(ref)/VSSA(ref)  
Digital circuitry: VDDD/VSSD  
.
Nevertheless the performance of the PCF50732 is far  
better than these figures indicate; see Section 18.1.  
All VSS pins are connected internally. VDDD is the digital  
supply. VDDA(bb), VDDA(vb), VDDA(vbo), and VDDA(ref) are  
analog supplies, and are referred to as VDDA throughout  
this document. These analog supplies must be connected  
externally.  
1999 May 03  
9
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
The baseband receive section can be switched between  
two modes of operation:  
9.1.1  
GMSK MODULATOR  
The input signal of the GMSK modulator is a bitstream  
coming from the baseband serial interface, with a  
sampling frequency of 270.833 kHz. Typically 148 bits are  
modulated during a normal burst, and 88 bits during an  
access burst. Using this bitstream, the GMSK modulator  
generates digital I and Q components as described in  
“GSM recommendation 05.04”.  
ZIF (zero IF) mode for radio sections, which convert the  
receive signal down to baseband. In this mode the ADC  
is sampled at 6.5 MHz, the decimation filter samples  
down by a factor of 24 with a pass band as specified in  
Fig.3. The serial interface output BDIO delivers  
2 × 12-bit values for I and Q components at  
270.833 kHz.  
This is done in three steps:  
NZIF (near zero IF) mode for radio sections, which  
converts the receive signal down to a centre frequency  
of 100 kHz. In this mode the ADC is sampled at 13 MHz,  
the decimation filter samples down by a factor of 24 with  
a pass band as specified in Fig.3. The serial interface  
output BDIO delivers 2 × 12-bit values for I and Q  
components at 541.667 kHz.  
1. First the incoming bitstream is differentially encoded  
by an EXOR operation on the actual bit and the  
previous bit  
2. The instantaneous phase (ϕ) is calculated using a  
gaussian filter with an impulse response of 4 taps  
3. A look-up table provides the cosine (I component) and  
the sine values (Q component) of the phase (ϕ).  
9.2.1  
RECEIVE ADC  
The look-up table also interpolates the signal to a  
16 times higher frequency (4.333 MHz).  
The receive ADCs are Σ∆ analog-to-digital converters that  
convert differential input signals into1-bit data streams with  
a sampling frequency of 6.5 or 13 MHz.  
9.1.2  
10-BIT DACS  
The two 10-bit DACs are working at a sampling rate of  
4.3333 MHz. They convert the digital I and Q components  
of the GMSK modulator to differential analog  
I and Q signals.  
9.2.2  
DIGITAL DECIMATION FILTER  
Digital filtering is required for:  
Suppression of out-of-band noise produced by the  
Σ∆ ADC  
9.1.3  
LOW-PASS FILTER  
Decimation of the sampling rate (6.5 or 13 MHz) by 24  
System level filtering.  
The analog output signals of the DACs are filtered by  
analog reconstruction low-pass filters.  
The digital filtering is performed by a digital FIR filter with a  
group delay for this running average filter of approximately  
23 or 11.5 µs respectively. The filter uses twos  
complement arithmetic.  
These filters remove high frequency components of the  
DAC output signals and attenuate components around the  
4.3333 MHz sampling frequency. The low-pass filters  
have a cut-off frequency of approximately 300 kHz, with  
very linear phase behaviour in the pass band.  
9.2  
Baseband receive path  
The baseband receive path consists of two parts:  
Receive ADC: Σ∆ analog-to-digital converters  
Decimation filter: digital decimation filters for I and Q.  
1999 May 03  
10  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
MBL025  
20  
gain  
(dB)  
0
20  
NZIF  
ZIF  
40  
60  
80  
100  
0
100  
200  
300  
400  
500  
600  
f (kHz)  
3
Fig.3 Transfer functions for the baseband receive filter.  
BIEN0 must be at least 10 quarterbits long to allow settling  
of the analog filters. Bits are clocked out of the DSP by the  
falling edge and clocked into the PCF50732 by the rising  
edge of BIOCLK. After the BIEN1 period has elapsed,  
BIEN is set HIGH again and transmission from the DSP  
ends. Logic 1s are modulated whenever BIEN is HIGH  
and the baseband transmit (BBTX) block is active. Values  
for BIEN0 and BIEN1 can be set in the Burst control  
register.  
9.3  
Baseband Serial Interface (BSI)  
9.3.1  
OVERVIEW  
The digital part of the baseband consists of a receive  
section and a transmit section. The receive section is a  
FIR filter that reduces the 6.5 MHz (13 MHz for  
NZIF mode) bitstream from the sigma-delta converters  
into 2 × 12-bit values at 270.833 kHz (541.667 kHz for  
NZIF mode).  
Figure 5 shows the timing for the BSI data transmission.  
In power-down the de-asserted value of BIOCLK is high-Z  
and BIEN is HIGH. Typical connection to the system DSP  
is defined in Table 1.  
The transmit section converts the 270.833 kHz data  
stream from the DSP into a GMSK signal sampled at  
4.333 MHz. The 10-bit I and Q signals are then fed into  
two 10-bit DACs. The power ramping signal is also  
generated by the transmit section with the 10-bit  
AUXDAC3 block.  
Table 1 Connection of BSI transmit signals to  
PCF5087X  
9.3.2  
TRANSMIT PATH BLOCK DESCRIPTION  
PCF50732  
PIN  
PCF5087X  
PIN  
9.3.2.1  
Transmit serial interface  
I/O  
I/O  
The power-up of the BSI transmit path is controlled via the  
TXON pin. When TXON is pulled HIGH, the transmit path  
recovers from power-down. The MCLK/48 = 270.833 kHz  
output signal BIOCLK is activated. When the BIEN0 period  
has elapsed the output signal BIEN goes LOW and the bits  
to be transmitted are clocked out of the DSP.  
TXON  
BDIO  
I
RFSIG[y]  
SIOXD  
O
I/O  
I
I/O  
O
BIEN  
SOXEN_N  
SIOXCLK  
BIOCLK  
O
I
1999 May 03  
11  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
After TXON goes HIGH and a time equal to RU quarterbit  
periods has elapsed, power ramp-up is done.  
9.3.2.2  
Power ramping controller  
The PCF50732 fully supports all multislot modes which do  
not require full duplex operation or more than two  
consecutive transmit bursts. In this specification double  
burst mode is used for all supported multislot modes while  
single burst mode supports the normal GSM modes.  
After a time period equal to RD quarterbits has elapsed  
power ramp-down is initiated.  
The AUXDAC3 output is also shown in Fig.4.  
Values for RU (ramp-up) and RD (ramp-down) can be set  
in the Burst control register of the control serial interface.  
RD must be greater than RU + 32. RU and RD range  
from 0 to 4000 QB (quarterbit). The register offers the  
possibility to enter codes up to 4095.  
The power ramping controller drives the power amplifier  
output envelope.  
In each transmit (TX) burst one ramp-up and one  
ramp-down will be carried out. In multislot mode one  
intermediate ramp will be carried out in addition to ramp-up  
and ramp-down. Each ramp consists of 16 discrete step  
values that are sent to the DAC3. Each step’s duration is  
2 quarterbits which translates into 8-bit long ramps.  
The DAC3 output is in 3-state whenever it is powered  
down. The ramping step values are stored in a 64 × 10-bit  
RAM as shown in Table 2.  
The GMSK modulator is active for a period of 2 clock  
cycles after the ramp-down or for the length of the TXON  
burst, whichever is longer.  
Multislot (high speed switched data mode) can be selected  
by setting the appropriate bit in the Burst control register.  
In multislot mode an intermediate ramping step is done.  
This intermediate step is started after a time period equal  
to RM quarterbits has elapsed. A value for RM  
In order to initialize AUXDAC3 it is necessary to write into  
the RAM all 32 (or 48 in multislot mode) DAC3 output  
values. Filling the RAM is normally done by writing a  
logic 0 to the address sub-register of the Burst control  
register, after which 32 or 48 values, depending on  
multislot mode, can be written into the data sub-register of  
the Burst control register. Writing to the DAC3 RAM is only  
possible when the DAC3 is powered off.  
(intermediate ramp) is also set using the Burst control  
register. The following conditions must be true:  
RU + 32 < RM and RM + 32 < RD.  
Table 2 AUXDAC3 RAM contents  
RAM ADDRESS  
DATA  
Total number of CSI-accesses is therefore 33 for a normal  
burst and 49 for a double burst.  
0 to 15  
16 to 31  
32 to 47  
48 to 64  
ramp-up data  
intermediate ramp data  
ramp-down data  
not used  
An autoincrement feature will store these data into the  
correct RAM positions.  
The value after power-up of DAC3 will always be equal to  
the value of RAM location 47.  
Table 3 Power ramping timing characteristics  
AUXDAC3 timing is controlled by the Burst control  
register. This contains the following sub-registers:  
SYMBOL  
VALUE  
12t1  
COMMENTS(1)  
t0  
one quarterbit (QB)  
0 to 4000 QB  
The RU register containing the delay in number of  
quarterbit cycles from the assertion of TXON to the start  
of the power-up ramping; default value is 0  
tru  
RU register  
RM register  
RD register  
32t0  
tim  
trd  
RU + 32 to 4000 QB  
RM + 32 to 4000 QB  
8 bits; 32 QB  
The RM register containing the delay in number of  
quarterbit cycles from the assertion of TXON to the start  
of the intermediate power ramp; default value is 0. RM  
is only used in case of multislot mode  
t
rup, trim, trdo  
Note  
1. QB: Quarterbit, usually referred to the time needed for  
The RD register containing the delay in number of  
quarterbit cycles from the assertion of TXON to the start  
of the power-down ramping; default value is 0  
one quarter of a GSM baseband bit, i.e. a frequency of  
1
12 × 13 MHz.  
DAC3 burst RAM address register  
DAC3 burst RAM data register  
Single/double burst mode register: normal mode or  
multislot mode selection flag.  
1999 May 03  
12  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
h
TXON  
(1)  
APE_DAC3  
t
im  
t
ru  
AUXDAC3  
t
rd  
0
15  
15 31  
31 47  
ADDRESS  
AUXDAC3  
RAM  
47  
47  
15  
31  
47  
t
t
t
MGR995  
rup  
rim  
rdo  
RU  
RM  
RD  
(1) APE_DAC3: Analog Power Enable signal for the AUXDAC3.  
Fig.4 Power ramping timing characteristics (multislot mode).  
Bits are clocked out of the PCF50732 by the falling edge,  
and clocked into the DSP by the rising edge of BIOCLK.  
In normal bursts 148 I/Q pairs are read from the  
PCF50732.  
9.3.3  
RECEIVER PATH BLOCK DESCRIPTION  
9.3.3.1  
Receive serial interface  
The baseband serial interface sends the digital signal of  
the receive path to a digital signal processor. It also takes  
the digital bitstream from the digital signal processor and  
transmits it via the baseband CODEC.  
When RXON goes LOW, the last pair of I and Q values will  
be sampled and transferred to the baseband processor  
(both I and Q components). BIOCLK stops after additional  
16 BIOCLK cycles. The receive path is powered down  
again. In power-down the BIOCLK output is put in 3-state  
and the BOEN output is HIGH.  
The baseband reception and transmission are active in  
bursts. A normal burst has a length of 548 µs. The frame  
rate of bursts is 4.615 ms. Using a normal traffic channel,  
one burst for each frame is transmitted and two bursts are  
received. To save as much power as possible, the transmit  
path and the receive path of the PCF50732 are in  
power-up mode only during the transmission or reception  
bursts respectively.  
The output format is 2 × 12-bit I/Q (twos complement).  
Transmission occurs MSB first, I followed by Q. The serial  
clock signal BIOCLK will run at 6.5 MHz, or 13 MHz in the  
NZIF mode. Figure 6 shows the timing of the BSI data  
reception.  
The power-up of the receive section is controlled via the  
RXON pin or RXON bit. When RXON is driven HIGH, the  
receive section recovers from power-down and the output  
clock BIOCLK is activated. After a settling delay of 52 µs  
(ZIF mode, analog circuitry + decimation filter settling  
time), BOEN goes LOW to transfer the first 12-bit  
I and Q words. The settling time is only 26 µs in NZIF  
mode.  
An automatic offset compensation mechanism is provided  
in order to achieve the required performance. This  
mechanism will short the receive (RX) inputs internally and  
measure the resulting offset value. This offset value will be  
subtracted from all subsequent I/Q output words.  
The offset inherent to the device can thereby be reduced  
to a few millivolts. Default value for both I- and Q-offset is  
zero.  
1999 May 03  
13  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Offset compensation measurement can be done on three  
channels separately: baseband receive I channel,  
baseband receive Q channel and AUXADC channel. All  
AUXADC channels use the same offset compensation  
value. Starting an offset measurement is done by writing a  
logic 1 into the offset trigger register for each channel that  
needs calibration. If the value ‘7’ (decimal) is written into  
the offset trigger register offsets will be measured for I, Q  
and AUXADC channels.  
Table 4 Connection of BSI receive signals to the  
PCF5087X  
PCF50732  
PCF5087X  
PIN  
PIN  
I/O  
I/O  
RXON  
BDIO  
I
RFSIG[z]  
SIOXD  
O
I/O  
I
I/O  
O
BOEN  
BIOCLK  
SIXEN_N  
SIOXCLK  
O
I
Offsets can also be read or written directly. Each offset  
measurement is implemented internally as an AUXADC  
measurement and takes approximately 100 µs.  
Offsets from 256 up to 255 can be compensated.  
9.3.4  
BASEBAND SERIAL INTERFACE (BSI) TIMING CHARACTERISTICS  
intermediate ramp  
32 QB  
t
43  
ramp-up  
32 QB  
t
42  
ramp-down  
32 QB  
trail  
t
44  
2 BIOCLK  
clocks  
t
40  
data  
data  
(1)  
TXI/Q  
data  
logic 1s  
data  
logic 1s  
AUXDAC3  
t
7
high-Z  
high-Z  
BIOCLK  
BDIO  
high-Z  
high-Z  
(2)  
d.c.  
t
d.c.  
d.c.  
B(0) B(1)  
B(n)  
t
39  
9
t
10  
BIEN  
t
5
TXON  
MGR990  
t
6
(1) TXI/Q = transmit I or Q.  
(2) d.c. = don’t care; will be overwritten with logic 1.  
Fig.5 Timing of the baseband serial interface transmit path; for the timing values see Table 5  
1999 May 03  
14  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
t
16t  
1
12  
high-Z  
high-Z  
BIOCLK  
I11  
I0  
Q11  
Q0  
BDIO  
t
14  
t
13  
BOEN  
RXON  
t
15  
MGR991  
t
548 µs  
11  
Fig.6 Timing of the baseband serial interface receive path; for the timing values see Table 5.  
Table 5 BSI timing characteristics  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Master clock  
t1  
t2  
t3  
t4  
MCLK cycle time  
MCLK LOW time  
MCLK HIGH time  
RESET LOW time  
76.9  
ns  
30  
30  
3t1  
12t1  
12t1  
ns  
ns  
ns  
Baseband Serial Interface (BSI) transmit path (see Fig.5)  
t5  
BIEN0 value  
10  
t5  
511  
4000  
QB  
QB  
ns  
t6  
BIEN1 value  
t7  
BIOCLK cycle time  
data set-up time  
48t1  
t9  
20  
20  
ns  
t10  
t39  
t40  
t42  
t43  
t44  
data hold time  
ns  
BIOCLK active after TXON rising edge  
analog TX and GMSK power-up time  
ramp-up value  
t1  
ns  
17.4  
3940  
3980  
QB  
QB  
QB  
0
intermediate ramp value  
ramp-down value  
32 + t42  
normal mode  
32 + t42  
32 + t43  
4020  
4020  
QB  
QB  
double burst mode  
1999 May 03  
15  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Baseband Serial Interface (BSI) receive path (see Fig.6)  
t11  
analog power-up and filter settling time  
ZIF mode  
52  
26  
µs  
NZIF mode  
µs  
t12  
BIOCLK cycle time  
ZIF mode  
2t1  
t1  
ns  
ns  
ns  
ns  
ns  
NZIF mode  
t13  
t14  
t15  
BOEN LOW after falling clock edge  
BIOCLK falling edge to data valid  
BOEN HIGH after falling clock edge  
15  
15  
15  
Linearity of receiver equipment (to earpiece) at  
10 VOICE BAND CODEC  
EARPGA = 0 dB and a volume control (VOLPGA and  
EARAMP or AUXAMP) of 12 dB, signal-to-total harmonic  
distortion ratio according to “GSM recommendation  
II.11.10 V.4.16.1”.  
The voice band CODEC is a complete analog front-end  
circuit. It consists of three parts:  
The receive path, which converts a digital linear PCM  
signal to an analog signal for an earpiece, an external  
loudspeaker or a buzzer  
10.1.1 RXVOL  
The transmit path, which receives an analog signal  
from a microphone or an auxiliary input and converts it  
into a digital linear PCM signal  
RXVOL controls the volume of the voice band receive  
path. In conjunction with EARAMP, AUXAMP and  
BUZAMP it allows a gain variation from +6 to 30 dB in  
64 steps; see Table 25. RXVOL also provides a mute  
selection of the three outputs EARP/EARN, AUXSP and  
BUZ respectively. At RESET the volume is automatically  
set to 12 dB.  
The digital Audio Serial Interface (ASI), which  
connects the digital linear PCM signals of the receive  
and transmit paths to a digital signal processor.  
Various functions and characteristics of the voice band  
CODEC can be selected by programming the  
corresponding control registers in the Control register  
block (see also Tables 11, 22, 23, 24 and 25).  
10.1.2 RXPGA  
RXPGA controls the gain of the voice band receive path  
within a range of 24 to +12 dB in 64 steps for calibration  
purposes.  
10.1 Voice band receive path  
The voice band receive path consists of the following  
parts:  
10.1.3 RXFILTER  
RXFILTER is a digital band-pass filter with a pass band  
from 300 to 3400 Hz. It is realized by a programmable  
structure (voice band signal processor).  
The receive part of the voice band signal processor  
NOISE SHAPER: 3rd order digital Σ∆ modulator,  
generates a bit stream at 1 MHz to drive the EARDAC  
EARDAC: digital-to-analog converter including  
low-pass filter for high frequency noise content of noise  
shaper  
10.1.4 EARDAC  
EARDAC is a DAC operating at a sampling frequency of  
1 MHz. It converts the bitstream input to a sampled  
differential analog signal and low-pass filters the output  
signal at the same time.  
EARAMP: amplifier for an earpiece  
AUXAMP: amplifier for an auxiliary loudspeaker  
BUZAMP: amplifier for a buzzer output.  
1999 May 03  
16  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Values are specified for a standard electret microphone  
with a sensitivity of 64 ±3 dB for high gain or for an  
external microphone with an amplifier sensitivity of  
26 ±3 dB (0 dB 1 V/0.1 Pa = 1 V/µbar; at 1 kHz).  
10.1.5 EARAMP  
EARAMP is an amplifier, capable of driving a standard  
earpiece with a minimum impedance of 8 in  
single-ended mode or 16 in differential mode.  
10.2.2 MICADC  
10.1.6 AUXAMP  
MICADC is a Σ∆ A/D converter which generates a 1 MHz  
bitstream.  
AUXAMP is an amplifier for connection to an external  
loudspeaker amplifier of minimum 8 (hands-free car kit).  
An ‘auxiliary speaker external amplifier control’ output  
pin (AMPCTRL) can be used to switch on/off an external  
amplifier (hands-free car kit). The status of AMPCTRL is  
programmable via the Control Serial Interface; its default  
value is on.  
10.2.3 DECIMATOR AND TXFILTER  
The DECIMATOR is a digital filter, which performs a signal  
processing to a lower sampling rate at the output  
compared to the input.  
The bitstream with a sampling frequency of 1 MHz is  
low-pass filtered and down-sampled to 40 kHz by a FIR  
filter.  
10.1.7 BUZAMP  
BUZAMP is an amplifier for connection to an external  
buzzer of minimum 8 . It has the same output  
characteristics as the AUXAMP and can hence be used as  
a second auxiliary output amplifier. It is switched on/off by  
a dedicated control bit in the Control register block.  
A digital high-pass filter and a digital low-pass filter (both  
IIR filters) process the 14-bit input samples to achieve a  
band-pass with a pass band from 300 to 3400 Hz. These  
filters run on the on-chip voice band signal processor (see  
Fig.7). It’s program is down-loaded into the instruction  
memory (IRAM) via the CSI (see Table 26).  
10.2 Voice band transmit path  
The output of the TXFILTER is down-sampled to a  
sampling frequency of 8 kHz with a word length of 16 bits.  
The voice band transmit path consists of the following  
parts:  
MICMUX: microphone input multiplexer  
MICADC: Σ∆ analog-to-digital converter  
10.2.4 TXPGA  
TXPGA adapts the analog signals coming from MICMUX  
within a range of 30 to +6 dB. It is designed for calibration  
purposes.  
DECIMATOR: decimates the incoming bit stream from  
1 MHz to 40 kHz  
TXFILTER: band-pass filter for the digital transmit signal  
and down-sampling  
10.2.5 SIDEPGA  
TXPGA/LIM: fine-programmable gain for calibration,  
limiter  
SidePGA loops part of the voice band transmit signal back  
into the receive path. There are 64 gain steps from mute to  
+6 dB.  
SidePGA: voice band sidetone programmable gain  
amplifier.  
10.3 Voice band digital circuitry  
Linearity of transmitter equipment, signal-to-total harmonic  
distortion ratio according to “GSM recommendation  
II.11.10 V.4.16.1”.  
The voice band digital circuitry is responsible for  
converting a 16-bit PCM signal at 8 kHz sample rate to and  
from a 1-bit 1 MHz signal. It also contains a band-pass  
filter for 300 to 3400 Hz and a sidetone engine. Various  
volume settings are calculated inside this block. Figure 7  
shows the block diagram of the voice band signal  
processor.  
10.2.1 MICMUX  
MICMUX is used to select between a differential signal at  
pins MICP/MICN and a differential signal at pins  
AUXMICP/AUXMICN.  
1999 May 03  
17  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
VOICE BAND SIGNAL PROCESSOR  
ADI  
ACLK  
AFS  
TXPGA/LIM  
DECIMATOR  
TX_BS  
(transmit bitstream)  
ASI  
RX/TX  
FILTER  
SidePGA  
ADO  
1-bit, 1 MHz  
16-bit, 8 kHz  
NOISE  
SHAPER  
RX_BS  
(receive bitstream)  
RXPGA/LIM  
RRAM  
RXVOL  
MGR992  
IRAM  
Fig.7 Block diagram of the voice band signal processor.  
Pin ADO is put in 3-state after the LSB of the transmit  
word, independent of the length of the AFS pulse. If the  
channel position 0 (see Section 10.3.2.1) is selected, then  
the MSB must be output directly after AFS becomes a  
logic 1, even if no rising edge on ACLK has been given yet.  
10.3.1 VOLUME CONTROL BLOCK  
The volume control block contains the RXPGA, SidePGA,  
TXPGA and both limiter blocks. The possible settings can  
be found in the description of the CSI block. All digital  
volume control blocks, i.e. RXPGA, SidePGA, and  
TXPGA, will allow settings from +6 to 30 dB and mute in  
64 steps. However, not all combinations of settings for  
these blocks will be meaningful. The limiter will always clip  
signals with overflow to the maximum or minimum  
allowable value.  
The following modes of operation are programmable:  
channel position and ACLK clock mode.  
10.3.2.1 Channel position mode  
Depending on a programmable register value n  
(n = 0 to 15) one of 16 channels can be selected (see  
Table 22). The ASI can add a delay of 16 × n-bit clocks  
between the assertion of AFS and the start of the MSB of  
the PCM values. This delay is independently  
10.3.2 AUDIO SERIAL INTERFACE (ASI) BLOCK  
The ASI is the voice band serial interface which provides  
the connection for the exchange of PCM data in both  
receive and transmit directions, between the baseband  
digital signal processor and the PCF50732. The data is  
coded in 16-bit linear PCM twos complement words.  
programmable for transmit and receive mode.  
10.3.2.2 ACLK clock mode  
A frame start is defined by the first falling edge of ACLK  
after a rising AFS. This first falling edge is used to clock in  
the first data bit on both the baseband and the DSP device.  
Single or double clock mode can be selected. Double clock  
mode implies two clock pulses per data bit and is used for  
communication with IOM2 compatible devices. In double  
clock mode data must be output on the first rising edge and  
be read on the last falling edge.  
Data on pin ADI is clocked in (MSB first) on the falling edge  
of the ACLK clock. Data is clocked out (MSB first) on pin  
ADO on the rising edge of the ACLK clock.  
1999 May 03  
18  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Table 6 Pin connection of the audio serial interface to the PCF5087X  
PCF50732  
PCF5087X  
PIN  
I/O  
PIN  
I/O  
ADI  
ADO  
ACLK  
AFS  
I
O
I
DD  
DU  
O
I
DCL  
FSC  
O
O
I
AFS  
word  
ADI  
t
rpdc  
word  
ADO  
MGR993  
t
tpdc  
trpdc: receive path data channel delay.  
ttpdc: transmit path data channel delay.  
Fig.8 Frame structure of the Audio Serial Interface (ASI).  
1999 May 03  
19  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
10.3.2.3 Audio Serial Interface (ASI) timing characteristics  
AFS  
t
41  
t
t
17  
t
16  
42  
ACLK  
t
40  
t
21  
LSB  
MSB  
first slot  
first bit  
high-Z  
last slot  
last bit  
first slot  
second bit  
last slot  
last bit  
ADO  
ADI  
single  
clock  
mode  
t
t
t
19  
20  
18  
MSB  
LSB  
last slot  
last bit  
first slot  
first bit  
first slot  
second bit  
last slot  
last bit  
t
21  
MSB  
LSB  
high-Z  
last slot  
last bit  
first slot  
first bit  
slot 1  
bit 2  
last slot  
last bit  
ADO  
ADI  
double  
clock  
mode  
t
t
19  
20  
LSB  
MSB  
last slot  
last bit  
first slot  
first bit  
slot 1  
bit 2  
last slot  
last bit  
MGR994  
Fig.9 Timing of the Audio Serial Interface (ASI).  
Table 7 ASI timing characteristics  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
t16  
t17  
t18  
t19  
t20  
t21  
t40  
frame sync (AFS) set-up time to falling edge of ACLK  
frame sync (AFS) hold time from falling edge of ACLK  
ACLK rising edge to data (ADO) valid  
data (ADI) set-up time to falling edge of ACLK  
data (ADI) hold time from falling edge of ACLK  
first data valid (ADO) after AFS rising edge  
ACLK period  
70  
40  
ns  
ns  
ns  
ns  
ns  
ns  
30  
50  
80  
0
+30  
60  
single clock mode  
0.5  
0.5  
7.8  
3.9  
µs  
µs  
µs  
ns  
double clock mode  
t41  
t42  
AFS period  
125  
ACLK LOW before AFS rising edge  
40  
1999 May 03  
20  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
11 AUXILIARY FUNCTIONS  
11.3 Power ramping: AUXDAC3  
The auxiliary functions part consists of three  
digital-to-analog converters (DACs) and a 4 input  
analog-to-digital converter (ADC) with a 12-bit range.  
The DACs are for:  
AUXDAC3 is a 10-bit binary coded digital-to-analog  
converter designed for power ramping purposes.  
AUXDAC3 is default off. The power ramping behaviour is  
described in Section 9.3.2.2.  
Automatic Gain Control (AGC): AUXDAC1  
Automatic Frequency Control (AFC): AUXDAC2  
Power ramping: AUXDAC3.  
11.4 Auxiliary analog-to-digital converter (AUXADC)  
The AUXADC is specified for voltage and temperature  
measurements. It contains 4 input channels required for  
T and V measurements, as well as battery type  
recognition:  
11.1 Automatic Gain Control (AGC): AUXDAC1  
The AUXDAC1 is an 8-bit binary coded, guaranteed  
monotonic digital-to-analog converter.  
• ∆T: battery temperature, ambient temperature  
(measured across sensor)  
The status of AUXDAC1 is controlled by the signal AUXST  
and a power-up bit in the Power control register. The signal  
that switches the external VCXO can also be used to  
control the AUXST pin of the PCF50732. The AUXDAC1  
output is floating in Power-down mode (AUXST = LOW).  
The input MCLK is then deactivated.  
• ∆V: peak battery voltage, battery voltage during transmit  
burst.  
Five 12-bit registers are available in which results of  
auxiliary analog-to-digital conversions can be stored.  
Two registers are dedicated to the input AUXADC1 and  
one to each of AUXADC2, AUXADC3 and AUXADC4.  
When AUXST goes HIGH, AUXDAC1 is powered-up and  
the converted value of the corresponding register in the  
control register block is available at the AUXDAC1 output  
pin.  
The AUXADC1 input can be used for battery voltage  
measurement. In the AUXADC1A register the voltage  
during a transmit time slot can be stored. The AUXADC1B  
register can store the voltage during other time slots. If a  
read request to one of these registers is executed by  
loading its address into the Read request register, the  
actual contents of the addressed register are given to the  
control interface and a new measurement is performed in  
the next appropriate time slot.  
If a write access to the AUXDAC1 register occurs, the DAC  
is activated with the new content of the DAC register (see  
Table 14 and 15). The AUXDAC1 must be powered-up by  
setting the correct bit in the Power control register. At reset  
AUXDAC1 is powered-down.  
A multiplexer connects each of the AUXADC inputs to a  
channel of the receive ADC depending on read access to  
the corresponding register.  
11.2 Automatic Frequency Control (AFC):  
AUXDAC2  
The AUXDAC2 is a 12-bit binary coded, guaranteed  
monotonic digital-to-analog converter. This DAC is used to  
control the frequency of an external master clock VCXO.  
Thus an auxiliary analog-to-digital conversion is only  
possible, if the baseband receive section is not in use  
(RXON is LOW). At each read request to one of the  
AUXADC registers, a flag is set in the AUXADC flag  
register indicating that an analog-to-digital conversion is to  
be performed. When one of the registers AUXADC1B,  
AUXADC2, AUXADC3, or AUXADC4 is being read, the  
baseband interface verifies that RXON is LOW, indicating  
that no receive burst is currently active. The baseband  
receive path is then powered up. After the ADC settling  
time has elapsed (see POSTAUXADC in Chapter 18), valid  
data is available and stored in the corresponding register.  
The status of AUXDAC2 is controlled by the signal AUXST  
and a power-up bit in the Power control register. The signal  
that switches the external VCXO can also be used to  
control the AUXST pin of the PCF50732. The AUXDAC2  
output is floating in Power-down mode (AUXST = LOW).  
When AUXST goes HIGH, AUXDAC2 is powered-up and  
the converted value of the corresponding register in the  
control register block is available at the AUXDAC2 output  
pin.  
The default value for AUXDAC2 is 1.1 V which  
corresponds to a 800H code in the AUXDAC2 register.  
At reset AUXDAC2 is powered on.  
1999 May 03  
21  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
After conversion the corresponding bit in the AUXADC flag  
register is reset (see Table 18). If RXON is activated  
during an auxiliary analog-to-digital conversion cycle, the  
auxiliary conversion is interrupted and restarted when  
RXON returns LOW, indicating no receive burst activity.  
The PCF50732 waits for a rising edge of TXON, and  
powers up the receive path. After the settling time of the  
ADC added to the programmed AUXADC conversion  
delay (in 48 MCLK cycles) has elapsed, valid data is  
available and stored in the AUXADC1A register.  
When register AUXADC1A is read, a battery voltage  
measurement during a transmission burst is executed.  
1440  
output code  
(LSB)  
gain tolerance  
offset  
at 0 V  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
(V)  
2.0  
V
in  
MGR996  
Fig.10 Typical transfer characteristics of AUXADC (output code as function of differential input voltage).  
1999 May 03  
22  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
If the device address is equal to the chip address, the  
programmed information on CDI (DB11 to DB00) is loaded  
into the addressed register (RA3 to RA0) when CEN  
returns inactive HIGH.  
12 CONTROL SERIAL INTERFACE (CSI)  
The Control Serial Interface block is used to set and read  
the status bits inside the PCF50732. It is also used to read  
data from the auxiliary ADCs and to write data into the  
auxiliary DACs. Finally, the block is used to write the power  
ramping curve into a 64 × 10-bit static RAM. It should be  
noted that only 48 of the 64 addresses can be accessed;  
see Table 2.  
The dummy bit in front is needed for compatibility with  
older baseband devices.  
Reading a register is accomplished by writing the address  
of the required register into the read request register.  
The next time CEN goes LOW, the requested data will be  
shifted out, together with the register and device address.  
12.1 The serial interface  
A 4-line bidirectional serial interface is used to control the  
circuit. It allows access to each register of the control  
register block (read and/or write). The 4 lines are:  
Table 8 Pin connection of the CSI to the PCF5087X  
PCF50732  
PIN  
PCF5087X  
PIN  
Data in (CDI)  
Data out (CDO)  
Clock (CCLK)  
Enable (CEN).  
I/O  
I/O  
CDI  
CDO  
CCLK  
CEN  
I
O
I
RFDO  
RFDI  
O
I
RFCLK  
RFE_N2  
O
O
Table 8 lists the normal connections to the PCF5087X.  
I
The data sent to or from the device is loaded in bursts  
framed by CEN. Clock edges and data bits are ignored  
until CEN goes active (LOW). Each data word consists of  
21 bits that comprises a 4-bit device address, a 4-bit  
register address, a 12-bit data word and a dummy bit; see  
Table 9. The 21 bits are transmitted with MSB first.  
Figure 5 shows the valid timing for data transmission on  
the control interface.  
Table 9 Bit mapping of the 21-bit words  
BIT CONTENT DESCRIPTION  
00 to 03 ADD0 to ADD3 device address; for the  
PCF50732 this is ‘1001’  
(= 9 decimal)  
04 to 07 RA0 to RA3  
register address  
Data is read in from the CDI pin on the rising edge of the  
CCLK clock and output on CDO on the falling edge of the  
CCLK clock. Data is written into the registers on the rising  
edge of CEN.  
08 to 19 DB00 to DB11 data value  
20 dummy don’t care  
1999 May 03  
23  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.2 Control Serial Interface (CSI) timing characteristics  
CCLK  
t
t
t
27  
22  
24  
CEN  
t
t
26  
t
25  
38  
dummy  
MSB(#19)  
ADD0(#0)  
ADD0(#0)  
CDI  
t
t
23  
23  
high-Z  
dummy  
MSB(#19)  
CDO  
t
MGR997  
37  
Fig.11 Timing diagram of the Control Serial Interface (CSI).  
Table 10 CSI timing characteristics  
For the timing diagram see Fig.11.  
SYMBOL  
PARAMETER  
MIN.  
MAX.  
UNIT  
ns  
t22  
t23  
t24  
t25  
t26  
t27  
t37  
t38  
CEN set-up time  
20  
CDO data valid after falling clock edge  
CCLK cycle time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
20  
30  
30  
data set-up time to rising edge of CCLK  
data hold time from rising edge of CCLK  
CEN hold time  
CDO 3-state after CEN HIGH  
CEN HIGH time  
30  
50  
1999 May 03  
24  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3 Control register block  
This section describes the different registers that are implemented in the PCF50732. An overview is given in Table 11.  
Tables 12 to 29 describe all the registers of the PCF50732.  
Table 11 Control register block overview  
ADDRESS  
ACCESS  
REGISTER NAME  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
W
R/W  
R/W  
R/W  
R/W  
R
Read request register  
AUXDAC1 (AGC) value register  
AUXDAC2 (AFC) value register  
Burst control register  
AUXADC control register  
AUXADC channel 1 register A (AUXADC1A); note 1  
AUXADC channel 1 register B (AUXADC1B); note 1  
AUXADC channel 2 register (AUXADC2); note 1  
AUXADC channel 3 register (AUXADC3); note 1  
AUXADC channel 4 register (AUXADC4); note 1  
Voice band control register  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Voice band volume register  
Power control register  
RAM interface register  
Baseband receive control register  
Test mode register; note 2  
Notes  
1. See description in Section 11.4.  
2. Do not use this register.  
12.3.1 READ REQUEST REGISTER  
Table 12 Read request register  
X = don’t care during a read/or write access.  
VALUE  
6
ADDRESS  
REGISTER NAME  
11  
10  
9
8
7
5
4
3
2
1
0
0000  
Read request register  
X
X
X
X
r3  
r2  
r1  
r0  
s3  
s2  
s1  
s0  
Table 13 Read request registers value description  
VALUE OF  
SYMBOL  
r3 to r0  
DESCRIPTION  
Address of the register to be read.  
Subaddress that might be needed. The subaddress bits are right  
Read request register  
s3 to s0  
aligned, meaning that the subaddress always starts with bit ‘s0’ (LSB);  
e.g. in case of two subaddress bits, ‘s1’ and ‘s0’ are used.  
1999 May 03  
25  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.2 AUXDAC1 (AGC) VALUE AND AUXDAC2 (AFC) VALUE REGISTERS  
Table 14 Registers overview  
X = don’t care during a read/or write access.  
VALUE  
6
ADDR.  
REGISTER NAME  
11  
10  
9
8
7
5
4
3
2
1
0
0001 AUXDAC1 (AGC) value register  
0010 AUXDAC2 (AFC) value register  
X
X
X
X
b7 b6 b5 b4 b3 b2 b1 b0  
b11  
b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
Table 15 AUXDAC1 (AGC) value and AUXDAC2 (AFC) value registers value description  
VALUE OF  
SYMBOL  
DESCRIPTION  
AUXDAC1 (AGC) value register b7 to b0  
input value to the 8-bit AUXDAC1 (fed directly into the DAC); the default  
value is 85H  
AUXDAC2 (AFC) value register b11 to b0 input value to the 8-bit AUXDAC2 (fed directly into the DAC); the default  
value is 800H  
12.3.3 BURST CONTROL REGISTER  
The Burst control register controls the timing of the transmit burst (TX-burst). The ‘lo’-registers contain the lower 8 bits,  
the ‘hi’-registers the upper 4 bits of a 12-bit delay value. Therefore, each register has a programmable range  
from 0 to 4095. Not all combinations of values might make sense e.g. ramp-down before ramp-up.  
Table 16 Burst control register (address 001 and subaddresses)  
X = don’t care during a read/or write access.  
SUBADDRESS  
VALUE  
FUNCTION  
11  
(s3)  
10  
(s2)  
9
(s1)  
8
(s0)  
7
6
5
4
3
2
1
0
RU-lo  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
b7  
X
b6  
X
b5  
X
b4  
X
b3  
b2  
b1  
b9  
b1  
b9  
b1  
b9  
b1  
b9  
b1  
b9  
X
b0  
b8  
b0  
b8  
b0  
b8  
b0  
b8  
b0  
b8  
b0  
a0  
d0  
RU-hi  
b11 b10  
b3 b2  
b11 b10  
b3 b2  
b11 b10  
b3 b2  
b11 b10  
b3 b2  
b11 b10  
RM-lo  
b7  
X
b6  
X
b5  
X
b4  
X
RM-hi  
RD-lo  
b7  
X
b6  
X
b5  
X
b4  
X
RD-hi  
BIEN0-lo  
BIEN0-hi  
BIEN1-lo  
BIEN1-hi  
Single/double burst mode(1)  
DAC3 burst RAM address(1)  
DAC3 burst RAM data(1)  
b7  
X
b6  
X
b5  
X
b4  
X
b7  
X
b6  
X
b5  
X
b4  
X
X
X
X
X
X
X
X
X
a5  
d5  
a4  
d4  
a3  
d3  
a2  
d2  
a1  
d1  
d9(2) d8(2)  
d7  
d6  
Notes  
1. The programming is described in Section 9.3.2.2.  
2. The subaddress positions bit 9 (s1) and bit 8 (s0) do not apply to the DAC3 burst RAM data register.  
1999 May 03  
26  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Table 17 Burst control registers value description  
VALUE OF  
DESCRIPTION  
Value RU, consisting of RU-lo (least significant byte) and RU-hi (most significant byte), is the delay  
RU  
measured in quarterbits (112MCLK) between the rising edge of TXON and the start of the ramp-up on  
AUXDAC3. After this delay, the first 16 values of the AUXDAC3 RAM are sent to AUXDAC3. Shifting out  
is done at 124MCLK.  
RM  
RD  
Value RM, consisting of RM-lo (least significant byte) and RM-hi (most significant byte), is the delay  
measured in quarterbits between the rising edge of TXON and the start of the intermediate ramp in a  
double burst ramp. The RM value is only used in multislot mode. RM must be greater than RU + 32.  
Value RD, consisting of RD-lo (least significant byte) and RD-hi (most significant byte), is the delay  
measured in quarterbits between the rising edge of TXON and the start of the ramp-down on AUXDAC3.  
RD must be greater than RU + 32, or in case of multislot mode, greater than RM + 32.  
BIEN0  
BIEN1  
Value BIEN0, consisting of BIEN0-lo (least significant byte) and BIEN0-hi (most significant byte), is the  
delay measured in quarterbits between the rising edge of TXON and the falling edge of BIEN.  
Value BIEN1, consisting of BIEN1-lo (least significant byte) and BIEN1-hi (most significant byte), is the  
delay measured in quarterbits between the rising edge of TXON and the rising edge of BIEN. BIEN1  
must be greater than BIEN0.  
12.3.4 AUXADC CONTROL REGISTER  
Table 18 AUXADC control register (address 0100 and subaddresses)  
X = don’t care during a read/or write access.  
SUBADDRESS  
FUNCTION  
VALUE  
11  
10  
9
8
7
6
5
4
3
2
1
0
(s2) (s1) (s0)  
AUXADC conversion delay  
value register  
0
0
0
X
X
b6  
b5  
b4  
b3  
b2  
b1  
b0  
AUXADC flag register  
0
1
0
0
1
0
X
Qoff Ioff auxoff flag 4 flag 3 flag 2 flag 1B flag 1A  
9-bit signed offset compensation value  
AUXADC offset value  
register  
I channel offset value  
register  
1
1
1
0
1
1
1
0
1
9-bit signed offset compensation value  
9-bit signed offset compensation value  
Q channel offset value  
register  
Offset trigger register  
X
X
X
X
X
X
Q-off  
I-off  
Aux  
1999 May 03  
27  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Table 19 AUXADC control registers value description  
VALUE OF  
DESCRIPTION  
AUXADC conversion delay  
value register  
The 7-bit value (b6 to b0) denotes the delay measured in 48MCLK units between the  
rising edge of TXON and the conversion on AUXADC1A. The normal power-on  
settling time is added to this delay. Default value is 0.  
AUXADC flag register  
The AUXADC flag register returns the status of the AUXADC converters. If an  
auxiliary A/D conversion is pending, the flag of the corresponding AUXADC will be  
set. The flag register is read only.  
AUXADC offset value register The offset value registers contain signed 9-bit offset compensation values. These  
values are subtracted automatically from all baseband receive (BBRX) and AUXADC  
I channel offset value register  
measurements to compensate for offset errors. The compensation values can be  
Q channel offset value register  
read and written and have a default value of 0. It can also be measured by the device  
Offset trigger register  
itself.  
A write to the Offset trigger register will trigger an offset measurement for each of the  
channels (Q-off, I-off or AUXADC) selected.  
Offset measurements are special cases of AUXADC measurements and are done  
sequentially. Each calibration measurement takes approximately 100 µs. The Offset  
trigger register is write only.  
12.3.5 AUXADC REGISTERS  
Table 20 AUXADC registers overview  
VALUE  
ADDR.  
REGISTER NAME  
11 10  
9
8
7
6
5
4
3
2
1
0
0101 AUXADC channel 1 register A (AUXADC1A)  
0110 AUXADC channel 1 register B (AUXADC1B)  
0111 AUXADC channel 2 register (AUXADC2)  
1000 AUXADC channel 3 register (AUXADC3)  
1001 AUXADC channel 4 register (AUXADC4)  
b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
Table 21 AUXADC registers value description  
VALUE OF  
DESCRIPTION  
AUXADC1A 12-bit result of the A/D conversion on AUXADC channel 1, measured during a transmission burst  
AUXADC1B 12-bit result of the A/D conversion on AUXADC channel 1, measured outside a transmission burst  
AUXADC2  
AUXADC3  
AUXADC4  
12-bit result of the A/D conversion on AUXADC channel 2  
12-bit result of the A/D conversion on AUXADC channel 3  
12-bit result of the A/D conversion on AUXADC channel 4  
1999 May 03  
28  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.6 VOICE BAND CONTROL REGISTER  
The Voice band control register is used to control the following functionality of the voice band CODEC:  
Analog input source: microphone (MICAMP) or auxiliary (AUXMIC) input  
Analog output device: earphone (EARAMP), auxiliary (AUXAMP) or buzzer (BUZAMP) output; this register allows  
individual control of all three output amplifiers  
EARAMP output mode: single-ended (EARP) or differential (EARN/EARP). This selects the input source for the  
EARAMP-N amplifier. In single-ended mode EARAMP-N will be at Vref, in differential mode it will carry the output signal  
General purpose output pin: AMPCTRL  
Receive and transmit path delay values  
ASI clock mode  
TX gain boost (MICHI).  
Table 22 Voice band control register (address 1010 and subaddresses)  
X = don’t care during a read/or write access.  
SUBADDRESS  
11 10  
VALUE  
FUNCTION  
FUNCTION SETTING  
9
8
7
6
5
4
3
2
1
0
(s2) (s1) (s0)  
0
1
0
1
MICAMP (default)  
AUXMIC  
Select input source  
0
0
0
0
0
don’t care  
X
X
X
X
X
X
0
X
X
X
X
0
X
X
0
EARAMP-P off  
EARAMP-P on (default)  
X EARAMP-N off  
1
X EARAMP-N on (default)  
X AUXAMP off (default)  
X AUXAMP on  
Select output amplifier  
1
don’t care  
X
X
X
X
1
X
X
X BUZAMP off (default)  
X BUZAMP on  
1
0
1
0
1
a
a
0
1
0
1
single-ended  
EARAMP output mode  
AMPCTRL pin polarity  
0
0
1
1
0
1
don’t care  
differential (default)  
active LOW  
don’t care  
active HIGH (default)  
Receive path data channel  
Transmit path data channel  
1
1
0
0
0
1
d
d
c
c
b
b
don’t care  
4-bit delay value (default = 0)  
single clock (default)  
double clock  
7 dB  
ASI clock mode  
1
1
1
1
0
1
don’t care  
don’t care  
TX gain boost (MICHI)  
35 dB (default)  
1999 May 03  
29  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.7 VOICE BAND VOLUME REGISTER  
Voice band gain settings can be independently programmed for: TXPGA, RXPGA, RXVOL and SidePGA.  
Table 23 Voice band volume register (address 1011 and subaddresses)  
X = don’t care during a read/or write access.  
SUBADDRESS  
11 10  
VALUE  
SELECTED  
RANGE  
DEFAULT  
SETTING  
FUNCTION  
9
8
7
6
5
4
3
2
1
0
(s2) (s1) (s0)  
TXPGA gain  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
a
a
a
a
a
b
b
b
b
b
c
c
c
c
c
d
d
d
d
X
e
e
e
e
X
f
f
24 to +12 dB  
30 to +6 dB  
0 dB  
RXPGA gain  
RXVOL gain  
f
12 dB  
SidePGA gain  
f
mute  
Band gap setting level  
Experimental bits  
X
100 to +75 mV 0 mV offset  
dir pll  
dc vbch hclk bgb −  
pll on, all  
others off  
Table 24 Voice band volume registers value description  
VALUE  
TXPGA gain  
REMARKS  
DESCRIPTION  
microphone calibration  
earphone calibration  
TXPGA and RXPGA settings use the 6-bit binary fixed point value  
‘ab.cdef’ as a multiplier for each PCM-sample. This results in a  
control range of +12 to 24 dB. See note 1a.  
RXPGA gain  
RXVOL gain  
customer volume control  
RXVOL and SidePGA settings use the 6-bit binary fixed point  
value ‘a.bcdef’ as a multiplier for each PCM-sample. This results  
in a control range of +6 to 30 dB (and mute). See note 1b.  
SidePGA gain  
Experimental bits  
dir: bypass clock buffer  
pll: clock optimizer  
dc: bypass clock capacitor  
vbch: voice band chopping  
hclk: 26 MHz master clock input  
bgb: band gap boost  
do not use  
Band gap setting level  
Note  
1. Possible gain settings are listed in Table 25 or can be calculated using the following formulae (‘n’ is an integer that  
represents the value that is written into the register; n = 0 to 63):  
n
16  
a) RXPGA and TXPGA: gain = 20 × log------ ; add 6.02 dB to each gain for RXPGA and TXPGA settings.  
n
b) RXVOL and SidePGA: gain = 20 × log------  
32  
1999 May 03  
30  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.7.1 Possible gain selections for voice band blocks: RXPGA, TXPGA, RXVOL and SidePGA  
Table 25 shows the possible gain selections for the voice band blocks RXPGA, TXPG, RXVOL and SidePGA. It should  
be noted that not all possible combinations of these volume settings are meaningful; setting RXPGA, SidePGA and  
RXVOL to maximum will result in clipping of the output signal.  
Table 25 Gain selections  
GAIN (dB)  
GAIN (dB)  
BINARY  
CODE  
BINARY  
CODE  
RXPGA/TXPGA RXVOL/SidePGA  
RXPGA/TXPGA RXVOL/SidePGA  
111111  
111110  
111101  
111100  
111011  
111010  
111001  
111000  
110111  
110110  
110101  
110100  
110011  
110010  
110001  
110000  
101111  
101110  
101101  
101100  
101011  
101010  
101001  
101000  
100111  
100110  
100101  
100100  
100011  
100010  
100001  
100000  
11.88  
11.74  
11.60  
11.46  
11.31  
11.17  
11.01  
10.86  
10.70  
10.54  
10.38  
10.22  
10.05  
9.88  
5.88  
5.74  
5.60  
5.46  
5.31  
5.17  
5.01  
4.86  
4.70  
4.54  
4.38  
4.22  
4.05  
3.88  
3.70  
3.52  
3.34  
3.15  
2.96  
2.77  
2.57  
2.36  
2.15  
1.94  
1.72  
1.49  
1.26  
1.02  
0.78  
0.53  
0.27  
0.00  
011111  
011110  
011101  
011100  
011011  
011010  
011001  
011000  
010111  
010110  
010101  
010100  
010011  
010010  
010001  
010000  
001111  
001110  
001101  
001100  
001011  
001010  
001001  
001000  
000111  
000110  
000101  
000100  
000011  
000010  
000001  
000000  
5.72  
5.44  
0.28  
0.56  
0.86  
1.16  
1.48  
1.80  
2.14  
2.50  
2.87  
3.25  
3.66  
4.08  
4.53  
5.00  
5.49  
6.02  
6.58  
7.18  
7.82  
8.52  
9.28  
10.10  
11.02  
12.04  
13.20  
14.54  
16.12  
18.06  
20.56  
24.08  
30.10  
off  
5.14  
4.84  
4.52  
4.20  
3.86  
3.50  
3.13  
2.75  
2.34  
1.92  
1.47  
1.00  
9.70  
0.51  
9.52  
0.00  
9.34  
0.58  
1.18  
1.82  
2.52  
3.28  
4.10  
5.02  
6.04  
7.20  
8.54  
10.12  
12.06  
14.56  
18.08  
24.10  
off  
9.15  
8.96  
8.77  
8.57  
8.36  
8.15  
7.94  
7.72  
7.49  
7.26  
7.02  
6.78  
6.53  
6.27  
6.00  
1999 May 03  
31  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.8 POWER CONTROL REGISTER  
The Power control register is used to control power-up and power-down of the different sections of the device. Changing  
the power status is accomplished by addressing the device as shown in Table 26 and setting bit 0 (= a) according to the  
required state:  
a = 0 power-down  
a = 1 power-up.  
Setting the baseband RX or TX flag is functionally equivalent to setting RXON or TXON respectively (logical  
OR function). The CSI is also accessible when the band gap is powered down. Therefore no reset is required to power-up  
after total power-down.  
Table 26 Power control register (address 1100 and subaddresses)  
SUBADDRESS  
11 10  
VALUE  
DEFAULT  
FUNCTION  
9
8
7
6
5
4
3
2
1
0
VALUE  
STATUS  
(s3) (s2) (s1) (s0)  
AUXDAC1  
AUXDAC2  
AUXDAC3  
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
0
1
0
1
0
0
1
1
a
a
a
a
a
a
a
a
a
0
1
0
0
0
1
0
0
1
off  
on  
off  
off  
off  
on  
off  
off  
on  
Voice band transmit  
Voice band receive  
Vref  
don’t care  
Baseband receive  
Baseband transmit  
Complete device  
Normal operation is to write an address into the VSP  
instruction RAM program counter and write low and high  
bytes of the 16-bit instructions into their respective  
locations. No auto-increment is foreseen, i.e. the address  
register must be updated by the user. Writing to the IRAM  
is only possible when voice band transmit and receive  
sections are both powered off. If this is not the case write  
actions are ignored.  
12.3.9 RAM INTERFACE REGISTER  
The RAM interface register is a general purpose  
communication channel between the serial interface CSI  
and the voice band signal processor. None of the  
processor registers have default values.  
The Voice band control register is used to communicate  
with the voice band signal processor. Register functions  
with subaddress ‘00’ to ‘11’ can be used to program the  
Instruction RAM (IRAM) when the voice band processor is  
not running, i.e. when voice band receive and transmit  
sections are both powered down.  
Reading back from the IRAM is not straightforward due to  
the need for an extra clock pulse when accessing RAMs;  
when reading back the contents of RAM locations 1, 2, 3  
and 4 actual output is ‘undefined’ as 1, 2, 3, etc.  
The IRAM registers are used to write into the voice band  
instruction RAM.  
1999 May 03  
32  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Table 27 RAM interface register (address 1101 and subaddresses)  
X = don’t care during a read/or write access.  
SUBADDRESS  
FUNCTION  
VALUE  
11  
10  
9
8
7
6
5
4
3
2
1
0
(s1)  
(s0)  
VSP instruction RAM data low-byte  
VSP instruction RAM data high-byte  
VSP instruction RAM program counter  
VSP interface register  
0
0
1
1
0
1
0
1
X
X
X
X
X
d7 d6 d5 d4 d3 d2 d1 d0  
d7 d6 d5 d4 d3 d2 d1 d0  
a8 a7 a6 a5 a4 a3 a2 a1 a0  
x9 x8 x7 x6 x5 x4 x3 x2 x1 x0  
12.3.10 BASEBAND RECEIVE CONTROL REGISTER  
Normal bandwidth refers to an input signal bandwidth of 100 kHz used for ZIF operation, double bandwidth is 200 kHz  
used for NZIF operation. Normal sampling refers to a sampling rate of 12MCLK, double sampling refers to sampling at  
MCLK.  
Table 28 Baseband receive control register (address 1110)  
VALUE  
OUTPUT  
RATE  
FUNCTION  
11  
10  
9
8
7
6
5
4
3
2
1
0
Normal bandwidth;  
normal sampling (ZIF)  
double sampling; note 2  
Double bandwidth;  
0
0
0
0
0
0
0
1
271 kHz(1)  
135 kHz  
don’t care  
don’t care  
normal sampling (NZIF)  
double sampling  
0
0
0
0
1
1
0
1
542 kHz  
271 kHz  
Notes  
1. Default value.  
2. Do not use this function.  
1999 May 03  
33  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
12.3.11 TEST MODE REGISTER  
Only test mode 8 (TM8) is available to the end user. It is used to mark baseband-I (BB-I) samples with a logic 0 and  
baseband-Q (BB-Q) samples with a logic 1 on the LSB of the 12-bit value.  
Table 29 Test mode register (address 1111)  
VALUE  
TEST  
FUNCTION  
MODE  
11 10  
9
8
7
6
5
4
3
2
1
0
NM  
normal mode (default)  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
TM7  
TM8  
TM9  
baseband transmit (BBTX) I digital  
baseband receive (BBRX) digital  
voice band (VB) loop digital  
voice band transmit/receive (VBTX/RX) digital  
CSI  
baseband (BB) DACs  
don’t care  
voice band receive (VBRX) DAC current sources  
I/Q marking test  
voice band signal processor test mode  
TM10 VSP signature output mode  
TM11 MCLK input reflected on BDIO  
TM12 baseband bitstream output  
1999 May 03  
34  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
No buffering is foreseen for these samples, which means  
that the VSP program is responsible for proper spacing in  
time of the input- and output samples. Failure to ensure  
proper spacing will result in heavily distorted signals.  
13 VOICE BAND SIGNAL PROCESSOR (VSP)  
13.1 Hardware description  
The VSP used in the PCF50732 is a 30-bit fixed point VSP  
with separate data and instruction areas. The data path  
consists of two guard bits, 16 data bits before and 12 data  
bits behind the binary point for a total of 30 bits. Twos  
complement notation is used inside the data path.  
Intermediate results from calculations are stored in a  
64 × 30-bit wide data RAM. Data and Programmable Gain  
Amplifier (PGA) settings are read in via 7 input ports and  
written back into 3 output ports.  
Synchronization to the 8 kHz frame-sync signals AFS is  
also done under program control. The VSP program must  
ensure that noise shaper and FIR filter are properly reset  
before actual operation is started.  
A VSP-emulator and a VSP-assembler have been written  
in order to facilitate program development. The assembler  
generates a stream of 16-bit words that need to be loaded  
into the instruction RAM. This is done by repeated writes  
to the VSP control register. The sequence would be as  
follows:  
The instruction path uses a 16-bit format with the 4 MSBs  
designating the opcode and the trailing 12 bits used to  
describe the operand. The VSP has 12 major instructions;  
some instructions use two opcodes (operation codes). The  
addressing range is 9 bits wide, allowing for a total of  
512 instructions, which is more than adequate for the filter  
types it is intended to calculate. Some room is available for  
Built-In Self Test (BIST). The ALU consists of a 30-bit  
subtractor, a 30-bit adder and a 30 × 16-bit ‘modified  
booth’-type parallel multiplier.  
1. Write address into the VSP instruction RAM program  
counter register  
2. Write the upper 8 bits into the VSP instruction RAM  
data high-byte register  
3. Write the lower 8 bits into the VSP instruction RAM  
data low-byte register.  
This sequence should be repeated until the VSP is fully  
programmed. Programming can only be done when the  
VSP is not active. The VSP program counter will be set to  
location 0 and operation starts after enabling voice band  
transmit or voice band receive. See also the CSI  
description in Chapter 12.  
The VSP’s accumulator has built-in overrange checking  
and will limit values to their minimum (in case of underflow)  
or maximum (in case of overflow) value.  
The VSP engine is designed to operate at 4 MIPS on a  
8 kHz PCM signal.  
All instructions take one clock-cycle to complete. It should  
be noted that since the noise shaper operates at a sample  
rate of 32 kHz and the voice band filter operates at a  
sample rate of 40 kHz it is necessary to transfer 4 samples  
to the receive output and to read 5 samples from transmit  
input for each frame.  
1999 May 03  
35  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
INPUT PORTS  
(from ADI) (from FIR)  
RAM/ROM  
512 × 30-BIT  
CTE in  
RX in  
TX in  
CSI in TXPGA RXPGA RXVOL SidePGA  
(9.0)  
or  
(0.12)  
(1)  
(16.0)  
(16.0)  
(12.0)  
(2.4)  
(2.4)  
(1.5)  
(1.5)  
PC  
INPUT SELECTOR  
(18.12)  
(6.0)  
(18.12)  
FLAGS  
ALU  
(2.0)  
RAM  
64 × 30-BIT  
(18.12)  
AFS  
INDEX  
(6.0)  
ACCUMULATOR  
(18.12)  
OUTPUT REGISTER  
(16.0)  
(16.0)  
(12.0)  
CSI out  
RX out  
TX out  
(to ADO)  
(to NOISE SHAPER)  
MGR998  
OUTPUT PORTS  
The program ROM and program counter are not shown.  
(1) (x.y) designates a x + y bits wide data stream with x bits  
before and y bits after the binary point.  
Fig.12 Voice band Signal Processor (VSP) block diagram.  
1999 May 03  
36  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
13.2 VSP assembler language  
The stack for return addresses is only one entry deep which means that nesting of subroutines is not possible.  
Table 30 VSP instruction set  
X = don’t care during a read/or write access. For the description of the bit symbols see notes 1 to 8.  
MNEMONIC  
INSTRUCTION  
I3 I2 I1 I0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
LDA  
Load accumulator  
0
0
0
m3 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
m3 m2 m1 m0 d8 d7 d6 d5 d4 d3 d2 d1 d0  
STO  
RTN  
ADD  
Store accumulator  
0
0
0
0
0
1
1
1
0
0
1
m2 m1 m0  
X
X
X
X
X
X
d5 d4 d3 d2 d1 d0  
Return from subroutine  
Add to accumulator  
X
X
X
X
X
X
X
X
X
m3 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
m3 m2 m1 m0 d8 d7 d6 d5 d4 d3 d2 d1 d0  
m3 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
m3 m2 m1 m0 d8 d7 d6 d5 d4 d3 d2 d1 d0  
m3 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
m3 m2 m1 m0 d8 d7 d6 d5 d4 d3 d2 d1 d0  
SUB  
MUL  
Subtract from  
accumulator  
0
1
1
0
1
0
Multiply with accumulator  
JMFS  
JMFC  
JSFS  
JSFC  
Jump if flag set  
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
f2  
f2  
f2  
f2  
f1  
f1  
f1  
f1  
f0 a8 a7 a6 a5 a4 a3 a2 a1 a0  
f0 a8 a7 a6 a5 a4 a3 a2 a1 a0  
f0 a8 a7 a6 a5 a4 a3 a2 a1 a0  
f0 a8 a7 a6 a5 a4 a3 a2 a1 a0  
Jump if flag clear  
Jump subroutine if flag set  
Jump subroutine if flag  
clear  
STF  
IDX  
Set/clear flag  
1
1
1
1
1
1
0
1
f2  
f1  
f0  
X
X
X
X
X
X
X
X
X
X
X
d0  
Index operations  
im2 im1 im0  
i5 i4 i3 i2 i1 i0  
Notes  
1. c11 to c0 denotes a 12-bit twos complement coefficient between 1 and +1.  
2. m3 to m0 denotes a 4-bit instruction mode descriptor.  
3. f2 to f0 denotes a 3-bit flag descriptor.  
4. a8 to a0 denotes a 9-bit address.  
5. i5 to i0 denotes a 6-bit index register value.  
6. a8 to a0 denotes a 9-bit address.  
7. X is a don’t care bit.  
8. im2 to im0 denotes a 3-bit instruction mode descriptor for the IDX operator.  
1999 May 03  
37  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
Table 31 Mode descriptions  
ASSEMBLER  
SHORT HAND  
m3  
m2  
m1  
m0  
MODE NAME  
register  
OPERAND  
R(d5 to d0)  
RANGE  
0
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
register 0 to 63  
r
i
register indexed  
port  
R((d5 to d0) + index) register 0 to 63  
P(d2 to d0)  
d8 to d0  
index  
ports 0 to 7  
p
s
i
small integer  
index  
256 to +255; note 1  
0 to 63; note 1  
bits 11 to 0 form a 12-bit twos complement coefficient between 1 and +1  
c
Note  
1. Value range in increments of 1.  
Table 32 Index mode descriptions  
im2  
im1  
im0  
NAME  
store  
OPERAND  
0
0
1
0
0
0
0
1
0
index = d5 to d0  
increment  
accu  
index = (d5 to d0) + index  
index = accu  
Table 33 Flag descriptions  
f2  
f1  
f0  
NAME  
ALW  
DESCRIPTION  
REMARKS  
TYPE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
always set  
flag is clear in VSP test mode; used to initiate BIST system  
INZ  
EQ0  
EQ1  
SYNC  
A
set if index not zero used to implement loops  
set if accu is all 0  
set if accu is all 1  
PCM sync signal  
user flag A  
used to sync VSP to external PCM signal  
user  
B
user flag B  
C
user flag C  
used to reset noise shaper and FIR filter  
Table 34 Port descriptions  
P2  
P1  
P0  
NAME  
DIRECTION  
RANGE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Receive (RX)  
read/write  
read/write  
read/write  
read  
32768 to +32767 (16 bits)  
32768 to +32767 (16 bits)  
2048 to +2047 (12 bits)  
fixed 0  
Transmit (TX)  
CSI  
ZERO  
TXPGA  
RXPGA  
RXVOL  
SidePGA  
read  
0 to 63 (24 to +12 dB)  
0 to 63 (24 to +12 dB)  
0 to 63 (20 to +6 dB)  
0 to 63 (20 to +6 dB)  
read  
read  
read  
1999 May 03  
38  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
f.l. = a 3-bit flag descriptor  
addr = a 9-bit address  
13.3 Descriptions of the VSP instruction set  
13.3.1 CONVENTIONS  
stack = a one entry deep return address stack  
PC = a 9-bit program counter  
In the descriptions of the VSP instruction set:  
A = the 30-bit accumulator  
o.a. = the 9-bit old address  
I = the 6-bit index register  
s.i. = small integer  
r.a. = a 6-bit register address  
p.n. = a 3-bit port number (address)  
coeff = a 12-bit coefficient  
X = don’t care during a read/or write access.  
13.3.2 LDA INSTRUCTION  
The LDA (Load accumulator) instruction is used to load data into the VSP’s accumulator. Flags affected are  
EQ0 and EQ1.  
Table 35 LDA instruction  
15 14 13 12 11 10 9 8 7 6 5 4 3  
2
1
0
OPERATION ASSEMBLER  
NAME  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
coefficient  
coeff A  
LDA c <coeff> load coefficient  
0
0
0
0
1
0
0
1
1
0
0 X X X  
1 X X X  
register address  
register address  
R(r.a.) A  
LDA r <r.a.>  
load register  
R(r.a. + I) A LDA i <r.a.>  
load register indexed  
0 X X X X X X port number P(p.n.) A  
LDA p <p.n.> load port  
1
small integer  
s.i. A  
I A  
LDA s <s.i.>  
LDA x  
load integer  
load index  
0 X X X X X X  
X
X
X
13.3.3 STO INSTRUCTION  
The STO (Store accumulator) instruction is used to store data into register RAM or output ports. No flags are affected.  
Table 36 STO instruction  
15 14 13 12 11 10 9 8 7 6 5 4 3  
2
1
0
OPERATION ASSEMBLER  
A R(r.a.) STO r <r.a.>  
A R(r.a. + I) STO i <r.a.>  
NAME  
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0 X X X  
1 X X X  
register address  
register address  
store register  
store register indexed  
0 X X X X X X port number A P(p.n.)  
STO p <p.n.> store port  
1999 May 03  
39  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
13.3.4 ADD INSTRUCTION  
The ADD (Add to accumulator) instruction is used to add data to the VSP’s accumulator. Flags affected are  
EQ0 and EQ1.  
Table 37 ADD instruction  
15 14 13 12 11 10 9 8  
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
NAME  
0
0
0
1
1
1
0
0
0
1
0
0
coefficient  
A + coeff A  
ADD c <coeff> add coefficient  
0
0
0
0
0 X X X  
1 X X X  
register address  
register address  
A + R(r.a.) A  
ADD r <r.a.>  
add register  
A + R(r.a. + I) A ADD i <r.a.>  
add register  
indexed  
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0 X X X X X X port number A + P(p.n.) A  
ADD p <p.n.> add port  
1
small integer  
A + s.i. A  
A + I A  
ADD s <s.i.>  
ADD x  
add integer  
add index  
0 X X X X X X  
X
X
X
13.3.5 SUB INSTRUCTION  
The SUB (Subtract from accumulator) instruction is used to subtract data from the VSP’s accumulator. Flags affected  
are EQ0 and EQ1.  
Table 38 SUB instruction  
15 14 13 12 11 10 9 8  
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
NAME  
0
1
1
1
coefficient  
A coeff A  
SUB c <coeff> subtract  
coefficient  
0
0
1
1
1
1
0
0
0
0
0
0
0 X X X  
1 X X X  
register address  
register address  
A R(r.a.) A  
SUB r <r.a.>  
subtract register  
A R(r.a. + I) A SUB i <r.a.>  
subtract register  
indexed  
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0 X X X X X X port number A P(p.n.) A  
SUB p <p.n.> subtract port  
1
small integer  
A s.i. A  
A I A  
SUB s <s.i.>  
SUB x  
subtract integer  
subtract index  
0 X X X X X X  
X
X
X
13.3.6 MUL INSTRUCTION  
The MUL (Multiply with accumulator) instruction is used to multiply data with the VSP’s accumulator. Flags affected are  
EQ0 and EQ1. The second operand of the multiplication is restricted to 16-bit; e.g. R(r.a.).  
Table 39 MUL instruction  
15 14 13 12 11 10 9 8  
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
NAME  
1
0
0
1
coefficient  
A × coeff A  
MUL c <coeff> multiply  
coefficient  
1
1
0
0
0
0
0
0
0
0
0
0
0 X X X  
1 X X X  
register address  
register address  
A × R(r.a.) A  
MUL r <r.a.>  
multiply register  
A × R(r.a. + I) A MUL i <r.a.>  
multiply register  
indexed  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0 X X X X X X port number A × P(p.n.) A  
MUL p <p.n.> multiply port  
1
small integer  
A × s.i. A  
A × I A  
MUL s <s.i.>  
MUL x  
multiply integer  
multiply index  
0 X X X X X X  
X
X
X
1999 May 03  
40  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
13.3.7 JMFS INSTRUCTION  
The JMFS (Jump if flag set) is used for conditional jumps. The jump is carried out when the flag is set, otherwise the PC  
is simply incremented.  
Table 40 JMFS instruction  
15 14 13 12 11 10 9  
flag  
8
7
6
5
4
3
2
1
0
OPERATION  
<addr> PC  
ASSEMBLER  
1
0
1
0
address  
JMFS <f.l.> <addr>  
13.3.8 JMFC INSTRUCTION  
The JMFC (Jump if flag clear) is used for conditional jumps. The jump is carried out when the flag is clear, otherwise the  
PC is incremented.  
Table 41 JMFC instruction  
15 14 13 12 11 10  
flag  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
1
0
1
1
address  
<addr> PC  
JMFC <f.l.> <addr>  
13.3.9 JSFS INSTRUCTION  
The JSFS (Jump subroutine if flag set) is used for conditional call to a subroutine. The jump is carried out when the flag  
is set, otherwise the PC is incremented. Note that the return stack is just one entry deep, so nesting of subroutines is not  
allowed.  
Table 42 JSFS instruction  
15 14 13 12 11 10  
flag  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
<o.a> stack  
<addr> PC  
JSFS <f.l.> <addr>  
1
1
1
0
address  
13.3.10 JSFC INSTRUCTION  
The JSFC (Jump subroutine if flag clear) is used for conditional jumps to a subroutine. The jump is carried out when the  
flag is clear, otherwise the PC is incremented. It should be noted that the return stack is just one entry deep, so nesting  
of subroutines is not allowed.  
Table 43 JSFC instruction  
15 14 13 12 11 10  
flag  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
<o.a> stack  
<addr> PC  
JSFC <f.l.> <addr>  
1
1
1
1
address  
13.3.11 RTN INSTRUCTION  
The RTN (Return from subroutine) is used to return from a subroutine.  
Table 44 RTN instruction  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
0
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
stack PC  
RTN  
1999 May 03  
41  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
13.3.12 STF INSTRUCTION  
The STF (Set/clear flag) instruction is used to set or clear the user flags A, B or C. System flags cannot be set or reset  
under program control.  
Table 45 STF instruction  
15 14 13 12 11 10  
flag  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
1
1
0
0
X
X
X
X
X
X
X
X
value <value> <f.l.> STF <f.l.> <value>  
13.3.13 IDX INSTRUCTION  
The IDX (Index operations) instruction is used to store and increment/decrement index values. It should be noted that  
additions to the index register is done in modulo 64. A ‘decrement index register by one’ could therefore be programmed  
as ‘IDX + 63’. The ‘IDX A’ instruction loads the 6 bits to the left of the binary point into the index register, i.e. it stores the  
integer part modulo 64 into I.  
Table 46 IDX instruction  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
OPERATION  
ASSEMBLER  
IDX = <value>  
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
0
0
0
0
1
0
X
X
X
X
X
X
X
X
X
value  
value  
<value> I  
I + <value> I  
A I  
IDX + <value>  
IDX A  
X
X
X
X
X
X
13.4 The assembler/emulator  
A 2-pass assembler and an emulator was made to assist with the development of VSP programs. The software programs  
are written in ‘C’ and currently run under NT, HPUX and LINUX operating systems. The assembler reads assembler  
source files and produces a log file, sets of VHDL or Verilog stimuli and an output file containing CSI instructions that,  
when loaded, will load the executable into the VSP RAM.  
Requirements for the assembler source code are:  
One instruction or pseudo instruction (see Table 47) per line  
No empty lines  
A maximum of 512 instructions  
Operation always starts at instruction 0.  
Table 47 Assembler pseudo instructions  
MNEMONIC  
INSTRUCTION  
{<.>< ><label>}  
DEFINITION  
. label  
Defines a location inside the source code. Is usually used as  
an argument to JMF/JSF instructions.  
define  
include  
--  
{<define>< ><label> < ><value> Defines a variable and assigns a value to it. These variables  
can then be referenced in the assembler instructions.  
{<include>< ><file name>}  
Reads in another source code file and then continues with the  
current file.  
{<-->< ><comment>  
Defines a comment; the rest of the line is skipped.  
1999 May 03  
42  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
14 LIMITING VALUES  
In accordance with Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDD  
IDD  
II1  
PARAMETER  
MIN.  
0.5  
MAX.  
+3.3  
UNIT  
supply voltage  
supply current  
V
30  
mA  
mA  
mA  
V
DC current into any pin; except EARP/EARN, AUXSP and BUZ 10  
+10  
II2  
DC current into pins EARP/EARN, AUXSP and BUZ  
input voltages on all inputs  
100  
+100  
VDD + 0.5  
800  
VI  
0.5  
Ptot  
Tamb  
Tstg  
total power dissipation  
mW  
°C  
operating ambient temperature  
storage temperature  
40  
65  
+85  
+150  
°C  
15 THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
80  
K/W  
16 DC CHARACTERISTICS  
Tamb = 40 to +85 °C; VSS = 0 V (ground pins must be interconnected externally); VDDA VDDD  
;
VDDA(bb) = VDDA(vb) = VDDA(vbo) = VDDA(ref) = VDDA = 2.5 to 2.75 V (supply pins must be interconnected externally);  
all voltages with respect to VSS unless otherwise specified.  
SYMBOL  
Istb(tot)  
Pav  
PARAMETER  
total standby current  
CONDITIONS  
MIN.  
TYP.  
10  
MAX.  
UNIT  
µA  
average power consumption  
VDDD = 1.5 V;  
DDA = 2.7 V; without load  
15  
mW  
V
on audio outputs EARP,  
EARN, AUXSP and BUZ  
Digital power supply: VDDD  
VDDD digital supply voltage  
1.0  
1.5  
2.75  
V
Digital inputs: CCLK, CEN, CDI, TXON, RXON, AUXST, ADI, AFS, ACLK and RESET  
VIL  
VIH  
ILI  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
0.0  
0.3VDDD  
VDDD  
V
0.7VDDD  
V
±1  
µA  
Digital outputs: BIEN, BOEN, ADO and AMPCTRL  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
Isink = 1.5 mA  
0.2VDDD  
V
V
Isource = 1.5 mA  
0.7VDDD  
Digital output: BIOCLK  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
Isink = 1.5 mA  
0.2VDDD  
V
V
Isource = 1.5 mA  
0.7VDDD  
1999 May 03  
43  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Digital bidirectional pins: CDO and BDIO  
VIL  
VIH  
ILI  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
0.0  
0.3VDDD  
VDDD  
V
0.7VDDD  
V
±1  
µA  
V
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
Isink = 1.5 mA  
Isource = 1.5 mA  
0.2VDDD  
0.7VDDD  
V
Low-swing clock input: MCLK  
ILI input leakage current  
Analog power supplies: VDDA(bb), VDDA(vb), VDDA(vbo) and VDDA(ref)  
±1  
µA  
VDDA  
IDDA  
analog supply voltage  
analog supply current  
2.5  
2.7  
3.5  
2.75  
V
VDDD = 1.5 V;  
DDA = 2.7 V;  
mA  
V
RXON active  
Analog reference pin: Vref  
Vref  
DC reference level  
input source/sink current  
no external load  
1.25  
0.1  
V
II(ref)  
µA  
Analog output pins: IP, IN, QP and QN  
Vbias(TXIQ) DC bias level  
Analog input pins: MICP and MICN  
Vref(MIC) DC input reference level  
Analog input pins: AUXMICP and AUXMICN  
Vref(AUXMIC) DC input reference level  
Analog output pins: EARP and EARN  
Vbias(EAR) DC bias level  
Analog output pin: AUXSP  
Vbias(AUX) DC bias level  
Analog output pin: BUZ  
1.175  
1.25  
0.5Vref  
0.5Vref  
Vref  
1.325  
V
V
V
V
V
V
Vref  
Vbias(BUZ)  
DC bias level  
Vref  
1999 May 03  
44  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
17 AC CHARACTERISTICS  
VDDD = 1.0 to 2.75 V; VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
fclk  
master clock frequency  
13.0  
MHz  
Digital input pins: CCLK, CEN, CDI, TXON, RXON, AUXST, ADI, AFS, ACLK and RESET  
Ci  
input capacitance  
5.0  
pF  
Digital output pins: BIOCLK, BIEN, BOEN, ADO and AMPCTRL  
tdLHO  
tdHLO  
output rise time  
output fall delay  
output load = 10 pF  
output load = 10 pF  
10  
10  
ns  
ns  
Digital bidirectional pins: CDO and BDIO  
Ci  
input capacitance  
output rise time  
output fall delay  
5.0  
10  
10  
pF  
ns  
ns  
tdLHO  
tdHLO  
output load = 20 pF  
output load = 20 pF  
Low-swing clock input: MCLK  
VMCLK  
input amplitude  
duty cycle  
note 1  
0.1  
40  
0.5VDDD  
60  
V
δMCLK  
%
Analog output pins: IP, IN, QP and QN  
tst(TXIQ)  
output settling time  
output load = 10 pF // 10 k,  
to 1 LSB, for 0.8 to 2.2 V  
9.6  
µs  
Ro(TXIQ)  
output resistance  
f < 100 kHz  
105  
Analog input pins: IP, IN, QP and QN  
Ri(RXIQ)  
Ci(RXIQ)  
input resistance  
differential  
200  
kΩ  
input capacitance  
5
pF  
Analog input pins: AUXADC1, AUXADC2, AUXADC3 and AUXADC4  
Ri(AUXADC) input resistance  
Analog input pins: MICP and MICN  
Ri(eq)(MIC) equivalent input resistance  
Analog input pin: AUXMICP and AUXMICN  
Ri(eq)(AUXMIC) equivalent input resistance  
Analog output pins: EARP and EARN  
Ro(EARAMP) output resistance  
Analog output pin: AUXSP  
1
MΩ  
kΩ  
kΩ  
differential  
200  
200  
0
220  
220  
320  
f = 1 kHz  
f = 1 kHz  
f = 1 kHz  
1
Ro(AUXAMP)  
output resistance  
0
1
Analog output pin: BUZ  
Ro(BUZ)  
output resistance  
0
1
Note  
1. Input MCLK is internally AC coupled; the signal must not go below VSS or above VDDD  
.
1999 May 03  
45  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18 FUNCTIONAL CHARACTERISTICS  
18.1 Baseband transmit (BSI to TXI/Q)  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C.  
SYMBOL  
RESTXIQ  
PARAMETER  
resolution of TX DACs  
CONDITIONS  
MIN.  
TYP.  
10  
55  
270.833 −  
MAX. UNIT  
bit  
S/NTXIQ  
signal-to-noise TX DACs  
input sampling frequency  
dB  
kHz  
V
FSINTXIQ  
VO(TXIQ)(p-p)  
output signal amplitude (peak-to-peak  
value)  
note 1  
0.9  
1.0  
1.1  
VDC(TXIQ)  
output DC level  
1.15  
1.25  
1.35  
V
AMATTXIQ  
output amplitude matching between  
I and Q TX paths  
note 1  
note 1  
1.75  
0.15  
4.5  
+1.75  
%
+0.15 dB  
VOFSTXIQ  
differential DC offset voltage between  
IP/IN or QP/QN  
+4.5  
mV  
FRESPTXIQ  
frequency response of random output  
signal  
f = 0 to 100 kHz  
f = 200 kHz  
f = 250 kHz  
f = 400 kHz  
f = 600 kHz  
f = 1200 kHz  
f > 1800 kHz  
note 2  
3  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
µs  
µs  
ns  
30  
33  
60  
70  
70  
70  
MPEITXIQ  
AGDTXIQ  
GDLTXIQ  
maximum phase effect instance  
absolute group delay  
22  
10  
100  
note 1  
group delay linearity  
measured at full-scale;  
10 kHz < f < 100 kHz;  
load: 10 pF // 10 kΩ  
GDMATTXIQ  
group delay matching of I and Q TX paths  
40  
ns  
PMATTXIQ  
phase matching of I and Q TX paths  
note 1  
0.5  
0.5  
1.5  
deg  
deg  
deg  
PTERMSTXIQ RMS phase trajectory error  
PTEPEAKTXIQ peak phase trajectory error  
random input pattern;  
notes 1 and 3  
0.8  
3.0  
Notes  
1. Measured at full-scale; load: 10 pF // 10 k; f = 67 kHz.  
2. Not tested. Defined between the rising edge of BIOCLK which latches a data bit at BDIO to its corresponding  
maximum phase change on the analog outputs ITX and QTX.  
3. Not tested.  
1999 May 03  
46  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.2 Baseband receive (RXI/Q to BSI)  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C; all values valid for ZIF and NZIF modes.  
SYMBOL  
PARAMETER  
resolution  
signal to noise ratio  
CONDITIONS  
I and Q word length at BSI  
MIN.  
TYP.  
12  
MAX. UNIT  
RESRXIQ  
S/NRXIQ  
bit  
dB  
V
66  
VICM(RXIQ)  
input common mode (IP + IN)/2; (QP + QN)/2; referred to VSS  
voltage  
1.0  
1.25  
1.5  
VIDM(RXIQ)  
FSINRXIQ  
input differential  
voltage  
(IP IN); (QP QN)  
1.5  
1.5  
V
input sampling  
frequency  
Baseband receive control register = 0X  
Baseband receive control register = 1X  
Baseband receive control register = 00 or 11  
Baseband receive control register = 10  
Baseband receive control register = 0X; note 1  
f = 0 to 70 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 90 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 100 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 200 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f > 220 kHz; VIDM(RXIQ) = 150 mV (p-p)  
6.5  
MHz  
MHz  
kHz  
kHz  
13  
FSOUTRXIQ output sample rate  
270.833  
541.667  
FRESPRXIQ frequency response  
0.8  
0
+0.3 dB  
3.5  
5.5  
dB  
dB  
dB  
dB  
35  
45  
Baseband receive control register = 1X;  
note 1 and 2  
f = 0 to 140 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 180 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 200 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 400 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f > 440 kHz; VIDM(RXIQ) = 150 mV (p-p)  
0.8  
0
+0.3 dB  
3.5  
5.5  
dB  
dB  
dB  
dB  
35  
45  
DYNRXIQ  
dynamic signal range  
ZIF mode  
f = 20 Hz to 135 kHz  
60  
60  
40  
68  
dB  
dB  
dB  
dB  
dB  
dB  
LSB  
dB  
NZIF mode  
f = 20 Hz to 270 kHz  
68  
SINADRXIQ signal to noise and  
distortion ratio  
f = 20.0 kHz; VIDM(RXIQ) = 2 V (p-p)  
f = 67.7 kHz; VIDM(RXIQ) = 2 V (p-p)  
f = 20 kHz; VIDM(RXIQ) = 150 mV (p-p)  
f = 67.7 kHz; VIDM(RXIQ) = 150 mV (p-p)  
65  
40  
40  
OPC  
output code in BDIO for maximum input amplitude  
±1440  
70  
PSRRRXIQ  
power supply ripple  
rejection  
applying a 100 mV (p-p)/217 Hz sine wave on  
top of the analog power supply  
GERRRXIQ gain error  
referenced to maximum amplitude  
6  
+6  
%
0.5  
3  
+0.5 dB  
+3  
+0.25 dB  
ns  
GMATRXIQ gain matching error  
at maximum input level  
%
0.25 −  
GDMATRXIQ group delay matching measured at full-scale; 10 kHz < f < 100 kHz;  
5
of I and Q RX paths  
output load = 10 pF // 10 kΩ  
1999 May 03  
47  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
SYMBOL  
PARAMETER  
offset error  
CONDITIONS  
before compensation  
MIN.  
TYP.  
MAX. UNIT  
OFFSRXIQ  
40  
5  
+40  
+5  
mV  
mV  
after compensation  
POSTRXIQ  
power-on settling  
time  
including decimation filter  
ZIF mode  
NZIF mode  
filter group delay  
ZIF mode  
52  
26  
µs  
µs  
FGDRXIQ  
23  
µs  
µs  
NZIF mode  
11.5  
Notes  
1. Reference level is full-scale input at 67 kHz.  
2. This will not be tested.  
1999 May 03  
48  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.3 Voice band transmit (microphone to ASI)  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX.  
UNIT  
bit  
RESMICADC resolution of ADC  
13  
FSINMICADC internal sampling  
frequency  
1000 −  
kHz  
GRANTXPGA calibration gain range  
24  
0
+12  
dB  
GSTPTXPGA calibration gain step  
size  
see Table 25  
64  
steps  
GTOLVBTX  
gain tolerance of coder at TXPGA = 0 dB  
1.5  
+1.0 dB  
FRESPVBTX digital filter frequency  
response of  
f < 100 Hz  
20  
10  
+1  
0
dB  
dB  
dB  
dB  
dB  
dB  
dB  
100 Hz < f < 200 Hz  
f = 300 Hz to 3.3 kHz  
f = 3.3 to 3.4 kHz  
f 4 kHz  
implemented standard  
VSP software (version:  
vb5_all)  
1  
1.5  
20  
FREJVBTX  
out-of-band rejection  
f = 4.6 kHz  
40  
45  
45  
50  
f = 6 to 30 kHz  
Microphone/auxiliary signal path  
VIN(rms)  
nominal input level  
(RMS value)  
TXPGA = 0 dB, MICHI = 1  
35  
7  
dBm  
TXPGA = 0 dB, MICHI = 0  
psophometrically weighted(1); Tamb = 25 °C  
dBm  
dBm0p(2)  
NIDLE  
idle noise level  
(pin ADO)  
75  
THD  
total harmonic distortion f = 1 kHz; PGA = 4 dB; ADO = +2 dBm0  
1
2
%
SINAD  
signal-to-noise and  
distortion  
ADO = 3 dBm0  
30  
40  
45  
45  
40  
30  
25  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LSB  
ADO = 0 dBm0  
ADO = 10 dBm0  
ADO = 20 dBm0  
ADO = 30 dBm0  
ADO = 40 dBm0  
ADO = 45 dBm0  
PSCTVBTX  
power supply crosstalk applying a 100 mV (p-p)/217 Hz sine wave  
on top of the analog power supply  
Audio Serial Interface (ASI)  
FASOUT  
PCM output bit rate  
128  
2048 kbits/s  
kHz  
FSYNCAFS  
PCM frame  
8
synchronization  
frequency at pin AFS  
Notes  
1. Psophometrical weighting: a frequency weighting curve described in “ITU recommendation O.41”.  
2. The unit dBm0p: 0 dBm0p is generally defined as 3.14 dBFS, where dBFS denotes dB full scale, i.e. a signal with  
an amplitude covering the complete range of digital values. The suffix ‘p’ refers to psophometrical weighting.  
1999 May 03  
49  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.4 Voice band receive (ASI to earphone)  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
bit  
RESEARDAC resolution of DAC  
13  
FSINEARDAC internal sampling  
frequency  
1000  
kHz  
GRANVOL  
GSTPVOL  
GRANPGA  
GSTPPGA  
GTOLVBRX  
gain step range  
gain step size  
30  
12  
64  
+6  
dB  
digital steps; see Table 25  
digital steps; see Table 25  
steps  
dB  
calibration PGA range  
gain step size  
24  
+12  
64  
steps  
dB  
gain tolerance of  
decoder  
1  
+1  
GMUTEVBRX mute attenuation of  
decoder  
40  
dB  
FRESPVBRX digital filter frequency  
response of  
f = 0 to 100 Hz  
20  
+1.0  
+1.0  
18  
dB  
dB  
dB  
dB  
f = 300 to 3300 Hz  
f = 3300 to 3400 Hz  
f = 4000 Hz  
1.0  
2.0  
implemented standard  
VSP software (version:  
vb5_all)  
FREJVBRX  
out-of-band rejection  
f = 4600 Hz  
f = 28.6 kHz  
38  
40  
dB  
dB  
Audio Serial Interface (ASI)  
FASIN  
PCM input bit rate  
128  
2048  
kbits/s  
kHz  
FSYNCAFS  
PCM frame  
8
synchronization  
frequency at pin AFS  
Earphone output: EARP and EARN  
Vref(EAR)  
DC reference level  
Vref  
2
V
Vo(EAR)(p-p)  
output voltage  
(peak-to-peak value)  
load: 16 differential  
load: 8 single-ended  
load: 8 single-ended  
V
1.5  
100  
V
Io(EAR)peak  
output source/sink  
current  
mA  
GAINEARVOL nominal gain from ASI  
to EARP/EARN  
GRANVOL = 12 dB; load 32 Ω  
differential  
13  
19  
+5  
12  
18  
11  
17  
+41  
dB  
dB  
dB  
single-ended  
GRANSIDVOL total sidetone gain  
(from MICP/MICN to  
EARP/EARN)  
THDEAR  
IDLNEAR  
total harmonic distortion GRANEARVOL = 12 dB  
1
%
dBmp(2)  
idle noise at  
EARP/EARN  
psophometrically weighted(1);  
GRANEARPGA = 0 dB  
72  
1999 May 03  
50  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SINADEAR  
signal-to-noise and  
distortion ratio from ASI  
to earphone  
psophometrically weighted(1)  
at 3 dBm0 input signal level  
at 0 dBm0 input signal level  
30  
35  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
at 10 dBm output signal level 45  
at 20 dBm output signal level 42  
at 30 dBm output signal level 40  
at 40 dBm output signal level 30  
at 45 dBm output signal level 25  
PSRREAR  
power supply ripple  
rejection at  
applying a 100 mV (p-p)/217 Hz 70  
sine wave on top of the analog  
power supply  
EARP/EARN  
Auxiliary output: AUXSP  
Vref(AUXSP) DC reference level  
Vo(AUXSP) output voltage  
Vref  
V
V
load: 16 with 47 µF in series  
V
ref ±1  
to ground  
load: 8 with 100 µF in series  
to ground  
V
ref ±0.77  
V
Io(AUXSP)peak output source/sink  
current  
load: 16 with 47 µF in series to  
ground  
62.5  
mA  
dB  
GAINAUXSP  
nominal gain from ASI  
to AUXSP  
load: 16 with 47 µF in series  
to ground; GRANVOL = 12 dB  
19  
18  
17  
Buzzer output: BUZ  
Vref(BUZ) DC reference level  
Vo(BUZ)  
Vref  
V
output voltage  
load: 8 with 100 µF in series  
to ground  
V
ref 0.77 −  
V
Io(BUZ)peak  
output source/sink  
current  
100  
mA  
GAINBUZ  
nominal gain from ASI  
to BUZ  
load: 8 with 100 µF in series  
to ground; GRANVOL = 12 dB  
19  
18  
17  
dB  
Notes  
1. Psophometrical weighting: a frequency weighting curve described in “ITU recommendation O.41”.  
2. The unit dBmp: 0 dBmp refers to a voltage of a signal of 1 mW across a 600 load. The suffix ‘p’ refers to  
psophometrical weighting.  
1999 May 03  
51  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.5 Auxiliary digital-to-analog converters  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
AUXDAC1  
RESDAC1  
resolution  
8
bit  
VOMINDAC1  
VOMAXDAC1  
VDEFDAC1  
MONDAC1  
INLDAC1  
minimum output voltage  
maximum output voltage  
register value: 000H  
register value: 0FFH  
0
0.15  
2.3  
V
2.1  
2.2  
V
output voltage after reset register value: 085H  
monotonicity range  
integral non-linearity(1)  
1.147  
V
8
bit  
5.0  
1.0  
80  
+5.0  
+1.0  
+80  
LSB  
LSB  
mV  
µs  
µs  
DNLDAC1  
differential non-linearity(2)  
OFFSDAC1  
FSSTDAC1  
LSBSTDAC1  
offset error  
full-scale settling time  
one LSB settling time  
load: 50 pF // 2 kΩ, to VSS  
see Fig.13a  
;
40  
8
AUXDAC2  
RESDAC2  
resolution  
12  
bit  
VOMINDAC2  
VOMAXDAC2  
VDEFDAC2  
MONDAC2  
INLDAC2  
minimum output voltage  
maximum output voltage  
register value: 000H  
register value: FFFH  
0
0.15  
2.32  
V
2.1  
2.2  
1.1  
12  
±10  
V
output voltage after reset register value: 800H  
monotonicity range  
integral non-linearity(1)  
V
bit  
LSB  
LSB  
mV  
µs  
µs  
ms  
DNLDAC2  
differential non-linearity(2)  
1.0  
25  
+2.0  
+25  
OFFSDAC2  
FSSTDAC2  
LSBSTDAC2  
POSTDAC2  
offset error  
full-scale settling time  
one LSB settling time  
power-on settling time  
load: 50 pF // 10 kΩ, to  
VSS; see Fig.13b  
40  
8
see Section 18.1  
4
AUXDAC3  
RESDAC3  
resolution  
10  
bit  
VOMINDAC3  
VOMAXDAC3  
MONDAC3  
INLDAC3  
minimum output voltage  
maximum output voltage  
monotonicity range  
integral non-linearity(1)  
differential non-linearity(2)  
offset error  
register value: 000H  
register value: 3FFH  
0
0.15  
2.3  
V
2.1  
2.2  
10  
V
bit  
5.0  
1.0  
40  
1
+5.0  
+1.0  
+40  
15  
LSB  
LSB  
mV  
µs  
DNLDAC3  
OFFSDAC3  
FSSTDAC3  
LSBSTDAC3  
SSCDAC3  
full-scale settling time  
one LSB settling time  
output source/sink current  
load: 50 pF // 1 kΩ, to VSS  
see Fig.13c  
;
10  
2.5  
µs  
2.5  
mA  
Notes  
1. INL: the difference of the output to the best fit line. INL(i) = [V(i) (a + i × b)]/1 LSB; INL = (INL(i)(max) INL(i)(min))/2.  
2. DNL is the difference between individual code width and average code width (1 LSB); maximum and minimum  
specified. DNL(i) = [(V(i + 1) V(i) 1 LSB)/1 LSB]; DNL(min) > 1 is equivalent to monotonicity V(i + 1) > V(i).  
1999 May 03  
52  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.6 Auxiliary analog-to-digital converters: AUXADC1, AUXADC2, AUXADC3 and AUXADC4  
VDDA = 2.5 to 2.75 V; Tamb = 40 to +85 °C.  
SYMBOL  
PARAMETER  
resolution  
input voltage  
CONDITIONS  
coded in 12 bits  
MIN.  
TYP.  
MAX.  
UNIT  
RESAUXADC  
VINAUXADC  
1440  
LSB  
V
0.0  
20  
2.0  
20  
VINAUXADCMIN Vin for output code 0  
mV  
V
VINAUXADCMAX Vin for output code +1820  
after offset compensation  
2.0  
1.0  
2.5  
2.5  
Ri(AUXADC)  
input resistance  
MΩ  
mV  
mV  
dB  
INLAUXADC  
integral non-linearity  
differential non-linearity  
gain error  
DNLAUXADC  
GERRAUXADC  
OFFSAUXADC  
POSTAUXADC  
Vi = Vref  
0.5  
3  
+ 0.5  
3
offset error after compensation  
power-on settling time  
LSB  
µs  
170  
18.7 Typical total current consumption  
The typical total current consumption values for the chip in different modes; Tamb = 25 °C.  
TOTAL CURRENT (mA)  
ACTIVITY  
REMARKS  
NOTE 1  
NOTE 2  
Baseband  
transmit  
receive  
3.96  
5.14  
4.79  
4.04  
5.41  
4.94  
baseband transmit + references + MCLK + BSI  
baseband receive + references + MCLK + BSI  
Voice band transmit and receive  
voice band transmit and receive + references  
+ 13 MHz + auxiliary DAC2; note 3  
Voice band transmit and receive  
baseband transmit  
7.32  
8.52  
2.75  
7.51  
8.91  
2.86  
voice band transmit and receive + baseband transmit  
+ references + 13 MHz + CSI + auxiliary DACs 2 and 3  
baseband receive  
voice band transmit and receive + baseband receive  
+ references + 13 MHz + auxiliary DAC 2  
Auxiliary ADC function  
auxiliary ADC + CSI + references + 13 MHz + auxiliary  
DAC2  
Auxiliary DAC1  
Auxiliary DAC2  
Auxiliary DAC3  
2.35  
1.55  
4.35  
2.49  
1.59  
4.56  
auxiliary DACs 1 and 2 + references + 13 MHz  
auxiliary DAC2 + references + 13 MHz  
auxiliary DACs 3 and 2 + CSI + baseband transmit  
+ references + 13 MHz  
Idle with MCLK running  
Idle no MCLK; references on  
Idle  
0.23  
0.18  
0.01  
0.24  
0.19  
0.01  
references + 13 MHz clock  
references; see Section 19.1.1 “Possibility 1”  
all blocks in power-down, no 13 MHz clock  
Notes  
1. VDDD = 2.3 V; VDDA = 2.65 V; external interface current is not included.  
2. VDDD = 2.6 V; VDDA = 2.65 V; external interface current is not included.  
3. For a signal at the earpiece differential output of amplitude ‘A’ across a load resistance of ‘R’, the current ‘I’ must be  
4 A  
added, where: I =  
.
-- ---  
π R  
1999 May 03  
53  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
18.8 Typical output loads  
Figure 13 illustrates the typical loads for the outputs: AUXDAC1, AUXDAC2, AUXDAC3, EARP, EARN, AUXSP and  
BUZ.  
andbook, halfpage  
handbook, halfpage  
AUXDAC1  
AUXDAC2  
50  
pF  
2
kΩ  
50  
pF  
10  
kΩ  
V
V
SSA  
SSA  
MBL023  
MBL024  
a. AUXDAC1.  
b. AUXDAC2.  
handbook, halfpage  
EARP  
or  
handbook, halfpage  
AUXDAC3  
AUXSP  
800 µH  
16 Ω  
50  
pF  
1
kΩ  
100 pF  
V
SSA  
EARN  
MBH602  
MBL020  
c. AUXDAC3.  
d. EARP/EARN or AUXSP.  
16 Ω  
ndbook, halfpage  
handbook, halfpage  
AUXSP  
or  
BUZ  
8 Ω  
AUXSP  
or  
BUZ  
47 µF  
100 µF  
V
V
SS  
SS  
MGS172  
MBL021  
e. AUXSP or BUZ; R = 8 .  
f. AUXSP or BUZ; R = 16 .  
Fig.13 Typical output loads.  
1999 May 03  
54  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
19 APPLICATION INFORMATION  
h
BUS  
RFCLK  
G14  
RFDO  
G11  
RFDI  
G13  
RFE_N1  
F13  
RFE_N2  
F11  
V
V
V
DDD  
68 nF  
DDA  
68 nF  
DDA(vbo)  
68 nF  
CLOCK  
DATA  
EN  
17  
16  
18  
AUXST  
7
34 37  
47  
25  
RFSIG[x]  
13  
CCLK  
CDI  
9
IA  
IB  
IP  
OM5178  
21  
7
11  
10  
12  
IN  
CEN  
CDO  
22  
8
QA  
QB  
QP  
23  
QN  
24  
9
PCF5087X  
10  
BIOCLK  
BIEN  
SIOXCLK  
SOXEN_N  
SIOXD  
H13  
15  
16  
AUXDAC1  
27  
28  
J13  
J11  
H14  
13 MHz ON  
BDIO  
AUXDAC2  
AUXDAC3  
17  
18  
VCXO  
SIXEN_N  
BOEN  
13 MHz  
PA-CONTROL  
CIRCUITRY  
29  
RFSIG[y]  
RFSIG[z]  
TXON  
RXON  
AUXADC1  
AUXADC2  
AUXADC3  
AUXADC4  
19  
20  
31  
32  
33  
30  
CHARGER  
BATTERY VOLTAGE  
BATTERY TEMPERATURE  
AMBIENT TEMPERATURE  
BATTERY TYPE  
PCF50732  
EXTERNAL  
IOM2  
microphone  
supply  
FSC  
DCL  
DU  
AFS  
ACLK  
ADO  
ADI  
B11  
A11  
D11  
B10  
3
4
1
2
AUXMICP  
AUXMICN  
38  
39  
DD  
microphone  
AMPCTRL  
MCLK  
supply  
MICP  
MICN  
14  
6
41  
40  
CKI  
L7  
EARP  
K14 K12  
46  
RSTO_N  
RST_N  
RESET  
EARN  
45  
44  
5
system  
reset  
V
AUXSP  
ref  
36  
68  
nF  
BUZ  
43  
8
26 35 42 48  
MGS173  
(1) 10 nF can be used instead of 100 nF for high-pass filtering.  
Fig.14 Application diagram.  
55  
1999 May 03  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
A down-counter increases the band gap output drive  
capability for 32768 MCLK cycles which equals  
approximately 2.5 ms. After that time the voltage at Vref  
has reached ±0.5 mV of its final value. The timing diagram  
illustrates the situation (see Fig.15). Other points to note  
for this possibility:  
19.1 Wake-up procedure from Sleep mode  
Apart from being the status control signal of AUXDAC1,  
AUXDAC2 and the MCLK input, AUXST also starts a  
down-counter at each rising edge which controls the  
output drive capability of pin Vref. This is important for the  
following considerations. For current consumption  
reduction during Sleep mode there are two possibilities as  
shown in Section 19.1.1 and 19.1.2.  
As long as VDDD is not switched off, all registers keep  
their values.  
As long as VDDA(bb) is not stable, the internal master  
clock is not running, because the first stage of the clock  
generator is supplied by VDDA.  
19.1.1 POSSIBILITY 1  
Program every block into power-down via CSI except for  
the band gap, then pull AUXST LOW to switch off the clock  
internally. This results in a IDD(total) = 60 µA (typical). Since  
the band gap hasn’t been programmed into power-down,  
the only active reference is Vref. After a rising edge of  
AUXST, POSTDAC is in the order of 1.5 ms.  
All digital signals MUST remain stable for tMCLK after  
AUXST has gone HIGH. This is necessary to avoid any  
timing violations in the digital part of the PCF50732  
caused by an unstable MCLK clock input.  
The previously mentioned 2.5 ms for tBG are only valid  
for CVref = 68 nF ±10% or less. The maximum of value  
68 nF is highly recommended for good noise and power  
supply rejection figures.  
19.1.2 POSSIBILITY 2  
If AUXST is also used to switch off the analog power  
supply, all references are shut down. The power-up time in  
this case is measured from the point where the MCLK  
clock input has valid levels or VDDA has settled to its final  
value (the latter of the two signals sets the reference  
point).  
POST  
DAC  
(4 ms)  
t
MCLK  
t
BG  
t
VDD  
(2.5 ms)  
V
DDA  
V
ref  
MCLK  
AUXST  
AUXDAC1/  
AUXDAC2  
MGR999  
tVDD: settling time until VDDA(bb) has reached 95% of its final value. It is assumed that tMCLK > tVDD; otherwise tBG and POSTDAC are related to tVDD  
tMCLK: settling time until MCLK clock has reached at least 100 mV (peak-to-peak) level and a frequency of 13 MHz ±10 kHz.  
tBG: settling time until voltage at Vref has reached ±0.5 mV of its final value for CVref = 68 nF ±10%.  
.
POSTDAC: settling time until AUXDAC1 and AUXDAC2 has reached the previously programmed value ±2 LSBs.  
Fig.15 Possible timing of wake-up sequence.  
1999 May 03  
56  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
19.2 Microphone input connection and test set-up  
microphone  
supply  
handbook, halfpage  
2 kΩ  
handbook, halfpage  
MICP  
MICP  
MICN  
100 nF  
100 nF  
(1)  
(1)  
100 nF  
100 nF  
MICN  
2 kΩ  
MGS171  
MBL022  
(1) 10 nF can be used instead of 100 nF for high-pass filtering.  
a. Microphone input connection.  
b. Microphone input test set-up.  
Fig.16 Microphone input connection and test set-up.  
1999 May 03  
57  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
20 PACKAGE OUTLINE  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
94-12-19  
97-08-01  
SOT313-2  
1999 May 03  
58  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
If wave soldering is used the following conditions must be  
observed for optimal results:  
21 SOLDERING  
21.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
21.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
21.4 Manual soldering  
21.3 Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 May 03  
59  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
21.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
22 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
23 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 May 03  
60  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
NOTES  
1999 May 03  
61  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
NOTES  
1999 May 03  
62  
Philips Semiconductors  
Objective specification  
Baseband and audio interface for GSM  
PCF50732  
NOTES  
1999 May 03  
63  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA63  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465008/00/01/pp64  
Date of release: 1999 May 03  
Document order number: 9397 750 04998  

相关型号:

PCF5073H-T

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP64, Cellular Telephone Circuit
NXP

PCF5075

Power Control/Management
ETC

PCF5075M

IC SPECIALTY TELECOM CIRCUIT, PDSO20, Telecom IC:Other
NXP

PCF5075M-T

IC SPECIALTY TELECOM CIRCUIT, PDSO20, Telecom IC:Other
NXP

PCF5075T/F2

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-266, SSOP-20, Telecom IC:Other
NXP

PCF5075TDK-T

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-266, SSOP-20, Telecom IC:Other
NXP

PCF5077T

Power amplifier controller for GSM and PCN systems
NXP

PCF5078

Power amplifier controller for GSM and PCN systems
NXP

PCF5078T

Power amplifier controller for GSM and PCN systems
NXP

PCF5079

Dual-band power amplifier controller for GSM, PCN and DCS
NXP

PCF5079HK

Dual-band power amplifier controller for GSM, PCN and DCS
NXP

PCF5079HK/C/1

Telecom Circuit, CMOS, PDSO10,
PHILIPS